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Interplay of disorder and nonlinearity in Klein-Gordon models: Immobile kinks
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We consider Klein-Gordon models with ad-correlated spatial disorder. We show that the properties of
immobile kinks exhibit strong dependence on the assumptions as to their statistical distribution over the
minima of the effective random potential. Namely, there exists a crossover from monotonically increasing
~when a kink occupies the deepest potential well! to the nonmonotonic~at equiprobable distribution of kinks
over the potential minima! dependence of the average kink width as a function of the disorder intensity. We
show also that the same crossover may take place with changing size of the system.@S0163-1829~99!06505-4#
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I. INTRODUCTION

An extensive research work on the static and transp
properties of nonlinear excitations in various soliton-bear
disordered systems has been undertaken in the last de
~see Refs. 1 and 2!. It is well known that when taken sepa
rately both the nonlinearity and disorder contribute to
localization effects, the character of localization being ho
ever essentially different. The nonlinearity results in the p
sibility of existence of nonlinear localized excitations usua
referred to as solitons that are rather robust and can pr
gate through the system undistortedly. At the same time
disorder ~in linear systems! evokes the Anderson localiza
tion, which manifests itself in the behavior of the transm
sion coefficient of a plane wave decaying exponentially w
the system width. These two localization mechanisms
competitive to some extent; taken together, the nonlinea
and disorder may lead to a number of qualitatively new
fects, namely, the transmission coefficient tending to z
with increasing the system length according to a pow
law3,4 rather than exponentially~which would be otherwise
the property of a linear system!; there can arise a
multistability3–5 in the wave transmission through a diso
dered slab; excitations in highly nonlinear or multidime
sional nonlinear Schro¨dinger ~NLS! systems~which would
either disperse or collapse otherwise! can be stabilized by
disorder.6–8

In the present paper we study the static properties o
one-kink solution~or, equivalently, of a diluted kink gas! of
disordered Klein-Gordon models where the disorder is
sumed to be ad-correlated Gaussian spatial noise. The d
order of the kind is akin, for example, to Josephson ju
tions, where it is caused by the fluctuations of the g
between two superconductor plates. Quite recently M
proposed9 a similar model with randomly alternating critica
current density to account for a self-generated magnetic
PRB 590163-1829/99/59~6!/4074~6!/$15.00
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observed10 experimentally. We discuss his results in mo
detail in the Conclusion.

In general, Klein-Gordon models have been repeate
studied1,2,11for the disorder represented by a lattice ofd-like
impurity potentials with random positions of the impuritie
and either equal or randomly distributed intensities. It w
found out that in a number of cases the kink dynamics
disordered systems could be adequately described within
framework of the collective coordinates approach~Refs. 12–
15, and references therein!. This is the background of ou
restricting ourselves to the said approach in the scope of
present paper providing however at each step the valida
of analytical results comparing them to the numerical sim
lations of the original system. We emphasize that in oppo
to, for example, Refs. 2 and 11, we use Rice’s collect
coordinates approach16,17 with the kink width being the
variational parameter.

A similar approach has been recently applied for tw
other one-dimensional ~1D! systems: Bussac et al.
investigated6 the effects of the polaron ground state in a d
formable chain, while Christiansenet al. considered7 the sta-
bilization of nonlinear excitations by disorder in the NL
model. It should be indicated that investigation of these t
~in fact closely related! systems leads to one and the sam
result: the width of stationary solitons decreases with gro
ing intensity of the disorder. The importance of this conc
sion resides in its prediction that the disorder can stabi
otherwise unstable solitons in 2D and 3D NLS models. Qu
recently this prediction was borne out numerically8 for the
2D case. It must be emphasized that for NLS models
conclusion does not depend on the averaging procedure:
can equally perform averaging either on absolute grou
states6 or over all local minima of the effective random po
tential with equal weights.7,8 We show that it is not the cas
for the Klein-Gordon models: their properties exhibit stro
dependence on the assumptions as to the statistical dist
tion of kinks over the minima of the effective random pote
4074 ©1999 The American Physical Society
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PRB 59 4075INTERPLAY OF DISORDER AND NONLINEARITY IN . . .
tial. For the purely dynamical problem these statistics are
beyond consideration and should be thus imposed as an
ditional assumption. We use Jaynes’s maximum entr
inference18 for this purpose.

The outline of the paper is the following. In Sec. II w
present the model and derive the equations for the collec
coordinates of the kink taking into account the disorder
theeffective random potential. In Sec. III we investigate both
analytically and numerically the case of immobile kinks a
demonstrate the existence of the crossover between m
tonic and nonmonotonic dependence of the average
width as a function of the disorder intensity. In Sec. IV w
summarize the exposed results.

II. COLLECTIVE COORDINATES APPROACH

We consider a Klein-Gordon~KG! model in the presence
of space disorder. The Hamiltonian of the system has
form

H5E
2`

`

dxH 1

2
„f t

21fx
2
…1@12he~x!#F~f!J , ~1!

where the subscripts stand for partial derivatives with resp
to the indicated variables and units are chosen so that
Hamiltonian is already in the scaled form. The potent
F(f) has the form

F~f!512cosf ~2!

for the sine-Gordon~SG! model, and

F~f!5
1

4
~f221!2 ~3!

for the f4 model. We assume thate(x) is delta-correlated
spatial disorder

^e~x!e~x8!&5d~x2x8!, ~4!

~the bracketŝ . . . & denote averaging over all realizations
the disorder! with the Gaussian distribution

p@e~x!#5
1

Ap
exp@2e2~x!#. ~5!

We have studied both SG~2! andf4 ~3! models. Although
properties of these two models show many similarities, th
also exhibit a number of interesting distinctions related,
particular, to the existence of a breather state in the
model and of Rice’s internal mode16,17 in the f4 model. So,
it was important to compare the effects of disorder in b
these models. But since the qualitative features of the
posed models turned out to coincide in the scope of
present investigations, we dare not overload the paper
unnecessary repetitions and restrict ourselves with presen
in detail the sine-Gordon model only, keeping in mind
though that every stage of the calculations applies for thef4

model as well.
The SG system is governed by the equation of motion

f tt2fxx1@12he~x!#sinf1gf t50, ~6!
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where the damping term with the damping constantg has
been included. It is well known that in the absence of dis
der and damping (h5g50) Eq.~6! is completely integrable
and possesses a topologically stable solution in the form
kink given by

fK~x,t !54 arctan expS x2X~ t !

L~ t ! D , ~7!

whereX(t)5X01vt is the kink coordinate,v is its velocity,
andL5A12v2 is the kink width.

In the general case of Eq.~6! for a number of situations
the kink emission is exponentially small,14 so that the kink
dynamics can be studied by the collective coordinate
proach. In the framework of this approach the variablesX(t)
and L(t) are understood as time-dependent variational
rameters. Inserting Eq.~7! into Hamiltonian ~1! as a trial
function, we obtain the effective Hamiltonian

He f f5
L

16
pX

21
3L

4p2
pL

21U~L !1V~$e%,L,X!, ~8!

with momenta

pX5
8

L

dX

dt
, pL5

2p2

3L

dL

dt
. ~9!

Here

U~L !5
4

L
14L ~10!

is the potential function in the case of no disorder and

V~$e%,L,X!522hE
2`

`

dxe~x!sech2S x2X

L D ~11!

is the effective random potential arising because of the
order term. Then, taking into account the damping, we arr
at the following equations of motion:16

dpX

dt
1gpX1

d

dX
V~$e%,L,X!50, ~12!

dpL

dt
1gpL1

3pL
2

4p2
1

pX
2

16
1

d

dL
@U~L !1V~$e%,L,X!#50.

~13!

In the following section we solve approximately these eq
tions of motion for immobile kinks and compare the resu
to the results of direct numerical integration of Eq.~6!.

III. RESULTS FOR IMMOBILE KINKS

As a consequence of the dampingg the kink will eventu-
ally stop at some stable or metastable stationary posi
along the system. Here we do not consider this trans
stage and assume that the kink is already immob
@(d/dt)pL5pL5pX50#. In this case the equations of mo
tion ~12! and ~13! take on the form

d

dX
V~$e%,L,X!50, ~14!
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d

dL
@U~L !1V~$e%,L,X!#50. ~15!

Considering the center-of-mass motion described by Eq.~12!
we observe that for each realization of the random poten
e(x) the stable stationary positionX5Xm($e%,L) of the kink
is defined by the point whereV($e%,L,X) has a minimum
with respect toX. Thus we can now insert the valueX
5Xm($e%,L) into Eq. ~15! and, solving the resulting equa
tion

L5S 11
1

4

d

dL
V~$e%,L,Xm! D 21/2

, ~16!

get the value of the stationary kink widthL($e%) at given
position of the kink. Encountering a similar problem for th
case of NLS system, Christiansenet al. invoked7 the mean-
field approximation

K d

dL
V~$e%,L,Xm!L '

d

dL
^V~$e%,L,Xm!&. ~17!

Further the estimation of the quantity^V& was performed
using Rice’s averaging theorem.19,20 However, being rather
good for the NLS model7 the mean-field approximation~17!
fails for the KG models. Thereby we were forced to use
more precise averaging procedure calculating^dV/dL& di-
rectly.

Expanding Eq.~16! into series up to the second order
h,

L'12
1

8

dV

dL
1

3

128S dV

dLD 2

, ~18!

and solving by iterations we get after averaging@which by
means of Eq.~4! can be performed for the terms containin
h2 exactly# the average kink width

Lvar[^L~$e%!&'11
h

2
^l~$e%,Xm!&1

p2

180
h2, ~19!

where the averaging of the function

l~$e%,X!5E
2`

`

dxe~x!~x2X!
sinh~x2X!

cosh3~x2X!
~20!

is performed over all realizations of the disorder in the poi
X5Xm in which the potential

V~$e%,L,X!'2hm~$e%,X! ~21!

with

m~$e%,X!52E
2`

`

dxe~x!sech2~x2X! ~22!

takes on its minima onX.
Thus we arrive at the problem of performing the avera

of l($e%,Xm) over the minimaXm of the functionm($e%,X).
It is convenient for later use to perform this averaging in t
steps calculating at the outset

L~m̃!5E
2`

`

l̃Pl~ l̃um̃ !dl̃ ~23!
al

a

s

e

and thereafter

^l~$e%,Xm!&5E
2`

`

L~m̃!Pm~m̃ !dm̃. ~24!

Here Pl(l̃um̃) is the conditional probability thatl($e%,Xm)
has the valuel̃ if m($e%,Xm) equals tom̃. Correspondingly,
L(m̃) is the value ofl($e%,Xm) averaged over all realiza
tions of the disorder for whichm($e%,Xm) is equal tom̃. It is
difficult to calculateL(m̃) analytically but numerical simu-
lations show~see Fig. 1! that up to very good accuracy th
dependenceL(m̃) is linear:

L~m̃!.20.344m̃20.500. ~25!

Substituting it into Eq.~24! we obtain that

^l~$e%,Xm!&.20.344̂ m~$e%,Xm!&20.500, ~26!

where

^m~$e%,Xm!&5E
2`

`

m̃Pm~m̃ !dm̃ ~27!

is the average value of the functionm($e%,X) over its
minimaXm . Here the probability densityPm(m̃) is a product
of two factors. The first one is the probability density th
some arbitrary chosen minimumXm of the function
m($e%,X) will be equal to m̃. We denote this probability
density aspmin(m̃). The second factor is the conditiona
probability that if the minimum is equal tom̃ it will be ac-
tually occupied by the kink. It is evident that in a real syste
the kink is more likely to occupy the deeper minimum th
the shallow one. So to be consequential one must ascrib
every minimum of the functionm($e%,X) some probability
weight and average taking into account those probabilit
But the values of these probabilities are in general de
mined by the whole prehistory of the kink. These values
not contained in the dynamical equations of motion that s
only that the kink should take on some minimum regardl
to its depth. It would be a cumbersome problem to calcul
them appropriately. That is why two limit cases are in ge

FIG. 1. The dependenceL(m̃) found numerically. The calcula-
tions are performed for a million minima of the functionm($e%,X).



pe
al
c-
fo

n

k
nt
s
p
n

-
te
in
b
s

f

-
f

ink

ic
ll

ell
ary

bu-

000
the

by

PRB 59 4077INTERPLAY OF DISORDER AND NONLINEARITY IN . . .
eral considered: either the kink seats itself into the dee
well6 or it rather occupies any of them with equ
probabilities.7 As it was already remarked in the Introdu
tion, both limit cases lead to qualitatively the same results
the NLS model.

It is not the case of KG models where, as it will be show
later, different assumptions as to thea priori weights of
minima lead to qualitatively different behavior of the kin
width. Since we are merely lacking information sufficie
enough to reconstruct these weights in an objectivistic fa
ion, a remedy would be Jaynes’s maximum entro
inference,18 according to which the simplest self-consiste
unbiased choice is to assume that the kink will occupy
potential well corresponding to the minimumXm of the func-
tion m($e%,X) @for givenprofile e(x)# with probability pro-
portional toe2bm($e%,Xm) thus introducing an additional pa
rameterb ~following Jaynes we shall call it a conjuga
parameter!. By this expedience we present some natural
terpolation covering two mentioned limit cases: of equipro
able distribution (b50) and of averaging over the deepe
minima only (b→`). So we can write

Pm~m̃ !5
1

Ze2bm̃pmin~m̃ !, ~28!

where

Z~b!5E
2`

`

dm̃e2bm̃pmin~m̃ ! ~29!

plays part of the partition function.
To calculatepmin(m̃) we follow Ref. 7 and make use o

the Rice’s averaging theorem19,20 @valid for the case, well
attested by the numerics, ofm($e%,X) being a stationary cen
tered Gaussian process# stating that the probability density o
some given minimum of the functionm($e%,X) to be equal
to m̃ is

pmin~m̃ !5
1

A2pM0

sS m̃

A2M0

,A12
M2

2

M0M4
D , ~30!

where the function

s~y,k!5ke2~y/k!2
22A12k2 ye2y2E

~y/k!A12k2

`

e2t2dt,

~31!

and the spectral momenta

M05^@m~$e%,X!#2&5
4

3
,

M25^@mX~$e%,X!#2&5
16

15
, ~32!

M45^@mXX~$e%,X!#2&5
64

21
,

were introduced.
Hence the partition function takes on the form
st

r

h-
y
t
a

-
-
t

Z~b!5
1

Ap
E

2`

`

dxe2A8/3bxsS x,
3

5
A2D ~33!

and can be expanded into series inb yielding the average
value

^m~$e%,Xm!&52
d

db
lnZ~b!

52
1

5
A7p

6
2

2

75
~6427p!b1O~b2!.

~34!

And now, substituting it into Eqs.~26! and~19! we obtain
for the average kink width

Lvar'11~0.193b20.059!h1
p2

180
h2. ~35!

Thus it is seen that there is a qualitative change of the k
width behavior as function of the disorder intensityh ac-
cording to whether the value of conjugate parameterb is
below or above some critical valuebcr'0.3.

At small b the average kink width is a nonmonoton
function of the disorder intensityh: it decreases at sma
intensities but starts to increase thereafter. This result is w
attested by the direct numerical calculations of station
kink solutions of the initial equation of motion~6!. In Fig. 2
we compare the analytical prediction given by Eq.~35! with
the numerical results for the case of equiprobable distri
tion of the kinks over the potential wells (b50). The nu-
merical results have been obtained as an average of 1
realizations of the disorder. Two different expressions for
kink width were calculated:

Lcos5
1

4E2`

`

dx$12cos@f~x!#%, ~36!

FIG. 2. The dependence of the average~on 1000 realizations of
the disorder! kink width ^L($e%)& vs disorder intensityh under the
assumption that the kink occupies every potential well created
disorder with equal probability. The system lengthR515.
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and

Lder58H E
2`

`

dxFdf~x!

dx G2J 21

. ~37!

From the point of view of the collective coordinate approa
Lcos andLder should coincide with the value ofL introduced
in Eq. ~7!. Indeed, as it is seen from the figures, it does ta
place for 0<h&0.2; thus, these are limits where the colle
tive coordinate approach works well.

Going on with the analysis of Eq.~35! we see that at big
values of the conjugate parameter (b.bcr) when the kink
rather occupies deep potential wells, the kink width sho
grow monotonically with the disorder. But it is evident th
in this case the analytical approach discussed above is a
cable to systems of infinite length only. For the finite syst
the case of bigb represents the situation when the kink s
in the deepest potential well. Obviously its average de
essentially depends on the system length. We can mak
estimation of this dependence drawing on the formula20 for
the average number of minima of the functionm($e%,X) on
an intervalR whose values lie below somem̃:

Nmin5
R

2p
AM2

M0
e2m̃2/~2M0!. ~38!

Inserting thereNmin52 (m̃ is an absolute minimum on th
intervalR but not on the longer interval! one can estimate its
average value

^m~$e%,Xabs.m!&.2S 2M0 lnH R

4p
AM2

M0
J D 1/2

52S 8

3
lnH R

2A5p
J D 1/2

~39!

and, substituting it into Eqs.~19! and ~26! one can find that
the average kink width equals

Lvar.11S 0.28 ln1/2H R

2A5p
J 20.25D h1

p2

180
h2.

~40!

It is seen that for finite-size systems the character of dep
denceLvar(h) depends on the size of the systemR. It is
interesting that even for the case of averaging over the a
lute minima considered here, the functionLvar(h) grows
monotonically with h only for the systems that are larg
enough (R*7.5). The reason is that for a small system t
number of potential wells of the effective random potentia
too small to yield the average over absolute minimum t
would be essentially smaller than the average value ca
lated over all minima. Indeed, Figs. 3 and 4, in which w
compare Eq.~40! to the results of the numerical calculation
for R515 andR55, lend support to the validity of the ap
proach leading to Eq.~40!. One can see from these figure
that the average kink width grows monotonically withh for
R515 but is nonmonotonic~similar to the case depicted o
Fig. 2! for small R55. But in this latter case the bounda
conditions become very important and most likely they
responsible for the difference between Figs. 2 and 4.
e
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IV. CONCLUSION

In the paper we consider the Klein-Gordon models w
thed-correlated spatial disorder and investigate both anal
cally and numerically the width of immobile kinks as a fun
tion of the intensity of disorder. The analytical collectiv
coordinates approach is based on Rice’s averaging theo
from the theory of random processes19,20 as well as on the
maximum entropy inference proposed by Jaynes.18

We have shown that the properties of the kinks exh
strong dependence on the assumptions as to their statis
distribution over the minima of the effective random pote
tial. Namely, there exists a crossover from monotonica
increasing~when a kink occupies the deepest potential we!
to the nonmonotonic~at equiprobable distribution of kinks
over the potential minima! dependence of the average kin
width as a function of the disorder intensity. We have sho
also that the same crossover may take place with the ch
ing size of the system: the average kink width monotonica

FIG. 3. The dependence of the average~on 1000 realizations of
the disorder! kink width ^L($e%)& vs disorder intensityh under the
assumption that the kink sits into the deepest potential well cre
by disorder. The system lengthR515.

FIG. 4. The dependence of the average~on 1000 realizations of
the disorder! kink width ^L($e%)& vs disorder intensityh under the
assumption that the kink sits into the deepest potential well cre
by disorder. The system lengthR55.
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increases for the systems of big size but is nonmonotonic
the small ones.

It is interesting to compare the effects of the disorder
the KG model with the effects in the nonlinear Schro¨dinger
~NLS! model. As it was recently shown in Refs. 6–8, t
d-correlated spatial disorder in the NLS systems creates
additional factor contributing to the decrease of the exc
tion width. This effect, being insensitive to the manner of t
statistical distribution of kinks over the minima of effectiv
random potential, favors the stabilization of excitations
highly nonlinear or multidimensional systems, which wou
either disperse or collapse otherwise. The stabilizing fu
tion of disorder is of no doubt important for practical app
cations and to elucidate the extent to which it is univer
seems to be an intriguing question. The considered exam
of the KG systems demonstrates that there exists a clas
systems, for which, in contrast to the NLS system, the effe
of disorder can lead in different cases to diametrically o
posed behavior.

In the case of the SG model we can consider the te
he(x) as a change of the Josephson current density du
fluctuations of the thickness of an insulating layer. Qu
recently Mints studied9 such a model to account for a sel
generated magnetic flux observed10 by Mannhartet al. He
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m
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has shown that in the case ofh,1 a state with a self-
generated flux exists and can be studied experimentallin
the presence of Josephson vortices. However, as is shown in
the present paper, the Josephson energy@equal to 4Lcos in
Eq. ~36!# and the magnetic energy@equal to 4/Lder in Eq.
~37!# of the Josephson vortices are functions of the inten
of fluctuations of the insulating layer thickness. And the
contribution into the experimentally observable magne
flux will strongly ~up to the change of a sign! depend on the
statistical distribution of the vortices along the Josephs
junction. Thus, for the proper description of the problem o
must develop a thermodynamic model.
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