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Nature of a phase transition and low-temperature phase in cubic ferromagnets

J. Sznajd and M. Dudzaki
Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-950 Wroctaw, Poland
(Received 18 August 1998

A S=2 ferromagnet with a crystalline field of the cubic symmetry is studied. It is shown that in the case of
the three easy axd400] the model which contains only the Heisenberg bilinear interaction and single-ion
anisotropy terms exhibits at a finite temperature the phase transition to a nonmagnetic phase with a long-range
quadrupolar order. It is also pointed out if the recent result that in three dimensions the cubic fixed point is
stable for the 1=3)-component cubic spin modéKleinert, Thoms, and Schulte-Frohlindes correct, all
cubic ferromagnets with three easy axes, for example Fe, should undergo a firstdisdentinuous phase
transition.[S0163-1829)02806-4

I. INTRODUCTION e expansioh that for n<n, the isotropic fixed point is ac-
cessible(continuous phase transition is to be expegtéthe
The nature of a phase transition in the cubic ferromagnetiitial Hamiltonian lies in the region given by the two fol-
is an old topic which has been studied since the early 1870slowing inequalities:
But there is still a notable defect in our understanding of the
effect of cubic anisotropy on a system with isotropic ex- Uc
change interaction. The most efficient approach to the prob- u>0 and U>u_cu’ ©)
lem of the critical behavior of such a system is the momen- o )
tum space renormalization grodRG) which starts with the Whereuc(vc) denote the cubic fixed-point values afv)
so-called Landau-Ginzburg-WilsghGW) Hamiltonian. For ~ @ndvc is negative. Fon>n. the cubic fixed point represents
the n-component cubic vector model id dimensions the @ continuous phase transition and it can be reached for the

corresponding LGW Hamiltonian redds initial Hamiltonians with
u>0 and v>0. (4)

n
2
—|V¢|2—razl Pa Initial Hamiltonians outside of these regions will flow away
to negative values af (u) and it is believed that the transi-
tion becomes discontinuous. Thus, if the result of KTS is
- E (Utvdap) Pababpdp)- @ correct all systems described by thé Hamiltonian(1) with

“p n=3 andv <0 in three dimensiongd=3) should undergo
discontinuous phase transition.

In the remainder of the paper, we will point out a conse-
quence of the result of KTS for the critical behavior of the
cubic ferromagnets with three easy axes and then we will

u+v>0 and 3u+v>0, 2) investigate a nonmagnetic long-range order in this kind of

ferromagnet described by the Hamiltonian with only the

whereas in the RG approach the stability of the isotropic oHeisenberg interaction and single-ion anisotropy.
cubic fixed point depends on the value mf For n<n,
cm_Jbic_: symm_etry—breaking fields are irreIev_ant_ and thg is_otro— Il. CUBIC EIXED POINT
pic fixed point is stable. Fon>n. the cubic fixed point is
stable, and ford=3, n. is probably close to 3. Estimates In the “magnetic” language the sign af determines
using calculations up to three lodpmdicated thatn,.>3.  whether the easy axis is along an edge of a cube
Recently Kleinert, Thoms and Schulte-FrohliRd&TS) us-  (v<0)—three easy axefl00], or along a main diagonal
ing a rather sophisticated method have concluded mQat (v>0)—four easy axefl11]. If n.>3 in both cases >0
<3 and for the most interesting cade=3 andn=3, “the  andv <0 a continuous or discontinuous phase transition can
critical behavior of the magnetic phase transition in aniso-occur in cubic ferromagnets because the stable fixed point is
tropic crystals with cubic symmetry is governed by the cu-accessible also from the region with negativ&q. (3). It is
bic, not by isotropic fixed point. Unfortunately, the result is true that usually one assumas 0 and then all magnets with
only of fundamental interest” and cannot be experimentallya[111] easy axis should have continuous phase transition but
confirmed because the differences in the critical exponents the systems with cubic symmetry the phase with magne-
for isotropic and cubic universality classes are too small. tization along the[111] direction can be stable also far

However, there may be a chance to check the predictionegative.
of KTS, taking into account not only stability of the cubic  In many real magnets the isotropic short-range exchange
fixed point but also its accessibility. It was found, within the is associated with single-idierystal field terms which break

H(¢)=fddx

Within the molecular-field approximatiofMFA) the ex-
istence of the continuous phase transitions in the mddes
defined by the conditions
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full rotational invariance and can be origin of the cubic an-tem described by the Hamiltonia) does not exhibit any
isotropy. For a lattice of cubic symmetry in the lowest ordermagnetic order for an arbitrary temperature. In the ground
such a system can be described by the Hamiltonian state the magnetization disappears continuously Witthe-
creasing from 0 to-4zJ and forK < —4zJthe nonmagnetic
v 1 o d phase is observed. In this approximation it means that the
H:_J% ; S'S +§KZ ; (SH% (5) models under consideration have no long-range order for
sufficiently small, negative, anisotropy constdfitand no
where S” is the @ component of the spin operat@ (S  phase transitions in such systems exist. The natural question
=2). In this quantum model the sign df determines s if there is some other kind of long-range order in the cubic
whether the spins tend to align along the cubic axs ( magnets with ferromagnetic interaction and large negative
<0), or along a main diagonakK(0). One can use Eg5) anisotropy omitted by the MFA. In our recent papevhere
to find the Landau free energy and then the LGWmainly the ground state has been considered, it has been
Hamiltonian® For spin S=2 the LGW parameters were shown by using the perturbation theory fbffK|<1 that in

found in the form opposition to the MFA prediction there is a quadrupolar
long-range order in such a system. In the present paper we

24 x(x—1)e*— 2x coshx+ 3 sinhx consider the model &t+# 0 to show that as a consequence of

:F 4 coshet e” ' ©)  the guantum character of spins there is possibly a finite-
temperature phase transition to the quadrupolar, nonmagnetic

) 2 state in theS=2 magnet without a quadrupolar type of in-
yo 2%( 4sinhx+ xe teraction.
K4 4 coshw+e*

A. Effective Hamiltonian

Because there is not a quadrupolar type of interaction in
the Hamiltonian(5) it is easy to see that any kind of the
MFA cannot lead to the multipolar ordering in the phase
where x=Kp (=1kgT) and we have assumedz;  ithout magnetic(dipolan long-range order. On the other
=1 (z; denotes the number of the nearest-neighbor Spifang there is no method beyond MFA which allows us to
pairs. Itis easy to check that sgm(=sgn(K) butuis nega- g4y efficiently theS=2 model ind>1 (for the cased
tive for 2.388<K<7.148. Thus, if n;>3 the conditions  _1 “the density-matrix renormalization group theory has
for the accessibility of the isotropic fixed point B¢) canbe  paen appliedl to study the ground-state properties of the
fuffilled or not for both case&>0 andK<O0. It means that ,qdel under consideratipnSo we propose some kind of
within the RG approach the system w2 is predicted 0 rgnormalization procedure to find an effective Hamiltonian

have a continuous or discontinuous phase transition in d&ghich includes the quadrupolar interaction caused by the
pendence on the value &f both to the phases with magne- quantum fluctuations.

tization along[111] and[100]| axes. The. sim_ilar estimation The Hamiltonian(5) is divided into two parts

for S=5/2 leads to the conclusion that in this latter case the

system should undergo a continuous phase transition to the H(S)=Hy(S)+H4(S), (8)
phasg111] (if K>0) and a discontinuous one to the phase ) ) ) )

[100] (if K<0). So ifn.>3, the kind of the phase transition WhereH, contains all single-ion termsi, can be diagonal-

in cubic ferromagnets depends on the ratio of an anisotrop{#ed exactly and be removed from the problem, which leads
to exchange interaction and value of the spinndic3 the (O the renormalized interaction between effective spins
situation is qualitatively different, the staldabicfixed point The renormalized Hamiltoniahl (o) is defined by the

is not accessible for the initial Hamiltonian with<0. It ~ ©OPerator equation

means that if the KTS resulh,<3, is correct then the phase

(%3+ 18x°—6x)e*+6(1—2x)sinhx @
3(4 coshu+ %) ’

transition in cubic ferromagnets with three easy ajE30] exd Hex( o) ]=TrsP(o,SexgH(S)], C)
should be a discontinuous one. with the projection operatd?( o, S) which couples the origi-
nal spin ) space, and effective spim space and due to the
IIl. LOW-TEMPERATURE PHASE translational invariance can be written in the form

As mentioned in the previous sections the character of the
phase transition in the cubic ferromagnets with three easy P(a,9=11I p(a;,9), (10
axes is still unsettled. The earlier results suggested that this '
transition can be continuous or discontinuous in dependencgherei denotesth site.
on the values of the model parameters, however, receintly The most general rotationally invariant projection opera-
has been concluded that these systems can undergo onlytar for the spin-2 model is
discontinuous phase transition. Apart from the character of
the phase transition another feature of the model described 4
by the Hamiltonian(5)—a feature of the low-temperature p(e,.S)=2 a(o:S)". (13)
phase—should also be clarified.
Within the MFA (Refs. 3 and #one obtains that foK However, in this paper we confine ourselves to the simpler
< —4zJ (z denotes the number of nearest neighparsys-  form
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p(o,S)=ap+a;(o:S)+ay(0;S)?, (12 andY is the time-ordering operator with respectXo The

transformation(9) can then be written as
which is sufficient to find the appropriate effective Hamil- o)

tonian. _ _ Hei(0)=InTrsP(o,S)exg Ho(S)]
The projection operatop should satisfy the following
condition: o Ano1
+In| > f d)\l...f d\,
Tryp=1, (13 n=0Jo 0
which insures that the partition function of the original and
effective spin problem are the same, and X(Hi(\1) ... Hi(hp)) |, (18)

) ) where the angular brackets denote a partial expectation value
TrsS*p=0",  Trg(S*)p=(c)", (14)  defined for some operatd by

which insures that Eq9) transforms the original system in

itself for K=0 (isotropic casg It is easy to see that the (A)=Treexf Ho(S)JAP(0,9)/Trsexd Ho(S) P (. S).

conditions(13) and (14) are fulfilled if (19
13 13 In the first-order cumulant expansion the effective Hamil-
aQ=—5=, A=, ar==-. (15) tonian contains only a spin-spin interaction between nearest
35 105 21 neighbors
In order to solve Eq(9) one has to use some approxima-
tion, for example, the cumulant expansion. To take into ac- Hb = -Jp > o g, (20
count thatH, andH, do not commute, we apply the identity <I I
where
1
exg Ho+ Hﬂzex;{Ho]Yex;{f d)\Hl()\)}, (16 J _8%9’2"—2e*4"—4e*2"+x+6 (21)
0 = .
P x(3+262%)?
where In the second-order approximation for the cubic lattice there
come into play nine interactions with six different coupling
Hi(\)=exd —AHg]Hexd NHq], (170  parametersd; . . .Jg):
|
HE=-3:12 00— 2 0023, 2 0 o0—J3 2 (07)(0])?=3y X ofolafof
(i) (i,k") (i) (ij)ep
—Js 2 a'iaoff(oja)z—\le z a'iaofa'fajﬁ—\ls E Uf“as,(Uf‘)z—JG Z Uf“af,al-“(rjg, (22

(ijk),a (ijk),aB (ijk'y,a (ijk"),aB

wherej, k', andk denote nearest, second, and third neigh-
bors of the sitd, respectively. In Fig. 1 the coupling param-
etersJ; andJ; as functions of single-ion anisotropy constant

K are presented. Thus, due to the interaction of the spins with
the crystal field, between others, the effective quadrupole-
qguadrupole interactionsJ¢,J,) appear. These interactions
can, of course, cause the existence of the quadrupolar order-
ing even in the nonmagnetic phase.

B. Phase diagram

In the second-order cumulant expansion the effective
Hamiltonian is much more complicated and no more trac- 3 -2
table than the original one. However, we regard the Hamil-
toninan(22) as a better starting point for the approximation.
It is easy to see that even within the simplest MFA using Eq. FIG. 1. The coupling parameteds (full line) and J; (dotted
(22), one can expect to obtain a quadrupolar ordering withdine) as functions of cubic single-ion anisotropy.
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out a dipolar one. The effective Hamiltonian can be applied T

to study the whole phase diagram of the cubic ferromagnets 1 2 3 /tJ
but then one should apply a more powerful approximation -2

than the second-order cumulant expansion to get this Hamit-

tonian (the approximation used in this paper is valid only in -4

high temperature forJ/T<1), and consider the eight-

dimensional order-parameter spdtferee components of the K-6 E
magnetization and five quadrupolar paramétérs -8 i
Taking into account the symmetry of the problem, in or- /
der to check the possibility of the existence of the finite- -10 ;
temperature quadrupolar phase in cubic ferromagnets with 1 "'

three easy axesK(<0), we can confine ourselves to con-
sider only the phase transitions to the magnetic phase with gG. 2. phase diagram of the cubic ferromagnet with three easy
order parametem=(S“)#0, and the quadrupolar phase axes[100]. The full and dotted lines denote the continuous and
with order parameteq=((S*)2—2)#0, and (S*)=0 (e discontinuous phase transitions to the magnetic phase, respectively.
=X ory or z). The appropriate free energy in the MFA readsThe dashed line denotes the phase transition to the quadrupolar
phase.
—4CIT 2B —-CIT B
Fura=A=Tln 2e cosh?+2e cosh?+ 1 phase, whereas fd¢ < — 7.6 the system should undergo the
transition to the quadrupolar phase without magnetic order.
—12)37y, (23)  Similarly as in the previous pape¥swe have found that for
a negative but small enough anisotropy constant in our ap-
proximation K>—1.94 the cubic three axial ferromagnet
A=[312,+Jy(2,+22}) +4J5(25+ zé)]mZ should undergo the continuous phase transition. Of course, if
the recent result of KTS’s is correct the fluctuations can
change this transition into a discontinuous one. The MFA
phase diagram in the plan& (T) is presented in Fig. 2. The
dependence of the order parametersindq on the single-

where

3
+6J32,0+ §J321q2+ 2J5(z3+25)m?q,

B=—2[J,2,+Jx(Z,+22)) +2J5(z3+ 25) Im ion anisotropyK for a given temperature is shown in Fig. 3.
—2J5(z3t25)ma, IV. CONCLUSION

C=—-3J32,q9— Js(z5+z5)m?, (29 A magnetic state has always a quadrupole moment which

) ) , , is, of course, not generally true for a paramagnetic state.

and for the cubic latticez; =2,=23=3,2,=6,23=12.  However, if there is a quadrupolelike interaction in the sys-
- The limit of the ?XlStence of the disordered phase IS detem one can expect some quadrup()]ar order also in the para-

fined by the conditions: magnetic phase. At first glance if no higher-order coupling
) exists the system should simply have the magnetic phase

o FMFAl -0 (25) transition, and no quadrupolar order without the magnetic
sm2 |(M=0a=0 one should occur. In the present paper we have shown that

for the S=2 cubic ferromagnet the quadurpolar order can

or exist, although there is no quadrupolar coupling and there is
) no interaction of the spins with other dergrees of freedom

O°Fyra -0 26 like phonons or itinerant electrons which could mediate such

5—pzl(m:0,q:0)_ : (26)

Conditions(25) and(26) indicate a transition temperature to
the magnetiddipolan phase withm= 0 andg+ 0 or quadru-
polar phase withm=0 andq# 0. Of course, the system un-
dergoes the transition at the higher of these two tempera-
tures. It is easy to see that conditi(@5) can be fulfilled only

for K>—3.5 and forK <— 3.5 the transition temperature is
defined by the conditiofi26). The expectation values of or-
der parametersn and g can be determined from the set of

equations
OF MFa OF vFa :
W_O andTp—O. (27) -14 -12 -10 -8 K—6 -4 -2
From Eq.(27) one finds that the solutiom#0 andq+0 FIG. 3. The dependence of the magnéfid line) and quadru-

exists only forK >K. whereK.~—7.6 and for—7.6<K polar (dotted ling order parameters on the single-ion cubic anisot-
<0 the system undergoes the transition to the magnetimpy for a given value of temperature.
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a coupling. The quadrupolar phase transition is driven by thene. It is obvious that this molecular field location of the

interaction of the quantum spins with the crystalline field oftricritical point would be considerably changed if one would

cubic symmetry and could not be observed in the model ofake into account the fluctuations.

the classical spins. We have also pointed out that if the recent result of KTS
Using a kind of renormalization procedure we have transis correct and the critical dimensionality of the cubic model

formed the original Hamiltonian containing the biling@i-  grder parameten, is less than 3, fod=3, then one should

pole) interaction and single-ion cubic anisotropy terms intogpserve the discontinuous phase transitions in all systems

an effective Hamiltonian with multi-ion and multipolar inter- yascribed by the phenomenological LGW Hamiltonidi
actions. This effective Hamiltonian can be used as a starting,ith v<0. This conclusion is independent of the micro-

point for some approximation to find the whole phase d'a('fcopic Hamiltonian of the model and it means that all cubic

gram of the cubic ferromagnet. In this paper we have foun erromagnets with three easy axg00], for example Fe,

the effective Hamiltonian in the second order of the cumu-

lant expansion in order to analyze in the MFA the possibilitys.h(;UId undergo the discontinuo(frst-ordej phase transi-

of the phase transition to the magnetic phase with the ordet#'O N
. To be concrete we have presented the LGW Hamiltonian
parametex's,) and to the quadrupolar phase with the OrOIerparameters for th&=2 cubic ferromagnets with single-ion

parametex S; - 2). . _anisotropy. Ifn.<3,2 this model in dependence of the value

It has been shown that for sufficiently large and negativesf the cubic anisotropy would exhibit the continuous or dis-
values of the cubic anisotrofgy<K.~ —7.6 the system un- continuous phase transition to the phfse1] (Ref. 3 and
dergoes the quadrupolar phase without magnetic order. Of\ways discontinuous transition to the ph&60]. The tri-
this basis and taking into account our previous rg%tﬁltsm critical behavior of the system would be controlled by the
perturbation theory we conclude that tBe=2 cubic ferro- isotropic (Heisenberyfixed point atk =0.

magnets described by the HamiltoniéB) with K<K_, for
T<T,. exhibit the long-range quadrupolar order in the para-
magnetic state. Fd{ > K the system should have the ferro-
magnetic phase transition with the tricritical point lats
—1.94 andT~3.71 (for K>—1.94 one observes the con-  This work was partially supported by the Alexander von
tinuous phase transition, while fét<<—1.94 discontinuous Humboldt Foundation.
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