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Nature of a phase transition and low-temperature phase in cubic ferromagnets

J. Sznajd and M. Dudzin´ski
Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-950 Wrocław, Poland

~Received 18 August 1998!

A S52 ferromagnet with a crystalline field of the cubic symmetry is studied. It is shown that in the case of
the three easy axes@100# the model which contains only the Heisenberg bilinear interaction and single-ion
anisotropy terms exhibits at a finite temperature the phase transition to a nonmagnetic phase with a long-range
quadrupolar order. It is also pointed out if the recent result that in three dimensions the cubic fixed point is
stable for the (n53)-component cubic spin model~Kleinert, Thoms, and Schulte-Frohlinde! is correct, all
cubic ferromagnets with three easy axes, for example Fe, should undergo a first-order~discontinuous! phase
transition.@S0163-1829~99!02806-4#
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I. INTRODUCTION

The nature of a phase transition in the cubic ferromagn
is an old topic which has been studied since the early 1971

But there is still a notable defect in our understanding of
effect of cubic anisotropy on a system with isotropic e
change interaction. The most efficient approach to the pr
lem of the critical behavior of such a system is the mom
tum space renormalization group~RG! which starts with the
so-called Landau-Ginzburg-Wilson~LGW! Hamiltonian. For
the n-component cubic vector model ind dimensions the
corresponding LGW Hamiltonian reads1

H~f!5E ddxF2u¹fu22r (
a51

n

fa
2

2(
ab

~u1vdab!fafafbfbG . ~1!

Within the molecular-field approximation~MFA! the ex-
istence of the continuous phase transitions in the model~1! is
defined by the conditions

u1v.0 and 3u1v.0, ~2!

whereas in the RG approach the stability of the isotropic
cubic fixed point depends on the value ofn. For n,nc ,
cubic symmetry-breaking fields are irrelevant and the iso
pic fixed point is stable. Forn.nc the cubic fixed point is
stable, and ford53, nc is probably close to 3. Estimate
using calculations up to three loops1 indicated thatnc.3.
Recently Kleinert, Thoms and Schulte-Frohlinde2 ~KTS! us-
ing a rather sophisticated method have concluded thanc
,3 and for the most interesting cased53 andn53, ‘‘the
critical behavior of the magnetic phase transition in ani
tropic crystals with cubic symmetry is governed by the c
bic, not by isotropic fixed point. Unfortunately, the result
only of fundamental interest’’ and cannot be experimenta
confirmed because the differences in the critical expone
for isotropic and cubic universality classes are too small.

However, there may be a chance to check the predic
of KTS, taking into account not only stability of the cub
fixed point but also its accessibility. It was found, within th
PRB 590163-1829/99/59~6!/4176~5!/$15.00
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e expansion1 that for n,nc the isotropic fixed point is ac-
cessible~continuous phase transition is to be expected! if the
initial Hamiltonian lies in the region given by the two fo
lowing inequalities:

u.0 and v.
vc

uc
u, ~3!

where uc(vc) denote the cubic fixed-point values ofu(v)
andvc is negative. Forn.nc the cubic fixed point represent
a continuous phase transition and it can be reached for
initial Hamiltonians with

u.0 and v.0. ~4!

Initial Hamiltonians outside of these regions will flow awa
to negative values ofv(u) and it is believed that the trans
tion becomes discontinuous. Thus, if the result of KTS
correct all systems described by thef4 Hamiltonian~1! with
n53 andv,0 in three dimensions~d53! should undergo
discontinuous phase transition.

In the remainder of the paper, we will point out a cons
quence of the result of KTS for the critical behavior of th
cubic ferromagnets with three easy axes and then we
investigate a nonmagnetic long-range order in this kind
ferromagnet described by the Hamiltonian with only t
Heisenberg interaction and single-ion anisotropy.

II. CUBIC FIXED POINT

In the ‘‘magnetic’’ language the sign ofv determines
whether the easy axis is along an edge of a cu
(v,0)—three easy axes@100#, or along a main diagona
(v.0)—four easy axes@111#. If nc.3 in both casesv.0
andv,0 a continuous or discontinuous phase transition
occur in cubic ferromagnets because the stable fixed poin
accessible also from the region with negativev Eq. ~3!. It is
true that usually one assumesu.0 and then all magnets with
a @111# easy axis should have continuous phase transition
in the systems with cubic symmetry the phase with mag
tization along the@111# direction can be stable also foru
negative.

In many real magnets the isotropic short-range excha
is associated with single-ion~crystal field! terms which break
4176 ©1999 The American Physical Society
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full rotational invariance and can be origin of the cubic a
isotropy. For a lattice of cubic symmetry in the lowest ord
such a system can be described by the Hamiltonian

H52J(̂
i j &

(
a

Si
aSj

a1
1

3
K(

i
(
a

~Si
a!4, ~5!

where Sa is the a component of the spin operatorS (S
>2). In this quantum model the sign ofK determines
whether the spins tend to align along the cubic axesK
,0), or along a main diagonal (K.0). One can use Eq.~5!
to find the Landau free energy and then the LG
Hamiltonian.3 For spin S52 the LGW parameters wer
found in the form

v5
24̧

K4

¸~¸21!e¸22¸ cosḩ 13 sinh¸

4 cosḩ 1e¸
, ~6!

u5
4¸

K4F2¸S 4sinh¸1¸e¸

4 cosḩ 1e¸ D 2

2
~¸3118̧ 226¸!e¸16~122¸!sinh¸

3~4 cosḩ 1e¸!
G , ~7!

where ¸5Kb (b51/kBT) and we have assumedJz1
51 (z1 denotes the number of the nearest-neighbor s
pairs!. It is easy to check that sgn(v)5sgn(K) but u is nega-
tive for 2.38/b,K,7.14/b. Thus, if nc.3 the conditions
for the accessibility of the isotropic fixed point Eq.~4! can be
fulfilled or not for both casesK.0 andK,0. It means that
within the RG approach the system withS52 is predicted to
have a continuous or discontinuous phase transition in
pendence on the value ofK both to the phases with magne
tization along@111# and @100# axes. The similar estimation
for S55/2 leads to the conclusion that in this latter case
system should undergo a continuous phase transition to
phase@111# ~if K.0) and a discontinuous one to the pha
@100# ~if K,0). So if nc.3, the kind of the phase transitio
in cubic ferromagnets depends on the ratio of an anisotr
to exchange interaction and value of the spin. Ifnc,3 the
situation is qualitatively different, the stablecubicfixed point
is not accessible for the initial Hamiltonian withv,0. It
means that if the KTS result ,nc,3, is correct then the phas
transition in cubic ferromagnets with three easy axes@100#
should be a discontinuous one.

III. LOW-TEMPERATURE PHASE

As mentioned in the previous sections the character of
phase transition in the cubic ferromagnets with three e
axes is still unsettled. The earlier results suggested that
transition can be continuous or discontinuous in depende
on the values of the model parameters, however, recentl2 it
has been concluded that these systems can undergo o
discontinuous phase transition. Apart from the characte
the phase transition another feature of the model descr
by the Hamiltonian~5!—a feature of the low-temperatur
phase—should also be clarified.

Within the MFA ~Refs. 3 and 4! one obtains that forK
,24zJ (z denotes the number of nearest neighbors! a sys-
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tem described by the Hamiltonian~5! does not exhibit any
magnetic order for an arbitrary temperature. In the grou
state the magnetization disappears continuously withK de-
creasing from 0 to24zJ and forK,24zJ the nonmagnetic
phase is observed. In this approximation it means that
models under consideration have no long-range order
sufficiently small, negative, anisotropy constantK and no
phase transitions in such systems exist. The natural ques
is if there is some other kind of long-range order in the cu
magnets with ferromagnetic interaction and large nega
anisotropy omitted by the MFA. In our recent paper,5 where
mainly the ground state has been considered, it has b
shown by using the perturbation theory forJ/uKu!1 that in
opposition to the MFA prediction there is a quadrupo
long-range order in such a system. In the present pape
consider the model atTÞ0 to show that as a consequence
the quantum character of spins there is possibly a fin
temperature phase transition to the quadrupolar, nonmagn
state in theS52 magnet without a quadrupolar type of in
teraction.

A. Effective Hamiltonian

Because there is not a quadrupolar type of interaction
the Hamiltonian~5! it is easy to see that any kind of th
MFA cannot lead to the multipolar ordering in the pha
without magnetic~dipolar! long-range order. On the othe
hand, there is no method beyond MFA which allows us
study efficiently theS52 model in d.1 ~for the cased
51 the density-matrix renormalization group theory h
been applied6 to study the ground-state properties of t
model under consideration!. So we propose some kind o
renormalization procedure to find an effective Hamiltoni
which includes the quadrupolar interaction caused by
quantum fluctuations.

The Hamiltonian~5! is divided into two parts

H~S!5H0~S!1H1~S!, ~8!

whereH0 contains all single-ion terms.H0 can be diagonal-
ized exactly and be removed from the problem, which lea
to the renormalized interaction between effective spinss.

The renormalized HamiltonianHeff(s) is defined by the
operator equation

exp@Heff~s!#5TrSP~s,S!exp@H~S!#, ~9!

with the projection operatorP(s,S) which couples the origi-
nal spin (S) space, and effective spins space and due to th
translational invariance can be written in the form

P~s,S!5)
i

p~si ,Si !, ~10!

wherei denotesi th site.
The most general rotationally invariant projection ope

tor for the spin-2 model is

p~si ,Si !5 (
n50

4

an~siSi !
n. ~11!

However, in this paper we confine ourselves to the simp
form
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p~si ,Si !5a01a1~siSi !1a2~siSi !
2, ~12!

which is sufficient to find the appropriate effective Ham
tonian.

The projection operatorp should satisfy the following
condition:

Trsp51, ~13!

which insures that the partition function of the original a
effective spin problem are the same, and

TrSS
ap5sa, TrS~Sa!2p5~sa!2, ~14!

which insures that Eq.~9! transforms the original system i
itself for K50 ~isotropic case!. It is easy to see that th
conditions~13! and ~14! are fulfilled if

a052
13

35
, a15

13

105
, a25

1

21
. ~15!

In order to solve Eq.~9! one has to use some approxim
tion, for example, the cumulant expansion. To take into
count thatH0 andH1 do not commute, we apply the identit

exp@H01H1#5exp@H0#YexpF E
0

1

dlH1~l!G , ~16!

where

H1~l!5exp@2lH0#H1exp@lH0#, ~17!
h
-
n
wi
ole
s
rd

tiv
ac

i
n
q

ith
-

and Y is the time-ordering operator with respect tol. The
transformation~9! can then be written as

Heff~s!5 ln TrSW P~s,S!exp@H0~S!#

1 lnF (
n50

` E
0

1

dl1 . . . E
0

ln21
dln

3^H1~l1! . . . H1~ln!&G , ~18!

where the angular brackets denote a partial expectation v
defined for some operatorA by

^A&5TrSexp@H0~S!#AP~s,S!/TrSexp@H0~S!#P~s,S!.
~19!

In the first-order cumulant expansion the effective Ham
tonian contains only a spin-spin interaction between nea
neighbors

Heff
~1!52Jp (

^ i , j &
si•sj , ~20!

where

Jp5
8¸e22¸22e24¸24e22¸1¸16

¸~312e22¸!2
. ~21!

In the second-order approximation for the cubic lattice th
come into play nine interactions with six different couplin
parameters (J1 . . . J6):
Heff
~2!52J1(

^ i , j &
si•sj2J2(

^ i ,k&
si•sk22J2 (

^ i ,k8&

si•sk82J3 (
^ i , j &,a

~s i
a!2~s j

a!22J4 (
^ i j &,ab

s i
as i

bs j
as j

b

2J5 (
^ i jk &,a

s i
ask

a~s j
a!22J6 (

^ i jk &,ab
s i

ask
bs j

as j
b2J5 (

^ i jk 8&,a
s i

ask8
a

~s j
a!22J6 (

^ i jk 8&,ab

s i
ask8

b s j
as j

b , ~22!
where j, k8, andk denote nearest, second, and third neig
bors of the sitei, respectively. In Fig. 1 the coupling param
etersJ1 andJ3 as functions of single-ion anisotropy consta
K are presented. Thus, due to the interaction of the spins
the crystal field, between others, the effective quadrup
quadrupole interactions (J3 ,J4) appear. These interaction
can, of course, cause the existence of the quadrupolar o
ing even in the nonmagnetic phase.

B. Phase diagram

In the second-order cumulant expansion the effec
Hamiltonian is much more complicated and no more tr
table than the original one. However, we regard the Ham
toninan~22! as a better starting point for the approximatio
It is easy to see that even within the simplest MFA using E
~22!, one can expect to obtain a quadrupolar ordering w
-
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-

FIG. 1. The coupling parametersJ1 ~full line! and J3 ~dotted
line! as functions of cubic single-ion anisotropy.
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out a dipolar one. The effective Hamiltonian can be appl
to study the whole phase diagram of the cubic ferromagn
but then one should apply a more powerful approximat
than the second-order cumulant expansion to get this Ha
tonian~the approximation used in this paper is valid only
high temperature forJ/T,1), and consider the eight
dimensional order-parameter space~three components of th
magnetization and five quadrupolar parameters!.7

Taking into account the symmetry of the problem, in o
der to check the possibility of the existence of the fini
temperature quadrupolar phase in cubic ferromagnets
three easy axes (K,0), we can confine ourselves to co
sider only the phase transitions to the magnetic phase
order parameterm5^Sa&Þ0, and the quadrupolar phas
with order parameterq5^(Sa)222&Þ0, and ^Sa&50 (a
5x or y or z). The appropriate free energy in the MFA rea

FMFA5A2T lnF2e24C/T cosh
2B

T
12e2C/Tcosh

B

T
11G

212J3z1 , ~23!

where

A5@J1z11J2~z212z28!14J5~z31z38!#m2

16J3z1q1
3

2
J3z1q212J5~z31z38!m2q,

B522@J1z11J2~z212z28!12J5~z31z38!#m

22J5~z31z38!mq,

C523J3z1q2J5~z31z38!m2, ~24!

and for the cubic lattice,z15z25z353, z2856, z38512.
The limit of the existence of the disordered phase is

fined by the conditions:

d2FMFA

dm2
u~m50,q50!50, ~25!

or

d2FMFA

dp2
u~m50,q50!50. ~26!

Conditions~25! and~26! indicate a transition temperature
the magnetic~dipolar! phase withmÞ0 andqÞ0 or quadru-
polar phase withm50 andqÞ0. Of course, the system un
dergoes the transition at the higher of these two temp
tures. It is easy to see that condition~25! can be fulfilled only
for K.23.5 and forK,23.5 the transition temperature
defined by the condition~26!. The expectation values of or
der parametersm and q can be determined from the set
equations

dFMFA

dm
50 and

dFMFA

dp
50. ~27!

From Eq. ~27! one finds that the solutionmÞ0 and qÞ0
exists only forK.Kc where Kc'27.6 and for27.6,K
,0 the system undergoes the transition to the magn
d
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phase, whereas forK,27.6 the system should undergo th
transition to the quadrupolar phase without magnetic ord
Similarly as in the previous papers,34 we have found that for
a negative but small enough anisotropy constant in our
proximation K.21.94 the cubic three axial ferromagn
should undergo the continuous phase transition. Of cours
the recent result of KTS’s is correct the fluctuations c
change this transition into a discontinuous one. The M
phase diagram in the plane (K,T) is presented in Fig. 2. The
dependence of the order parametersm and q on the single-
ion anisotropyK for a given temperature is shown in Fig.

IV. CONCLUSION

A magnetic state has always a quadrupole moment wh
is, of course, not generally true for a paramagnetic st
However, if there is a quadrupolelike interaction in the sy
tem one can expect some quadrupolar order also in the p
magnetic phase. At first glance if no higher-order coupli
exists the system should simply have the magnetic ph
transition, and no quadrupolar order without the magne
one should occur. In the present paper we have shown
for the S52 cubic ferromagnet the quadurpolar order c
exist, although there is no quadrupolar coupling and ther
no interaction of the spins with other dergrees of freed
like phonons or itinerant electrons which could mediate su

FIG. 2. Phase diagram of the cubic ferromagnet with three e
axes @100#. The full and dotted lines denote the continuous a
discontinuous phase transitions to the magnetic phase, respect
The dashed line denotes the phase transition to the quadru
phase.

FIG. 3. The dependence of the magnetic~full line! and quadru-
polar ~dotted line! order parameters on the single-ion cubic anis
ropy for a given value of temperature.
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a coupling. The quadrupolar phase transition is driven by
interaction of the quantum spins with the crystalline field
cubic symmetry and could not be observed in the mode
the classical spins.

Using a kind of renormalization procedure we have tra
formed the original Hamiltonian containing the bilinear~di-
pole! interaction and single-ion cubic anisotropy terms in
an effective Hamiltonian with multi-ion and multipolar inte
actions. This effective Hamiltonian can be used as a star
point for some approximation to find the whole phase d
gram of the cubic ferromagnet. In this paper we have fou
the effective Hamiltonian in the second order of the cum
lant expansion in order to analyze in the MFA the possibi
of the phase transition to the magnetic phase with the o
parameter̂ Sz& and to the quadrupolar phase with the ord

parameter̂ Sz
222&.

It has been shown that for sufficiently large and negat
values of the cubic anisotropyK,Kc'27.6 the system un-
dergoes the quadrupolar phase without magnetic order.
this basis and taking into account our previous results5 from
perturbation theory we conclude that theS52 cubic ferro-
magnets described by the Hamiltonian~5! with K,Kc , for
T,Tc exhibit the long-range quadrupolar order in the pa
magnetic state. ForK.Kc the system should have the ferr
magnetic phase transition with the tricritical point atK'
21.94 andT'3.71 ~for K.21.94 one observes the con
tinuous phase transition, while forK,21.94 discontinuous
. B
e
f
f

-

g
-
d
-

er
r

e

n

-

one!. It is obvious that this molecular field location of th
tricritical point would be considerably changed if one wou
take into account the fluctuations.

We have also pointed out that if the recent result of KT2

is correct and the critical dimensionality of the cubic mod
order parameternc is less than 3, ford53, then one should
observe the discontinuous phase transitions in all syst
described by the phenomenological LGW Hamiltonian~1!
with v,0. This conclusion is independent of the micr
scopic Hamiltonian of the model and it means that all cu
ferromagnets with three easy axes@100#, for example Fe,
should undergo the discontinuous~first-order! phase transi-
tion.

To be concrete we have presented the LGW Hamilton
parameters for theS52 cubic ferromagnets with single-io
anisotropy. Ifnc,3,2 this model in dependence of the valu
of the cubic anisotropy would exhibit the continuous or d
continuous phase transition to the phase@111# ~Ref. 3! and
always discontinuous transition to the phase@100#. The tri-
critical behavior of the system would be controlled by t
isotropic ~Heisenberg! fixed point atK50.
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