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Interplay of disorder and nonlinearity in Klein-Gordon models: Immobile kinks
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We consider Klein-Gordon models with &correlated spatial disorder. We show that the properties of
immobile kinks exhibit strong dependence on the assumptions as to their statistical distribution over the
minima of the effective random potential. Namely, there exists a crossover from monotonically increasing
(when a kink occupies the deepest potential Wellthe nonmonotoni¢at equiprobable distribution of kinks
over the potential minimadependence of the average kink width as a function of the disorder intensity. We
show also that the same crossover may take place with changing size of the $§€#68-182809)06505-4

I. INTRODUCTION observe® experimentally. We discuss his results in more
detail in the Conclusion.

An extensive research work on the static and transport In general, Klein-Gordon models have been repeatedly
properties of nonlinear excitations in various soliton-bearingstudied-?*for the disorder represented by a latticesalike
disordered systems has been undertaken in the last decadepurity potentials with random positions of the impurities
(see Refs. 1 and)2lt is well known that when taken sepa- and either equal or randomly distributed intensities. It was
rately both the nonlinearity and disorder contribute to thefound out that in a number of cases the kink dynamics in
localization effects, the character of localization being how-disordered systems could be adequately described within the
ever essentially different. The nonlinearity results in the posframework of the collective coordinates appro&Refs. 12—
sibility of existence of nonlinear localized excitations usually15, and references thergirThis is the background of our
referred to as solitons that are rather robust and can prop&estricting ourselves to the said approach in the scope of the
gate through the system undistortedly. At the same time thBresent paper providing however at each step the validation
disorder (in linear systemsevokes the Anderson localiza- of analytical results comparing them to the numerical simu-
tion, which manifests itself in the behavior of the transmis-ations of the original system. We emphasize that in opposite
sion coefficient of a plane wave decaying exponentially witht®; for example, Rezf:%.NZ and 11, we use Rice’s collective
the system width. These two localization mechanisms argoo_rd_lnates approa with the kink width being the
competitive to some extent; taken together, the nonIinearit)\/a”at'(_)m?II parameter. .
and disorder may lead to a number of qualitatively new ef- A similar Qpprogch has been recen.tly applied for wo

other one-dimensional (1D) systems: Bussacet al.

fects, namely, the transmission coefficient tending to Zer?nvestigateﬁ the effects of the polaron ground state in a de-

wt:“mcreasmg the system Ieng.th according to a POWE%, mable chain, while Christiansest al. considerelithe sta-
law™" rather than equnentlallywhlch would be othng|se bilization of nonlinear excitations by disorder in the NLS
the _prOP“?‘”V_S‘?f a linear systgm there can arise & poqel. It should be indicated that investigation of these two
multistability* in the wave transmission through a disor- (i fact closely relatedsystems leads to one and the same
dered slab; excitations in highly nonlinear or multidimen- regyt: the width of stationary solitons decreases with grow-
sional nonlinear Schrbinger (NLS) systems(which would  jng intensity of the disorder. The importance of this conclu-
either disperse or collapse otherwisean be stabilized by sjon resides in its prediction that the disorder can stabilize
disorder®™® otherwise unstable solitons in 2D and 3D NLS models. Quite
In the present paper we study the static properties of @ecently this prediction was borne out numerichligr the
one-kink solution(or, equivalently, of a diluted kink ga®f 2D case. It must be emphasized that for NLS models the
disordered Klein-Gordon models where the disorder is aseonclusion does not depend on the averaging procedure: one
sumed to be a-correlated Gaussian spatial noise. The dis-can equally perform averaging either on absolute ground
order of the kind is akin, for example, to Josephson juncstate$ or over all local minima of the effective random po-
tions, where it is caused by the fluctuations of the gaptential with equal weight$® We show that it is not the case
between two superconductor plates. Quite recently Mintdor the Klein-Gordon models: their properties exhibit strong
proposed a similar model with randomly alternating critical dependence on the assumptions as to the statistical distribu-
current density to account for a self-generated magnetic fluion of kinks over the minima of the effective random poten-
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tial. For the purely dynamical problem these statistics are leftvhere the damping term with the damping constanhas
beyond consideration and should be thus imposed as an abeen included. It is well known that in the absence of disor-
ditional assumption. We use Jaynes’'s maximum entropyler and damping+ = y=0) Eq.(6) is completely integrable
inferencé?® for this purpose. and possesses a topologically stable solution in the form of a
The outline of the paper is the following. In Sec. Il we kink given by
present the model and derive the equations for the collective
coordinates of the kink taking into account the disorder via
the effective random potentialn Sec. Il we investigate both
analytically and numerically the case of immobile kinks and
demonstrate the existence of the crossover between mon
tonic and nonmonotonic dependence of the average kin
width as a function of the disorder intensity. In Sec. IV we
summarize the exposed results.

x—X(t)) @

L(t)

Y)v_hereX(t) =Xt vt is the kink coordinatey is its velocity,
pndL= J1-v? is the kink width.

In the general case of E@) for a number of situations
the kink emission is exponentially smaflso that the kink
dynamics can be studied by the collective coordinate ap-
proach. In the framework of this approach the varia{ég
and L(t) are understood as time-dependent variational pa-

We consider a Klein-GordotKG) model in the presence rameters. Inserting E¢(7) into Hamiltonian(1) as a trial
of space disorder. The Hamiltonian of the system has théunction, we obtain the effective Hamiltonian
form

dk(X,t)=4 arctan exé)

II. COLLECTIVE COORDINATES APPROACH

L, 3L ,
. (1 Hert=1g PX+ 5 PL+UL+V({e LX), (®
2, 42 A
H=f dX(E(dn+d>x)+[1—n6(><)]<1>(¢) (@
N with momenta
where the subscripts stand for partial derivatives with respect 8 dX 272 dL
to the indicated variables and units are chosen so that the Py=———, PL=m —. (9)
Hamiltonian is already in the scaled form. The potential L dt 3L dt
®(¢) has the form Here
P(p)=1- 2
(4) cose @ U(L)= §+4L (10

for the sine-GordoriSG) model, and
is the potential function in the case of no disorder and

1
<I>(¢)=Z(¢2—l)2 3 © x—X
V({e},L,X)= —27,f_ dXe(x)secH(T) (11)

for the ¢* model. We assume thai(x) is delta-correlated

spatial disorder is the effective random potential arising because of the dis-

order term. Then, taking into account the damping, we arrive
(e(x)e(x"))=8(x—x"), (4)  at the following equations of motiolf:
(the bracketg . . .) denote averaging over all realizations of dpy d
the disorder with the Gaussian distribution ar Fext ﬁV({f},L,X)ZO, (12
P e(x)] = —=exif — ()] 5  dn 3pL Pk d
\/; W‘F‘ypl_‘l‘ﬁ+1—6+d—L[U(L)+V({G},L,X)]—O
We have studied both S@) and ¢* (3) models. Although (13

properties of these two models show many similarities, theyn the following section we solve approximately these equa-
also exhibit a number of interesting distinctions related, intions of motion for immobile kinks and compare the results

particular, to the existence of a breather state in the SGo the results of direct numerical integration of E6).
model and of Rice’s internal motfe!’ in the ¢* model. So,

it was important to compare the effects of disorder in both lIl. RESULTS FOR IMMOBILE KINKS
these models. But since the qualitative features of the ex-
posed models turned out to coincide in the scope of our As a consequence of the dampigghe kink will eventu-
present investigations, we dare not overload the paper withlly stop at some stable or metastable stationary position
unnecessary repetitions and restrict ourselves with presentirgjong the system. Here we do not consider this transient
in detail the sine-Gordon model only, keeping in mind al-stage and assume that the kink is already immobile
though that every stage of the calculations applies foigthe [(d/dt)p =p_=px=0]. In this case the equations of mo-
model as well. tion (12) and (13) take on the form

The SG system is governed by the equation of motion

d
Bu— bt [1— ne(x)]sing+ yeh=0, ©) ax VdehtX)=0, (4



4076 MINGALEEV, GAIDIDEI, MAJERN[KOVA, AND SHPYRKO PRB 59

20

d
d—L[U(L)+V({e},L,X)]=O. (15

Considering the center-of-mass motion described by(E2). wl
we observe that for each realization of the random potential
€(x) the stable stationary positiot= X,,({€},L) of the kink

is defined by the point wher€({e},L,X) has a minimum =
with respect toX. Thus we can now insert the valué¢ =z
=Xmn({e€},L) into Eqg. (15 and, solving the resulting equa-
tion

0.0 |

1d -1/2
= 4+ — —
get the value of the stationary kink widih({e}) at given 20 :
e . . . 7.0 5.0 3.0 1.0 1.0 3.0 5.0
position of the kink. Encountering a similar problem for the "
case of NLS system, Christiansenal. invoked the mean- B
field approximation FIG. 1. The dependenck(x) found numerically. The calcula-

tions are performed for a million minima of the functigr{{ e}, X).
d d
<JV({E}1L=Xm)> %H<V({€},L,Xm)> (17) and thereafter

Further the estimation of the quantif) was performed © -~ o~

using Rice’s averaging theoreth?° However, being rather (N{ €}, X)) = J‘iwA(M)Pm(M)d;U“ (24)
good for the NLS modélthe mean-field approximatiof17)

fails for the KG models. Thereby we were forced to use aHere Pl(Xm) is the conditional probability thax ({e},X,)
more precise averaging procedure calculafdy/dL) di- has the valué. if w({e X, equals to. Correspondingly,

rectly. ~ . .
Expanding Eq(16) into series up to the second order in /,\(’“) Is the yalue On‘({f}’.x”‘) averaggd over aII~reaI.|za—
tions of the disorder for whicl({€},X,,) is equal tou. Itis

7, ~
X difficult to calculateA («) analytically but numerical simu-
1dv 3 [dV lations show(see Fig. 1 that up to very good accuracy the
L~1- g =+ 25d =7 (18 ~\ e i
8 dL 128 dL dependenceé\ (u) is linear:

and solving by iterations we get after averagimghich by

means of Eq(4) can be performed for the terms containing A(p)=~0.3444=0.500. 25
»? exactly] the average kink width Substituting it into Eq(24) we obtain that
2
i T (N({ €}, Xm)y=—0.344 n({ €}, X;n)) —0.500, (26)
Loar=(L{eD)~1+ 3 (\({e}. Xm)) + 7g57° (19 ; ;
where
where the averaging of the function "
: <M({6}’Xm)>:f mPm(p)du (27)
o sinh(x— X) -
N({e},X)= f dxe(x)(x—X) ———  (20) . .
—o cosh(x—X) is the average value of the functiop({e},X) over its

dninimaX,,. Here the probability densit?,,() is a product

of two factors. The first one is the probability density that

some arbitrary chosen minimunX,, of the function
V({e},L,X)~27nu({e},X) (21)  u({e},X) will be equal tox. We denote this probability

with density aspy,in(»). The second factor if the conditional

probability that if the minimum is equal tg it will be ac-

tually occupied by the kink. It is evident that in a real system

the kink is more likely to occupy the deeper minimum than
the shallow one. So to be consequential one must ascribe to

is performed over all realizations of the disorder in the point
X=X, in which the potential

w({er,X)=— f_wdee(x)secﬁ(x—X) (22

takes on its minima oiX. every minimum of the functionu({e},X) some probability
Thus we arrive at the problem of performing the averageayeight and average taking into account those probabilities.
of N({€},Xp) over the minimaX,, of the functionu({€},X).  But the values of these probabilities are in general deter-
It is convenient for later use to perform this averaging in twomined by the whole prehistory of the kink. These values are
steps calculating at the outset not contained in the dynamical equations of motion that state
only that the kink should take on some minimum regardless

A(;L): fw XPl(Xlﬁ)dX (23) to its depth. It_ would be a_cumbersom_e _problem to Calculate
— them appropriately. That is why two limit cases are in gen-
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eral considered: either the kink seats itself into the deepes 102
well® or it rather occupies any of them with equal £
probabilities’ As it was already remarked in the Introduc- 4
tion, both limit cases lead to qualitatively the same results for |, |
the NLS model.

It is not the case of KG models where, as it will be shown
later, different assumptions as to tlaepriori weights of
minima lead to qualitatively different behavior of the kink Loroog
width. Since we are merely lacking information sufficient
enough to reconstruct these weights in an objectivistic fash-
ion, a remedy would be Jaynes’s maximum entropy .. |
inference'® according to which the simplest self-consistent
unbiased choice is to assume that the kink will occupy a
potential well corresponding to the minimuxy, of the func-
tion w({€},X) [for givenprofile e(x)] with probability pro- 098 5 02 oa 08 08
portional toe~##(<Xm thus introducing an additional pa- n
rameter 8 (following Jaynes we shall call it a conjugate

arametex By this expedience we present some natural in- FIG. 2. The dependence of the averdge 1000 realizations of
P - by P P the disorderkink width (L({e})) vs disorder intensity; under the

terpolation covering two mentioned limit cases: of eqL"pmb'assumption that the kink occupies every potential well created by

ak?'e, distribution f=0) and of aver_aging over the deepestdisorder with equal probability. The system lendrk 15.
minima only (3—=). So we can write

~ 1 e - N D 3

Pn(1) = Z€ ##Prin(1), (28) 2p)= =] dxe o X, g\2 (33

where and can be expanded into series@nyielding the average
value
Z(B)= f  duePppin(n) (29 ]
(iehXm) == g5 2(8)
plays part of the partition function.
To calculatep,() we follow Ref. 7 and make use of 1 77 2 )

the Rice’s averaging theoréif° [valid for the case, well =~ 5\ g 7564 7mBFOB).
attested by the numerics, pf({ €},X) being a stationary cen-
tered Gaussian procgsstating that the probability density of (34
some given minimum of the functiop({e},X) to be equal
to 1 is And now, substituting it into Eq$26) and(19) we obtain

for the average kink width
1

pmin(M) = \/TI\AOG.

where the function

, (30 2
L,ar~1+(0.1933—0.059 5+ 1—80772.

Ao fo M2
NS MoM4

(35

Thus it is seen that there is a qualitative change of the kink
o width behavior as function of the disorder intensigyac-
0(y,K)=Ke_(yl">2—2V1—K2ye_y2f ﬁe_tzdt, cording to whether the value of conjugate parameleis
RN (31)  below or above some critical valyg,,~0.3.
At small 8 the average kink width is a nonmonotonic
and the spectral momenta function of the disorder intensity): it decreases at small
intensities but starts to increase thereafter. This result is well
Mo — %)12) = f attested by the direct numerical calculations of stationary
o=([n({e. X)) 3’ kink solutions of the initial equation of motio{®). In Fig. 2
we compare the analytical prediction given by E8f) with
16 the numerical results for the case of equiprobable distribu-
M2=([,ux({e},X)]2)=l—5, (32)  tion of the kinks over the potential well8&0). The nu-
merical results have been obtained as an average of 1000
realizations of the disorder. Two different expressions for the

64 ; ; .
_ a_ " kink width were calculated:
M= ([ uxx({€},X)]%) 51"
: 1 (=
were introduced. L :_f dx!1—cos &(x 36
Hence the partition function takes on the form € 4) . { 12001 (36
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and 115

o d
Lder:8r J7 dx $(X)
110

dx

From the point of view of the collective coordinate approach ' [ A
Los @andL 4, should coincide with the value d&f introduced
in Eq. (7). Indeed, as it is seen from the figures, it does take’ &
place for O< =<0.2; thus, these are limits where the collec- AT
tive coordinate approach works well. 105 b A .

Going on with the analysis of E¢35) we see that at big o o L,
values of the conjugate parameteg8> B;,) when the kink AAA
rather occupies deep potential wells, the kink width should JATTR
grow monotonically with the disorder. But it is evident that e
in this case the analytical approach discussed above is appli 104 0> oa os 04
cable to systems of infinite length only. For the finite system n
the case of big3 represents the situation when the kink sits o
in the deepest potential well. Obviously its average depth F!G- 3. The dependence of the average 1000 realizations of
essentially depends on the system length. We can make & disorderkink width (L ({€})) vs disorder intensity; under the
estimation of this dependence drawing on the fordular assu_mptlon that the kink sits into the deepest potential well created
the average number of minima of the functigit{ e}, X) on by disorder. The system leng&=15.

2y -1
} ) (37) ‘

an intervalR whose values lie below some: IV. CONCLUSION
R My =2, In the paper we consider the Klein-Gordon models with
Nimin=5— Mo w2, (38 the s-correlated spatial disorder and investigate both analyti-

cally and numerically the width of immobile kinks as a func-

Inserting thereN,,;,=2 (u is an absolute minimum on the tion of the intensity of disorder. The analytical collective
interval R but not on the longer intervabne can estimate its coordinates approach is based on Rice’s averaging theorem

average value from the theory of random proces$2¥ as well as on the
maximum entropy inference proposed by Jayifes.
R M, 12 We have shown that the properties of the kinks exhibit
(n({€} Xapsm))=— ( 2M, In{ﬂ M_]> strong dependence on the assumptions as to their statistical
0 distribution over the minima of the effective random poten-
) R 12 tial. Namely, there exists a crossover from monotonically
=— ( 3 In[ —] ) (39 increasing(when a kink occupies the deepest potential well
2\5 to the nonmonotonic¢at equiprobable distribution of kinks
and, substituting it into Eq€19) and (26) one can find that Ve the potential minimadependence of the average kink
the average kink width equals width as a function of the disorder intensity. We _have shown
also that the same crossover may take place with the chang-
S R 72 , ing size of the system: the average kink width monotonically
Lyar=1+(0.281rt {zﬁw] 0.25| 7+ 757" »
(40)
It is seen that for finite-size systems the character of depen
dencel,,(7) depends on the size of the systéinlt is 102 =
interesting that even for the case of averaging over the absa A

lute minima considered here, the functidn,,(») grows
monotonically with » only for the systems that are large r |, |
enough R=7.5). The reason is that for a small system the
number of potential wells of the effective random potential is
too small to yield the average over absolute minimum that
would be essentially smaller than the average value calcu 098 r
lated over all minima. Indeed, Figs. 3 and 4, in which we
compare Eq(40) to the results of the numerical calculations

for R=15 andR=5, lend support to the validity of the ap- 096 . . . .
proach leading to Eq40). One can see from these figures 00 02 04 0.6 08 10

that the average kink width grows monotonically wighfor n

R=15 but is nonmonotoni¢similar to the case depicted on  F|G. 4. The dependence of the average 1000 realizations of
Fig. 2) for smallR=5. But in this latter case the boundary the disorder kink width (L ({e})) vs disorder intensity; under the
conditions become very important and most likely they areassumption that the kink sits into the deepest potential well created
responsible for the difference between Figs. 2 and 4. by disorder. The system lengR=5.
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increases for the systems of big size but is nonmonotonic fohas shown that in the case af<1 a state with a self-
the small ones. generated flux exists and can be studied experimenially

It is interesting to compare the effects of the disorder inthe presence of Josephson vorticdswever, as is shown in
the KG model with the effects in the nonlinear Sdafirger  the present paper, the Josephson engegyial to 4 ., in
(NLS) model. As it was recently shown in Refs. 6-8, the Eq. (36)] and the magnetic enerdgqual to 4L 4., in Eq.
é-correlated spatial disorder in the NLS systems creates af87)] of the Josephson vortices are functions of the intensity
additional factor contributing to the decrease of the excitaof fluctuations of the insulating layer thickness. And their
tion width. This effect, being insensitive to the manner of thecontribution into the experimentally observable magnetic
statistical distribution of kinks over the minima of effective flux will strongly (up to the change of a sigdepend on the
random potential, favors the stabilization of excitations instatistical distribution of the vortices along the Josephson
highly nonlinear or multidimensional systems, which wouldjunction. Thus, for the proper description of the problem one
either disperse or collapse otherwise. The stabilizing funcmust develop a thermodynamic model.
tion of disorder is of no doubt important for practical appli-
cations and to elucidate the extent to which it is universal
seems to be an intriguing question. The considered example
of the KG systems demonstrates that there exists a class of We (S.M., Yu.G., and S.Sh.thank the Department of
systems, for which, in contrast to the NLS system, the effectIheoretical Physics of the Palackyniversity in Olomouc
of disorder can lead in different cases to diametrically opfor the hospitality. S.M. and Yu.G. acknowledge support
posed behavior. from the Fund for Development of the W& CR No. 155/

In the case of the SG model we can consider the termi997 and from the Ukrainian Fundamental Research Fund
ne(x) as a change of the Josephson current density due f@&rant No. 2.4/355 E.M. and S.Sh. acknowledge support
fluctuations of the thickness of an insulating layer. Quitefrom Grant No. 202/97/0166 of the GAT Partial support
recently Mints studietisuch a model to account for a self- from Grant No. 2/4109/97 of the VEGA Grant Agency is

ACKNOWLEDGMENTS

generated magnetic flux observ®dy Mannhartet al. He

also acknowledged.

1A. Sanchez and L. Vaquez, Int. J. Mod. Phys. B, 2825(1991).
23. A. Gredeskul and Yu. S. Kivshar, Phys. Rap6, 1 (1992.
3p. Devillard and B. Souillard, J. Stat. Phyis, 423(1986.

“B. Doumt and R. Rammal, Europhys. Le®, 969 (1987; J.
Phys.(Parig 48, 509 (1987.

SR. Knapp, G. Papanicolau, and B. White, Disorder and Non-
linearity, Vol. 39 of Springer Proceedings in Physjosdited by
A. R. Bishop, D. K. Campbell, and St. Pnevmatik@pringer,
Berlin, 1989; J. Stat. Phys63, 567 (1991).

5M. N. Bussac, G. Mamalis, and P. Mora, Phys. Rev. L#8.292
(1995.

"P. L. Christiansen, Yu. B. Gaididei, M. Johansson,/K Rasmus-
sen, D. Usero, and L. \¢zguez, Phys. Rev. B6, 14 407(1997).

8Yu. B. Gaididei, D. Hendriksen, P. L. Christiansen, and K. O
Rasmussen, Phys. Rev.38, 3075(1998.

°R. G. Mints, Phys. Rev. 57, R3221(1998.

103, Mannhart, H. Hilgenkamp, B. Mayer, Ch. Gerber, J. R. Kirtley,

K. A. Moler, and M. Sigrist, Phys. Rev. Leff.7, 2782(1996.
115, A. Gredeskul, Yu. S. Kivshar, L. K. Maslov, A 8ehez, and

L. Vazquez, Phys. Rev. A5, 8867(1992.

12D, W. McLaughlin and A. C. Scott, Phys. Rev. A8, 1652
(1978.

Bp_ 3. Pascual, L. {auez, A. R. Bishop, and St. Pnevmatikos, in
Disorder and NonlinearityRef. 5.

14Yu. S. Kivshar and B. A. Malomed, Rev. Mod. Phy&l, 763
(1989.

15A. Sanchez, R. Scharf, A. R. Bishop, and L. puez, Phys. Rev.
A 45, 6031(1992; R. Scharf, Yu. S. Kivshar, A. $&hez, and
A. R. Bishop,ibid. 45, R5369(1992.

18M. J. Rice, Phys. Rev. B8, 3587(1983.

17R. Boesch and C. R. Willis, Phys. Rev.42, 2290(1990.

18E. T. JaynesPapers on Probability, Statistics and Statistical
Physics edited by R. D. Rosenkran{Reidel, Dordrecht, Hol-
land, 1983.

195, 0. Rice, Bell Syst. Tech. 23, 282(1944.

200. Kree and C. SoizeMathematics of Random PhenomeifRe-
idel, Dordrecht, 1986



