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Recently, the importance of the vibrational aspects of alloy phase stability has attracted much interest. There
is much controversy over the extent to which the vibrational free energy affects order-disorder temperatures
and other phase equilibria. Here, we examine the feasibility of defining transferable force constants for an alloy
in much the same spirit as tight-binding Slater-Koster parameters can be defined for substitutional alloys. In
particular, the predictive ability of such alloy specific, but configuration independent, force constants for the
elastic, relaxation, and vibrational properties is examifn80163-182809)09205-X

[. INTRODUCTION short-range-order effects within the relatively small super-
cells that can be treated is difficult. Another aspect of the
The theory of alloy phase stability has received much atwork done so far is that many effects contribute at once,
tention in recent yearsUntil now, the theoretical descrip- making it difficult to pin-point the precise cause of a large or
tion has accounted mainly for the configurationalsmall value for the vibrational entropy; e.g., differences in
contributions’ This assumption appeared reasonable becaugée lattice parameters of ordered and disordered states, relax-
other contributions, such as from electronic excitations, aration of atomic positions as a result of atomic size differ-
generally much smallétHowever, recently it has been sug- ences, as well as the effect of atomic configurations on the
gested that vibrational contributions are on par with configu-actual vibrational density of states all play a role. Therefore,
rational effect$™® From the allotropic transformations oc- the construction of a simple model that allows one to sepa-
curring in a multitude of pure elements it can be concludedate the various contributions to the vibrational entropy dif-
that in general vibrational entropy differences should play &erence is highly desirable.
large role when different crystal structures are involved. In the case of ordering in transition metal alloys, much
However, in the case of ordered alloys, where the main disinsight into trends and causality was gained by combining
tinction between competing phases is the degree of long- ahe tight-binding approximation, the coherent potential ap-
short-range order, the issue is far from clear. A case in poinproximation, and the generalized perturbation method.
is the vibrational contribution to the order-disorder transfor-Typically, the electronic structure was described by a simple
mation of NiAl. Widely varying vibrational entropy differ- non-spin-polarized d-electron-only tight-binding Hamil-
ences have been reported in theoretical work, and the expetionian. Using this Hamiltonian, configurationally disordered
mental data appears very ambiguous because sliglsubstitutional alloys were represented by the coherent poten-
differences in the model with which the data is analyzedtial approximation, and the properties of alloys with nonran-
result in completely different interpretatioffs.*? dom configurations were obtained by a perturbation expan-
In the theoretical calculations so far, only completely or-sion, usually to second order in the site occupation variables
dered and completely disordered configurations have beemnly.r® This work, while based on a series of approximations,
considered. While such calculations provide important dataather accurately reproduced the tendencies towards ordering
such as the maximal attainable value of the vibrational enand clustering in alloy$ .t thus allowed the extraction of the
tropy difference, it does not represent well the actual situarelevant parameters which determine the tendencies towards
tion in the vicinity of an order-disorder transformation. At a ordering and clustering, and rules of thumb could be derived.
first-order order-disorder transformation at finite tempera-Some of these rules allowed the construction of even simpler
ture, the ordered phase is only partially ordered and the disnodels'*
ordered phase it is in equilibrium with, has short range order. There exists a natural analogy between the two-center
Examination of the correlation functions has shown that or-Slater-Koster(SK) tight-binding methotf for the electronic
dered and disordered states exhibit rather similar atomic corstructure and the Born-von Karman mddefor the vibra-
figurations. Consequently, it must be expected that the vibrational properties. In both cases the real-space Hamiltonian
tional entropy differences computed so far are muchconsists of short-ranged pairwise terms which are projections
exaggerated. Although this is a well-known fact, it is notof the SK parameters in case of the former, and force con-
easy to produce more realistic values for the vibrational enstants(FC9 in case of the latter. Likewise, a coherent poten-
tropy difference because proper inclusion of partial order, otial approximation and a generalized perturbation method
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can be defined for the vibrational Hamiltonian. As a conse- The alloy AkLi has been selected becaud¢ the FCs in
guence then, an analysis of the contribution of the vibrationathis alloy decrease rather rapidly as a function of distance,
degrees of freedom to the order-disorder transformations if2) much experimental and theoretical thermodynamic data
alloys is possible. However, before such a study can be cais available, and3) the elastic constants of this compound
ried out, the validity of a “tight-binding-like” vibrational ~are known. Also, in this alloy Al and Li have about the same
Hamiltonian for alloys needs to be examined. partial molar volume so that relaxation effects are srifall.

In the usual two-center SK tight-binding method for al- Indeed, when thec/a ratio was computed for th@®Oo,
loys, it is tacitly assumed that the SK parameters are conSt'Ucture, a value very close to the ideal ratio of 2 was
figuration independent, i.e., the SK parameters are the sanfgund: )
for two different superstructures if the composition and in- 't Should be noted that the effects of lattice parameter
teratomic distances are the same. For example, the SK p&h@nges as a result of changes in temperature or state of
rameters for a nearest neighbor Ni-Ti pair are the same for afirder, that occur in actual alloys, are neglected in this study.
intermetallic N;gTi with an L1, or with a DO,, structure This is done because in this study we seek to examine

provided that both have the same interatomic distances, thafransferability” in its most restrictive form where truly the
is, when theD O, has the ideat/a ratio of 2. This configu- only difference between various states of order is the atomic

g]ecoration. It appears evident that FCs computed for struc-
the special case of the linear-muffin-tin-orbital based tight-tu_reS that have the same lattice parameter V.VOUId be more
binding formalism’~1In the case of FCs, however, there is alike than FCs computed for structures with different lattice

no clear evidence that configuration, indepenaent i o Parameters. Therefore, it is to be expected that FCs are less

“transferable,” FCs can be definéd.On the contrary, be- “transferable” in real alloys, where changes in the state of
low it will be shown that the existence of invariance require-ord.er’ or changes in the temperature, are accompanied by
ments for the FC¢Ref. 21 suggests that such FCs can existlatt'ce parameter changes, than in the idealized model system

only as an approximation. Even approximate “transferable”St“_l(fLed here. _ ved foll A I f i
FCs would be useful though, as they might provide a way tc% e pap;rr:s_orgarll_lze_ as foflows: r?enera forma ISm
easily predict positionally relaxed structures, and the corre!®' FCs and their applications is given. The FCs for a num-

sponding relaxation energies. Also, the phonon dispersion (,gerf.of Sp.ec'f'c conﬁggraﬂon? Fac';e cc;‘mﬁuted, has well as %
well as the elastic tensor could be easily evaluated for arpiconfiguration averaged set o S which are then examine

trary atomic configurations, and this in turn could clarify the 1" transferability. Various physical properties, such as the
interplay between state of long- or short range order an&!astlc tensor, relaxqt_lon displacements and_ene_rgles, phonon
displacive transformations. dlspers_lon and dgnsmes of states, anq the vibrational thermo-

Transferability can mean many things; tight-binding SK dynamlp properties are computed with CS and CA FCs. A
parameters have been defined that can describe the electrofff1'Parson .Of those prop:ertles leads to conclusions regard-
structure of molecules and solids with widely varying struc-"9 the validity of CA, or “transferable,” FCs.
tures and coordination numbée¥stere, the weakest form of
transferability will be examined. We will examine if one set
of FCs can describe the properties of different configurations
which are the same in all other aspects, such as underlying In the harmonic approximation, the potential enefigys
lattice, lattice parameter, and composition. Thus, the vibraexpanded up to second order in the displacemefitsm the
tional properties of various configurations will be computedequilibrium positions,

“exactly,” and then we will examine to what extend one set
of configuration independerit'transferable”) FCs can de-
scribe the “exact” results for the various configurations.

The “exact” results are configuration specificS). Thus,
there are CS FCs, and all the properties that depend on those
CS FCs such as the phonon dispersion and the elastic tensor. 1 *D
The configuration independent FCs should represent any ar-
bitrary configuration. Therefore, it is reasonable to approxi-
mate these configuration independent FCs by configuration
averagedCA) FCs. The CA FCs will be considered “trans- where the subscripta and v indicate thex, y, or z direc-
ferable” if they can reproduce the results from CS FCs, in-tion, the subscript$ andj’ indicate a particular atom, and
cluding results pertaining to configurations that were not in-®, is the potential energy when all atoms are at their equi-
cluded in the averaging to obtain the CA FCs. librium positions. In a crystal it is possible to write the po-

To study the feasibility of “transferable” FCs, a model sition of the atom as;=r,+r,, wherer, indicates the po-
system is examined in detail, using FCs computed fromsition of the unit cell, and, indicates the relative position of
plane wave pseudopotential local-density-functionalthe atom in that unit cell. Thus, the indgks composed of an
calculationd!? using the direct methotf"2° FCs are com- index| designating the unit cell, and an indkxdesignating
puted for several ordered configurations, such as théhe particular atom within the unit cell. As all displacements
L1,, DOy, and other structures to be described below. Asu are defined with respect to the equilibrium positions, the
just mentioned, all these structures are based on the sarfiest derivatives of® vanish. Thus, the second order term
underlying fcc crystal structure and differ in the atomic oc-only matters for the vibrational properties.
cupancy only. The second order derivatives are the so-called FCs,

ration independence of the SK parameters can be derived

Il. THEORY
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2P After all, the invariances are satisfied by summations that
bu(ii)=——————. (2)  include all FCs. Therefore posterioritruncation of a set of
au,(j)au,(j’) FCs will cause violations of the invariances and may result

For each bond between atorfpand |’ there is a %3 FC in unphysical features in the calculated phonon dispersion
matrix. The nature of the bond is most readily interpretec®nd elastic tensor.

through the eigenvectors and eigenvalues of this FC matrix. '€ FCs are determined using a method which has re-

: ,26—-29
The eigenvectors indicate the principal axes with spring conSently become widely used:**~*In a large supercell where
Il atoms are at their equilibrium positions, a single ajdm

stants given by the corresponding eigenvalues. An isolatef! disol ; . ibri 2 h
bond, i.e., a diatomic molecule, would have one Iongitudinag'ven a displacemen from its equilibrium position. The

and two transverse axes. In crystals this is no longer nece&€sultant forces= on all the site§ " are calculated, and the
sarily 50, but it is easy to prove that when at least two crystal €S €&n then be determined from

symmetry elements leave the vectgi,j')=r;, —r; invari-

ant gxactly one Iongltudmal and two transverse modes exist. =4 ')=E bapliriNUG3), (6)
In highly symmetric crystals, such as bcc and fcc, many of B

the shorter bonds satisfy the above criterion. o .

Following Born and Huangf the FCs must satisfy three WhereF(j’) is the force exerted on atopi as a result of a
fundamental invariances. They result from the invariance oflisPlacement(j) of atomj. Again, as was done with the
the potential energy with respect to the translations, the rogauations for the invariances, the crystal symmetry is explic-
tations, and the crystal symmetry operations. When the crydtly imposed,
tal symmetry operations are applied, the translatibhahnd

; R ; ; . - . .
rotationall ™ invariances take the following form: ; RayF ] ):é %B(J,HrS)Ey Rs,u,(),  (7)

T _ —
|a5(k)—§ % % ReuRBX b,k k+1%=0, (3)  \whereRiis the rotation which takes(j,j’) into r®

R = r’=2 Rur(j,j’). 8
0=3 3 3 RERLRS, 5 Ey INNIRE! ®)
X[ (K Kk+T19r5— b, (KK+r9rs] As is evident from Eqs(3), (4), and(5), the invariances
too, are linear in the FCs, so that this system of equations is
=0, ) easily solved. The equations are overdetermined and by us-

where the Greek letters indicate the Cartesian coordinate89 the singular value decomposition method an, in a least
{x,y,z},k indicates an atom in the unit ce#i,designates the Squares sense, optimal set of CS FCs is computed. In order to
coordination shell surrounding atoknandp is the subset of ~assure that the invariances are satisfied to a high precision,
point group elementR that generates the star of the vector the invariance equations are weighted more heavily than Eqg.
rS. These invariances must be explicitly imposed on the FC§7)- In the actual calculations the invariance equations were
derived from supercell calculations because errors due to ifhultiplied by a factor 100, but it was verified that the actual
complete basis sets, imperfect self-consistency, and numeryalue of the factor was of no consequence. The crystal sym-
cal errors conspire to create violations. metry invariances are satisfied exactly because they were ex-
In simple highly symmetric crystals, such as bec and fecPlicitly imposed in Egs(3), (4), (5), and(7). o
the crystal symmetry invariances encompass the rotational 10 compute the CA FC matrices the following definitions
invariances? and the translational invariances can be satis&r¢ used. The CA FC matrices for a given neighbor-shell
fied trivially by scaling the onsite FCs. Such is not the casélepend on the occupancy of the terminal sites only. Then, for
in low-symmetry crystals. In fact, in general these three? binary alloy of atomic specie& andB, four FC matrices
classes of invariances are insufficient to assure that the elagan be distinguished for each she#f* for anAA pair, $"°
tic tensor obeys the relationshi;; =C;;, wherei and j _for anAB pair, and so forth. Let the occupanayj) of a site _
designate the Voigt indices. To satisfy the above equality] b defined as a vector taking the value (1/0) when there is
the following 15 Huang invariancts =0, must be satis- anAtype atom, and taking the value (0/1) when there & a

fied in a crystal at equilibrium, type atom. The FC between sitesnd ' can then be ex-
pressed in matrix form as follows:
Ho P RP RP RP . .y
o =2 Es % ,;U ReuRe/Ryo Ry 3.1 oM ¢"BGL) ©

LB 6B

¥vhere ¢(j,j') is an appropriately rotated FC matrix(j, |
+r®). The potential energy, Eql), with respect to equilib-
rium atomic positions can then be rewritten as

X[ K KFTI5r3= (K k+rrrsl. (5)

Hence, aside from conditions imposed by the symmetry o
the crystal, generally there aréQ translationalwhereN, is
the number of sites in the unit cgllON, rotational, and 15
Huang invariances which must be imposed on the FCs. 1

The existence of invariances has as a consequence that &=d,+ = [o(j)-¢(j,j’)-o(i)Iu()u(j’), (10
one cannot arbitrarily discard elements from a set of FCs. 2 i
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TABLE I. Pair types occurring in some fcc-based ordered con-
figurations at compositioMzB. Structures ‘O1” and “Z4" are

explained in the text.

Pair type L1, DOy, 01 Z4

(3%0) AA X X X
AB X X X X
BB X X

(100) AA X X X X
AB X X X
BB X X X

(133) AA X X X X
AB X X X X
BB X

(110) AA X X X X
AB - X - X
BB X X X X

(111) AA X X X X
AB X X X
BB X

where the first order derivatives have been omitted. Previ-
ously given equations for invariances apply also FIG. 1. Crystal structurega) “O1” and (b) “ Z4.” For clarity,
to CA FCs provided thate¢(j,j') is replaced with fcc cubes have been outlined with dashed lines for #@d ™ struc-

[a(j)- a)(j i")-a(j")]. In order to simplify the notation, we ture. The internal degree of freedom in th&4” structure associ-
. e J A ' ated with the relaxation of the All) sites is indicated with arrows.
will keep using ¢(j,j’). The CA FC matricesp can be

obtained by solving Eq.7) for several configurations at once The fact that the rotational and Huang invariances cannot
while using the rotation matriceR associated with the un- generally be satisfied for an arbitrary configuration implies
derlying disorderedfcc) structure. Of course, solving Ef)  that strictly speaking, configuration independent FCs cannot
will only yield ¢*" if XY pairs actually occur in the struc- exist. The best that can be done then, is to define approxi-
ture. In the AbLi L1, structure e.g., no nearest neighbor mate configuration independent FCs. Below, we will exam-
Li-Li pairs occur so that solving Ed7) cannot give a result ine the consequences of the violations of the invariances on
for the nearest neighb@f“ Y In Table | the various types of the computed physical properties.

pairs occurring in various simple orderégB configurations The “O1” structure is, to the best of the authors knowl-
are listed. The.1, andD O, structures allow determination edge, not observed in Nature. It has as primitive translations
of most ¢ submatrices, except for those associated with th?200>,<110>’ and(10%); see Fig. 1. There are 8 atoms in

Li-Li pairs in the first and third nearest neighbor shells, see; ., <o centered orthorhombic unit celpacegroup 65
Table I. To compute those, a special configuration, calle tandard Hermann-Mauguin notatid@mmm Wyckoff po- '
Cild ftr,om “IOW onE, wis ;:ontsr:rulcitfd. Ehg CA F%S%i ,?Om'sitions: Za, 2b, and 4f) and there are no internal degrees of
puted by soiving q(7) for €Ll 22, an freedom. This means that just as for the, andD O, struc-
structures simultaneously using singular value deco.mposk-uresl all atomic positions are fixed by symmetry, and that
tion, so that a set of CA FCs is computed that Opt'ma"ythe forces on every site vanish for an arbitrary choice of the

reproduces the forces in a least square sense. a, b, andc lattice parameters. Most other unit cells have

i Th? mv(?rlancgs ?re r?'IOt ;rr?pcc):s'fclj: (t:)ecause they a(;et C%ﬂﬂ'ternal degrees of freedom which need to be optimized in
lguration dependent, whiie the S are supposed 10 b qar for all forces to vanish. To illustrate this, we consider

configuration independent. This dependence is clear from thﬁ]e so-called 74" structure which consists of a periodic

presence of the configuration dependent rotation matrices igtacking of four(001) planes, one of the planes is occupied

5.%3' (3),E (4),f_and t(5) In .ﬁ%ne.ral’ |nf\|/.a;|et/r\1/<;]es (éi\”\é%d for exclusively by Li atoms, the other three planes are occupied
Iterent connigurations will be in contlict. en s are by Al atoms only, see Fig. 1. The primitive translations are

derived while imposing the invariances of one configuration,
the invariances for another configuration will not generally(330), (330), and (002) (space group 123, standard
be satisfied. When the invariances of several configurationslermann-Mauguin notatiorP4/mmm Wyckoff positions:
are imposed simultaneously, the system of equations beta,1b, and 2h). In this structure there are 2 types of Al
comes so overdetermined that the forces are no longer wetllanes, type(1) which is located between a Li and an Al
reproduced by the FCs. Therefore, the CA FCs are computeglane, and typ€2) which is sandwiched between two Al)
without imposing the rotational and Huang invariances.planes. The Al(1) planes are not fixed by symmetry and
When the CA FCs are used to compute the properties of have one internal degree of freedafnassociated with the
specific structure, the translational invariances are used tdifference in the interplanar spacing with the Li and with the
determine the onsite CA FCs, for reasons discussed belovAl (2) plane. Hence, generally when in such a structure all
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sites are kept at their underlying fcc lattice positions, theravhere the sitg is represented by a pair of indicls, with |

will be nonvanishing forces on the Al) sites. as the index for the particular unit cell, akés the index for
The energy associated with the optimization with respecthe site within a unit cell, as described earlier.

to internal degrees of freedom is called the relaxation energy At the zone center, the dynamical matrix,

D oax- When thell,, DO,,, and “O1” structures are

used to determine the CA FCs on the underlying fcc crystal

structure, there are no internal degrees of freedom. However,

these CA FCs can be used to calculate the relaxation energy ) ) )

of other structures. In the case of th&@4” structure there 1S closely related to the translational invarian¢Bs. (3)],

are generally nonvanishing forces on the(&l planes when

all atoms are kept at their underlying fcc positions. How E D (q=0)=1T(k), (17)

much the Al type(1) planes would relax, can be calculated K’

from the FCs, obtained from the pre_viou_sly menti_oned thr_e‘?/vhere for brevity,

structures, and from the forces on sites in the unit cell usin

an expression analogous to K@),

Dk (A=0)=2 dap(lk,I'K’), (16)
n'

the coordinate subscripts have been omit-
%ed. If the translational invariances are satisfiet{k) =0],
then the determinant dd,,, can be rewritten such that for
k=1 the row and the column are equal to zero. This means
F (iN=2> &(.,i"Ns). (11  thatthere are three vanishing eigenvalueBgf: at the zone
] center, one for each coordinatey, andz. When the trans-
) L ) ) lational invariances are not satisfied, there are generally not
Then, the relaxation energy is given simply by a variant ofy eq yanishing eigenvalues, and in fact, the eigenvalues at
Eq. (10), the zone center could take any, including negative, values.
1 Therefore, in order to avoid unphysical phonon dispersions
_= NI Y the translational invariances must always be imposed. In the
Prerax 2? ¢U.1181)60"). (12 case of CA FCs then, we have imposed the translational
invariances by adjusting the onsite CA FQsf the form
Of course, the relaxation energy can also be computed dig(j,j)] for each configuration individually, i.e., we treat the
rectly from ab initio calculations by performing an actual onsite CA FCs as purely adjustable parameters.
minimization over the internal degree of freedom. The vibrational density of state®/DOS) n(w) is ob-

The elastic tensor is comput&d®**analytically fromthe  tained by an integration over the first Brillouin zof¥eof the

Cuypr=[aB, YN1+[By,aN]—[ BN, ay]+ (ay,BN), 1
yon=LaB, YN ]+[By,ak]=[BN,ay]+ (ay.B )(13) n(w)=ﬁjﬂdq5(w—w(q)). 19

where the square brackefSq. 26.32 in Ref. 1Bare associ- Tpg viprational internal energf, and the vibrational en-
ated with homogeneous elastic strains, and the round brack:

(Eg. 26.33 in Ref. 1pis associated with the relaxation of the ﬁbpy S, are calculated from
internal coordinates. Mechanical stability requires that

Cuypr @nd[aB, yN]+[By,aX]—[B\,ay] form positive- Ev:f dofion(w)
definite matrices because any deformation must increase the

internal energyfree energy at nonzero temperaturdow-  and

ever, the round brackets form a negative-definite matrix be- (@)
cause relaxation of the internal coordinates always lowers the [ N(w

energy. Although not every element of the, S\) matrix S, = ka do (1-9) [9log(d)+(1=9)log(1=)],
needs to be negative, generally speaking, relaxation lowers (20
the elastic constants. In simple structures without internal

degrees of freedom, such &4,, DO,,, and “O1,” the where §=e"sT, kB. is Boltzmann's constantﬁ .is
round brackets vaniéh ' ' ' Planck’s constant, andl is the temperature. The vibrational

The nonvanishing of the Huang invariances for the CA!nternaI energyE, includes. the.zero-point motio(rliirs_t term
FCs may cause an unphysical asymmetry in the Calculate'{i]_Sq(lj“'ar_e blra;:ke)T:TEeEwaratlonal free energf, is ob-
elastic tensor and this may serve as an indication for th&AiN€d simply fromF,=E, =TS, .

errors incurred by using CA FCs.

The phonon dispersion(q) is computed from lll. RESULTS AND DISCUSSION

1
> + (19

=

’ FCs were calculated using the “direct method” discussed
def vmym ©(q) 8apdie ~Dia p(@]=0, (14 gpove. A cubic supercell consisting of 8 fcc cubes was se-
lected which allowed determination of FCs up to the fifth
nearest neighbor shell. The electronic structure was calcu-
lated using a plane-wave pseudopotential metiddForces
were calculated using the Hellmann-Feynman equation after
Dka’k,ﬁ(q)zz ¢aﬁ(|k,|'k')e*ZiW-r('k,"k’{ (15)  displacing a site by 0.005as., whereay, is the lattice

n’ parameter of the underlying fcc crystal structure. Anhar-

where my is the mass of atonk, and D is the dynamical
matrix given by the Fourier transform of the FCs,
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TABLE II. Configuration specifigCS) FCs for Al-Al nearest neighbors in various configurations in #ldmu(atomic mass unjt For
comparison, the configuration averag€t\) FCs are given at the bottom-left corner.

L1, DO,, “o1” “z4”
ri r r r|
T M ri rj
¢(.i") ¢(.i") #(.i") #(.i")
0.5 0.5 0 0.5 0.5 0 0.5 0.5 0 0 0 1
0 0.5 0.5 0 0.5 0.5 1 0.5 0.5 0.5 0.5 1
6783 0 —7592 6866 0 —7263 6244 —49 6512 7414 7313 0
0 792 0 0 687 0 —49 740 49 7314 7414 0
—5681 0 6783 —5908 0 6817 6512 49 6244 0 0 -—845
0 0.5 0.5 0.5 0.5 0 0 0.5 0.5
0.5 0 0.5 1 0 0 0 0 1
6328 —6618 507 6341 —6946 —507 —613 0 0
—6618 6328 507 —7756 6376 582 0 7182 —7663
507 507 735 527 —544 200 0 -—8l61 7106
0.5 0.5 0 0 0.5 0.5
0 0.5 0.5 0.5 0 0.5
6260 —1295 —6394 6774 —6732 —-18
1295 1562  —1295 —6732 6774 18
CA —6394 1295 6260 20 —-20 1254
0.5 0.5 0 1 0 0
0 0.5 0.5 15 0 0.5
6593 0 —6961 6589 0 7473
0 539 0 0 —1000 0
—6961 0 6593 7473 0 6589

monic effects were verified to be negligible by applying both The CA FCs have been listed in Table Ill. The 44 non-
smaller and larger displacements. All subsequent calculazero CA FC matrix elements were obtained from 480 Egs.
tions have been performed at the lattice parameter computdd). The FCs rapidly decay for more distant shells: those for
for the ALLi L1, structure. It was computed to be 0.3921 the fourth and fifth shells are orders of magnitude smaller
than those of the nearest neighbor shell. Moreover, the Al-Al
near neighbor bonds are much stiffer than those of Li-Li
there are 32 atoms, 24 Al atoms and 8 Li atoms. Variougype. This is particularly evident when the eigenvalues of the
configurations were considered, in particular those correFCs are examined; see Fig. 2. Apparently, Li-Li nearest
neighbors make a structure “soft.” This behavior is maybe

nm, in good accord with other LDA resutfs%-3%and with
the actually measured value of 0.3972 ffhin the supercell

sponding to thd-1,, DO,,, “01,” and “Z4" structures.

The number of Egs(7) ranged from 96 I(1,) to 224

(*Z4™), and the number of invariances ranged frorm.3 )

to 61(“ O1”). The number of independent nonzero elementdatomic mass unit

in the FC matrices ranged from 441,) to 171(* O1"). A

TABLE lIl. Configuration averagedCA) FCs in THZ amu

few elements of the FC matrices for the third, fourth, andShell
fifth nearest neighbor pairs cannot be determined with the,
2x2x2 supercell used here, and the corresponding values 2
have been set to zero. In Table Il the Al-Al nearest neighbor
FCs as computed with Eq$3), (4), (5), and (7) for each
structure are listed. The CA FCs, computed from the force$100)
intheL1,, DO,,, and “O1” configurations using Eq(7)

only, are given for comparison. Taking into account the dif-
ferent orientations of some of the pairs, it is clear that everq133
though there is a considerable spread in the values, generally
the larger FCs in all of the configurations are rather similar.

For example, thep,, element for a vectof; 30) takes val-

ues ranging from 6244n “ O1") to 7414(in “ Z4"), while

the smallerg,, element can take both positive and negative
values. For more distant pairs, where the FCs take mucfi111)
smaller values, the influence of the configuration becomes
overwhelming and no similarities between FCs from differ-

ent configurations can be discerned.

Type ¢y ¢><y Dxz ¢yy ¢yz b2z
Al-Al 6593 —-6961 O 6593 0 539
Li-Al 3298 3107 O 3298 0 353
Li-Li 2138 1797 0 2138 0 633
Al-Al 678 0 O —76 0 —76
Li-Al 565 0O O —81 0 —81
Li-Li -89 0 O —-20 0 —-20
Al-Al 260 0 0 -198 -11 —198
Li-Al 217 0 0 -131 24 —131
Li-Li 122 0O 0 -—-137 -17 —-137
(110) Al-Al 137 0 O 137 0 —148
Li-Al -3 0 O -3 0 —158
Li-Li  —133 0 0 -133 0 —-90
Al-Al 25 0 O 25 0 25
Li-Al —-11 0O O —-11 0 —-11
Li-Li 0 0 O 0 0 0
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FIG. 2. Maximum eigenvalues of the CA FC matrices, as a function of the interatomic digtapda units of the fcc lattice parameter
asc. The square, plus sign, and diamond symbols refer to Li-Li, Al-Li, and Al-Al bonds respectively.

not so surprising considering that the elastic constants of Li TABLE V. Elastic tensorC;; and bulk modulusB for various
are much smaller than those of pure Al, but it should be kepstructures in GPa computed with configuration spedi@&) FCs
in mind that Li atoms in the alloy are highly compressedand configuration average@A) FCs.
compared to the pure elemental Li case.

The elastic tensor for the Ali L1, structure as com-
puted with the CS and CA FCs and Hd.3) is compared

with data in the literature in Table IV. It is noteworthy that

the elastic tensor computed in this work compares very WeII116
with the experimental dafi;*® especially that of Sakai
et al?® The comparison with other electronic structure

calculations’®3” both with the full-potential augmented

plane wave method, is not quite as good. Considering how
much these results differ from each other and from the ex-
perimental data that might not be so bad. It should be men-
tioned though that the theoretical values pertain to zero tem-
perature, whereas the experimental data pertains to room

temperature, so that the theoretical values should be about

10-20 % higher than the experimental valf® light of
the large differences between the experimental and theoreti-
cal results, it appears that the CS and CA FCs give results
that are very similar and in good agreement with experiment.

The CS and the CA FCs can be used into @@) to give
the elastic tensor and the bulk modulus; see Table V. The CS
results should be considered exact and the CA results are
approximate because taking configurational averages of the
FCs is at best an approximation as was discussed above.

Concerning the bulk moduli, the CS results show that while102

TABLE V. Elastic constant<;; and bulk modulusB in GPa
for the AlzLi L1, structure, as determined from experimental mea-
surementgexpy, as computed with local-density-functional elec-

tronic structure methodgheory), and as computed in this work

with CS and CA FCs using E¢13).

Cuy Cis Cus B Method Reference
123.6 37.2 42.8 66.0 expt 39
114.7 39.1 37.8 64.3 expt 40
158.0 29.4 57.7 72.3 theory 36
139.8 33.7 40.7 69.1 theory 37
116 45 40 68.3 CS FCs This work
109 53 34 71.3 CA FCs This work

CS CA
L1,
68.3 71.3
45 45 0 O g 109 53 53 0 0 O
116 45 0 O 0 109 53 0 0 O
116 0 O 0 109 0 O O
40 O 0 34 0 O
40 0 34 0
40 34
DOy,
71.6 72.1
108 45 59 0 O g 105 56 59 0 0 O
108 59 0 O 0 105 59 0 0O O
103 0 O 0 109 0 O O
23 0 0 30 0 O
23 0 30 0
43 32
“O1”
63.2 73.2
45 45 0 3 q 112 54 56 0 3 O
98 45 0 2 0 53 110 52 0 0 O
102 0 3 o 57 55 111 0 3 O
41 0 -3 0 0 0 33.0 0
35 0 2 -1 3 03 0
41 0 0 0O 0 0 33
“ 747
59.7 62.8
113 23 52 0 O g 109 58 50 0 0 O
113 52 0 O 0 58 109 50 0 O O
83 0 O 0| 48 48 103 0 O O
24 0 0 0 0 027 0 O
24 0 0 0 0 0 27 O
72 0 0 0O 0 0 37
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FIG. 3. Phonon dispersion of thel, structure(a) as computed with CS FCs arfld) as computed with CA FCs.

theL1, andDO,, structures have about the same value, thepure Al was computed both from the CA FCs and fronmaén
“01” and “Z4" structures are notably softer. The CA ap- initio electronic structure calculation. In the purea initio
proximation fails to reproduce this trend, giving similar bulk calculation is performed at the same lattice parameter of
moduli for all structures. However, it gives bulk moduli that 0.3921 nm as all the other calculations. Tdteinitio results
reproduce the-1, andDO,, data rather well. give for Cy;, Cq,, Cyy values of 163, 66, and 52 GPa re-
The elastic tensors are given with respect toxhg and  spectively, making for a bulk modulus of 97.8 GPa. The CA
z axis aligned with the axis of the underlying fcc structure.FCs give 145, 71, 48, and 95.5 GPa, respectively. This
This choice of axis facilitates comparisons, but causes extragreement is about as good as that for the ordered configu-
nonzero elements in the tensor of the base centered ortheoations at composition ALi, and it appears then that CA
rhombic structure ©1.” It should be remarked that as the FCs can be used over a range of compositions.
CA FCs do not generally satisfy the invariances, the elastic The FCs can also be used to estimate the relaxation en-
tensor is not necessarily properly symmetric. Fortunately, thergy in the “Z4” structure, see Eqs(11) and (12). Elec-
violations of the invariances do not appear to cause veryronic structure calculations revealed that the (& planes

significant changes as can be seen for tlEl” and “Z4" relax about 0.01% a;.. toward the Li(001) planes with an
results. The CA elastic constants are accurate to within abownergy lowering of 6.7 meV per formula unit Ali. Using
10 GPa, or even a little less, for thd,, DO,,, and “O1” the CS FCs and thab initio forces on the atoms at the fcc

structures, but for the Z4" structure theC,,, Cs3, and  atomic positions, a relaxation of 0.009%.. toward the Al
Cgg elastic constants have very large errors of 20 to 35 GPdype (2) planes with a corresponding energy of 5.3 meV per
That these elastic constants should take extreme values figrmula unit (AkLi) was calculated. The CA FCs give simi-
related to the alternating pure Li and pure(8D1) planes. It  lar results of 0.0088 as. and 4.5 meV per formula unit
should be noted that theZ4” structure has been structur- (Al;Li). As might be expected, the CS results agree a little
ally relaxed, that is, the Al typél) atoms have been allowed better with the direct electronic structure calculations. Simi-
to take their equilibrium values, in the calculation of the lar calculations have been performed for thb, structure. A
elastic tensor and phonon related properties. simple test consists of taking a supercell with a single inten-
As was noted before, all FCs have been derived frontionally displaced site, computed for the purpose of deter-
Al-Li alloys with composition ALLi. To examine if the CA  mining the FCs, and verifying if the FC properly reproduce
FC can be applied at other compositions, the elastic tensor dfie displacement and associated energy. The CS FCs gave
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FIG. 4. Phonon dispersion of thez4” structure (a) as computed with CS FCs ari) as computed with CA FCs.

essentially exact results, and the CA FCs was accurate up tares. This is not so surprising considering that the zero-point
a few percent in the displacement and relaxation energy. energy is proportional to the first moment of the VDOS with
The phonon dispersion has been computed with(E4).  respect to energy. The zero-point energy difference thus is
and some results for the simple cullid, and the simple proportional to the first moment of the VDOS difference
tetragonal ‘Z4” structure are shown in Figs. 3 and 4. In (An). The VDOS differences as computed with the CA and
general, there appears to be an overall agreement betwettte CS FCs are rather unalike, as is readily apparent from
the CS and CA results, especially for thé, case. For the Fig. §a). TheAFSOZZ_LlZ, computed with CS or CA FCs,

“Z4" case, it should be noted that between theo Z points  pave about equal magnitude, but opposite sign, just like the
the CA dispersion displays rather “flat” branches that arézero-point energy differences. This too, is explained by the
not apparent in the CS dispersion. In fact, the CA dispersiofnsyfficiently accurate VDOS as computed with the CA FCs.
shows an almost flat branch across the figure at about 6:pherefore, it appears that the CA FCs are too inaccurate to
THz. Likewise, for theDO,, and “O1" structures the CA  gjlow determination of the VDOS and vibrational thermody-
and CS agree rather well, except that in @, case t00, namic properties.
some erroneously flat branches occur in the CA result. The results derived from the CS FCs will be discussed in

The flat branches have consequences for the VDOS, cony jittle more detail. At the approximate order-disorder tem-
puted with Eq.(18), as is illustrated in Fig. 5. The CA- perature of the AlLi L1, phase, about 600 KRefs. 30 and
VDOS for the “Z4” structure has a sharp peak at about 6.531) AFPC22 M2 o anout —0.86 kJ/mol f.u.. where f.u

: , u.

THz that is absent in the CS result. TB®,, case is similar . . o
. : stands for formula unit ALi. The vibrational free energy
with an erroneous peak at the same frequency. Such incorret Gzar L1 )
) 2 (computed with

b 01" -L1
features in turn affect the CA thermodynamic propertiesd!ferencesaF, *andAF,° :
given by Egs(19) and (20). the CS FCsat 600 K are of a similar magnitude;0.83 and
In Fig. 6 the differences of the VDOS and the vibrational —0.08 kJ/mol f.u., respectively. To put the magnitude of the
free energy between the.1, and DO,, structures Vibrational free energy difference in perspective, it is useful
(AnD022*L12 and AFDozz*le) as computed with the CS to compare it to the electronic total energy difference
v v ’

and CA ECs, are shown. Eoc? T2, In AlgLi, AEQ 2 H12~1.3 kd/mol f.u®! In
The differences in the zero-point energies of tHg and  fact, the absolute value (ﬁEE?ZZ_LlZ is rather low in the

DO,, structures can be recognized as the offset at zero termil-Li system, in other alloy systerfisit can take values that

perature in Fig. ). The CA FCs give the wrong sign for are quite a bit larger. Hence, even when the lattice parameter

the zero-point energy difference of thd, andDO,, struc-  is held at a fixed value, the vibrational free energy difference
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FIG. 5. Vibrational DOSn) of the (a) L1, and(b) “ Z4" structures. Thick line: as computed with CS FCs; thin line: as computed with
CA FCs. Number of states is given per f.u, where f.u. is a formula unitiAl

is considerable compared to the electronic total energy difdependent. Therefore, at high temperature the vibrational en-

ference. When the lattice parameters of various states of otropy difference between two configurationdS,, ap-

der differ, the vibrational free energy difference might beproaches a constant value.

more significant still. As discussed elsewHé¥ethe contri-

bution of the vibrational free energy is related to the disorder V. CONCLUSION

in the FCs. In the present case the FCs relating to the Al-Li

bonds differ much from the geometric mean of the FCs of The applicability of configuration independent FCs has

the Al-Al and Li-Li bonds, as is readily apparent for the CA been evaluated. It was argued that configuration independent

FCs in Fig. 2 where the Al-Li eigenvalues are not located=Cs could be represented by configuration avera@a4)

midway between the corresponding Al-Al and Li-Li eigen- FCs. The CA FCs were compared with FCs for specific con-

values. Large deviations from the geometric mean result in fgurations, and the physical properties that derive from FCs,

large configurational dependence of the vibrational freesuch as the phonon dispersion, the elastic constants, the vi-

energy?*? brational density of states, and vibrational free energy differ-
The approximate linearity oAF, with T in Fig. 6 indi-  €nces, were compared as well. Although strictly speaking,

cates that th@AS, term is dominant, but the argument de- configuration independent FCs cannot exist because of un-

serves some care. At high temperatiiie, given by Eq. avoidable violations of the invariances, the configuration av-

(19), is linear inT with a slope equal to the specific heat. The €raged(CA) FCs give reasonable results for some, but not

specific heat in turn, is not configuration dependent at fiigh @ll, physical properties. _

so that them\E,, vanishesS, , as a high temperature expan- |t was shown that only the largest elements in the FC

dence, across configurations, other elements could differ both in

sign and in magnitude. Nevertheless, the elastic constants
i computed with CA FCs agreed rather well with those ob-
T“T S, =kgN log(T/T,) +const, tained from CS FCs. The CA FCs computed at a particular
o composition appear to work well for computing the elastic
constants and phonon dispersion at other compositions as
whereT, is some reference temperatukéjs the number of ~ well. However, the CA results are not reliable for predicting
vibrational states, and where the “constant” is configurationthe highest or lowest;; among competing configurations.
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When the forces on atoms are known, the FCs can be usdit constants and relaxations, and to a lesser extend for the
to compute relaxations and relaxation energies. Both CA anghonon dispersions, the configuration independent—
CS FCs appear to give rather accurate results, so that it miglepnfiguration averaged FCs are not accurate enough for a
be possible to use one set of CA FCs to guess relaxatiofiescription of the coupling of configurational and vibrational
effects in a variety of configurations. The CA FCs predictedfree energy contributions in the context of alloy theory. This
a relaxation of the position which was about 73% of #pe  result implies that vibrational entropy differences associated
initio value, and the predicted relaxation energy was aboufith order-disorder transformations as computed with con-
67% of theab initio result. Although this may appear rather figuration independent FCs are probably not religBle.
inaccurate, it was not much worse than what was obtained | n€ configuration averaged FCs fail to correctly repro-
with the CS FCs. This hints at strong anharmonic effects irguce the V|brat|onql free energy dlfference in the idealized
crystals where internal degrees of freedom exist. model system studied here. Thls failure should be expec}ed

The phonon dispersion too, is generally well reproducec}0 be even more pronour)ced In _real aII_oys where competing
by the CA FCs, but flatness of certain branches leads tgtructures dlffer_not only in atomic conflgur_atlon, but also in
incorrect peaks in the vibrational density of states of Som(?(erms of the lattice parameter and the cell internal degrees of
structures. These inaccuracies in the density of states we Eeedom.
responsible for the failure of the CA FCs to give the correct
sign of theDO,,—L1, vibrational free energy difference.

The calculations here suggest that the vibrational free en- One of the author§M.S.) gratefully acknowledges the
ergy difference of ordered configurations at the same latticataff at the supercomputer center of IMR, Tohoku University
parameter can be comparable to the electronic total enerdgr assistance in the operation of the Hitachi SR2201 parallel
difference. When the lattice parameter displays a strong desomputer. Dr K. Esfarjani is gratefully acknowledged for a
pendence on the state of order, the vibrational free energgritical reading of the manuscript. Part of this work was sup-
might play an even more significant role. ported by the Division of Materials Sciences, U.S. Depart-
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