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We consider three mechanisms of hysteresis phenomena in alternating magnetic field: the domain-wall
motion in a random medium, the nucleation, and the retardation of magnetization due tdcskival)
fluctuations. We construct a quantitative theory for all these processes. The hysteresis is characterized by two
dynamic threshold fields, a coercive field and the so-called reversal field. Their ratios to the static threshold
field is shown to be a function of two dimensionless variables constituted from the frequency and amplitude of
the ac field as well as from some characteristics of the magnet. The area and the shape of the hysteresis loop
are found. We consider different limiting cases in which power dependencies are valid. Numerical simulations
show the domain-wall formation and propagation and confirm the main theoretical predictions. Theory is
compared with available experimental ddt80163-182@08)06545-X]

[. INTRODUCTION HLA must behave also as logarithm bfwith the same co-
efficient (exponent This dependence has never been ob-
The hysteresis loogHL) was first studied more than a served in the experiment. Therefore, we propose a new
century agd. However, the understanding of this process inanalysis of such a HL in this paper.
thin magnetic films as well as in bulk magnets is still rather  The purpose of this paper is to formulate a rather general
poor. Many efforts have been devoted recently to predictiomypproach to magnetization reversal mechanisms and to indi-
(see Refs. 2—6and experimental verificatiofsee Refs. 79 cate several important measurable characteristics of the HL
of the scaling behavior of the hysteresis loop ali¢dhA) as  pesides the HLA. We will see that these characteristics are
a function of the applied magnetic-field frequency and amgoverned by two dimensionless parameters combined from
plitude for thin magnetic filmgfor a brief review of HLA  the field frequencyw, its amplitudeh,, and characteristics
scaling results, see Ref).9The scaling behavior of the HLA  of the magnetic material. Everywhere in what follows we
was first reported in the pioneer wdrfor three-dimensional  assume that the external field varies harmonically in time,
(3D) magnets. While there exists an extended literature OMfi(t) = hySinet.
the hysteresis of 3D magnets, the properties of HL in 2D The hysteresis behavior may have various origins. It can
systems are much less known. There are only few articlese mediated by the nucleation process, by the domain-wall
devoted to the HL in ultrathin fel’l’omagnetic filrh%],'lj_g (DW) propagation or s|mp|y by retardation of the magneti_
though the hysteresis effects have been found as a side effegition due to fluctuations. We consider all these mechanisms
in many othergsee, for example, Refs. 12 and)18ritical  and establish conditions at which one of them is dominant.
exponents found in the experiments with thin films vary dra-  pefects play an important role in the DW propagation.
matically for different materialdsee, e.g., Refs. 79%nd  They create a finite threshold valug, of static magnetic
probably for different regimes. Different authors disagreefie|d necessary for the DW depinning. The threshold figid
with each pther(see the already cited articled) and also i the dynamical problem can differ substantially frdry.
disagree with numerical simulatiofis. o We find that in a medium with defects the moving DW,
Several years ago mean-field-type models with sfigle  passing rare extended defects, may form bubbles of reversed

many" relaxation times have been applied to analyze experispins. These bubbles play an important role as prepared nu-
mental data. The authors of Refs. 10 and 11 assumed that th&sij in the next half-cycle of the magnetization reversal.

HL was controlled by the nucleation process. These authors |n this paper we consider magnets of the Is{ngiaxial

predicted the logarithmic dependence of the coercive figld symmetry. Their properties may be very different depending
on the rate of the applied magnetic fiekd In a recent on the strength of the anisotropy. In the experimentally stud-
experiment it was found that the HLA depends on the fre- ied films the anisotropy was very weak. In this case the
quency of the applied field as a power with a small exponentiomain-wall width is large in comparison to the lattice con-
(~0.03-0.06) or, possibly, there is a logarithmic depen-stant. On the contrary, in the original Ising model the anisot-
dence. However, in the framework of the same approach thmpy is assumed to be large and DW widtks simply the
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lattice constant. However, these different models become V@

equivalent after a simple rescaling: the DW width should be

accepted as a new elementacytoff) length. It means that a)

we consider a spin cluster of the linear sizas a new el-

ementary spin. This approach allows us to apply the Ising

model supplied with the Glauber dynamics for numerical

simulations. z
Peculiarities of the two-dimensional situation are much V(@

higher mobility of the DW as well as much stronger fluctua-

tions. This makes the experimental situations as well as the

b)

consider the individual DW motion. Equation of motion is
formulated and justified in Sec. Il. It is solved in Sec. Ill. In
the same section we introduce characteristic fields
het,hez,he hy, the HLA A, find the scaling arguments, and  FiG. 1. Schematic picture of the ratcheted potential in the
analyze several limiting regimes in which simple power scalvandom-bonda) and random fieldb) cases.

ing is valid. In Sec. IV the process of the bubble formation is

studied. Section V is devoted to the HL controlled by the . _21D+1 ,

nucleation process. The HL driven by strong magnetiZation 70 (1) =7 ar=r"). @)
ﬂUCtuationS, eSpeCia”y near the Curie pOint, is considered il’]l-|ere 5l(r) denotes a delta function smeared out over a dis-
Sec. VI. Numerical simulations of the HL and the domaintanceL As was first argued by Narayan and F|5Hbm the
structures for the 2D Ising model with Glauber dynamics thakegion above the depinning threshold random-bond and
supports results obtained in Secs. Ill and IV are presented itandom-field impurities act in a similar way. This can be
Sec. VII. In Sec. VIl we summarize our results and compareseen most easily from an example of two ratcheted potential

them to the eXperimental data. In the rest of this article WqSee F|g ;L one for random-bond and another for random-
use the notatiorh for magnetic fieldm for magnetization, fie[d  impurities.  Although  the  potential V(Z)

theoretical description much more diverse than those for a
3D magnet.
This article is organized as follows. In Secs. Il and Il we

andM for the total magnetic moment of a magnet. =J%5(x,2')dZ’ in the random-field cas@Fig. 1(b)] has
fluctuations that scale lik&'?, it leads to the same random
Il. DOMAIN-WALL MOTION IN A RANDOM MEDIUM forces as the random-field potentid#ig. 1(a)] that shows

order-one fluctuations. Therefore, we restrict analytical
analysis to the case of random-field impurities. For Monte
Carlo simulations we have used both types of disorder and
Yound no significant difference. We will also assume that the
disorder is weak, i.e., that the condition

As we already mentioned in the Introduction, our starting
point is an impure ferromagnet with either weak or strong
Ising anisotropy. The soft spin version of the system is the
given by a¢* model with a bare domain-wall width>a,
wherea denotes the original lattice spacing. The imperfec-
tions in the model may be in principle either of random bond I's gl ®)

(i.e., randoniT.) or random-field type. We will argue below

that in the region we are mainly interested in, namely, abovgs fulfilled.

the depinning threshold, both types of impurities act essen- For|Vz|?<1, g~1 and the equation of motion takes the
tially as random-field impurities. form considered previousff:}"1%1*Below we summarize

As it was shown by Bauscét al*® (see also Refs. 16 and some of the results found in Refs. 19 and 14: Since the
17), equation of motion for a domain wall without overhangs disorder is weaksee Eq(3)], the interface is essentially flat

can be written in the following way: on length scales <L, where
1 47 " [\ 2(4-D)
ﬁ S =TV (97 "VZ) +h+ p(x,2) 1) Lcwl(ﬁ >| (4)

where Z(x,t) denotes the interface position angi=1 is the so-called Larkin length. On larger scales the wall can
+(VZ)?. y andT are the domain-wall mobility and stiff- adapt to the disorder and, as a result, it gets pinned for driv-
ness, respectiveln=ugHM, whereH is the external mag- ing fieldsh=<h, with

netic field andM is the magnetization. Finallyy denotes the
random force generated by the impurities.

For broad domain wall§ ~J/(a®~1l), whereD denotes
the dimensionality of the wall. For narrow walls depends
in general onJ, T, and the disorder strength in a compli- for the pinning threshold. Ih exceeddh,, the wall starts to
cated way'® move. Forh>h,, the influence of the disorder is weak and

The random fieldsy[r=(x,Z)] generated by imperfec- the velocity is proportional to the driving field
tions is assumed to be Gaussian distributed and short-range
correlated withzn(r)=0 and v=(D)~ yh. (6)

I
hp%F|L52= 17(1 <7y 5)

D/(4—D)
r )
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Corrections to this relation can be considered in the frame- Thus, the moving domain wall heals its roughness at large
work of high-velocity expansion, which can be expressed aslistanced. > ¢, and on the time scale>t, . This fact sim-
a power series in plifies drastically theory of a domain wall moving with finite
velocity in comparison to the theory of adiabatically moving
& domain walls and quasistatic hystere<ié It allows one to
Lc

consider domain wall on large distances as a smooth line,
where¢, is dynamical correlation length that divergestas even as a straight line for homogeneous external field.
—0; zand{ are the dynamical and the roughness exponent,
respectively. Outside the dynamical critical region, i.e., for
h—hy,>h,, z=2 and{=0, respectively. We start with description of a rectilinear domain-wall mo-
If the driving field h is so small that,=L, the high- tion. In the previous section we demonstrated that the
velocity expansion breaks down and #unctiona)  domain-wall roughness can be ignored on a time stale
renormalization-group calculation has to be apphedhis >t  and length scale>¢,. Thus, locally the domain wall
leads to a renormalization of the mobility constant: yer  moves as a straight line. In some experiments only one do-
with main wall survives(see Sec. VIl In this case the model
gv)(m)ng) problem of rectilinear domain-wall motion is close to reality.

Uz=0)

h
oY) 7

v

. MOTION OF A RECTILINEAR DOMAIN WALL

Sv (8) In other cases this problem is an important part of more
Le complex problem describing either local properties of

After integrating out the interface fluctuations on the Iength(tj)c’lma“nt'.WaII _rl%otmn or the q(rjdert?]f magtmtude}s for trﬁ. glo-

scalesL<¢,, the effective equation of motion for the inter- da mo Ionil gs’ tvr\:e Cot.ns' efr e m? 'cf).nlg at.rec Illlmla?r

face profileZ(x,t) =(Z(x,t)); . on large scales is given by omain wall under the action ot magnetic field antiparaliel to
vy the magnetization.

1 07 We have mentioned already that the fluctuation bending
— —=I'V2Z+h—hy+ ner(X,0t). (99  of the domain wall can be neglected if the characteristic time
Vet Ot of the process is much more than the bump healing tigne

Here(), . denotes the spatial and time average over scale%v_”(z__g)- This requirement suggests that,<1. Any-

£ andt:, vrespectively, andy is the renormalized random Way: this requirement must be satisfied since otherwise the

field that acts as a thermal noise. Since the latter leads to Y€rage position of the domain wall almost does not change

interface roughness characterized by the exporggrt(2 ~ during half a period of oscillations.

—D)/2, we may neglect the influence of the random field on The domain wall is assumed to be fixed at the left bound-

these length scales. The mean velocity of the interface i@ Of the sampl@=0 at the initial moment. We will solve
equation of motion(6) for the domain-wall coordinate for

Vet~ Y

given by ) I o X
harmonically oscillating magnetic field=hgsinet. Instead
h—h, o h—h, of integrating it over time, we integrate it over field by the
v=vhp| CoTh <L (100 following change of coordinates:
P P
where 6= (z—{)/(2—¢). z and ¢ take now nontrivial val- q 1 dh 14
ues, which can be calculated lyexpansion irD=4—€ or t= ® —m- (14)

determined numerically. FdAD=1 the e expansion giveg

=1 and z=4/3 and henced=1/3, whereas the numerical After integration we find an expression f@r vs magnetic

values are/=5/4, z~1.42, andd~1/4%° To unify our re- field h:

sults for the domain-wall velocity we rewrite Eg&) and

(10) as yfhf<h_hp) dh
h

z=" —_—.
hy /\h5—h?

(15
x?  x<1 @Jhy P
X, x>1. 1D This equation is correct fon>h,. For smaller value oh
the domain wall does not move=const. Equation(15)
On the length scalds.<L < ¢, the domain wall is rough, should be complemented by a prescription to change the sign
of the square root each tinfereaches its maximum or mini-
W(L)=<[Z(X1)—Z(Xz)]2>\1>ff—x2|:|_“|(L/Lc)g- (12 mum value+h, and by an initial conditiorz=0 att=h
) ) =0. The second necessary prescription is to substitute
Bumps in the. domain walls that emerge from random clus-_hp by —h—h, whenh is negative. To transfer from the
ters heal on time scales coordinateZ to the magnetic momentt, the following rep-

| {h\dE0 | [n ~2(2-9) resentation is useful:
e I
v\UA yhp

h
u~hpyf(h—p—1), f(x)~[

hy

M=Mjq : (16)

However, on larger scalels>¢, the random field acts
merely as a thermal noise and the roughness exponent ighereMg is the saturation magnetic moment. First of all we
reduced taZ=1/2 and{=0 (log) in D=1 andD =2 dimen-  find two important boundary values for the amplituggthat
sions, respectively. separate hysteresis loops of different shapes. The first of
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FIG. 2. Schematic pictures of hysteresis loofs. Incomplete
HL for ho<hy;. (b) Symmetric HL forhy=h;;. (c) The HL for
hy3<hg<hy,. (d) The HL forhy>hy,. The values,, h., h,, and
hg are marked in all figures.

them is the dynamic threshold fielig,, , the smallest value of

hy at which the domain walls reaches the right boundary o
the sampleZ=L. At hy<h;; the magnetization is not re-

versed fully and the hysteresis loop is asymmeftsiee Fig.

2(a)]. The hysteresis loop asymmetry was found earlier

theoretically and experimentally® At larger values ofh,

the hysteresis loop is symmetric under inversidn
——h,M— —M [Fig. 2c)]. The value oth,, is determined
by the following equation:

ol Jhtl/hpf( 1)
- = X—
27hp 1

dx

———— 1
Tiamroe 47
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The next notorious field ig;, defined as the value df,
at which the domain wall reaches the right end of the sample
Z=L during one fourth of period, just &=h,. The equa-
tion that defined, is rather similar to that foh,:

hz2 /hp dx
o [ ey ——.
e Ja Vihe 7=

It differs from Eq.(17) by the absence of a factor of 2 in the
denominator of the left-hand side. The hysteresis loops cor-
responding tohy>h;, acquire characteristic “whiskers,”
single-valued pieces of the cuni(h) that are absent in
hysteresis curves fdry<h,, [see Fig. 2d)].

At a fixed hy>h,; it is possible to define the coercive
field h, by the requiremenM (h.)=0. Finally, for ho>h;
the so-called reversal fiel can be defined as a value of the
field h at which the magnetic moment reverses fully. At the
value h=h, two branches of the hysteresis curve intersect
each other. In other wordZ(h,)=L. At h betweenh, and
hy the magnetic moment remains a constiht Mg. The
valuesh, and h, are shown in Fig. 2. Using Eq$15) and

-1) (18)

(16), we find
ol _fhcf(h_hp) dh 19
thp hp hp \/hg—hz.
Equation forh, reads
ol _J'hrf(h—hp) dh (ho>he,) 20
7hp hp hp \/h(z)—hz 0 @
wl hy ho
ol
yhp [ hp hy
xf(h_hp) dn (hy<ho<hyy)
hp \/W tl 0 t2/-
(22)

The ratiosh./h, andh, /h, are functions of two dimension-
less variablesu=wlL/(yhp) andv=hg/h,. Note that by
knowledge ofw,=h;,/h, (or wy=h;/h,) as a function of
Parameteru= wl/yh, one can restore the functiof(x)
solving the Abelian equation

3 2 d (xu(w)wdw
f(x_l)_;d_)( l—w. (22)

The area of hysteresis loafd can be also expressed in the
integral form

Msfh'Zhdh
T . (h)dh.

Now we proceed to the analysis of the hysteresis loop char-
acteristics. It is controlled by parametars wL/yh, andv

A=4h M —4 (23)

Note, that athy=hy, the hysteresis loop is symmetric with =hgy/h,. We start with small<1 imposing no restrictions

respect to reflections in the axisand M [Fig. 2(b)]. From
Eqg. (17) it is seen that the ratib, /h, is the function of one
dimensionless variableL/(yh,). This scaling relationship
will be analyzed in detail later.

on the valuev. First we show that, at smali, the fieldshy,
andhy, are close td,. Indeed, it is clearly seen from Egs.
(17) and (18). Solving them approximately and employing
the asymptotic formula fof(x) at smallx [Eqg. (11)], we find
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(24)

o L jhu/hp( 1o dx
u/2=— X—1) ——.
V21 V(hiy 7hy) —x

Introducing a new integration variabke=(x—1)/(h¢;/hy)
—1, Eq.(24) can be transformed as follows:

h 6+1/2
t1
B(6+1,1/2,

/2—1
u2=—\n

V2! hp

-1

(25

whereB(x,y) is the Euler beta function. Using its standard

representatiof? one finds

hey (1+120)T(6+1/2) |20V
g~ (26)
hp V27T (6)

In a similar way the asymptotic of the fielg, can be estab-

lished. The ratiolf;,—h,)/(h;; —hp) does not depend on the

parametew if uis small:

hiz—hp —9226+1)

2
ha—h, (27)
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1(6+1)

D:[(0+ 1)UU]1/(6+1):
hp

(04 1) whylL

2
vhy

(33
In the opposite limiting caseu<1,uv>1) the fieldh, is
much larger tharh,, and the asymptotid (x) ~x? is not
valid. In this case, the equation fby reads

oh wL)
y 70 oy )

Still, the reversal fieldh, is much less than the amplitutig.
For coercive fielch, in the rangeu<1py>1 one finds

wl

h,= (39

h h
1= L—1]27 U+ (yy<1); (35
hp h,
h, 1 (36)
2

The shape and the area of the hysteresis loop depends on the
same parameters= wl/(yhp) andv=hy/h,. We consider
the range of smalu<1. If v is close to one, the low-field

The shape of the hysteresis loop and its area depends n@@Proximation for the functiofi(x) may be used in Eq15)

only on the parameten, but also on the parameter
=hg/h,. Ifviscloseto 1, i.e., ihy is also close td,, one
can employ the low-field asymptotic of the functidiix)
[Eqg. (11)] also in Eq.(20) for h,. Then, forhg>h,,, the
approximate equation fdr, reads

(28)

1 fhr/hp( 1)0 dx
u=— X— —_—.
V2J)1 Jo—x

Introducing a new integration variable=(x—1)/(v—1),
we find

e hr—hp,

u=(v—21)""B(6+1,1/2w); —
o~ tp

(29)
where B(x,y;w) is incompleteB function, defined by an
integral

w
B(X,y;w)= f s H1-s)Y Uds. (30)
0
Thus, the ratiov=(h,—h;)/(hy—hp) in this limit is a func-
tion of only one variablei/(v —1)?" 2. Forh, close toh,,,
the fieldh, is also close td, . If u/(v—1)?*2<1, the ratio
w becomes small:

1/6+1

V2u

(0+1)(v—1)"*1

W= (31

For completeness we present here equationhfoin the
rangeh; <hy<h,, without derivation:

u=(v—1)"Y72B(9+1,1/2—B(6+1,1/2w)]. (32

If u<1, butv>1, the valueh, depends on the produat. If
it is small, thenh, is still close toh,:

for z. Together with Eq(16) it results in the following rela-
tion:

B[6+1,1/2(h—hy)/(hg—h,)]
~ “B[6+1,1/2(h,—h,)/(ho—hp)]]’

For —h,<h<h, on the lower branch of the hysteresis curve
and for —h,<h<h, on the upper branctM==Mg. We
presented here only a comparatively simple chge h;,.
The casény<h,, is more complicated and we do not present
here the explicit formulas for magnetization in this range of
amplitudes.

Foru<l1,v>1, anduv<1 we find in a similar way

h—hp 6+1
M=My1- 2( )

S[ h.—h,
andM =M for h,<|h|<hg. Note that the hysteresis loop in
this range of parameters is narrow, ile.,h.<hg.

In the intervalu<1,uv>1 the value ofh,, according to
Eq.(34), is much larger thah,,. One can neglect the thresh-

old field and employ the linear asymptotic fofx) solving
Eqg. (15). The result is

M=Mg 1 (37)

(hp<|h|<h;). (38

Z(h)= 2 (ho— VhZ—h?) (39)
and
M=M, 1—2w—y|_(ho— JhZ=h?)|. (40)

The latter two equations are valid in the interval of fields
|h|<h,. Beyond this interval the total magnetic moment is
fixed at its saturation value. Note that a new characteristic
length appears in the problerh,=yhy/w. Below we
present results for the hysteresis loop area the range of
smallu for different values ob without repeating of analo-
gous calculations
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(i) v—1<1:

A~4Mh,

w
X1

\/E(U_l)(Prl/ZJ»
J’_—

u 0

B(6+ 1,1/2;x)dx}.
(41)
(i) v>1luv<l:

(0+ 1)UU]1/((9+1)

[
1+ 942

A~4Mh, (42)

(iii) uv>1: In this caseh,>h,.
Therefore all essential results formally coincide with
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whereZ..(h) denote the value of coordinate on the upper
(+) and lower () branches of the hysteresis curve, respec-
tively. Performing the integration, we find

h
A=4Mshr 1_E (48)

One can observe that for the cage 1 the static threshold
field h, does not enter physical results. Instead a new dimen-
sionless parameter

u'=wlL/(yhg)=LI/L, (49

emerges. In the range of existence of the full hysteresis loop
u’<1/2. Thereforeu’ cannot be large. However, it can be
very small. It is worthwhile to consider separately the behav-
ior of all values of interest in this asymptotic regirflarge

those foru>1 and the reader is referred to a correspondindields or small frequencig¢sFor u’ <1 we find

subsection. Note that in the cag@sand (ii) A is close to a
constant valued,=4Mgh,, but the deviationd— A, scales
with two parametersi andv.

Now we proceed to a simpler case of lange 1. In this
case the dynamic threshold fieligh is much larger thai, :

ol

hiy
Therefore, one can neglelsf when integrating Eq(15) and

others. Then we rediscover E(B9) for the coordinate. It
implies that

ol
ht2:7 = 2ht1' (44)

The equation foih, coincides with Eq(34). Coercive field
h. is determined by the equation

he=vhu(2hg—hyy).

Equation(40) describes the shape of the hysteresis loo

(45

h;;<hg<<h;, on the lower branch of the hysteresis curve 0
<h<hg. On the upper branch of this curtg<h<h, the
sign of the square root must be reversed.

The hysteresis loop area is determined by the followin
equation:

2M shr ’yho

A=aMh — =1

arcsir(h, /hg)
V 1- (hr /hO)

This equation is valid fohy>h;,. If, on the contraryhg
<hy,, the area is

hl'
2M5f (1
0

hoZ.. (h)—Z_(h
+2Msf0—i&l———&ldh
hr

h 2
—% . (46)

[

h

Z(h)
L

A

o

- . @

he~hc=ho\u’, (50
h2
MUU=M51——~—» (51)

u’ hg
A~4Mh;, . (52)

Near the threshold fiell;; the values oh, and.A are given
by the following asymptotics:

h~2yhu(2ho—hy), (53
TMshy
A= +47Mgvhi1(2hg—hyq). (54

2

Near the second threshold field, the reversal fielch, is
close tohg:

(ho_ ht2)2
2ht2 ’

hy~ho— (55)

: < ) . , . )
for hy>h,,. It can be used also for the range of amplltudeQ:oru 1 we find scaling behavior of all hysteresis charac

teristics with universal critical exponents, independent of the
pinning centers. Therefore, one can expect that the same
scaling is valid for a clean ferromagnet with the relaxational
dynamics. In particular, we have found that

g

A ol?n?, (56)

In this section we assumed that the magnetization in a single
domain reaches its saturation value. If it is not the case, the
magnetization on the parts of hysteresis curve beyond the
hysteresis loof§“the whiskers”) is not a constant. The exact
shape of the hysteresis curve in this case depends on the
single-domain equilibrium magnetization curve.

IV. CREATION OF BUBBLES BY A MOVING DOMAIN
WALL

In this section we show that, at sufficiently high magnetic
field hy<hy<#, the moving wall passes a series of defects
that it cannot overcome. Instead it leaves closed domains of
magnetization, opposite to the propagating magnetization,
which serve as nuclei at the next half-cycle of the hysteresis
process.



4266 LYUKSYUTOV, NATTERMANN, AND POKROVSKY PRB 59

So far we assumed that an almost planar domain wall is
pinned by typical fluctuations of the random fieldr). In a
(spherical region of the volumé&R®,d=D+1 a typical fluc-
tuation of [ ra7(r)dr is of the order+ (19R%) 2, the cor-
responding probability is of the order 1/2. In the following
we will consider the possibility of clusters of rare random-
field fluctuations that may serve as nuclei of reversed spins
when the field direction changes. A cluster of the sike
consisting mainly of minimal negative value# of the ran-
dom field has the probabilitg(1,R) =exd —(R/1)°In2]. Such FIG. 3. Formation of a bubble by the moving domain wall.

a cluster pins the domain wall fdr<z even ifh>h,. In

general, if the concentration of # sites in a cluster is, its  Still, the reduced barrieA remains rather large so that the
probability p(c,R) is of the order exp-(RM)9cinc+(1  average reversal time,(0)=v"lexpA/T) (v is a micro-
—c)in(1-c)+In2]}, and the pinning force density is of the scopic frequencyis very large in comparison to the oscilla-
order (X£—1)7n. Sinceh,<7, there is a field regiorh,  tion period:w7,>1. However, the reversal time depends on

<h<(2c—1)# in which the domain wall can be pinned magnetic field
locally by these rare fluctuations of the random field. The

true pinning condition is now given bisee also Ref. 25 for _ ah| A—Mzh
similar considerations r(h)=7(0)exg — ——|=v "exp ——/, (62

whereM, is the saturation magnetic moment in the activa-
§+h_(20_ 1) <0, (57 tion volume. We assume also thatv<<1, but according to
i . the accepted assumption eAp()>v/w. Then the probability
where the first term denotes the Laplacian curvature forceyt spin reversal in an individual nucleus is negligibly small if
Thus, the domain wall cannot overcome the pinning clustej, o/ T<AIT—In[2n(v/w)]. It becomes reasonably large

if it has the sizeR bigger thanR,,, where starting from the dynamical threshold for the amplitute
R r 58 v
" (2e- Dy 9 AT M—a'”(% | ©3

Using Eq.(58) we get : .
ng Eq.(58) we g Due to the sharpness of the exponential function, the reversal

time 7,(h) fast becomes much smaller than the oscil-

Q(C)], (59 lation period 27/ as soon a#(t) overcomes the threshold
values h;;. With the precision of a small parameter

where vlw exp(—A/T) the reversal proceeds at a fixed fiefd
=h,,, which simultaneously plays the role of coercive field

g(c)=cinc+(1-c)In(1-c)+In2. 60 1 and the reversal fielth, (see Sec. Il With the same

A closer inspection shows that ird=2 dimensions accuracy the reversal proceeds at a moment of ttme
p(c,Ryi) has its maximum at=1. The mean distance be- =~ *arcsinfy /hg). The hysteresis loop has a rectangular

tween these strong pinning clusters is therefore of the ordeghape(see Fig. 2 With a little higher accuracy the transition
d proceeds at a value of the phage wt determined by
r In2
L custer~| eXD{ (7—ho)l ]

d
Here we have replaced by by the maximum field strength
during one cycleh,. Since the interface cannot overcome which results in a corrected value of the coercive field
the pinning cluster it will surround it and finally leave it
behind as an island encircled by a domain w@&ig. 3. T hyy
These islands serve as nuclei of the favorite phase once the he=hy=hy—5~In arcsmh—). (65)
external field is reversed. Thus, in the expressions found in 2 0
Sec. lll the system sizk has to be replaced by, ser@s As soon as the magnetization reverses in an individual
soon asL>L e If hg approaches and finally exceeds nucleus, its walls expand quickly and, for a much shorter
7, Lausterdiverges and hence this type of magnetization retime thant, , the full magnetic moment reverses. The case in
versal process disappears. Domain walls originate then eith&hich the propagation of domain walls is the longest process
from surfaces or from a nucleation process that we considdias been considered earlier in Secs. Il and IV. The HLA for
in the next section. a rectangular loop is simply

d

P(C,Rmin)’“exp[ ~| @e=Di=ni

: (64)

(61) M zh, A (2771/
0]

T sinp= T—In

V. NUCLEATION-CONTROLLED HYSTERESIS A=4M;h,

This mechanism works when the nucleation is the longest M T 2 T
process. Let there exist a number of defects or impurities that 4 SAl1— 2

. ; bl n————In
lower the energy barrier for reversing magnetization locally. M, AV w A

arcsinlrlt—ol) } . (66)
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Since M ;hi; <A the value +(T/A)In27v/w<1. For hy  different A and M, in each grain. Then the shape of the
>h,; the HLA reads hysteresis loop reflects the distribution function for the ratio
AIM,.

T 27v T hg
A= Ao 1— —In : (67) V1. THE ADIABATIC DYNAMICS

AN + Klnh_tj_

In the case of strong Ising anisotropy the dynamic equa-

Note that at fixedw and varyingh, we find tion for magnetizatiom in the continuum limit has the form
om JF 69)
ho ot m
A=Ay(0)| 1— 7——Ini— 68
ol®) Mho he (68)

where F is a free energy. In the adiabatic limit the total

. . magnetizatiorm(t) at the moment can be represented as
and T/(Mh;;)>T/A. This theoretical result can be com-

pared with recent measurements by Chen and Erskine. m(t)=mg[ T,h(t)]+my(t), (70)
They have measured the HLA for a thin film of Fe/W(110)
in a wide range of frequencias and amplitudes,. They
concluded thatd~h§w? with small exponentsr~0.2 and
very small exponenB~ 0.03—0.09. Both exponents depend

wheremg[ T,h(t)] is the equilibrium value of magnetization
for a given momentarly value of the magnetic fiél(t) and

m, () is the deviation of magnetization from its equilibrium
value. We discuss later restrictions imposed by the adiaba-

Ycity condition. Substitutingn(t) into Eq.(69), one finds an
result{Eq. (67)]. Indeed, at such small values of exponents itequ{;\tion form, an(t) a.(69)

is impossible to distinguish between the logarithmic depen-
dence and the exponential dependence with a small expo- . J%F
nent. Our predictiongt=T/Mh,; and 8=T/A agree with xh=-T—-—m,, (72)
the experimentally discovered linear temperature dependence
of the exponeni3. It would be worthwhile to measure the where x=dm/dh is the magnetic susceptibility. Equation
frequency dependence of the dynamical threshold figJd  (71) can be rewritten in a form
The fact of the existence of such a threshold has been ob- )
served in the same experiment. It should be noted that the m=— X § (72)
value T/Mh; is not so small in the experiment 1/4. ! r-
Therefore we expect that our theory is correct with an accu- ] . oL o
racy of 25% only. On the other hand, the statement that ther&he hysteresis appears since the derivativhanges its sign
exists the powerlike dependence of the HLA bpis not ~Whenh passes its extremal valuesh,. For harmonically
proved convincingly by this experiment since the interval ofoscillating field h(t) =hgsinet, its derivative may be ex-
variation forh, was too smallthe amplitude changed about Pressed in terms of the field itself:
10 times. .

So far we considered and M, as fixed values. This is h==*wh;—hc. (73
correct if _on_ly one type of defect mediates the nucleationpmgging Eq.(73) into Eq.(72), we find
More realistically these values are random. Then the defects
with the minimal ratioA/M, initiate the magnetization re- wx? ——
versal process. my=+—F—Vho—h% (74)

According to Eq.(63) h,; becomes zero at very small
frequenciesw=2mv exp(—A/T). Our theory is not valid for ~ Perturbation theory is valid iy < (M) max= Mo(T,hy), i.€.,
such a small frequency, but it reflects correctly the narrowingf wx(hg)/I'<1. The coercive magnetic fiehl, satisfies the
of the HL. On the other hand, the transition is smeared ovefollowing equation:
the interval of magnetic fieldh~T/M,. It is small in com- 5
parison toh if hyM,>T. At a smaller amplitudeh, the _ _9X o
reversal is possible, but fluctuations of magnetization grow Mo(T,Re) =[ma(ho,he. )] = r Vho—he. (79

rapidly and become of the order of magnetization itself. In . 3 )
principle, it is possible that the nucleation time is of the samf‘ssumInghc< ho, Eq.(75) can be transformed as follows:

order of magnitude as that of the time of domain-wall propa- wx2ho

gation. However, since the nucleation time depends quickly mo(T,he) = - (76)
on parameters, a small change of the regime makes one of

the two times much larger than another. Thus, presumablyhe HLA 4 can be calculated by knowledge wf; :

the nucleation-mediated hysteresis loop has the rectangular ,

shape, whereas a curved shape indicates that the hysteresis is ho ho

associated with the domain-wall propagation or with strong A:4f0 mldh:4‘”f0 thé—hzdh. (77)

fluctuations of magnetization.

A reason for the rounding of the HL in the case of theNear the Curie point the relaxation timg=I""!y grows as
nucleation-controlled hysteresis can be that the sample is.~ 7oe” "%, where e=(T—T.)/T., v is the correlation-
split into a number of magnetically disconnected grains withlength critical exponent= 1 for the 2D Ising mode| andz
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is the dynamical critical exponent. The best numerical value h*(e))
. (84)

for zis z=2.17 (for a modern review, see Ref. 26, and ref- T = Tc(G)EXF{ =
erences therejn If e=0 andh#0, the relaxation time is
proportional toh®?%5, For adiabaticity it is necessary that Though this time scale grows at approaching to the Curie
w< wc=ma>{751ez,rgl(h0/hex)82’15], whereh,, s the satura- temperature, it can be sufficiently small. Its minimization

tion (exchanggfield. over e at fixed value ot gives

The amplitudeh, should be considered as smialase(i)] 2(B+y) 1157
or large[case(ii)] depending on its ratio to a characteristic ror (@) — (@ (85)
field h* (€)= h,,e™>8. For a small amplitudé,<h* (€) one % h % h

can employ a linear approximation fany(T,h)= x(e)h to
solve Eq.(76). Thenh.=hywx(€)/T'(€). Next we use the
relation x(e)/T' ~ r9e * to find

For the exchange field of about®1.@e and external field of
about 100 Oe the nucleation time becomes of the order of
10"° sec. Thus, the nucleation proceeds very fast and the
_ —z_ 917 process of domain-wall propagation prevails in this range of
he=whoroe*=whoToe =" (78 fields and frequencies. This conclusion explains the results of
For a large amplitudéy,>h*(e) a dimensionless ratie ~ OUr numerical calculations for temperatures close to the Cu-

— wy(€)/T (€) matters. If it is much less than the large value '€ point(see Sec. Vi
ho/h*, then the coercive force can be calculated has
=khg, exactly as in Eq(78). Otherwiseh.>h*. Then an VII. SIMULATION OF THE DOMAIN GROWTH

approximate solution of Eq76) reads In this section the process of magnetization reversal in a

—0.46 few-monolayers-thick magnetic film is modeled by an analo-
wTO_O) . (79  9gous process in the two-dimensional Ising model with the
Pex Glauber dynamics. In simulation we neglect the dipole-
dipole interaction and demagnetization effects. The Hamil-
tonian of the Ising system in a time-dependent fig(t) has

hO —15/(15+82)
~ hex

h.~ hex< W Tor—
ex

Corresponding results for the HLA are as follows:

Y2(€) a form
(i) Ao<whgm~whgroe*2*7~whgfoe*3-92, .
(80) Hy==352 Jo(Nor0ra=h(D 2 o, (89
, h*(e)x*(e) Coo4 where summation over runs over the lattice sites aral
(ii) A“whOT:whOhexTOE T (8 japels nearest neighbors. In a perfect ferromagnetic film,

Ja(r)=Jp>0 independently om. In the case of quenched
Though we cannot calculate explicitly the hysteresis loopdisorder we assume that the exchange integral is ferromag-
area in the opposite, antiadiabatic regimg<w<J/%, the  netic[J(r)=Jo>0] with the probability - and antifer-
dimensionality arguments lead to a necessary estimate. Ifiomagnetic[J,(r)=—Jo<0] with the probability & (O
deed, according to the general equat{@), its scaling di- <1). No correlation in the location of random bonds is as-
mensionality is sumed. In Sec. Il it is shown that this type of disorder is of
general importance for the problem of the domain wall mov-
Ao yhZ, (82 ing in the disordered media. Weak random-bond disorder
does not destroy the long-range order in the 2D Ising model.
where we have used the facts thatindI'/x have the same The magnetic field(t) is supposed to oscillate harmonically
dimensionality and thaty<h* (w)=he(% w/J)8¥*5. Thus, ash(t) =hgsin(wt), unless a different assumption is not spe-
cially formulated. The process of magnetization reversal can
A% x(0)h3% o™ "hE= 0" %h3, (83  be divided into two stages: nucleation of domains with op-
posite magnetization and growth of these domains. Which
Typical orders of magnitude arg) *~J/h~4Xx 10" Hz; € process dominates depends on system parameters and their
~10" 3 w,(€)~2 MHz; h*(e)~3 Oe; T,~300 K; T-T. history. In this section we consider a limit of the nucleation
~0.3 K. time much smaller than the growth time. Then the magneti-
Note that all calculations in this section have been madeation reversal process is dominated by the domain-wall
for T>T,, so that we could ignore the problem of nucleationpropagation discussed in Secs. Il and lIl.
and domain-wall motion. Below the Curie temperature the We employed the Monte Carlo simulation with the
problem of spinodal decomposition appears when the fiel&lauber dynamicgsee, e.g., Ref. 37to check Eq.(6) for
reaches the spinodal. Then, again, either the nucleation or thgerfect systems and systems with disorder. We modeled the
domain-wall motion prevails in the magnetization reversal. ltdisorder by a small concentration of randomly distributed
does not happen if eithéry>h* (¢) or > 7-;1. Then one antiferromagnetic bonds. This disorder weakly influences the
can use previous results. However, if these conditions are nghase diagram and results only in a small shiffgf where
met, then either nucleation or the domain wall propagatiorT, is an Ising transition temperature of the model equation
prevails in the magnetization reversal process. To establis{86) with h=0. We have found the linear dependence of
what is more important, let us consider corresponding timelomain-wall velocity on applied magnetic field at all rel-
scales. The nucleation time for a pure sample is evant temperatures with and without disorder. Apparently, in
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FIG. 4. Simulated hysteresis loops for different valueb pand FIG. 5. Simulated hysteresis loops for different valuesaind
constantw. The observed hysteresis-loop behavior obeys the genconstant,. The observed hysteresis-loop behavior obeys the gen-
eral classification scheme developed in Secs. Il and Il and showgral classification scheme developed in Secs. Il and lll and shown
in Fig. 2 (see explanation in text in Fig. 2 (see explanation in text

these simulations we dealt with the limit of weak pinning, so : .
- ' ““eteru’ introduced by Eq(49). In the limitLy<L, (compare
thath,=<ho. However, at low temperatures {0.1T;) even Sec. lll) the domain growth will be fast enough to provide

a small disorder, which almost does not change the therm%e full hysteresis cycle witth, <h, [see Fig. Zd)]. We
r<sMp . .

dynamics, modifies the domain-wall dynamics drastically. . ) K
The results related to the domain-wall motion and hysteresigvaluated the scaling behavioriafand.A as a function of

phenomena in a weakly disordered system at low temper£nd hQ in the limit Ln<L, using Eq.(39). To dgal with the :
ture will be discussed elsewhere. domain-wall propagatlon-domlnatgd hystere5|s, we cons@—
The domain growth was studied in two geometries: stripe%red temperature close to the Curie point. We argued earlier

and circles. To distinguish the domain growth from domain‘?sneoeu;hecl':i\ghtrg""t7 Ighrﬁscﬁc?a;ihne d?;?:gﬁ:;gg ﬁ]r(:ﬁiegspflfg
nucleation we examined either a specially prepared defect fo ' T ) .
P y prep ‘eversed magnetic field 8t=0.95T.. Multiple nuclei that

fast nucleation or a prepared nucleus with the opposite dired: A i .
tion of magnetization possessing the shape of the circle Jfre seen in this picture serve as evidence that the nucleation
really fast enough.

tripe. In both cases the magnetization changed in accol? ) L .
Strip SES gnehzet! ged | At h=h,, the typical domain siz& 4 is of the order of the

dance with the model of a straight DW, i.e., it was similar to . . -
Eq. (40) g mean distance between domains. Sihge<L,, we con-

Simulated hysteresis loops for different values of¢/ude thathc<ho, and Ly~ (¥/how)(hc)®. Assuming that
magnetic-field amplitudeshg=0.025), hy=0.05J, and h, the average distance betwe_en nuqleatlon centers does not de-
=0.125)) and constant period of'810° Monte Carlo steps peqd &_gmﬂcantly onw, we immediately optam that the co-
are shown in Fig. 4. Hysteresis loops for different periodsSrcive fieldh. scales afhco‘_\/Z [compare with Eq(50)]. If,

(4X 108, 8% 10%, and 256¢ 10° Monte Carlo stepsand con- N addition, the average distance between nucleation centers
stant h,=0.05) are shown in Fig. 5. The observed does not depend significantly dn, we havehyxhow. If
hysteresis-loop behavior obeys the general classificatiof® assume that the magnetic field is strong enough and satu-
scheme developed in Secs. Il and (¢bmpare with Fig. 2 _ratlon magnetization does not phange significantly b)_/ chang-
In particular, the asymmetric loops in Figs. 4 and 5 corredNg No, the HLA area scales in the same waytas i.e.,
spond to the loop in Fig. @), the loops with whiskers in A Vhow. This is a simplified qualitative version of argu-
Figs. 4 and 5 correspond to the loop in FigdR and the ~ments leading to Eq56) of Sec. III.

symmetric loops without whiskers in Figs. 4 and 5 corre- Figure 8 shows the dependence of the hysteresis loop area
spond to the loop in Fig.(2). The concentration of random A On in the double logarithmic coordinates®BtT,. The
bonds in the system was0.8%. \/5 scaling behavior is valid over three decades of the

Figure 6 shows the time sequence of inflating domains fovariation. However, the range of magnetic-field values avail-
the system withT =0.5T, andhy,=0.25). The concentration able is only one decade. For this reason we have only
of random bonds in this case was3%. The nucleation first checked that magnetic-field dependence is consistent with
proceeds at three regions, then the corresponding domainé> Vho dependence.
inflate rapidly and two of them merge. The time develop- To check the proposed mechanism of magnetization re-
ment of the inflation process is shown in Fig. 6. The totalversal we have also simulated this process for the magnetic
magnetization for each snapshot is indicated in Fig. 6. Thdield h=hgsir’(wt). In this case botth, and.A scale in ac-
analysis shows that the inflation of a domain with reversedtordance with the analytical results @s'.
magnetization is described by simple la&qg. (40)]. Though we pufT=T,, the system is far away from the

Let Ly be the mean distance between nucleation centersritical point due to a relatively large magnetic field. Indeed,

It plays the same role as the system dizin Sec. lll. The one can estimate defined in Sec. VI from the relatioa
ratio Ly /L, =uy is an analog of the dimensionless param-=~(ho/h¢,)®*® (see Sec. VL In our simulationshy/hg,
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FIG. 6. Inflation of domains with opposite magnetization in an Ising model in reversed magnetic fielt,with25) at T=0.5T . for the
system of the size 192192 with periodic boundary conditions and with random frozen defectsferromagnetic bondsvith concentration
0.03. Each dot corresponds to the bond with opposite spin orientation.

=0.05-0.005, which giveg~0.2—0.06. It means that the as it follows from Fig. 8. We expect that the HL changes its
deviation from the critical point is large enough. With theseshape and characteristics from those dominated by domain-
values of fields, our system is also far away from the strongvall propagation to those dominated by nucleation. The
fluctuation regime described in Sec. VI. A necessary condicrossover behavior cannot be described by a single power
tion for this regime is thamy<1. The magnetic momemh, law.
scales asngo (h/hg,) Y% Therefore the fieldhy~0.005%,, is
rather strong; it givesny=~0.7. VIIl. CONCLUSIONS

With the temperature decreasing, away from critical re-

gion the HLA deviates strongly from the power-law behavior | We studied the main mechanisms of the hysteresis in a
ferromagnet: the driven DW motion, nucleation and retarda-

FT - g ER Ry

15 - x B
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]

0 100 200 300 400 55 . L . L . . .

. N . . LOBARITHM OF FREQUENGY
FIG. 7. Domain-wall distribution in an Ising model in reversed

magnetic field withhy=0.05) at T=0.95T for the system of the FIG. 8. Hysteresis-loop area as a function of frequency in
size 43% 432 with periodic boundary conditions. Each dot corre- double logarithmic coordinates for the magnetic field with ampli-
sponds to the bond with opposite spin orientation. tudehy=0.05] at T=T, (lower line) and atT=0.95T...
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tion in nonlinear magnetization dynamics. Each of them may In the case, when the driven DW’s are almost frég (
be dominant at proper conditions. A process is dominant if it=h;) and the HL is narrowfy>h,;), the HLA was found
provides maximum value for the coercive fidid. to be proportional ta»'?h}?. This conclusion is supported

In the background of the general theory of the interfaceyy our numerical Monte Carlo simulation.
motion in a random medium we studied the hysteresis pro-" |5 the nucleation-controlled process almost rectangular
cess controlled by the DW motion. We introduced two dy-p) shape is expected, unless the sample is divided into a
namic threshold fieldsy, andhy, corresponding to the oc-  , ititude of magnetically disconnected grains. Note that the

currence of the full magnetization reversal and t0 thegpane of aimost vertical parts of the HL in this case is deter-
occurrence of the single-valued parts on the hysteresis CUNVEsined by the DW motion and, therefore, is universal. In the

respectively. These dynamical threshold fields are larger tha@ase of nucleation-controlled hysteresis the HLA must grow

the static threshold fieltd, which is required to start a mo- | ithmicallv with the f i f

tion of the DW. We established thht; andh,, measured in °9‘."‘”‘. mically with the requency and amp |tUQe of mag-

units h. are functions of one dimelznsionltezss aramater NEtic field. However, the coefficient at the logarithm of fre-
P P guency is smaller than that at the logarithm of the amplitude.

=wl/yh, (see notations in Secs. I, Il, and)lIThe coercive gl i itical d ) d the HL with
field h, and the reversal field, , measured in the same units, ow noniinear critical dynamics may produce the wi
various scaling limits as described in Sec. VI.

can be expressed in terms of one function of two dimension _ ‘ i v
The comparison with the experiment is still rather poor

less parameters: ) | ' Tk
since there is no systematic study of the HL characteristics as
ol hy ol hy functions of dimensionless parameters. The expe_rimental ef-
W’h_>; hr=hpF(YT,h—). (87)  forts were focused on the HLA, but the precision of the
PP PP measurements is not high enough for reliable determination
Experimental observation of this type of scaling would beof scaling. Suen and Erskifeeported the observation of
the best indirect evidence of the DW motion-controlled hys-linear dependence of the HLA on the logarithm of
teresis. The direct observation of the DW motion by scanfrequency® with the coefficient proportional to temperature.
ning magneto-optical Kerr effect and scanning tunneling mi-Both these facts agree with our theory. However, they also
croscope methods in principle is possfBlend is much claimed the power dependence of the HLA on the amplitude
appreciated. At large fields,>h, the defects are inessen- h, with the exponent about 1/4. This dependence contradicts
tial. Therefore, the dependence lppnmust vanish from scal- our theory. The reason for discrepancy is not yet clear. The
ing laws (87). It happens indeed, and both fields andh, interval of variation ofh, is not large enough to establish the
are expressed in terms of one dimensionless parameter: exponential dependence reliably, but it definitely deviates
from logarithm. On the other hand, our theory gives logarith-

hC:hpF<

h = hoF ol | h—h.F 0] 88 mic dependence ohg only if hy>h,;. Further studies both
L v B S B 88 theoretical and experimental are necessary to clarify the situ-
ation.
whereF (x) =2yx(1—x). Note that in this limit the valué, Our numerical simulations show visibly the formation and

vanishes from equations for the dynamic threshold fields apropagation of domain walls as the dominant process at high
well: hy=wl/y, hp=2h,. We presented also corre- temperature. The domain walls look rather rough. It can hap-
sponding equations for the HLA on which the most experi-pen as a consequence of strong critical fluctuations that are
mental efforts were concentrated. However, we would like tonot taken into account in our DW motion theory, or it may
emphasize that the HLA is not the only measurable charadollow from the fact that the dimensionality 2 is the marginal
teristics of the HL and even not the most informative itsfor the development of roughness due to deféttte rough-
characteristics: the fieldsq,h», he, andh,, as well as the ness exponen{ is equal to 1 ford=2). Nevertheless, the
shape of the hysteresis curve, are not less interesting. Thealing Iow,élocwl/zh})’2 for h>h,, is confirmed in numerical
functional dependence of the fieltds, andh;, on hy athy  simulations at high temperatures. At lower temperature the
not much overcoming the static threshold fialgallows one  nucleation becomes dominant.
to restore the basic functioi((h—hp)/h,) of the theory of An interesting possibility to verify our predictions for the
the DW motion in a defect medium. domain-growth-controlled hysteresis is a study of a hyster-
For sufficiently largeh, the lengthL in Egs.(87) and(88) esis of adsorption isotherms close to equilibrium conditions.
and others is the size of the system. Thus, the size effect iBhe process of close to equilibrium adsorption can be studied
observable in the HL characteristics. However, at fieldsexperimentally for noble gasésee, e.g., Ref. 29The qua-
larger thanh,, but still smaller than the maximum defect siequilibrium desorption of helium films has been studied in
strength, the moving DW produces bubbles playing the roldRef. 30. In the case of equilibrium adsorption the chemical
of ready nuclei for magnetization reversal at the next halfpotential plays the role of magnetic field and the coverage
cycle of the hysteresis loop. Thus, the lengtim this case is  plays the role of magnetization. The domain-wall width for
the average distance between the bubbles. Its strong depesdsorbed systems is only one lattice period wide. For this
dence on the field amplitudg, makes the scaling law@7) reason one can expect rather small nucleation barriers for
and(898) less transparent, but they become size independengquilibrium adsorption and a broader range of existence for
The scaling becomes simple again if the dominant defectdomain-growth-controlled hysteresis than in magnetic films.
are of topographic origin. The density of topographic defectdMore detailed analysis is given in Ref. 31. Though the ad-
is independent on the amplitude of magnetic field. Théa  sorption isotherms have been measured starting from Lang-
the average distance between such defects. muir, no hysteresis-loop measurements have been performed
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