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Theory of the hysteresis loop in ferromagnets
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We consider three mechanisms of hysteresis phenomena in alternating magnetic field: the domain-wall
motion in a random medium, the nucleation, and the retardation of magnetization due to slow~critical!
fluctuations. We construct a quantitative theory for all these processes. The hysteresis is characterized by two
dynamic threshold fields, a coercive field and the so-called reversal field. Their ratios to the static threshold
field is shown to be a function of two dimensionless variables constituted from the frequency and amplitude of
the ac field as well as from some characteristics of the magnet. The area and the shape of the hysteresis loop
are found. We consider different limiting cases in which power dependencies are valid. Numerical simulations
show the domain-wall formation and propagation and confirm the main theoretical predictions. Theory is
compared with available experimental data.@S0163-1829~98!06545-X#
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I. INTRODUCTION

The hysteresis loop~HL! was first studied more than
century ago.1 However, the understanding of this process
thin magnetic films as well as in bulk magnets is still rath
poor. Many efforts have been devoted recently to predict
~see Refs. 2–6! and experimental verification~see Refs. 7–9!
of the scaling behavior of the hysteresis loop area~HLA ! as
a function of the applied magnetic-field frequency and a
plitude for thin magnetic films~for a brief review of HLA
scaling results, see Ref. 9!. The scaling behavior of the HLA
was first reported in the pioneer work1 for three-dimensiona
~3D! magnets. While there exists an extended literature
the hysteresis of 3D magnets, the properties of HL in
systems are much less known. There are only few arti
devoted to the HL in ultrathin ferromagnetic films,10,11,7–9

though the hysteresis effects have been found as a side e
in many others~see, for example, Refs. 12 and 13!. Critical
exponents found in the experiments with thin films vary d
matically for different materials~see, e.g., Refs. 7–9! and
probably for different regimes. Different authors disagr
with each other~see the already cited articles7–9! and also
disagree with numerical simulations.2

Several years ago mean-field-type models with single10 or
many11 relaxation times have been applied to analyze exp
mental data. The authors of Refs. 10 and 11 assumed tha
HL was controlled by the nucleation process. These auth
predicted the logarithmic dependence of the coercive fieldhc

on the rate of the applied magnetic fieldḣ. In a recent
experiment9 it was found that the HLA depends on the fr
quency of the applied field as a power with a small expon
(;0.03–0.06) or, possibly, there is a logarithmic depe
dence. However, in the framework of the same approach
PRB 590163-1829/99/59~6!/4260~13!/$15.00
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HLA must behave also as logarithm ofh with the same co-
efficient ~exponent!. This dependence has never been o
served in the experiment. Therefore, we propose a n
analysis of such a HL in this paper.

The purpose of this paper is to formulate a rather gen
approach to magnetization reversal mechanisms and to
cate several important measurable characteristics of the
besides the HLA. We will see that these characteristics
governed by two dimensionless parameters combined f
the field frequencyv, its amplitudeh0 , and characteristics
of the magnetic material. Everywhere in what follows w
assume that the external field varies harmonically in tim
h(t)5h0sinvt.

The hysteresis behavior may have various origins. It c
be mediated by the nucleation process, by the domain-w
~DW! propagation or simply by retardation of the magne
zation due to fluctuations. We consider all these mechani
and establish conditions at which one of them is domina

Defects play an important role in the DW propagatio
They create a finite threshold valuehp of static magnetic
field necessary for the DW depinning. The threshold fieldht1
in the dynamical problem can differ substantially fromhp .
We find that in a medium with defects the moving DW
passing rare extended defects, may form bubbles of reve
spins. These bubbles play an important role as prepared
clei in the next half-cycle of the magnetization reversal.

In this paper we consider magnets of the Ising~uniaxial!
symmetry. Their properties may be very different depend
on the strength of the anisotropy. In the experimentally st
ied films the anisotropy was very weak. In this case
domain-wall width is large in comparison to the lattice co
stant. On the contrary, in the original Ising model the anis
ropy is assumed to be large and DW widthl is simply the
4260 ©1999 The American Physical Society
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PRB 59 4261THEORY OF THE HYSTERESIS LOOP IN FERROMAGNETS
lattice constant. However, these different models beco
equivalent after a simple rescaling: the DW width should
accepted as a new elementary~cutoff! length. It means tha
we consider a spin cluster of the linear sizel as a new el-
ementary spin. This approach allows us to apply the Is
model supplied with the Glauber dynamics for numeri
simulations.

Peculiarities of the two-dimensional situation are mu
higher mobility of the DW as well as much stronger fluctu
tions. This makes the experimental situations as well as
theoretical description much more diverse than those fo
3D magnet.

This article is organized as follows. In Secs. II and III w
consider the individual DW motion. Equation of motion
formulated and justified in Sec. II. It is solved in Sec. III.
the same section we introduce characteristic fie
ht1 ,ht2 ,hc ,hr , the HLAA, find the scaling arguments, an
analyze several limiting regimes in which simple power sc
ing is valid. In Sec. IV the process of the bubble formation
studied. Section V is devoted to the HL controlled by t
nucleation process. The HL driven by strong magnetizat
fluctuations, especially near the Curie point, is considere
Sec. VI. Numerical simulations of the HL and the doma
structures for the 2D Ising model with Glauber dynamics t
supports results obtained in Secs. III and IV are presente
Sec. VII. In Sec. VIII we summarize our results and comp
them to the experimental data. In the rest of this article
use the notationh for magnetic field,m for magnetization,
andM for the total magnetic moment of a magnet.

II. DOMAIN-WALL MOTION IN A RANDOM MEDIUM

As we already mentioned in the Introduction, our starti
point is an impure ferromagnet with either weak or stro
Ising anisotropy. The soft spin version of the system is th
given by af4 model with a bare domain-wall widthl @a,
wherea denotes the original lattice spacing. The imperfe
tions in the model may be in principle either of random bo
~i.e., randomTc) or random-field type. We will argue below
that in the region we are mainly interested in, namely, ab
the depinning threshold, both types of impurities act ess
tially as random-field impurities.

As it was shown by Bauschet al.15 ~see also Refs. 16 an
17!, equation of motion for a domain wall without overhan
can be written in the following way:

1

gAg

]Z

]t
5G¹•~g21/2¹Z!1h1h~x,Z! ~1!

where Z(x,t) denotes the interface position andg51
1(¹Z)2. g and G are the domain-wall mobility and stiff
ness, respectively.h5mBHM , whereH is the external mag-
netic field andM is the magnetization. Finallyh denotes the
random force generated by the impurities.

For broad domain wallsG'J/(aD21l ), whereD denotes
the dimensionality of the wall. For narrow wallsG depends
in general onJ, T, and the disorder strength in a comp
cated way.18

The random fieldsh@r5(x,Z)# generated by imperfec
tions is assumed to be Gaussian distributed and short-r
correlated withh(r )50 and
e
e

g
l

-
e
a

s

l-

n
in

t
in
e
e

n

-

e
n-

ge

h~r !h~r 8!5h2l D11d l~r2r 8!. ~2!

Hered l(r ) denotes a delta function smeared out over a d
tancel. As was first argued by Narayan and Fisher,14 in the
region above the depinning threshold random-bond
random-field impurities act in a similar way. This can b
seen most easily from an example of two ratcheted poten
~see Fig. 1!, one for random-bond and another for rando
field impurities. Although the potential V(Z)
5*0

Zh(x,Z8)dZ8 in the random-field case@Fig. 1~b!# has
fluctuations that scale likeZ1/2, it leads to the same random
forces as the random-field potential@Fig. 1~a!# that shows
order-one fluctuations. Therefore, we restrict analyti
analysis to the case of random-field impurities. For Mon
Carlo simulations we have used both types of disorder
found no significant difference. We will also assume that
disorder is weak, i.e., that the condition

G@h l ~3!

is fulfilled.
For u¹Zu2!1, g'1 and the equation of motion takes th

form considered previously.16,17,19,14Below we summarize
some of the results found in Refs. 19 and 14: Since
disorder is weak@see Eq.~3!#, the interface is essentially fla
on length scalesL!Lc , where

Lc' l S G

h l D
2/~42D !

@ l ~4!

is the so-called Larkin length. On larger scales the wall c
adapt to the disorder and, as a result, it gets pinned for d
ing fieldsh&hp with

hp'G lL c
225hS h l

G D D/~42D !

!h ~5!

for the pinning threshold. Ifh exceedshp , the wall starts to
move. Forh@hp the influence of the disorder is weak an
the velocity is proportional to the driving field

v5^Ḋ&'gh. ~6!

FIG. 1. Schematic picture of the ratcheted potential in
random-bond~a! and random field~b! cases.
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Corrections to this relation can be considered in the fram
work of high-velocity expansion, which can be expressed
a power series in

jv

Lc
'S hpg

v D 1/~z2z!

, ~7!

wherejv is dynamical correlation length that diverges asv
→0; z andz are the dynamical and the roughness expon
respectively. Outside the dynamical critical region, i.e.,
h2hp@hp , z52 andz50, respectively.

If the driving field h is so small thatjv*Lc , the high-
velocity expansion breaks down and a~functional!
renormalization-group calculation has to be applied.19 This
leads to a renormalization of the mobility constantg→geff
with

geff'gS jv

Lc
D ~1/3!~42D2z!

. ~8!

After integrating out the interface fluctuations on the leng
scalesL&jv , the effective equation of motion for the inte
face profileZ(x,t)5^Z(x,t)&jv ,tv

on large scales is given b

1

geff

]Z

]t
5G¹2Z1h2hp1heff~x,vt !. ~9!

Here^&jv ,tv
denotes the spatial and time average over sc

jv andtv , respectively, andheff is the renormalized random
field that acts as a thermal noise. Since the latter leads t
interface roughness characterized by the exponentz05(2
2D)/2, we may neglect the influence of the random field
these length scales. The mean velocity of the interfac
given by

v'ghpS h2hp

hp
D u

,
h2hp

hp
!1, ~10!

whereu5(z2z)/(22z). z and z take now nontrivial val-
ues, which can be calculated bye expansion inD542e or
determined numerically. ForD51 the e expansion givesz
51 and z54/3 and henceu51/3, whereas the numerica
values arez55/4, z'1.42, andu'1/4.20 To unify our re-
sults for the domain-wall velocity we rewrite Eqs.~6! and
~10! as

v'hpg f S h

hp
21D , f ~x!'H xu, x!1

x, x@1.
~11!

On the length scalesLc!L!jv the domain wall is rough,

w~L !5^@Z~x1!2Z~x2!#2& ux12x2u5L
1/2 ' l ~L/Lc!

z. ~12!

Bumps in the domain walls that emerge from random cl
ters heal on time scales

tv'
l

v S hp

vl D z/~z2z!

'
l

ghp
S h

hp
21D 2z/~22z!

. ~13!

However, on larger scalesL@jv the random field acts
merely as a thermal noise and the roughness expone
reduced toz51/2 andz50 ~log! in D51 andD52 dimen-
sions, respectively.
-
s
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r

h
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Thus, the moving domain wall heals its roughness at la
distancesL.jv and on the time scalet.tv . This fact sim-
plifies drastically theory of a domain wall moving with finit
velocity in comparison to the theory of adiabatically movin
domain walls and quasistatic hysteresis.22,21 It allows one to
consider domain wall on large distances as a smooth l
even as a straight line for homogeneous external field.

III. MOTION OF A RECTILINEAR DOMAIN WALL

We start with description of a rectilinear domain-wall m
tion. In the previous section we demonstrated that
domain-wall roughness can be ignored on a time scat
.tv and length scaleL.jv . Thus, locally the domain wal
moves as a straight line. In some experiments only one
main wall survives~see Sec. VII!. In this case the mode
problem of rectilinear domain-wall motion is close to realit
In other cases this problem is an important part of m
complex problem describing either local properties
domain-wall motion or the order of magnitudes for the g
bal motion. Thus, we consider the motion of a rectiline
domain wall under the action of magnetic field antiparallel
the magnetization.

We have mentioned already that the fluctuation bend
of the domain wall can be neglected if the characteristic ti
of the process is much more than the bump healing timetv
}v2z/(z2z). This requirement suggests thatvtv!1. Any-
way, this requirement must be satisfied since otherwise
average position of the domain wall almost does not cha
during half a period of oscillations.

The domain wall is assumed to be fixed at the left bou
ary of the sampleZ50 at the initial moment. We will solve
equation of motion~6! for the domain-wall coordinate fo
harmonically oscillating magnetic fieldh5h0sinvt. Instead
of integrating it over time, we integrate it over field by th
following change of coordinates:

dt5
1

v

dh

Ah0
22h2

. ~14!

After integration we find an expression forZ vs magnetic
field h:

Z5
g

vEhp

h

f S h2hp

hp
D dh

Ah0
22h2

. ~15!

This equation is correct forh.hp . For smaller value ofh
the domain wall does not move:Z5const. Equation~15!
should be complemented by a prescription to change the
of the square root each timeh reaches its maximum or mini
mum value6h0 and by an initial conditionZ50 at t5h
50. The second necessary prescription is to substituth
2hp by 2h2hp when h is negative. To transfer from the
coordinateZ to the magnetic momentM, the following rep-
resentation is useful:

M5Ms

2Z2L

L
, ~16!

whereMs is the saturation magnetic moment. First of all w
find two important boundary values for the amplitudeh0 that
separate hysteresis loops of different shapes. The firs
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them is the dynamic threshold fieldht1 , the smallest value o
h0 at which the domain walls reaches the right boundary
the sampleZ5L. At h0,ht1 the magnetization is not re
versed fully and the hysteresis loop is asymmetric@see Fig.
2~a!#. The hysteresis loop asymmetry was found ear
theoretically4 and experimentally.23 At larger values ofh0
the hysteresis loop is symmetric under inversionh
→2h,M→2M @Fig. 2~c!#. The value ofht1 is determined
by the following equation:

vL

2ghp
5E

1

ht1 /hp
f ~x21!

dx

A~ht1 /hp!22x2
. ~17!

Note, that ath05ht1 the hysteresis loop is symmetric wit
respect to reflections in the axish andM @Fig. 2~b!#. From
Eq. ~17! it is seen that the ratioht1 /hp is the function of one
dimensionless variablevL/(ghp). This scaling relationship
will be analyzed in detail later.

FIG. 2. Schematic pictures of hysteresis loops.~a! Incomplete
HL for h0,ht1 . ~b! Symmetric HL forh05ht1 . ~c! The HL for
ht1,h0,ht2 . ~d! The HL for h0.ht2 . The valueshp , hc , hr , and
h0 are marked in all figures.
f

r

The next notorious field isht2 defined as the value ofh0
at which the domain wall reaches the right end of the sam
Z5L during one fourth of period, just ath5h0 . The equa-
tion that definesht2 is rather similar to that forht1 :

vL

ghp
5E

1

ht2 /hp
f ~x21!

dx

A~ht2 /hp!22x2
. ~18!

It differs from Eq.~17! by the absence of a factor of 2 in th
denominator of the left-hand side. The hysteresis loops c
responding toh0.ht2 acquire characteristic ‘‘whiskers,’
single-valued pieces of the curveM (h) that are absent in
hysteresis curves forh0,ht2 @see Fig. 2~d!#.

At a fixed h0.ht1 it is possible to define the coerciv
field hc by the requirementM (hc)50. Finally, for h0.ht1
the so-called reversal fieldhr can be defined as a value of th
field h at which the magnetic moment reverses fully. At t
value h5hr two branches of the hysteresis curve inters
each other. In other words,Z(hr)5L. At h betweenhr and
h0 the magnetic moment remains a constantM5Ms . The
valueshc and hr are shown in Fig. 2. Using Eqs.~15! and
~16!, we find

vL

2ghp
5E

hp

hc
f S h2hp

hp
D dh

Ah0
22h2

. ~19!

Equation forhr reads

vL

ghp
5E

hp

hr
f S h2hp

hp
D dh

Ah0
22h2

~h0.ht2!, ~20!

vL

ghp
5F E

hp

hr
12E

hr

h0G
3 f S h2hp

hp
D dh

Ah0
22h2

~ht1,h0,ht2!.

~21!

The ratioshc /hp andhr /hp are functions of two dimension
less variablesu5vL/(ghp) and v5h0 /hp . Note that by
knowledge ofw25ht2 /hp ~or w15ht1 /hp) as a function of
parameteru5vL/ghp one can restore the functionf (x)
solving the Abelian equation

f ~x21!5
2

p

d

dxE1

xu~w!wdw

Ax22w2
. ~22!

The area of hysteresis loopA can be also expressed in th
integral form

A54hpMs24
Ms

L E
hp

hr
Z~h!dh. ~23!

Now we proceed to the analysis of the hysteresis loop ch
acteristics. It is controlled by parametersu5vL/ghp andv
5h0 /hp . We start with smallu!1 imposing no restrictions
on the valuev. First we show that, at smallu, the fieldsht1
andht2 are close tohp . Indeed, it is clearly seen from Eqs
~17! and ~18!. Solving them approximately and employin
the asymptotic formula forf (x) at smallx @Eq. ~11!#, we find
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u/25
1

A2
E

1

ht1 /hp
~x21!u

dx

A~ht1 /hp!2x
. ~24!

Introducing a new integration variables5(x21)/(ht1 /hp)
21, Eq. ~24! can be transformed as follows:

u/25
1

A2
S ht1

hp
21D u11/2

B~u11,1/2!, ~25!

whereB(x,y) is the Euler beta function. Using its standa
representation,24 one finds

ht1

hp
21'F ~111/2u!G~u11/2!

A2pG~u!
uG 2/~2u11!

. ~26!

In a similar way the asymptotic of the fieldht2 can be estab-
lished. The ratio (ht22hp)/(ht12hp) does not depend on th
parameteru if u is small:

ht22hp

ht12hp
522/~2u11!. ~27!

The shape of the hysteresis loop and its area depends
only on the parameteru, but also on the parameterv
5h0 /hp . If v is close to 1, i.e., ifh0 is also close tohp , one
can employ the low-field asymptotic of the functionf (x)
@Eq. ~11!# also in Eq.~20! for hr . Then, for h0.ht2 , the
approximate equation forhr reads

u5
1

A2
E

1

hr /hp
~x21!u

dx

Av2x
. ~28!

Introducing a new integration variables5(x21)/(v21),
we find

u5~v21!u11/2B~u11,1/2;w!; w5
hr2hp

h02hp
, ~29!

where B(x,y;w) is incompleteB function, defined by an
integral

B~x,y;w!5E
0

w

sx21~12s!y21ds. ~30!

Thus, the ratiow5(hr2hp)/(h02hp) in this limit is a func-
tion of only one variableu/(v21)u11/2. For h0 close toht2 ,
the fieldhr is also close tohp . If u/(v21)u11/2!1, the ratio
w becomes small:

w'F A2u

~u11!~v21!u11/2G 1/u11

. ~31!

For completeness we present here equation forhr in the
rangeht1,h0,ht2 without derivation:

u5~v21!u11/2@2B~u11,1/2!2B~u11,1/2;w!#. ~32!

If u!1, butv@1, the valuehr depends on the productuv. If
it is small, thenhr is still close tohp :
not

hr2hp

hp
5@~u11!uv#1/~u11!5F ~u11!vh0L

ghp
2 G 1/~u11!

.

~33!

In the opposite limiting case (u!1,uv@1) the field hr is
much larger thanhp , and the asymptoticf (x);xu is not
valid. In this case, the equation forhr reads

hr5AvL

g S 2h02
vL

g D . ~34!

Still, the reversal fieldhr is much less than the amplitudeh0 .
For coercive fieldhc in the rangeu!1,v@1 one finds

hc

hp
215S hr

hp
21D221/~u11! ~uv!1!; ~35!

hc

hp
'

1

A2
. ~36!

The shape and the area of the hysteresis loop depends o
same parametersu5vL/(ghp) andv5h0 /hp . We consider
the range of smallu!1. If v is close to one, the low-field
approximation for the functionf (x) may be used in Eq.~15!
for z. Together with Eq.~16! it results in the following rela-
tion:

M5MsF122
B@u11,1/2,~h2hp!/~h02hp!#

B@u11,1/2,~hr2hp!/~h02hp!#G . ~37!

For 2hr,h,hp on the lower branch of the hysteresis cur
and for 2hp,h,hr on the upper branchM56Ms . We
presented here only a comparatively simple caseh0.ht2 .
The caseh0,ht2 is more complicated and we do not prese
here the explicit formulas for magnetization in this range
amplitudes.

For u!1, v@1, anduv!1 we find in a similar way

M5MsF122S h2hp

hr2hp
D u11G ~hp,uhu,hr !. ~38!

andM5Ms for hr,uhu,h0 . Note that the hysteresis loop i
this range of parameters is narrow, i.e.,hr ,hc!h0 .

In the intervalu!1,uv@1 the value ofhr , according to
Eq. ~34!, is much larger thanhp . One can neglect the thresh
old field and employ the linear asymptotic forf (x) solving
Eq. ~15!. The result is

Z~h!5
g

v
~h02Ah0

22h2! ~39!

and

M5MsF122
g

vL
~h02Ah0

22h2!G . ~40!

The latter two equations are valid in the interval of fiel
uhu,hr . Beyond this interval the total magnetic moment
fixed at its saturation value. Note that a new characteri
length appears in the problemLv5gh0 /v. Below we
present results for the hysteresis loop areaA in the range of
small u for different values ofv without repeating of analo-
gous calculations
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~i! v21!1:

A'4Mshp

3F11
A2~v21!u11/2

u E
0

w

B~u11,1/2;x!dxG .

~41!

~ii ! v@1,uv!1:

A'4MshpF11
@~u11!uv#1/~u11!

u12 G . ~42!

~iii ! uv@1: In this casehr@hp .
Therefore all essential results formally coincide w

those foru@1 and the reader is referred to a correspond
subsection. Note that in the cases~i! and ~ii ! A is close to a
constant valueA054Mshp , but the deviationA2A0 scales
with two parametersu andv.

Now we proceed to a simpler case of largeu@1. In this
case the dynamic threshold fieldht1 is much larger thanhp :

ht15
vL

2g
. ~43!

Therefore, one can neglecthp when integrating Eq.~15! and
others. Then we rediscover Eq.~39! for the coordinate. It
implies that

ht25
vL

g
52ht1 . ~44!

The equation forhr coincides with Eq.~34!. Coercive field
hc is determined by the equation

hc5Aht1~2h02ht1!. ~45!

Equation~40! describes the shape of the hysteresis lo
for h0.ht2 . It can be used also for the range of amplitud
ht1,h0,ht2 on the lower branch of the hysteresis curve
,h,h0 . On the upper branch of this curvehr,h,h0 the
sign of the square root must be reversed.

The hysteresis loop area is determined by the follow
equation:

A'4Mshr2
2Mshrgh0

vL

3F22
arcsin~hr /h0!

A12~hr /h0!2
2A12S hr

h0
D 2G . ~46!

This equation is valid forh0.ht2 . If, on the contrary,h0
,ht2 , the area is

A52MsE
0

hr S 12
Z~h!

L Ddh

12MsE
hr

h0Z1~h!2Z2~h!

L
dh, ~47!
g

p
s

g

whereZ6(h) denote the value of coordinate on the uppe
(1) and lower (2) branches of the hysteresis curve, resp
tively. Performing the integration, we find

A54Mshr S 12
gh0

vL D1pMsh0

gh0

vL
. ~48!

One can observe that for the caseu@1 the static threshold
field hp does not enter physical results. Instead a new dim
sionless parameter

u85vL/~gh0!5L/Lv ~49!

emerges. In the range of existence of the full hysteresis l
u8,1/2. Thereforeu8 cannot be large. However, it can b
very small. It is worthwhile to consider separately the beh
ior of all values of interest in this asymptotic regime~large
fields or small frequencies!. For u8!1 we find

hr'hc5h0Au8, ~50!

M ~h!5MsS 12
2

u8

h2

h0
2D , ~51!

A'4Mshr . ~52!

Near the threshold fieldht1 the values ofhr andA are given
by the following asymptotics:

hr'2Aht1~2h02ht1!, ~53!

A5
pMsht1

2
14pMsAht1~2h02ht1!. ~54!

Near the second threshold fieldht2 the reversal fieldhr is
close toh0 :

hr'h02
~h02ht2!2

2ht2
. ~55!

For u8!1 we find scaling behavior of all hysteresis chara
teristics with universal critical exponents, independent of
pinning centers. Therefore, one can expect that the s
scaling is valid for a clean ferromagnet with the relaxation
dynamics. In particular, we have found that

A}v1/2h0
1/2. ~56!

In this section we assumed that the magnetization in a sin
domain reaches its saturation value. If it is not the case,
magnetization on the parts of hysteresis curve beyond
hysteresis loop~‘‘the whiskers’’! is not a constant. The exac
shape of the hysteresis curve in this case depends on
single-domain equilibrium magnetization curve.

IV. CREATION OF BUBBLES BY A MOVING DOMAIN
WALL

In this section we show that, at sufficiently high magne
field hp,h0,h, the moving wall passes a series of defe
that it cannot overcome. Instead it leaves closed domain
magnetization, opposite to the propagating magnetizat
which serve as nuclei at the next half-cycle of the hystere
process.
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So far we assumed that an almost planar domain wa
pinned by typical fluctuations of the random fieldh(r ). In a
~spherical! region of the volumeRd,d5D11 a typical fluc-
tuation of*Rdh(r )ddr is of the order6h( l dRd)1/2, the cor-
responding probability is of the order 1/2. In the followin
we will consider the possibility of clusters of rare random
field fluctuations that may serve as nuclei of reversed sp
when the field direction changes. A cluster of the sizeR
consisting mainly of minimal negative value2h of the ran-
dom field has the probabilityp(1,R).exp@2(R/l)Dln2#. Such
a cluster pins the domain wall forh,h even if h.hp . In
general, if the concentration of2h sites in a cluster isc, its
probability p(c,R) is of the order exp$2(R/l)d@clnc1(1
2c)ln(12c)1ln2#%, and the pinning force density is of th
order (2c21)h. Since hp!h, there is a field regionhp
,h,(2c21)h in which the domain wall can be pinne
locally by these rare fluctuations of the random field. T
true pinning condition is now given by~see also Ref. 25 for
similar considerations!

G

R
1h2~2c21!h,0, ~57!

where the first term denotes the Laplacian curvature fo
Thus, the domain wall cannot overcome the pinning clus
if it has the sizeR bigger thanRmin , where

Rmin'
G

~2c21!h2h
. ~58!

Using Eq.~58! we get

p~c,Rmin!'expH 2F G

~2c21!h l 2hl G
d

g~c!J , ~59!

where

g~c!5clnc1~12c!ln~12c!1 ln2. ~60!

A closer inspection shows that ind>2 dimensions
p(c,Rmin) has its maximum atc51. The mean distance be
tween these strong pinning clusters is therefore of the or

Lcluster' l expH F G

~h2h0!l G
dln2

d J . ~61!

Here we have replacedh by by the maximum field strength
during one cycleh0 . Since the interface cannot overcom
the pinning cluster it will surround it and finally leave
behind as an island encircled by a domain wall~Fig. 3!.
These islands serve as nuclei of the favorite phase once
external field is reversed. Thus, in the expressions foun
Sec. III the system sizeL has to be replaced byLcluster as
soon asL.Lcluster. If h0 approaches and finally exceed
h, Lcluster diverges and hence this type of magnetization
versal process disappears. Domain walls originate then e
from surfaces or from a nucleation process that we cons
in the next section.

V. NUCLEATION-CONTROLLED HYSTERESIS

This mechanism works when the nucleation is the long
process. Let there exist a number of defects or impurities
lower the energy barrier for reversing magnetization loca
is

s

e

e.
r

er

the
in

-
er
er

st
at
.

Still, the reduced barrierD remains rather large so that th
average reversal timet r(0)5n21exp(D/T) (n is a micro-
scopic frequency! is very large in comparison to the oscilla
tion period:vt r@1. However, the reversal time depends
magnetic field

t r~h!5t r~0!expS 2
Mah

T D5n21expS D2Mah

T D , ~62!

whereMa is the saturation magnetic moment in the activ
tion volume. We assume also thatv/n!1, but according to
the accepted assumption exp(D/T)@n/v. Then the probability
of spin reversal in an individual nucleus is negligibly small
Mah0 /T,D/T2 ln@2p(n/v)#. It becomes reasonably larg
starting from the dynamical threshold for the amplitudeh0 :

ht15
D

Ma
2

T

Ma
lnS 2p

n

v D . ~63!

Due to the sharpness of the exponential function, the reve
time t r(h) fast becomes much smaller than the osc
lation period 2p/v as soon ash(t) overcomes the threshol
values ht1 . With the precision of a small paramete
n/v exp(2D/T) the reversal proceeds at a fixed fieldh
5ht1 , which simultaneously plays the role of coercive fie
hc and the reversal fieldhr ~see Sec. III!. With the same
accuracy the reversal proceeds at a moment of timet r
5v21arcsin(ht1 /h0). The hysteresis loop has a rectangu
shape~see Fig. 2!. With a little higher accuracy the transitio
proceeds at a value of the phasew5vt determined by

Mahc

T
sinw5

D

T
2 lnS 2pn

v
w D , ~64!

which results in a corrected value of the coercive field

hc5hr5ht12
T

Ma
lnS arcsin

ht1

h0
D . ~65!

As soon as the magnetization reverses in an individ
nucleus, its walls expand quickly and, for a much shor
time thant r , the full magnetic moment reverses. The case
which the propagation of domain walls is the longest proc
has been considered earlier in Secs. III and IV. The HLA
a rectangular loop is simply

A54Mshc

'4
Ms

Ma
DF12

T

D
ln

2pn

v
2

T

D
lnS arcsin

ht1

h0
D G . ~66!

FIG. 3. Formation of a bubble by the moving domain wall.
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Since Maht1!D the value 12(T/D)ln2pn/v!1. For h0
@ht1 the HLA reads

A5A0F12
T

D
ln

2pn

v
1

T

D
ln

h0

ht1
G . ~67!

Note that at fixedv and varyingh0 we find

A5A0~v!F12
T

Maht1
ln

h0

ht1
G ~68!

and T/(Maht1)@T/D. This theoretical result can be com
pared with recent measurements by Chen and Erskin12

They have measured the HLA for a thin film of Fe/W(11
in a wide range of frequenciesv and amplitudesh0 . They
concluded thatA;h0

avb with small exponentsa;0.2 and
very small exponentb;0.0320.09. Both exponents depen
on temperature. These conclusions are compatible with
result@Eq. ~67!#. Indeed, at such small values of exponent
is impossible to distinguish between the logarithmic dep
dence and the exponential dependence with a small e
nent. Our predictionsa5T/Maht1 and b5T/D agree with
the experimentally discovered linear temperature depend
of the exponentb. It would be worthwhile to measure th
frequency dependence of the dynamical threshold fieldht1 .
The fact of the existence of such a threshold has been
served in the same experiment. It should be noted that
value T/Maht1 is not so small in the experiment;1/4.
Therefore we expect that our theory is correct with an ac
racy of 25% only. On the other hand, the statement that th
exists the powerlike dependence of the HLA onh0 is not
proved convincingly by this experiment since the interval
variation forh0 was too small~the amplitude changed abou
10 times!.

So far we consideredD and Ma as fixed values. This is
correct if only one type of defect mediates the nucleati
More realistically these values are random. Then the def
with the minimal ratioD/Ma initiate the magnetization re
versal process.

According to Eq.~63! ht1 becomes zero at very sma
frequencies,v<2pn exp(2D/T). Our theory is not valid for
such a small frequency, but it reflects correctly the narrow
of the HL. On the other hand, the transition is smeared o
the interval of magnetic fieldDh;T/Ma . It is small in com-
parison toh if h0Ma@T. At a smaller amplitudeh0 the
reversal is possible, but fluctuations of magnetization gr
rapidly and become of the order of magnetization itself.
principle, it is possible that the nucleation time is of the sa
order of magnitude as that of the time of domain-wall prop
gation. However, since the nucleation time depends quic
on parameters, a small change of the regime makes on
the two times much larger than another. Thus, presuma
the nucleation-mediated hysteresis loop has the rectang
shape, whereas a curved shape indicates that the hystere
associated with the domain-wall propagation or with stro
fluctuations of magnetization.

A reason for the rounding of the HL in the case of t
nucleation-controlled hysteresis can be that the sampl
split into a number of magnetically disconnected grains w
.
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different D and Ma in each grain. Then the shape of th
hysteresis loop reflects the distribution function for the ra
D/Ma .

VI. THE ADIABATIC DYNAMICS

In the case of strong Ising anisotropy the dynamic eq
tion for magnetizationm in the continuum limit has the form

]m

]t
52G

]F

]m
, ~69!

where F is a free energy. In the adiabatic limit the tot
magnetizationm(t) at the momentt can be represented as

m~ t !5m0@T,h~ t !#1m1~ t !, ~70!

wherem0@T,h(t)# is the equilibrium value of magnetizatio
for a given momentarly value of the magnetic fieldh(t) and
m1(t) is the deviation of magnetization from its equilibrium
value. We discuss later restrictions imposed by the adia
ticity condition. Substitutingm(t) into Eq.~69!, one finds an
equation form1 :

xḣ52G
]2F

]m2 m1 , ~71!

where x5]m/]h is the magnetic susceptibility. Equatio
~71! can be rewritten in a form

m152
x2

G
ḣ. ~72!

The hysteresis appears since the derivativeḣ changes its sign
when h passes its extremal values6h0 . For harmonically
oscillating field h(t)5h0sinvt, its derivative may be ex-
pressed in terms of the field itself:

ḣ56vAh0
22hc

2. ~73!

Plugging Eq.~73! into Eq. ~72!, we find

m157
vx2

G
Ah0

22h2. ~74!

Perturbation theory is valid ifm1!(m0)max5m0(T,h0), i.e.,
if vx(h0)/G!1. The coercive magnetic fieldhc satisfies the
following equation:

m0~T,hc!5um1~h0 ,hc ,T!u5
vx2

G
Ah0

22hc
2. ~75!

Assuminghc!h0 , Eq. ~75! can be transformed as follows

m0~T,hc!5
vx2h0

G
. ~76!

The HLA A can be calculated by knowledge ofm1 :

A54E
0

h0
m1dh54vE

0

h0x2

G
Ah0

22h2dh. ~77!

Near the Curie point the relaxation timetc}G21x grows as
tc;t0e2nz, where e5(T2Tc)/Tc , n is the correlation-
length critical exponent (n51 for the 2D Ising model!, andz
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is the dynamical critical exponent. The best numerical va
for z is z52.17 ~for a modern review, see Ref. 26, and re
erences therein!. If e50 and hÞ0, the relaxation time is
proportional toh8z/15. For adiabaticity it is necessary tha
v!vc5max@t0

21ez,t0
21(h0 /hex)

8z/15#, wherehex is the satura-
tion ~exchange! field.

The amplitudeh0 should be considered as small@case~i!#
or large@case~ii !# depending on its ratio to a characteris
field h* (e)5hexe

15/8. For a small amplitudeh0!h* (e) one
can employ a linear approximation form0(T,h)5x(e)h to
solve Eq.~76!. Then hc5h0vx(e)/G(e). Next we use the
relationx(e)/G;t0e2z to find

hc5vh0t0e2z5vh0t0e22.17. ~78!

For a large amplitudeh0@h* (e) a dimensionless ratiok
5vx(e)/G(e) matters. If it is much less than the large val
h0 /h* , then the coercive force can be calculated ashc
5kh0 , exactly as in Eq.~78!. Otherwisehc@h* . Then an
approximate solution of Eq.~76! reads

hc'hexS vt0

h0

hex
D 215/~1518z!

;hexS vt0

h0

hex
D 20.46

. ~79!

Corresponding results for the HLA are as follows:

~ i! A}vh0
2 x2~e!

G~e!
;vh0

2t0e2z2g;vh0
2t0e23.92,

~80!

~ ii ! A}vh0

h* ~e!x2~e!

G~e!
5vh0hext0e22.04. ~81!

Though we cannot calculate explicitly the hysteresis lo
area in the opposite, antiadiabatic regimevc!v!J/\, the
dimensionality arguments lead to a necessary estimate
deed, according to the general equation~77!, its scaling di-
mensionality is

A}xh0
2 , ~82!

where we have used the facts thatv andG/x have the same
dimensionality and thath0!h* (v)5hex(\v/J)8z/15. Thus,

A}x~v!h0
2}v2g/zh0

25v20.8h0
2 . ~83!

Typical orders of magnitude aret0
21;J/\;431013 Hz; e

;1023;vc(e);2 MHz; h* (e);3 Oe; Tc;300 K; T2Tc
;0.3 K.

Note that all calculations in this section have been m
for T.Tc , so that we could ignore the problem of nucleati
and domain-wall motion. Below the Curie temperature
problem of spinodal decomposition appears when the fi
reaches the spinodal. Then, again, either the nucleation o
domain-wall motion prevails in the magnetization reversa
does not happen if eitherh0@h* (e) or v@tc

21 . Then one
can use previous results. However, if these conditions are
met, then either nucleation or the domain wall propagat
prevails in the magnetization reversal process. To estab
what is more important, let us consider corresponding ti
scales. The nucleation time for a pure sample is
e

p

In-

e

e
ld
he
t

ot
n
sh
e

t r5tc~e!expS h* ~e!

h D . ~84!

Though this time scale grows at approaching to the Cu
temperature, it can be sufficiently small. Its minimizatio
over e at fixed value ofh gives

t r}t0S hex

h D z/~b1g!

5t0S hex

h D 1.157

. ~85!

For the exchange field of about 106 Oe and external field of
about 100 Oe the nucleation time becomes of the orde
1029 sec. Thus, the nucleation proceeds very fast and
process of domain-wall propagation prevails in this range
fields and frequencies. This conclusion explains the result
our numerical calculations for temperatures close to the
rie point ~see Sec. VII!.

VII. SIMULATION OF THE DOMAIN GROWTH

In this section the process of magnetization reversal i
few-monolayers-thick magnetic film is modeled by an ana
gous process in the two-dimensional Ising model with
Glauber dynamics. In simulation we neglect the dipo
dipole interaction and demagnetization effects. The Ham
tonian of the Ising system in a time-dependent fieldh(t) has
a form

Hb52
1

2(r ,a
Ja~r !s rs r1a2h~ t !(

r
s r , ~86!

where summation overr runs over the lattice sites anda
labels nearest neighbors. In a perfect ferromagnetic fi
Ja(r )5J0.0 independently onr . In the case of quenche
disorder we assume that the exchange integral is ferrom
netic @Ja(r )5J0.0# with the probability 12q and antifer-
romagnetic @Ja(r )52J0,0# with the probability q (q
!1). No correlation in the location of random bonds is a
sumed. In Sec. II it is shown that this type of disorder is
general importance for the problem of the domain wall mo
ing in the disordered media. Weak random-bond disor
does not destroy the long-range order in the 2D Ising mo
The magnetic fieldh(t) is supposed to oscillate harmonical
ash(t)5h0sin(vt), unless a different assumption is not sp
cially formulated. The process of magnetization reversal
be divided into two stages: nucleation of domains with o
posite magnetization and growth of these domains. Wh
process dominates depends on system parameters and
history. In this section we consider a limit of the nucleati
time much smaller than the growth time. Then the magn
zation reversal process is dominated by the domain-w
propagation discussed in Secs. II and III.

We employed the Monte Carlo simulation with th
Glauber dynamics~see, e.g., Ref. 27! to check Eq.~6! for
perfect systems and systems with disorder. We modeled
disorder by a small concentration of randomly distribut
antiferromagnetic bonds. This disorder weakly influences
phase diagram and results only in a small shift ofTc , where
Tc is an Ising transition temperature of the model equat
~86! with h50. We have found the linear dependence
domain-wall velocity on applied magnetic field at all re
evant temperatures with and without disorder. Apparently
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these simulations we dealt with the limit of weak pinning,
thathp!h0 . However, at low temperatures (T,0.1Tc) even
a small disorder, which almost does not change the ther
dynamics, modifies the domain-wall dynamics drastica
The results related to the domain-wall motion and hyster
phenomena in a weakly disordered system at low temp
ture will be discussed elsewhere.

The domain growth was studied in two geometries: stri
and circles. To distinguish the domain growth from doma
nucleation we examined either a specially prepared defec
fast nucleation or a prepared nucleus with the opposite di
tion of magnetization possessing the shape of the circle
stripe. In both cases the magnetization changed in ac
dance with the model of a straight DW, i.e., it was similar
Eq. ~40!.

Simulated hysteresis loops for different values
magnetic-field amplitudes (h050.025J, h050.05J, and h0
50.125J) and constant period of 83103 Monte Carlo steps
are shown in Fig. 4. Hysteresis loops for different perio
(43103, 83103, and 2563103 Monte Carlo steps! and con-
stant h050.05J are shown in Fig. 5. The observe
hysteresis-loop behavior obeys the general classifica
scheme developed in Secs. II and III~compare with Fig. 2!.
In particular, the asymmetric loops in Figs. 4 and 5 cor
spond to the loop in Fig. 2~a!, the loops with whiskers in
Figs. 4 and 5 correspond to the loop in Fig. 2~d!, and the
symmetric loops without whiskers in Figs. 4 and 5 cor
spond to the loop in Fig. 2~c!. The concentration of random
bonds in the system was'0.8%.

Figure 6 shows the time sequence of inflating domains
the system withT50.5Tc andh050.25J. The concentration
of random bonds in this case was'3%. The nucleation first
proceeds at three regions, then the corresponding dom
inflate rapidly and two of them merge. The time develo
ment of the inflation process is shown in Fig. 6. The to
magnetization for each snapshot is indicated in Fig. 6. T
analysis shows that the inflation of a domain with revers
magnetization is described by simple law@Eq. ~40!#.

Let LN be the mean distance between nucleation cent
It plays the same role as the system sizeL in Sec. III. The
ratio LN /Lv5uN is an analog of the dimensionless para

FIG. 4. Simulated hysteresis loops for different values ofh0 and
constantv. The observed hysteresis-loop behavior obeys the g
eral classification scheme developed in Secs. II and III and sh
in Fig. 2 ~see explanation in text!.
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eteru8 introduced by Eq.~49!. In the limit LN!Lv ~compare
Sec. III! the domain growth will be fast enough to provid
the full hysteresis cycle withhr!h0 @see Fig. 2~d!#. We
evaluated the scaling behavior ofhc andA as a function ofv
andh0 in the limit LN!Lv using Eq.~39!. To deal with the
domain-wall propagation-dominated hysteresis, we con
ered temperature close to the Curie point. We argued ea
~see Sec. VI! that in this case the nucleation proceeds f
enough. Figure 7 shows domain distribution in the appl
reversed magnetic field atT50.95Tc . Multiple nuclei that
are seen in this picture serve as evidence that the nuclea
is really fast enough.

At h5hc the typical domain sizeLd is of the order of the
mean distance between domains. SinceLN!Lv , we con-
clude thathc!h0 , and LN'(g/h0v)(hc)

2. Assuming that
the average distance between nucleation centers does no
pend significantly onv, we immediately obtain that the co
ercive fieldhc scales ashc}Av @compare with Eq.~50!#. If,
in addition, the average distance between nucleation cen
does not depend significantly onh0 , we havehc}Ah0v. If
we assume that the magnetic field is strong enough and s
ration magnetization does not change significantly by cha
ing h0 , the HLA area scales in the same way ashc , i.e.,
A}Ah0v. This is a simplified qualitative version of argu
ments leading to Eq.~56! of Sec. III.

Figure 8 shows the dependence of the hysteresis loop
A on v in the double logarithmic coordinates atT5Tc . The
Av scaling behavior is valid over three decades of thev
variation. However, the range of magnetic-field values av
able is only one decade. For this reason we have o
checked that magnetic-field dependence is consistent
A}Ah0 dependence.

To check the proposed mechanism of magnetization
versal we have also simulated this process for the magn
field h5h0sin3(vt). In this case bothhc andA scale in ac-
cordance with the analytical results asv3/4.

Though we putT5Tc , the system is far away from th
critical point due to a relatively large magnetic field. Indee
one can estimatee defined in Sec. VI from the relatione
'(h0 /hex)

8/15 ~see Sec. VI!. In our simulationsh0 /hex

n-
n

FIG. 5. Simulated hysteresis loops for different values ofv and
constanth0 . The observed hysteresis-loop behavior obeys the g
eral classification scheme developed in Secs. II and III and sh
in Fig. 2 ~see explanation in text!.
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FIG. 6. Inflation of domains with opposite magnetization in an Ising model in reversed magnetic field withh050.25J at T50.5Tc for the
system of the size 1923192 with periodic boundary conditions and with random frozen defects~antiferromagnetic bonds! with concentration
0.03. Each dot corresponds to the bond with opposite spin orientation.
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50.05–0.005, which givese'0.2–0.06. It means that th
deviation from the critical point is large enough. With the
values of fields, our system is also far away from the stro
fluctuation regime described in Sec. VI. A necessary con
tion for this regime is thatm0!1. The magnetic momentm0
scales asm0}(h/hex)

1/15. Therefore the fieldh0'0.005hex is
rather strong; it givesm0'0.7.

With the temperature decreasing, away from critical
gion the HLA deviates strongly from the power-law behav

FIG. 7. Domain-wall distribution in an Ising model in reverse
magnetic field withh050.05J at T50.95Tc for the system of the
size 4323432 with periodic boundary conditions. Each dot corr
sponds to the bond with opposite spin orientation.
g
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as it follows from Fig. 8. We expect that the HL changes
shape and characteristics from those dominated by dom
wall propagation to those dominated by nucleation. T
crossover behavior cannot be described by a single po
law.

VIII. CONCLUSIONS

We studied the main mechanisms of the hysteresis i
ferromagnet: the driven DW motion, nucleation and retar

FIG. 8. Hysteresis-loop area as a function of frequency
double logarithmic coordinates for the magnetic field with amp
tudeh050.05J at T5Tc ~lower line! and atT50.95Tc .
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tion in nonlinear magnetization dynamics. Each of them m
be dominant at proper conditions. A process is dominant
provides maximum value for the coercive fieldhc .

In the background of the general theory of the interfa
motion in a random medium we studied the hysteresis p
cess controlled by the DW motion. We introduced two d
namic threshold fieldsht1 and ht2 corresponding to the oc
currence of the full magnetization reversal and to
occurrence of the single-valued parts on the hysteresis cu
respectively. These dynamical threshold fields are larger t
the static threshold fieldhp which is required to start a mo
tion of the DW. We established thatht1 andht2 measured in
units hp are functions of one dimensionless parameteu
5vL/ghp ~see notations in Secs. I, II, and III!. The coercive
field hc and the reversal fieldhr , measured in the same unit
can be expressed in terms of one function of two dimens
less parameters:

hc5hpFS vL

2ghp
,
h0

hp
D ; hr5hpFS vL

ghp
,
h0

hp
D . ~87!

Experimental observation of this type of scaling would
the best indirect evidence of the DW motion-controlled h
teresis. The direct observation of the DW motion by sc
ning magneto-optical Kerr effect and scanning tunneling
croscope methods in principle is possible28 and is much
appreciated. At large fieldsh0@hp the defects are inessen
tial. Therefore, the dependence onhp must vanish from scal-
ing laws ~87!. It happens indeed, and both fieldshc and hr
are expressed in terms of one dimensionless parameter:

hc5h0FS vL

2gh0
D ; hr5h0FS vL

gh0
D , ~88!

whereF(x)52Ax(12x). Note that in this limit the valuehp
vanishes from equations for the dynamic threshold fields
well: ht15vL/g, ht252ht1 . We presented also corre
sponding equations for the HLA on which the most expe
mental efforts were concentrated. However, we would like
emphasize that the HLA is not the only measurable cha
teristics of the HL and even not the most informative
characteristics: the fieldsht1 ,ht2 , hc , andhr , as well as the
shape of the hysteresis curve, are not less interesting.
functional dependence of the fieldsht1 andht2 on h0 at h0
not much overcoming the static threshold fieldhp allows one
to restore the basic functionf „(h2hp)/hp… of the theory of
the DW motion in a defect medium.

For sufficiently largeh0 the lengthL in Eqs.~87! and~88!
and others is the size of the system. Thus, the size effe
observable in the HL characteristics. However, at fie
larger thanhp , but still smaller than the maximum defe
strength, the moving DW produces bubbles playing the r
of ready nuclei for magnetization reversal at the next h
cycle of the hysteresis loop. Thus, the lengthL in this case is
the average distance between the bubbles. Its strong de
dence on the field amplitudeh0 makes the scaling laws~87!
and~88! less transparent, but they become size independ
The scaling becomes simple again if the dominant defe
are of topographic origin. The density of topographic defe
is independent on the amplitude of magnetic field. ThenL is
the average distance between such defects.
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In the case, when the driven DW’s are almost free (h0

@hp) and the HL is narrow (h0@ht1), the HLA was found
to be proportional tov1/2h0

1/2. This conclusion is supported
by our numerical Monte Carlo simulation.

In the nucleation-controlled process almost rectangu
HL shape is expected, unless the sample is divided int
multitude of magnetically disconnected grains. Note that
shape of almost vertical parts of the HL in this case is de
mined by the DW motion and, therefore, is universal. In t
case of nucleation-controlled hysteresis the HLA must gr
logarithmically with the frequency and amplitude of ma
netic field. However, the coefficient at the logarithm of fr
quency is smaller than that at the logarithm of the amplitu
Slow nonlinear critical dynamics may produce the HL wi
various scaling limits as described in Sec. VI.

The comparison with the experiment is still rather po
since there is no systematic study of the HL characteristic
functions of dimensionless parameters. The experimenta
forts were focused on the HLA, but the precision of t
measurements is not high enough for reliable determina
of scaling. Suen and Erskine9 reported the observation o
linear dependence of the HLA on the logarithm
frequency33 with the coefficient proportional to temperatur
Both these facts agree with our theory. However, they a
claimed the power dependence of the HLA on the amplitu
h0 with the exponent about 1/4. This dependence contrad
our theory. The reason for discrepancy is not yet clear. T
interval of variation ofh0 is not large enough to establish th
exponential dependence reliably, but it definitely devia
from logarithm. On the other hand, our theory gives logari
mic dependence onh0 only if h0@ht1 . Further studies both
theoretical and experimental are necessary to clarify the s
ation.

Our numerical simulations show visibly the formation a
propagation of domain walls as the dominant process at h
temperature. The domain walls look rather rough. It can h
pen as a consequence of strong critical fluctuations that
not taken into account in our DW motion theory, or it ma
follow from the fact that the dimensionality 2 is the margin
for the development of roughness due to defects~the rough-
ness exponentz is equal to 1 ford52). Nevertheless, the
scaling lowA}v1/2h0

1/2 for h@hp is confirmed in numerical
simulations at high temperatures. At lower temperature
nucleation becomes dominant.

An interesting possibility to verify our predictions for th
domain-growth-controlled hysteresis is a study of a hys
esis of adsorption isotherms close to equilibrium conditio
The process of close to equilibrium adsorption can be stud
experimentally for noble gases~see, e.g., Ref. 29!. The qua-
siequilibrium desorption of helium films has been studied
Ref. 30. In the case of equilibrium adsorption the chemi
potential plays the role of magnetic field and the covera
plays the role of magnetization. The domain-wall width f
adsorbed systems is only one lattice period wide. For
reason one can expect rather small nucleation barriers
equilibrium adsorption and a broader range of existence
domain-growth-controlled hysteresis than in magnetic film
More detailed analysis is given in Ref. 31. Though the a
sorption isotherms have been measured starting from La
muir, no hysteresis-loop measurements have been perfor
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until recently. The first such experiment by H. Pfnu¨r and K.
Budde32 gave values ofb close to 1/2.
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