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Force constants for substitutional alloys
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Recently, the importance of the vibrational aspects of alloy phase stability has attracted much interest. There
is much controversy over the extent to which the vibrational free energy affects order-disorder temperatures
and other phase equilibria. Here, we examine the feasibility of defining transferable force constants for an alloy
in much the same spirit as tight-binding Slater-Koster parameters can be defined for substitutional alloys. In
particular, the predictive ability of such alloy specific, but configuration independent, force constants for the
elastic, relaxation, and vibrational properties is examined.@S0163-1829~99!09205-X#
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I. INTRODUCTION

The theory of alloy phase stability has received much
tention in recent years.1 Until now, the theoretical descrip
tion has accounted mainly for the configuration
contributions.2 This assumption appeared reasonable beca
other contributions, such as from electronic excitations,
generally much smaller.3 However, recently it has been sug
gested that vibrational contributions are on par with confi
rational effects.4–9 From the allotropic transformations oc
curring in a multitude of pure elements it can be conclud
that in general vibrational entropy differences should pla
large role when different crystal structures are involve
However, in the case of ordered alloys, where the main
tinction between competing phases is the degree of long
short-range order, the issue is far from clear. A case in p
is the vibrational contribution to the order-disorder transf
mation of Ni3Al. Widely varying vibrational entropy differ-
ences have been reported in theoretical work, and the ex
mental data appears very ambiguous because s
differences in the model with which the data is analyz
result in completely different interpretations.10–12

In the theoretical calculations so far, only completely o
dered and completely disordered configurations have b
considered. While such calculations provide important d
such as the maximal attainable value of the vibrational
tropy difference, it does not represent well the actual sit
tion in the vicinity of an order-disorder transformation. At
first-order order-disorder transformation at finite tempe
ture, the ordered phase is only partially ordered and the
ordered phase it is in equilibrium with, has short range ord
Examination of the correlation functions has shown that
dered and disordered states exhibit rather similar atomic c
figurations. Consequently, it must be expected that the vi
tional entropy differences computed so far are mu
exaggerated. Although this is a well-known fact, it is n
easy to produce more realistic values for the vibrational
tropy difference because proper inclusion of partial order
PRB 590163-1829/99/59~6!/4100~12!/$15.00
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short-range-order effects within the relatively small sup
cells that can be treated is difficult. Another aspect of
work done so far is that many effects contribute at on
making it difficult to pin-point the precise cause of a large
small value for the vibrational entropy; e.g., differences
the lattice parameters of ordered and disordered states, r
ation of atomic positions as a result of atomic size diffe
ences, as well as the effect of atomic configurations on
actual vibrational density of states all play a role. Therefo
the construction of a simple model that allows one to se
rate the various contributions to the vibrational entropy d
ference is highly desirable.

In the case of ordering in transition metal alloys, mu
insight into trends and causality was gained by combin
the tight-binding approximation, the coherent potential a
proximation, and the generalized perturbation metho1

Typically, the electronic structure was described by a sim
non-spin-polarized d-electron-only tight-binding Hamil-
tonian. Using this Hamiltonian, configurationally disorder
substitutional alloys were represented by the coherent po
tial approximation, and the properties of alloys with nonra
dom configurations were obtained by a perturbation exp
sion, usually to second order in the site occupation variab
only.13 This work, while based on a series of approximatio
rather accurately reproduced the tendencies towards orde
and clustering in alloys.1 It thus allowed the extraction of the
relevant parameters which determine the tendencies tow
ordering and clustering, and rules of thumb could be deriv
Some of these rules allowed the construction of even sim
models.14

There exists a natural analogy between the two-ce
Slater-Koster~SK! tight-binding method15 for the electronic
structure and the Born-von Karman model16 for the vibra-
tional properties. In both cases the real-space Hamilton
consists of short-ranged pairwise terms which are projecti
of the SK parameters in case of the former, and force c
stants~FCs! in case of the latter. Likewise, a coherent pote
tial approximation and a generalized perturbation meth
4100 ©1999 The American Physical Society
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PRB 59 4101FORCE CONSTANTS FOR SUBSTITUTIONAL ALLOYS
can be defined for the vibrational Hamiltonian. As a con
quence then, an analysis of the contribution of the vibratio
degrees of freedom to the order-disorder transformation
alloys is possible. However, before such a study can be
ried out, the validity of a ‘‘tight-binding-like’’ vibrational
Hamiltonian for alloys needs to be examined.

In the usual two-center SK tight-binding method for a
loys, it is tacitly assumed that the SK parameters are c
figuration independent, i.e., the SK parameters are the s
for two different superstructures if the composition and
teratomic distances are the same. For example, the SK
rameters for a nearest neighbor Ni-Ti pair are the same fo
intermetallic Ni3Ti with an L12 or with a DO22 structure
provided that both have the same interatomic distances,
is, when theDO22 has the idealc/a ratio of 2. This configu-
ration independence of the SK parameters can be derive
the special case of the linear-muffin-tin-orbital based tig
binding formalism.17–19In the case of FCs, however, there
no clear evidence that configuration independent,
‘‘transferable,’’ FCs can be defined.20 On the contrary, be-
low it will be shown that the existence of invariance requi
ments for the FCs~Ref. 21! suggests that such FCs can ex
only as an approximation. Even approximate ‘‘transferab
FCs would be useful though, as they might provide a way
easily predict positionally relaxed structures, and the co
sponding relaxation energies. Also, the phonon dispersio
well as the elastic tensor could be easily evaluated for a
trary atomic configurations, and this in turn could clarify t
interplay between state of long- or short range order
displacive transformations.

Transferability can mean many things; tight-binding S
parameters have been defined that can describe the elec
structure of molecules and solids with widely varying stru
tures and coordination numbers.22 Here, the weakest form o
transferability will be examined. We will examine if one s
of FCs can describe the properties of different configurati
which are the same in all other aspects, such as underl
lattice, lattice parameter, and composition. Thus, the vib
tional properties of various configurations will be comput
‘‘exactly,’’ and then we will examine to what extend one s
of configuration independent~‘‘transferable’’! FCs can de-
scribe the ‘‘exact’’ results for the various configurations.

The ‘‘exact’’ results are configuration specific~CS!. Thus,
there are CS FCs, and all the properties that depend on t
CS FCs such as the phonon dispersion and the elastic te
The configuration independent FCs should represent any
bitrary configuration. Therefore, it is reasonable to appro
mate these configuration independent FCs by configura
averaged~CA! FCs. The CA FCs will be considered ‘‘trans
ferable’’ if they can reproduce the results from CS FCs,
cluding results pertaining to configurations that were not
cluded in the averaging to obtain the CA FCs.

To study the feasibility of ‘‘transferable’’ FCs, a mode
system is examined in detail, using FCs computed fr
plane wave pseudopotential local-density-functio
calculations21,23 using the direct method.24–29 FCs are com-
puted for several ordered configurations, such as
L12 , DO22, and other structures to be described below.
just mentioned, all these structures are based on the s
underlying fcc crystal structure and differ in the atomic o
cupancy only.
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The alloy Al3Li has been selected because~1! the FCs in
this alloy decrease rather rapidly as a function of distan
~2! much experimental and theoretical thermodynamic d
is available, and~3! the elastic constants of this compoun
are known. Also, in this alloy Al and Li have about the sam
partial molar volume so that relaxation effects are smal30

Indeed, when thec/a ratio was computed for theDO22
structure, a value very close to the ideal ratio of 2 w
found.31

It should be noted that the effects of lattice parame
changes as a result of changes in temperature or stat
order, that occur in actual alloys, are neglected in this stu
This is done because in this study we seek to exam
‘‘transferability’’ in its most restrictive form where truly the
only difference between various states of order is the ato
decoration. It appears evident that FCs computed for st
tures that have the same lattice parameter would be m
alike than FCs computed for structures with different latt
parameters. Therefore, it is to be expected that FCs are
‘‘transferable’’ in real alloys, where changes in the state
order, or changes in the temperature, are accompanie
lattice parameter changes, than in the idealized model sys
studied here.

The paper is organized as follows: A general formalis
for FCs and their applications is given. The FCs for a nu
ber of specific configurations are computed, as well a
configuration averaged set of FCs which are then exami
for transferability. Various physical properties, such as
elastic tensor, relaxation displacements and energies, ph
dispersion and densities of states, and the vibrational ther
dynamic properties are computed with CS and CA FCs
comparison of those properties leads to conclusions reg
ing the validity of CA, or ‘‘transferable,’’ FCs.

II. THEORY

In the harmonic approximation, the potential energyF is
expanded up to second order in the displacementsu from the
equilibrium positions,

F5F01(
m, j

]F

]um~ j !
um~ j !

1
1

2 (
mn, j j 8

]2F

]um~ j !]un~ j 8!
um~ j !un~ j 8!, ~1!

where the subscriptsm andn indicate thex, y, or z direc-
tion, the subscriptsj and j 8 indicate a particular atom, an
F0 is the potential energy when all atoms are at their eq
librium positions. In a crystal it is possible to write the p
sition of the atom asr j5r l1r k , wherer l indicates the po-
sition of the unit cell, andr k indicates the relative position o
the atom in that unit cell. Thus, the indexj is composed of an
index l designating the unit cell, and an indexk designating
the particular atom within the unit cell. As all displacemen
u are defined with respect to the equilibrium positions, t
first derivatives ofF vanish. Thus, the second order ter
only matters for the vibrational properties.

The second order derivatives are the so-called FCs,
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4102 PRB 59SLUITER, WEINERT, AND KAWAZOE
fmn~ j , j 8!5
]2F

]um~ j !]un~ j 8!
. ~2!

For each bond between atomsj and j 8 there is a 333 FC
matrix. The nature of the bond is most readily interpre
through the eigenvectors and eigenvalues of this FC ma
The eigenvectors indicate the principal axes with spring c
stants given by the corresponding eigenvalues. An isola
bond, i.e., a diatomic molecule, would have one longitudi
and two transverse axes. In crystals this is no longer ne
sarily so, but it is easy to prove that when at least two cry
symmetry elements leave the vectorr ( j , j 8)5r j 82r j invari-
ant exactly one longitudinal and two transverse modes e
In highly symmetric crystals, such as bcc and fcc, many
the shorter bonds satisfy the above criterion.

Following Born and Huang,16 the FCs must satisfy thre
fundamental invariances. They result from the invariance
the potential energy with respect to the translations, the
tations, and the crystal symmetry operations. When the c
tal symmetry operations are applied, the translationalI T, and
rotationalI R invariances take the following form:

I ab
T ~k!5(

s
(

p
(
mn

Ram
p Rbn

p 3fmn~k,k1r s!50, ~3!

I abg
R ~k!5(

s
(

p
(
mns

Ram
p Rbn

p Rgs
p

3@fmn~k,k1r s!r s
s 2fmg~k,k1r s!r n

s#

50, ~4!

where the Greek letters indicate the Cartesian coordin
$x,y,z%,k indicates an atom in the unit cell,s designates the
coordination shell surrounding atomk, andp is the subset of
point group elementsR that generates the star of the vect
r s. These invariances must be explicitly imposed on the F
derived from supercell calculations because errors due to
complete basis sets, imperfect self-consistency, and num
cal errors conspire to create violations.

In simple highly symmetric crystals, such as bcc and f
the crystal symmetry invariances encompass the rotati
invariances,32 and the translational invariances can be sa
fied trivially by scaling the onsite FCs. Such is not the ca
in low-symmetry crystals. In fact, in general these thr
classes of invariances are insufficient to assure that the
tic tensor obeys the relationshipCi j 5Cji , where i and j
designate the Voigt indices. To satisfy the above equa
the following 15 Huang invariances16, I H50, must be satis-
fied in a crystal at equilibrium,

I abgl
H 5(

k
(

s
(

p
(

mnst
Ram

p Rbn
p Rgs

p Rlt
p

3@fmn~k,k1r s!r s
s r t

s2fst~k,k1r s!r m
s r n

s#. ~5!

Hence, aside from conditions imposed by the symmetry
the crystal, generally there are 9Nk translational~whereNk is
the number of sites in the unit cell!, 9Nk rotational, and 15
Huang invariances which must be imposed on the FCs.

The existence of invariances has as a consequence
one cannot arbitrarily discard elements from a set of F
d
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After all, the invariances are satisfied by summations t
include all FCs. Therefore,a posterioritruncation of a set of
FCs will cause violations of the invariances and may res
in unphysical features in the calculated phonon dispers
and elastic tensor.

The FCs are determined using a method which has
cently become widely used.21,26–29In a large supercell where
all atoms are at their equilibrium positions, a single atomj is
given a displacementu from its equilibrium position. The
resultant forcesF on all the sitesj 8 are calculated, and the
FCs can then be determined from

Fa~ j 8!5(
b

fab~ j , j 8!ub~ j !, ~6!

whereF( j 8) is the force exerted on atomj 8 as a result of a
displacementu( j ) of atom j. Again, as was done with the
equations for the invariances, the crystal symmetry is exp
itly imposed,

(
g

RagFg~ j 8!5(
b

fab~ j , j 1r s!(
g

Rbgug~ j !, ~7!

whereR is the rotation which takesr ( j , j 8) into r s

r a
s 5(

g
Ragr g~ j , j 8!. ~8!

As is evident from Eqs.~3!, ~4!, and~5!, the invariances
too, are linear in the FCs, so that this system of equation
easily solved. The equations are overdetermined and by
ing the singular value decomposition method an, in a le
squares sense, optimal set of CS FCs is computed. In ord
assure that the invariances are satisfied to a high precis
the invariance equations are weighted more heavily than
~7!. In the actual calculations the invariance equations w
multiplied by a factor 100, but it was verified that the actu
value of the factor was of no consequence. The crystal s
metry invariances are satisfied exactly because they were
plicitly imposed in Eqs.~3!, ~4!, ~5!, and~7!.

To compute the CA FC matrices the following definition
are used. The CA FC matrices for a given neighbor-sh
depend on the occupancy of the terminal sites only. Then,
a binary alloy of atomic speciesA andB, four FC matrices
can be distinguished for each shell:fAA for anAA pair,fAB

for anAB pair, and so forth. Let the occupancys( j ) of a site
j be defined as a vector taking the value (1/0) when ther
anA type atom, and taking the value (0/1) when there is aB
type atom. The FC between sitesj and j 8 can then be ex-
pressed in matrix form as follows:

f̂~ j , j 8!5S fAA~ j , j 8! fAB~ j , j 8!

fBA~ j , j 8! fBB~ j , j 8!
D . ~9!

wheref( j , j 8) is an appropriately rotated FC matrixf( j , j
1r s). The potential energy, Eq.~1!, with respect to equilib-
rium atomic positions can then be rewritten as

F5F01
1

2 (
j j 8

@s~ j !•f̂~ j , j 8!•s~ j 8!#u~ j !u~ j 8!, ~10!
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PRB 59 4103FORCE CONSTANTS FOR SUBSTITUTIONAL ALLOYS
where the first order derivatives have been omitted. Pr
ously given equations for invariances apply al
to CA FCs provided thatf( j , j 8) is replaced with

@s( j )•f̂( j , j 8)•s( j 8)#. In order to simplify the notation, we
will keep using f( j , j 8). The CA FC matricesf̂ can be
obtained by solving Eq.~7! for several configurations at onc
while using the rotation matricesR associated with the un
derlying disordered~fcc! structure. Of course, solving Eq.~7!
will only yield fXY if XY pairs actually occur in the struc
ture. In the Al3Li L12 structure e.g., no nearest neighb
Li-Li pairs occur so that solving Eq.~7! cannot give a resul
for the nearest neighborfLi Li . In Table I the various types o
pairs occurring in various simple orderedA3B configurations
are listed. TheL12 andDO22 structures allow determinatio
of mostf submatrices, except for those associated with
Li-Li pairs in the first and third nearest neighbor shells, s
Table I. To compute those, a special configuration, ca
‘‘ O1’’ from now on, was constructed. The CA FCs are co
puted by solving Eq.~7! for the L12 , DO22, and ‘‘O1’’
structures simultaneously using singular value decomp
tion, so that a set of CA FCs is computed that optima
reproduces the forces in a least square sense.

The invariances are not imposed because they are
figuration dependent, while the CA FCs are supposed to
configuration independent. This dependence is clear from
presence of the configuration dependent rotation matrice
Eqs. ~3!, ~4!, and ~5!. In general, invariances derived fo
different configurations will be in conflict. When CA FCs a
derived while imposing the invariances of one configurati
the invariances for another configuration will not genera
be satisfied. When the invariances of several configurat
are imposed simultaneously, the system of equations
comes so overdetermined that the forces are no longer
reproduced by the FCs. Therefore, the CA FCs are comp
without imposing the rotational and Huang invarianc
When the CA FCs are used to compute the properties
specific structure, the translational invariances are use
determine the onsite CA FCs, for reasons discussed be

TABLE I. Pair types occurring in some fcc-based ordered c
figurations at compositionA3B. Structures ‘‘O1’’ and ‘‘ Z4’’ are
explained in the text.

Pair type L12 DO22 O1 Z4

^ 1
2

1
2 0& AA x x x x

AB x x x x
BB x x

^100& AA x x x x
AB x x x
BB x x x

^1 1
2

1
2 & AA x x x x

AB x x x x
BB x

^110& AA x x x x
AB - x - x
BB x x x x

^111& AA x x x x
AB x x x
BB x
i-

e
e
d
-

i-

n-
e

he
in

,

ns
e-
ell
ed
.
a
to
w.

The fact that the rotational and Huang invariances can
generally be satisfied for an arbitrary configuration impl
that strictly speaking, configuration independent FCs can
exist. The best that can be done then, is to define appr
mate configuration independent FCs. Below, we will exa
ine the consequences of the violations of the invariances
the computed physical properties.

The ‘‘O1’’ structure is, to the best of the authors know
edge, not observed in Nature. It has as primitive translati

^200&,^110&, and ^ 1
2 0 1

2 &; see Fig. 1. There are 8 atoms
the base centered orthorhombic unit cell~spacegroup 65,
standard Hermann-Mauguin notation:Cmmm, Wyckoff po-
sitions: 2a, 2b, and 4f ) and there are no internal degrees
freedom. This means that just as for theL12 andDO22 struc-
tures, all atomic positions are fixed by symmetry, and t
the forces on every site vanish for an arbitrary choice of
a, b, and c lattice parameters. Most other unit cells ha
internal degrees of freedom which need to be optimized
order for all forces to vanish. To illustrate this, we consid
the so-called ‘‘Z4’’ structure which consists of a periodi
stacking of four~001! planes, one of the planes is occupie
exclusively by Li atoms, the other three planes are occup
by Al atoms only, see Fig. 1. The primitive translations a

^ 1
2

1
2 0&, ^ 1

2
1
2 0̄&, and ^002& ~space group 123, standar

Hermann-Mauguin notation:P4/mmm, Wyckoff positions:
1a,1b, and 2h). In this structure there are 2 types of A
planes, type~1! which is located between a Li and an A
plane, and type~2! which is sandwiched between two Al~1!
planes. The Al~1! planes are not fixed by symmetry an
have one internal degree of freedomd associated with the
difference in the interplanar spacing with the Li and with t
Al ~2! plane. Hence, generally when in such a structure

-

FIG. 1. Crystal structures:~a! ‘‘ O1’’ and ~b! ‘‘ Z4.’’ For clarity,
fcc cubes have been outlined with dashed lines for the ‘‘O1’’ struc-
ture. The internal degree of freedom in the ‘‘Z4’’ structure associ-
ated with the relaxation of the Al~1! sites is indicated with arrows



er

ec
rg

sta
v
er

w
d

re
in

o

d
l

c
e
a

t

be
t

e
n

A
at
th

it-

r
ans

not
s at
es.
ns
the
nal

e

l

ed
se-
th
lcu-

fter

ar-

4104 PRB 59SLUITER, WEINERT, AND KAWAZOE
sites are kept at their underlying fcc lattice positions, th
will be nonvanishing forces on the Al~1! sites.

The energy associated with the optimization with resp
to internal degrees of freedom is called the relaxation ene
F relax. When theL12 , DO22, and ‘‘O1’’ structures are
used to determine the CA FCs on the underlying fcc cry
structure, there are no internal degrees of freedom. Howe
these CA FCs can be used to calculate the relaxation en
of other structures. In the case of the ‘‘Z4’’ structure there
are generally nonvanishing forces on the Al~1! planes when
all atoms are kept at their underlying fcc positions. Ho
much the Al type~1! planes would relax, can be calculate
from the FCs, obtained from the previously mentioned th
structures, and from the forces on sites in the unit cell us
an expression analogous to Eq.~7!,

Fa~ j 8!5(
j

f~ j , j 8!d~ j !. ~11!

Then, the relaxation energy is given simply by a variant
Eq. ~10!,

F relax5
1

2(j j 8
f~ j , j 8!d~ j !d~ j 8!. ~12!

Of course, the relaxation energy can also be computed
rectly from ab initio calculations by performing an actua
minimization over the internal degree of freedom.

The elastic tensor is computed33,43,44analytically from the
FCs~CS and CA! by the method due to Born16 according to

Cag,bl5@ab,gl#1@bg,al#2@bl,ag#1~ag,bl!,
~13!

where the square brackets~Eq. 26.32 in Ref. 16! are associ-
ated with homogeneous elastic strains, and the round bra
~Eq. 26.33 in Ref. 16! is associated with the relaxation of th
internal coordinates. Mechanical stability requires th
Cag,bl and @ab,gl#1@bg,al#2@bl,ag# form positive-
definite matrices because any deformation must increase
internal energy~free energy at nonzero temperature!. How-
ever, the round brackets form a negative-definite matrix
cause relaxation of the internal coordinates always lowers
energy. Although not every element of the (ag,bl) matrix
needs to be negative, generally speaking, relaxation low
the elastic constants. In simple structures without inter
degrees of freedom, such asL12 , DO22, and ‘‘O1,’’ the
round brackets vanish.

The nonvanishing of the Huang invariances for the C
FCs may cause an unphysical asymmetry in the calcul
elastic tensor and this may serve as an indication for
errors incurred by using CA FCs.

The phonon dispersionv(q) is computed from

det@Amkmk8v
2~q!dabdkk82Dka,k8b~q!#50, ~14!

where mk is the mass of atomk, and D is the dynamical
matrix given by the Fourier transform of the FCs,

Dka,k8b~q!5(
l l 8

fab~ lk,l 8k8!e22ipq–r „lk,l 8k8…, ~15!
e
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where the sitej is represented by a pair of indiceslk, with l
as the index for the particular unit cell, andk as the index for
the site within a unit cell, as described earlier.

At the zone center, the dynamical matrix,

Dka,k8b~q50!5(
l l 8

fab~ lk,l 8k8!, ~16!

is closely related to the translational invariances@Eq. ~3!#,

(
k8

Dkk8~q50!5I T~k!, ~17!

where for brevity, the coordinate subscripts have been om
ted. If the translational invariances are satisfied@ I T(k)50#,
then the determinant ofDkk8 can be rewritten such that fo
k51 the row and the column are equal to zero. This me
that there are three vanishing eigenvalues ofDkk8 at the zone
center, one for each coordinatex, y, andz. When the trans-
lational invariances are not satisfied, there are generally
three vanishing eigenvalues, and in fact, the eigenvalue
the zone center could take any, including negative, valu
Therefore, in order to avoid unphysical phonon dispersio
the translational invariances must always be imposed. In
case of CA FCs then, we have imposed the translatio
invariances by adjusting the onsite CA FCs@of the form
f( j , j )# for each configuration individually, i.e., we treat th
onsite CA FCs as purely adjustable parameters.

The vibrational density of states~VDOS! n(v) is ob-
tained by an integration over the first Brillouin zoneV of the
crystal structure,

n~v!5
1

VE
V

dqd„v2v~q!…. ~18!

The vibrational internal energyEv and the vibrational en-
tropy Sv are calculated from

Ev5E dv\vn~v!F1

2
1

q

12qG ~19!

and

Sv52kBE dv
n~v!

~12q!
@q log~q!1~12q!log~12q!#,

~20!

where q5e2\v/kBT, kB is Boltzmann’s constant,\ is
Planck’s constant, andT is the temperature. The vibrationa
internal energyEv includes the zero-point motion~first term
in square brackets!. The vibrational free energyFv is ob-
tained simply fromFv5Ev2TSv .

III. RESULTS AND DISCUSSION

FCs were calculated using the ‘‘direct method’’ discuss
above. A cubic supercell consisting of 8 fcc cubes was
lected which allowed determination of FCs up to the fif
nearest neighbor shell. The electronic structure was ca
lated using a plane-wave pseudopotential method.23,34Forces
were calculated using the Hellmann-Feynman equation a
displacing a site by 0.0053afcc , where afcc is the lattice
parameter of the underlying fcc crystal structure. Anh
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TABLE II. Configuration specific~CS! FCs for Al-Al nearest neighbors in various configurations in THz2 amu~atomic mass unit!. For
comparison, the configuration averaged~CA! FCs are given at the bottom-left corner.

L12 DO22 ‘‘ O1’’ ‘‘ Z4’’

r j r j r j r j

r j 8 r j 8 r j 8 r j 8
f( j , j 8) f( j , j 8) f( j , j 8) f( j , j 8)

0.5 0.5 0 0.5 0.5 0 0.5 0.5 0 0 0 1
0 0.5 0.5 0 0.5 0.5 1 0.5 0.5 0.5 0.5 1

6783 0 27592 6866 0 27263 6244 249 6512 7414 7313 0
0 792 0 0 687 0 249 740 49 7314 7414 0

25681 0 6783 25908 0 6817 6512 49 6244 0 0 2845
0 0.5 0.5 0.5 0.5 0 0 0.5 0.5
0.5 0 0.5 1 0 0 0 0 1

6328 26618 507 6341 26946 2507 2613 0 0
26618 6328 507 27756 6376 582 0 7182 27663

507 507 735 527 2544 200 0 28161 7106
0.5 0.5 0 0 0.5 0.5
0 0.5 0.5 0.5 0 0.5

6260 21295 26394 6774 26732 218
1295 1562 21295 26732 6774 18

CA 26394 1295 6260 20 220 1254
0.5 0.5 0 1 0 0
0 0.5 0.5 1.5 0 0.5

6593 0 26961 6589 0 7473
0 539 0 0 21000 0

26961 0 6593 7473 0 6589
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monic effects were verified to be negligible by applying bo
smaller and larger displacements. All subsequent calc
tions have been performed at the lattice parameter comp
for the Al3Li L12 structure. It was computed to be 0.392
nm, in good accord with other LDA results30,31,35–37and with
the actually measured value of 0.3972 nm.38 In the supercell
there are 32 atoms, 24 Al atoms and 8 Li atoms. Vario
configurations were considered, in particular those co
sponding to theL12 , DO22, ‘‘ O1,’’ and ‘‘Z4’’ structures.
The number of Eqs.~7! ranged from 96 (L12) to 224
~‘‘ Z4’’ !, and the number of invariances ranged from 3 (L12)
to 61~‘‘ O1’’ !. The number of independent nonzero eleme
in the FC matrices ranged from 44 (L12) to 171~‘‘ O1’’ !. A
few elements of the FC matrices for the third, fourth, a
fifth nearest neighbor pairs cannot be determined with
23232 supercell used here, and the corresponding va
have been set to zero. In Table II the Al-Al nearest neigh
FCs as computed with Eqs.~3!, ~4!, ~5!, and ~7! for each
structure are listed. The CA FCs, computed from the for
in the L12 , DO22, and ‘‘O1’’ configurations using Eq.~7!
only, are given for comparison. Taking into account the d
ferent orientations of some of the pairs, it is clear that ev
though there is a considerable spread in the values, gene
the larger FCs in all of the configurations are rather simi

For example, thefxx element for a vector̂ 1
2

1
2 0& takes val-

ues ranging from 6244~in ‘‘ O1’’ ! to 7414~in ‘‘ Z4’’ !, while
the smallerfzz element can take both positive and negat
values. For more distant pairs, where the FCs take m
smaller values, the influence of the configuration becom
overwhelming and no similarities between FCs from diffe
ent configurations can be discerned.
a-
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e
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-
n
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h
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The CA FCs have been listed in Table III. The 44 no
zero CA FC matrix elements were obtained from 480 E
~7!. The FCs rapidly decay for more distant shells: those
the fourth and fifth shells are orders of magnitude sma
than those of the nearest neighbor shell. Moreover, the A
near neighbor bonds are much stiffer than those of Li
type. This is particularly evident when the eigenvalues of
FCs are examined; see Fig. 2. Apparently, Li-Li near
neighbors make a structure ‘‘soft.’’ This behavior is may

TABLE III. Configuration averaged~CA! FCs in THz2 amu
~atomic mass unit!.

Shell Type fxx fxy fxz fyy fyz fzz

^ 1
2

1
2 0& Al-Al 6593 26961 0 6593 0 539

Li-Al 3298 3107 0 3298 0 353
Li-Li 2138 1797 0 2138 0 633

^100& Al-Al 678 0 0 276 0 276
Li-Al 565 0 0 281 0 281
Li-Li 289 0 0 220 0 220

^1 1
2

1
2 & Al-Al 260 0 0 2198 211 2198

Li-Al 217 0 0 2131 24 2131
Li-Li 122 0 0 2137 217 2137

^110& Al-Al 137 0 0 137 0 2148
Li-Al 23 0 0 23 0 2158
Li-Li 2133 0 0 2133 0 290

^111& Al-Al 25 0 0 25 0 25
Li-Al 211 0 0 211 0 211
Li-Li 0 0 0 0 0 0
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FIG. 2. Maximum eigenvalues of the CA FC matrices, as a function of the interatomic distanceur su, in units of the fcc lattice paramete
afcc . The square, plus sign, and diamond symbols refer to Li-Li, Al-Li, and Al-Al bonds respectively.
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not so surprising considering that the elastic constants o
are much smaller than those of pure Al, but it should be k
in mind that Li atoms in the alloy are highly compress
compared to the pure elemental Li case.

The elastic tensor for the Al3Li L12 structure as com-
puted with the CS and CA FCs and Eq.~13! is compared
with data in the literature in Table IV. It is noteworthy th
the elastic tensor computed in this work compares very w
with the experimental data,39,40 especially that of Saka
et al.40 The comparison with other electronic structu
calculations,36,37 both with the full-potential augmente
plane wave method, is not quite as good. Considering h
much these results differ from each other and from the
perimental data that might not be so bad. It should be m
tioned though that the theoretical values pertain to zero t
perature, whereas the experimental data pertains to r
temperature, so that the theoretical values should be a
10–20 % higher than the experimental values.40 In light of
the large differences between the experimental and theo
cal results, it appears that the CS and CA FCs give res
that are very similar and in good agreement with experime

The CS and the CA FCs can be used into Eq.~13! to give
the elastic tensor and the bulk modulus; see Table V. The
results should be considered exact and the CA results
approximate because taking configurational averages of
FCs is at best an approximation as was discussed ab
Concerning the bulk moduli, the CS results show that wh

TABLE IV. Elastic constantsCi j and bulk modulusB in GPa
for the Al3Li L12 structure, as determined from experimental me
surements~expt!, as computed with local-density-functional ele
tronic structure methods~theory!, and as computed in this wor
with CS and CA FCs using Eq.~13!.

C11 C12 C44 B Method Reference

123.6 37.2 42.8 66.0 expt 39
114.7 39.1 37.8 64.3 expt 40
158.0 29.4 57.7 72.3 theory 36
139.8 33.7 40.7 69.1 theory 37
116 45 40 68.3 CS FCs This work
109 53 34 71.3 CA FCs This work
Li
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TABLE V. Elastic tensorCi j and bulk modulusB for various
structures in GPa computed with configuration specific~CS! FCs
and configuration averaged~CA! FCs.

CS CA

L12

68.3 71.3
116 45 45 0 0 0 109 53 53 0 0 0

116 45 0 0 0 109 53 0 0 0
116 0 0 0 109 0 0 0

40 0 0 34 0 0
40 0 34 0

40 34

DO22

71.6 72.1
108 45 59 0 0 0 105 56 59 0 0 0

108 59 0 0 0 105 59 0 0 0
103 0 0 0 109 0 0 0

23 0 0 30 0 0
23 0 30 0

43 32

‘‘ O1’’
63.2 73.2

102 45 45 0 3 0 112 54 56 0 3 0
98 45 0 2 0 53 110 52 0 0 0

102 0 3 0 57 55 111 0 3 0
41 0 23 0 0 0 33 0 0

35 0 2 21 3 0 35 0
41 0 0 0 0 0 33

‘‘ Z4’’
59.7 62.8

113 23 52 0 0 0 109 58 50 0 0 0
113 52 0 0 0 58 109 50 0 0 0

83 0 0 0 48 48 103 0 0 0
24 0 0 0 0 0 27 0 0

24 0 0 0 0 0 27 0
72 0 0 0 0 0 37
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FIG. 3. Phonon dispersion of theL12 structure~a! as computed with CS FCs and~b! as computed with CA FCs.
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the L12 andDO22 structures have about the same value,
‘‘ O1’’ and ‘‘ Z4’’ structures are notably softer. The CA ap
proximation fails to reproduce this trend, giving similar bu
moduli for all structures. However, it gives bulk moduli th
reproduce theL12 andDO22 data rather well.

The elastic tensors are given with respect to thex, y, and
z axis aligned with the axis of the underlying fcc structu
This choice of axis facilitates comparisons, but causes e
nonzero elements in the tensor of the base centered o
rhombic structure ‘‘O1.’’ It should be remarked that as th
CA FCs do not generally satisfy the invariances, the ela
tensor is not necessarily properly symmetric. Fortunately,
violations of the invariances do not appear to cause v
significant changes as can be seen for the ‘‘O1’’ and ‘‘ Z4’’
results. The CA elastic constants are accurate to within ab
10 GPa, or even a little less, for theL12 , DO22, and ‘‘O1’’
structures, but for the ‘‘Z4’’ structure theC12, C33, and
C66 elastic constants have very large errors of 20 to 35 G
That these elastic constants should take extreme value
related to the alternating pure Li and pure Al~001! planes. It
should be noted that the ‘‘Z4’’ structure has been structur
ally relaxed, that is, the Al type~1! atoms have been allowe
to take their equilibrium values, in the calculation of th
elastic tensor and phonon related properties.

As was noted before, all FCs have been derived fr
Al-Li alloys with composition Al3Li. To examine if the CA
FC can be applied at other compositions, the elastic tenso
e

.
ra
o-

ic
e

ry

ut

a.
is

of

pure Al was computed both from the CA FCs and from anab
initio electronic structure calculation. In the pure Alab initio
calculation is performed at the same lattice parameter
0.3921 nm as all the other calculations. Theab initio results
give for C11, C12, C44 values of 163, 66, and 52 GPa re
spectively, making for a bulk modulus of 97.8 GPa. The C
FCs give 145, 71, 48, and 95.5 GPa, respectively. T
agreement is about as good as that for the ordered con
rations at composition Al3Li, and it appears then that CA
FCs can be used over a range of compositions.

The FCs can also be used to estimate the relaxation
ergy in the ‘‘Z4’’ structure, see Eqs.~11! and ~12!. Elec-
tronic structure calculations revealed that the Al~1! planes
relax about 0.0113afcc toward the Li ~001! planes with an
energy lowering of 6.7 meV per formula unit Al3Li. Using
the CS FCs and theab initio forces on the atoms at the fc
atomic positions, a relaxation of 0.00953afcc toward the Al
type ~2! planes with a corresponding energy of 5.3 meV p
formula unit (Al3Li) was calculated. The CA FCs give sim
lar results of 0.00803afcc and 4.5 meV per formula uni
(Al3Li). As might be expected, the CS results agree a li
better with the direct electronic structure calculations. Sim
lar calculations have been performed for theL12 structure. A
simple test consists of taking a supercell with a single int
tionally displaced site, computed for the purpose of det
mining the FCs, and verifying if the FC properly reprodu
the displacement and associated energy. The CS FCs
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FIG. 4. Phonon dispersion of the ‘‘Z4’’ structure ~a! as computed with CS FCs and~b! as computed with CA FCs.
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essentially exact results, and the CA FCs was accurate u
a few percent in the displacement and relaxation energy

The phonon dispersion has been computed with Eq.~14!
and some results for the simple cubicL12 and the simple
tetragonal ‘‘Z4’’ structure are shown in Figs. 3 and 4. I
general, there appears to be an overall agreement betw
the CS and CA results, especially for theL12 case. For the
‘‘ Z4’’ case, it should be noted that between theG to Z points
the CA dispersion displays rather ‘‘flat’’ branches that a
not apparent in the CS dispersion. In fact, the CA dispers
shows an almost flat branch across the figure at about
THz. Likewise, for theDO22 and ‘‘O1’’ structures the CA
and CS agree rather well, except that in theDO22 case too,
some erroneously flat branches occur in the CA result.

The flat branches have consequences for the VDOS, c
puted with Eq.~18!, as is illustrated in Fig. 5. The CA
VDOS for the ‘‘Z4’’ structure has a sharp peak at about 6
THz that is absent in the CS result. TheDO22 case is similar
with an erroneous peak at the same frequency. Such inco
features in turn affect the CA thermodynamic propert
given by Eqs.~19! and ~20!.

In Fig. 6 the differences of the VDOS and the vibration
free energy between theL12 and DO22 structures
(Dnv

DO222L12 and DFv
DO222L12), as computed with the CS

and CA FCs, are shown.
The differences in the zero-point energies of theL12 and

DO22 structures can be recognized as the offset at zero t
perature in Fig. 6~b!. The CA FCs give the wrong sign fo
the zero-point energy difference of theL12 andDO22 struc-
to

en

n
.5

m-

ect
s

l

-

tures. This is not so surprising considering that the zero-p
energy is proportional to the first moment of the VDOS w
respect to energy. The zero-point energy difference thu
proportional to the first moment of the VDOS differenc
(Dn). The VDOS differences as computed with the CA a
the CS FCs are rather unalike, as is readily apparent f
Fig. 6~a!. The DFv

DO222L12 , computed with CS or CA FCs
have about equal magnitude, but opposite sign, just like
zero-point energy differences. This too, is explained by
insufficiently accurate VDOS as computed with the CA FC
Therefore, it appears that the CA FCs are too inaccurat
allow determination of the VDOS and vibrational thermod
namic properties.

The results derived from the CS FCs will be discussed
a little more detail. At the approximate order-disorder te
perature of the Al3Li L12 phase, about 600 K~Refs. 30 and
31! DFv

DO222L12 is about 20.86 kJ/mol f.u., where f.u.
stands for formula unit Al3Li. The vibrational free energy
differencesDFv

‘ ‘ O1’’ 2L12 and DFv
‘ ‘ Z4’’ 2L12 ~computed with

the CS FCs! at 600 K are of a similar magnitude,20.83 and
20.08 kJ/mol f.u., respectively. To put the magnitude of t
vibrational free energy difference in perspective, it is use
to compare it to the electronic total energy differen
DEtot

DO222L12 . In Al3Li, DEtot
DO222L12'1.3 kJ/mol f.u.31 In

fact, the absolute value ofDEtot
DO222L12 is rather low in the

Al-Li system, in other alloy systems41 it can take values tha
are quite a bit larger. Hence, even when the lattice param
is held at a fixed value, the vibrational free energy differen
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FIG. 5. Vibrational DOS~n! of the ~a! L12 and~b! ‘‘ Z4’’ structures. Thick line: as computed with CS FCs; thin line: as computed w
CA FCs. Number of states is given per f.u, where f.u. is a formula unit Al3Li.
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is considerable compared to the electronic total energy
ference. When the lattice parameters of various states o
der differ, the vibrational free energy difference might
more significant still. As discussed elsewhere1,42 the contri-
bution of the vibrational free energy is related to the disor
in the FCs. In the present case the FCs relating to the A
bonds differ much from the geometric mean of the FCs
the Al-Al and Li-Li bonds, as is readily apparent for the C
FCs in Fig. 2 where the Al-Li eigenvalues are not locat
midway between the corresponding Al-Al and Li-Li eige
values. Large deviations from the geometric mean result
large configurational dependence of the vibrational f
energy.42

The approximate linearity ofDFv with T in Fig. 6 indi-
cates that theTDSv term is dominant, but the argument d
serves some care. At high temperatureEv , given by Eq.
~19!, is linear inT with a slope equal to the specific heat. T
specific heat in turn, is not configuration dependent at highT,
so that thenDEv vanishes.Sv , as a high temperature expa
sion of Eq.~20! shows, has a logarithmic temperature dep
dence,

lim
T→1`

Sv5kBN log~T/To!1const,

whereTo is some reference temperature,N is the number of
vibrational states, and where the ‘‘constant’’ is configurati
if-
r-

r
i
f

d

a
e

-

dependent. Therefore, at high temperature the vibrational
tropy difference between two configurations,DSv , ap-
proaches a constant value.

IV. CONCLUSION

The applicability of configuration independent FCs h
been evaluated. It was argued that configuration indepen
FCs could be represented by configuration averaged~CA!
FCs. The CA FCs were compared with FCs for specific c
figurations, and the physical properties that derive from F
such as the phonon dispersion, the elastic constants, th
brational density of states, and vibrational free energy diff
ences, were compared as well. Although strictly speaki
configuration independent FCs cannot exist because of
avoidable violations of the invariances, the configuration
eraged~CA! FCs give reasonable results for some, but n
all, physical properties.

It was shown that only the largest elements in the
matrices of the nearest neighbor shells were rather sim
across configurations, other elements could differ both
sign and in magnitude. Nevertheless, the elastic const
computed with CA FCs agreed rather well with those o
tained from CS FCs. The CA FCs computed at a particu
composition appear to work well for computing the elas
constants and phonon dispersion at other composition
well. However, the CA results are not reliable for predicti
the highest or lowestCi j among competing configurations.
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FIG. 6. Differences betweenDO22 andL12 structures as computed with CS FCs~thick line! and as computed with CA FCs~thin line!;
~a! difference of VDOSDn5n(DO22)2n(L12), ~b! vibrational free energy differenceDFv5Fv(DO22)2Fv(L12) as a function of tem-
perature~T! in kJ/mol f.u.
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When the forces on atoms are known, the FCs can be u
to compute relaxations and relaxation energies. Both CA
CS FCs appear to give rather accurate results, so that it m
be possible to use one set of CA FCs to guess relaxa
effects in a variety of configurations. The CA FCs predict
a relaxation of the position which was about 73% of theab
initio value, and the predicted relaxation energy was ab
67% of theab initio result. Although this may appear rath
inaccurate, it was not much worse than what was obtai
with the CS FCs. This hints at strong anharmonic effects
crystals where internal degrees of freedom exist.

The phonon dispersion too, is generally well reproduc
by the CA FCs, but flatness of certain branches leads
incorrect peaks in the vibrational density of states of so
structures. These inaccuracies in the density of states w
responsible for the failure of the CA FCs to give the corr
sign of theDO22–L12 vibrational free energy difference.

The calculations here suggest that the vibrational free
ergy difference of ordered configurations at the same lat
parameter can be comparable to the electronic total en
difference. When the lattice parameter displays a strong
pendence on the state of order, the vibrational free ene
might play an even more significant role.

In spite of the apparent success for the prediction of e
ed
d
ht
n

d

ut

d
n

d
to
e
re
t

n-
e
gy
e-
gy

s-

tic constants and relaxations, and to a lesser extend for
phonon dispersions, the configuration independe
configuration averaged FCs are not accurate enough f
description of the coupling of configurational and vibration
free energy contributions in the context of alloy theory. Th
result implies that vibrational entropy differences associa
with order-disorder transformations as computed with c
figuration independent FCs are probably not reliable.20

The configuration averaged FCs fail to correctly rep
duce the vibrational free energy difference in the idealiz
model system studied here. This failure should be expec
to be even more pronounced in real alloys where compe
structures differ not only in atomic configuration, but also
terms of the lattice parameter and the cell internal degree
freedom.
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