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Lattice dynamics and thermal expansion of quartz
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~Received 31 July 1998!

The mechanism of the thermal expansion and thea-b phase transition of quartz are jointly studied within the
framework of a lattice-dynamical treatment using the pair-wise potential by Tsuneyukiet al. @Phys. Rev. Lett.
61, 869 ~1988!#. This shows that the essentially anomalous thermal expansion of quartz originates from the
low-frequency phonon modes most of which have negative Gru¨eneisen coefficients. The main factor driving
thea-phase structure variation at heating is the rotation of the SiO4 tetrahedra towards theirb-phase positions.
The volume variation follows this process thus keeping the static pressure small. The model reveals that at
T.430 K a number of the phonons have imaginary quasiharmonic frequencies being governed by a double-
well potential. This result does not suggest any large-scale lattice instability, and just indicates that the relevant
vibrations are essentially anharmonic and that the actual crystal structure is of a dynamically averaged char-
acter. The contribution of such modes to the free energy has been included by the extension of the quasihar-
monic theory proposed by Boyer and Hardy@Phys. Rev. B24, 2577 ~1981!#. Then the accurate free-energy
optimization with respect to all the structural parameters provides thea-quartz structure atT,Tc . We reveal
that there is no free-energy minimum in thea structure atT.Tc'850 K, but it exists in theb phase at
850 K,T,1100 K. Taking into account the discovered negative Gru¨eneisen constants our approach provides
a natural explanation for the negative thermal expansion of theb quartz.@S0163-1829~99!02505-9#
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I. INTRODUCTION

Despite the number of experimental and theoretical st
ies of thea-b structural phase transition~SPT! in quartz, its
microscopic nature is not yet completely clarified. Moreov
the true nature of the high-temperatureb phase remains an
unanswered and existing problem.

Recently a model for simulation of the structural and d
namical properties of silica was proposed by Tsuney
et al.1 This model represents the potential function of t
condensed silica as a sum of pair-wise interactions descr
by simple analytic expressions with the parameters de
mined from theab initio molecular cluster study. Below w
shall refer to this model as the Tsuneyuki potential mo
~TPM!. Molecular dynamics~MD! simulations2 using TPM
beautifully agree with the observed properties of thea-b
SPT: both the critical temperature and the volume incre
were well reproduced.

However, the MD method is not quite suitable if one tri
to reveal the microscopic nature of the phenomena. MD
sults are of statistically average character and depend es
tially on the number of particles taken into consideratio
Thus, it is not easy to conclude from these results the mic
scopic pattern of the phenomena under study.

The lattice dynamics~LD! modeling dealing with the in-
finite regular crystal lattice is free of these shortcomings
herent to the MD method. The central objects of the L
theory are phonon modes which are both experimentally
servable and microscopically obvious. The LD approach
comes a very powerful method if one can extend it by
proper consideration of the anharmonicity. In this paper,
results of the LD treatment~using TPM! of the thermal ex-
pansion anda-b SPT in quartz are presented.

II. STATIC ENERGY CONSIDERATION

The crystal structure ofa quartz ~space groupP322! is
specified by the unit cell dimensionsa,c and the atomic po-
PRB 590163-1829/99/59~6!/4036~8!/$15.00
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sitions Si~u,0,0! and O~x,y,z!. Thus, the static potential en
ergy ~PE! of the latticeU is a function of six independen
structural coordinates. It was revealed that only two of
structural coordinates vary significantly in course of the th
mal expansion and ata-b phase transition. Those are th
volume and the SiO4-tetrahedra rotation. The latter is close
related to the soft-mode eigenvector and in the vicinity of
phase transition it is near-parallel to the vector of t
a1-b-a2 atomic displacements.3 All the other structural de-
grees of freedom involve considerable amount of
SiO4-tetrahedra distortions and vary insignificantly becau
those tetrahedra are rather stiff. Thus, in our study we s
focus our attention on two structural coordinates: the u
cell volumeV, and the SiO4-tetrahedra tilt angleh, defined
through the parametersu,x,y,zby the expression from Ref. 3

The dependence ofU from V and h was studied byab
initio methods in Refs. 4, 5, and by TPM in Ref. 6. It wa
shown that the thermally and pressure-induced crystal st
ture evolution necessarily involves a strong coupling b
tween these coordinates. It is rather instructive to regard
U(V,h) function to be defined by minimization with respe
of all other coordinates. This function is plotted in Fig. 1.

The two deep valleys on theU(V,h) surface relate to the
Dauphine twins. Their minima correspond to thea1 anda2
static equilibrium configurations of quartz. The cross sect
with h50 providesU(V) curve for theb-phase configura-
tion. It is worth noting that there is no surface minimu
along this curve, its lowest energy pointS is a saddle point
unstable in theh direction. The dotted line in Fig. 1~b! is the
set of minima with respect toh at V5const. This line rep-
resents the structure evolution at the static negative pres
regime which involves the PE minimization with respect
all the structural parameters atV5const. One can see tha
along this linea configuration transforms intob configura-
tion at point P. This corresponds to the volume valueV
4036 ©1999 The American Physical Society
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PRB 59 4037LATTICE DYNAMICS AND THERMAL EXPANSION OF QUARTZ
5Vc at which the double-wellU(h) curve transforms into a
one-minimum one.

It was shown6 that the LD description of thea-b trans-
formation based on the static negative pressure regime
ables us to accurately reproduce the variation of all struct
and dynamical properties of quartz including such intrigu
one as the negative Poisson ratios. At the same time
approach essentially overestimates theb-phase volumeVc :
it predicts (Vc2V0)/V0 of 13% whereas the observe
value7,8 is about 6%~V0 is the unit cell volume atT50!.
Evidently, the main failure of the static approach is the n
glect of the atomic thermal vibrations which are anharmo
and play an important role in the mechanism of thea-b SPT.
Consequently, this approach is incapable of describing
thermal expansion. The present lattice-dynamical study
aimed to overcome the shortcomings inherent to the st
consideration and to clarify the role of thermal vibrations
this SPT.

FIG. 1. Potential energy of quartz as a function of volume a
tilt angle. ~a! The U(V,h) surface.~b! Izoenergy contour lines on
theV-h plane; the dashed line corresponds toPS50, the dotted line
corresponds tof h50, a1 anda2 points are thea-phase static equi-
librium configurations, theS-point is the energy minimumb-phase
configuration, theP point corresponds to the volume value wh
the double-minimaV(h) function transforms into a one-minimum
one. The bold dotted lines display the calculated thermal expan
geometry evolution. The critical temperature values areT050, T1

5430 K, Tc5850 K, T251100 K. The arrow~denoted byTc!
shows the ‘‘geometry jump’’ at thea-b SPT.
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III. THERMODYNAMIC EQUILIBRIUM ANALYSIS

At finite temperature the equilibrium structure is dete
mined by the minimization of the free energyF5U2TS
~unlike the onlyU in the static energy approach!. Here and
below we use in all the formulae the temperatureT in an
energy scale omitting the Boltzman constant. Within t
quasiharmonic~QH! approximation, which is the mos
widely used in the theory of the thermal expansion, the
tropy contribution is defined by thevn phonon frequencies:

F5U2T(
n

ln@2 sinh~hvn/2T!#. ~1!

Since the phenomena under consideration take plac
high temperature, one can neglect the quantum effects
use the classic expression

F5U2T lnF EEE
p,q

expS 2
DU~q!1K~p!

T D)
n

dpndqn

2ph G ,

~2!

whereqn and pn are vibrational coordinates and impulse
K(p) is the kinetic energy, andDU5U(q)2U(0). Within
the framework of the QH approximation, after integratio
over impulses, Eq.~2! assumes the form

F5U2T(
n

ln~T/hvn!. ~3!

This expression enables us to reveal the main forces driv
the thermal expansion. Usually, in ‘‘normal’’ crystals, thevn
phonon frequencies drop at volume expansion. Thus, the
ond term in Eq.~3! drives the crystal to extend, whereas t
first one keeps the lattice stable~up to the melting limit!. The
thermodynamic equilibrium condition is written as

]F

]V
5

]U

]V
2T

]S

]V
5PS2Tgn50, ~4!

wherePS is the static internal pressure andgn is the volume-
dependent Gru¨eneisen constant defined as

gn52(
n

1

vn

]vn

]V
.

In a normal crystal, the positive value ofgn is related to the
anharmonicity of the interatomic forces: the curvature of
interatomic potentials diminishes at increasing interatom
separation.

It is worth emphasizing thatgn may be very small and
even negative in the so-called framework crystal structu
which are built up as a frame of stiff corner-connected po
hedra. In some cases such crystals do manifest the neg
thermal expansion.9 Such an ‘‘unusual’’ situation is related
to the so-called rigid unit modes~RUM’s!, which exist in the
phonon spectra of the framework crystals and which invo
the rotations or translations of the rigid polyhedra. The
modes are of low frequency. Thus, they give large contri
tions to thegn value. As a rule, RUM’s have positive deriva
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4038 PRB 59M. B. SMIRNOV
tives]v/]V. It was first noted in Ref. 9. This inherent prop
erty of RUM’s can be explained by the intrapolyhedr
tension contribution.6

The high-frequency modes in a framework crystal ha
the negative~normal! value of]v/]V. Thus, the total mag-
nitude of gn is determined as a subtle balance between
negative RUM’s contributions and the positive ones from
high-frequency normal modes. The result depends on h
many RUM’s are there in the phonon spectrum of the crys

The detailed analysis10 shows that almost all the acoust
branches and the considerable part of the low-frequency
tic branches inb quartz consist of RUM’s. Ina quartz many
of them transform into quasi-RUM~QRUM!. The latter re-
semble RUM’s but they involve a small amount of polyhed
deformations. They also have]v/]V.0.

The negativegn value should induce negative therm
expansion, e.g., volume contraction at heating. It would
inevitably so, if there were noV-h coupling. In general, the
thermally induced crystal structure evolution involves n
only the volume variation but also the microscop
relaxation—the shifts of the mean atomic positions. This
laxation should be taken into account by the minimization
the free energy with respect to internal structural paramet
Let us recall that in the case of quartz only theh variation is
of primary importance. Thus, in addition to condition~4!,
one should consider the condition

]F

]h
5

]U

]h
2T

]S

]h
5 f h2Tgh50, ~5!

where f h is the force conjugated toh and gh is the corre-
sponding Gru¨eneisen parameter

gh52(
n

1

vn

]vn

]h
.

As it was noticed above, the dependenceU(h) has a double-
well form atV,Vc . There are two minima ath56h0 cor-
responding to the two Dauphine twins. For definiteness,
us consider thea-phase corresponding toh0.0. It should be
noted that the vibration along theh coordinate is a typica
QRUM ~this is the soft mode driving the SPT! and its fre-
quency would drop when the structure varies fromh5h0 to
h50. One can expect that all other QRUM’s should have
similar behavior. Hence, the corresponding contributions
these modes ingh value would be negative. So it can b
concluded that the entropy contribution to the free ene
@second term in Eq.~1!# causes the thermally averageh̄ to
decrease at increasing temperature.

Taking into account the strong coupling betweenV andh
variation one has to consider the conditions~4! and ~5!
jointly. It can be seen from Fig. 1 that the decrease oh
causes the decrease ofPS thus provoking an additional vol
ume expansion~or damping the negative thermal expansio!.
The total effect results from the competition between th
two factors. A quantitative study of the situation must i
volve an accurate six-dimension free-energy function opti
zation. Owing to its conceptual simplicity, the adopted TP
enables us to solve this problem without any additional
proximations.

We have done an accurate free-energy minimization w
respect to all the six independent structural parameters o
e
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quartz lattice. The phonon contribution was calculated
summation over the 73737 grid in the Brillouin zone~BZ!.
~Further augmentation of the number of points shifts the f
energy scale and only slightly changes its relative value!
For the optimization we have used a gradient method ev
ating the derivatives]v/]V and]v/]q by the explicit ana-
lytic differentiation of the dynamical matrix.

A. Quasiharmonic approximation

First we have studied the thermal expansion ofa quartz
starting from zero temperature by using the quasiharmo
definition of the free energy@Eq. ~1!#. We have found the
zero-temperature thermodynamic equilibrium configurat
(V5120.60 Å3) not far from the static equilibrium one (V
5119.38 Å3). The zero-temperature free-energy minimu
corresponds to static pressure ofPS59.1 kbar. The calcu-
latedV(T) andh(T) dependencies are shown in Fig. 2. T
obtainedV-h QH trajectory is displayed in Fig. 1~b! by bold
dotted lines.

Becausea quartz has a rather deep potential energy m
mum one could expect thata quartz should behave at the
mal expansion as a normal crystal in which the phonon th
mal pressure@second term in Eq.~4!# drives the crystal to
expand, whereas the static internal pressurePS is positive.
However, this is not the case ina quartz. One can see from
Fig. 1~b! that with increasing temperaturePS diminishes and
becomes negative atT.330 K. This originates from the
negative value ofgn @see Eq.~4!#. To elucidate such an
unusual situation, let us consider thegn(v) frequency distri-
bution defined as

FIG. 2. Volume thermal expansion~a! and tilt angle versus tem
perature variation~b! in quartz. The theoretical results are shown
dashed lines~QH approximation! and by solid lines~IAO approxi-
mation!. The scattered experimental data are from Ref. 7~diamond
marks! and from Ref. 8~bold squares!.



.

ta
a

ab
’s

o
ilt

th
f

th

nd

th

ion

of
e-
e
e
ed

H

cies
no

only
and
nsi-
ni-
ee-

n
ally

n

gy

t
i-

F
on-
g

sum

har-
-
-
to
e
the
ich

a-

to
its
ns,
nd

PRB 59 4039LATTICE DYNAMICS AND THERMAL EXPANSION OF QUARTZ
gV~v!52(
n

1

vn

]vn

]V
d~vn2v!. ~6!

The calculatedgn(v) functions are shown in Fig. 3
Comparing those calculated atT50 andT5300 K, one can
see that they change very little with the variation of crys
geometry. It is seen that all the modes whose frequencies
lower than 400 cm21 have ]v/]V.0. The eigenvector
analysis shows that all those modes involve a consider
amount of SiO4-tetrahedra rotations. Thus, they are QRUM
~in notation of Ref. 9!.

As it was mentioned above, the distinguished feature
the thermal expansion ofa quartz is the decrease of the t
angle with increasing temperature. The calculatedh ~T!
dependence presented in Fig. 2 is in accordance with
Such a decrease ofh is caused by the positive value o
]v/]h. The calculatedgh(v) distribution@similar togn(v)
in Eq. ~6!# is also presented in Fig. 3. One can see that
same low-frequency QRUM’s cause bothgn and gh to be
negative.

The calculations show that the crystal volume expa
despite the negativegn value. It is the decrease ofh which
causes~due to the strongV-h coupling! the volume expan-
sion of a quartz. Our calculations enable us to estimate
coefficient of such a coupling defined as

]h

]V
52

1

v2

]2U

]V]h
.

FIG. 3. Calculated Gru¨eneisen parametersgn andgh as a func-
tion of phonon frequency at selected temperature ina quartz.
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In a quartz it is equal to about 5°/A3. Such a rather strong
coupling overcomes the tendency to volume contract
coming from the negativegn value.

The high and positive QRUM values of]v/]h and the
considerableh(T) variation lead to the essential softening
the low-frequency QRUM’s at heating. The numerical r
sults show that the zone-boundary acoustic modes at thM
and A points of BZ are the softest. This peculiarity of th
phonon spectra of quartz was early establish
experimentally11 and theoretically.12 In our calculations, this
softening leads to the vanishing ofvTA(A) at T5T1
5430 K. Beyond this temperature, strictly speaking, the Q
approximation ceases to be applicable.

The disappearance of some harmonic phonon frequen
does not mean a destabilization of the lattice and by
means indicates the existence of a phase transition. This
means that those vibrations are essentially anharmonic
are governed by the double-well potential. The phase tra
tion condition still should be tested by the free-energy mi
mum investigation. The question is how to calculate the fr
energy contributions of these anharmonic~with imaginary
harmonic frequencies! modes. In the case of quartz we ca
not neglect these contributions because those harmonic
unstable modes spread over a considerable~with a nonzero
volume! part of the BZ. Whenv→0 such a mode gives a
infinite negative contribution to the QH free-energy@see Eq.
~3!#. As a result, in the QH approximation the free-ener
minimum geometry fall very quickly froma to b configura-
tion. Hence, to treat properly the free energy of quartz aT
.T1 , one should go beyond the limits of the QH approx
mation.

B. Independent anharmonic oscillators

The similar situation was found in Ref. 13 for the CaRb3
lattice. It was proposed there to account the free-energy c
tributions of the harmonically unstable QRUM’s by treatin
these modes as independent anharmonic oscillators~IAO’s!.
This means that the potential energy is assumed to be a
of all the phonon mode contributions

DU~q!5(
n

wn~qn!. ~7!

For the harmonically stable modes, one can still use the
monic expressionw(q)5 1

2 v2q2. For the essentially anhar
monic modes~in particular for those with imaginary har
monic frequencies! the high-order terms must be taken in
account. We have studied theDU(q) dependence for som
unstable modes of quartz at several volume values. All
potentials were found to have a double-well shape wh
may be described by the expression

w~q!5
1

2
lq21mq4. ~8!

The negativel values are obtained by the dynamical m
trix diagonalization. The anharmonicity parameterm should
be estimated numerically. This value varies from mode
mode. But its variation is not too significant as well as
volume dependence. To simplify the numerical calculatio
we assume them parameters to be volume independent a
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4040 PRB 59M. B. SMIRNOV
equal to the average value for all the modes. It is more c
venient ~see the Appendix! to use instead ofm another pa-
rameter Tm5h4/3m1/3. According to our calculations, th
mean value of this parameter isTm525 K in thea phase.

The thermal expansion ofa quartz was studied within the
IAO approximation by using the optimization of the fre
energy defined by Eqs.~2!, ~7!, and ~8!. The details of the
calculations are discussed in the Appendix. Theh(T) and
V(T) dependencies thus obtained are presented in Fig
The correspondingV-h IAO trajectory is displayed in Fig.
1~b! by the bold dotted line. One can see that all the m
tendencies revealed within the QH approximation are s
valid in the IAO approach. But now the crystal is more sta
with respect to thea-b transformation. We have found th
free energy minimum in thea configuration at increasing
temperature up toTc5850 K. The calculatedV(T) andh(T)
dependencies agree well with the experimental data. AT
→Tc we have revealed the situation typical for a first-ord
SPT: the free-energy well becomes more shallow and m
flat. At T.850 K there is no minimum ata-configuration.
The calculatedF(h) curves forT around 850 K are pre
sented in Fig. 4.

Thus, atT approachingTc , the entropy contribution pre
dominates over the potential one, and the lattice configu
tion falls down intob phase. It is worth emphasizing that w
are dealing with the thermally averaged lattice configu
tions. They by no means correspond to the static equilibr
geometry. The obtaineda-b ‘‘geometry jump’’ @displayed
by the arrow in Fig. 1~b!# takes place at rather high temper
ture, when many phonon modes are essentially anharmo

IV. DISCUSSION

A. Thermal expansion of a quartz

The main factor driving thea-phase structure variation a
heating is the rotation of the SiO4 tetrahedra towards thei
b-phase positions. The volume change follows this proc
thus keeping the static pressure small. This also account
the relevant Si-O bond shortening. The calculated temp
ture dependence of Si-O bond lengths and Si-O-Si angle
compared with the experimental data in Fig. 5. One can
that all the main tendencies are well reproduced. The sh
ening of the Si-O bond length at thea-quartz thermal expan

FIG. 4. Free-energy of thea quartz as a function of tilt angle a
selected temperatures around the critical point (Tc5850 K).
n-

2.

n
ll
e

r
re

a-

-
m

ic.

ss
for
a-
re
e

rt-

sion was often considered as an evidence of existenc
some special mechanisms of the Si-O bond stabilization
by means of the bond-angle interaction3 either by means of
the ionicity augmentation.14 The model used in this stud
does not include any special terms. It explains the obser
Si-O bond shortening at heating as a purely dynamic eff
the SiO4-tetrahedra rotation towards theirb phase orientation
leads to the essential RUM’s softening and to the relev
entropy augmentation. Thus, it becomes more and more p
erable despite of an inevitable potential energy incre
caused by the concomitant bond length shortening. The la
causes the intratetrahedron tension and leads to a vol
expansion.

B. The thermodynamic equilibrium and crystal structure
of b phase

The problem of anharmonicity is much more difficult
the search for the free-energy minimum in theb phase,
where a considerable part of the phonon modes is harm
cally unstable. Now not only the above mentioned zon
boundary modes but whole acoustic branches and zo
center lowest-frequencyB1 ~‘‘soft mode’’! have imaginary
harmonic frequencies. The study of the potential ene
variation at large-amplitude atomic displacements has sh
that the true potentials of all these unstable modes still h
the double-well shape. The potential curves of some s
modes are shown in Fig. 6.

The anharmonicity is more pronounced inb phase than in
a phase. Numerical evaluations of the anharmonicity coe
cient gives forb phase the average value ofTm536 K. We
have applied the same IAO model and, by using this value
Tm have found the free-energy minimum atT.Tc . These
results are presented in Fig. 7.

There is noV-h coupling in theb phase: the averag
value of the tilt angle drops toh50 atT5Tc . Therefore, in
b quartz the negativegV value actually drives the negativ

FIG. 5. Temperature dependence ofa-quartz Si-O bond lengths
~a! and Si-O-Si angle. The theoretical results are shown by das
lines ~QH approximation! and by solid lines~IAO approximation!.
The scattered experimental data are from Ref. 8.
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PRB 59 4041LATTICE DYNAMICS AND THERMAL EXPANSION OF QUARTZ
thermal expansion. The calculatedV(T) dependence atT
.Tc is shown in Fig. 2. Our calculations show~see Fig. 7!
that at further heating~at T.T251100 K! there is no free-
energy minimum at all. This does not coincide with the e
perimentally stated melting limit of 1400 K. However, this
a qualitative conclusion only since such a large-scale am
tude atomic motion, as observed in theb phase at high tem
perature, makes the applicability of the IAO approximati
questionable.

The obtained results obviously confirm the opinion th
theb phase is a dynamic structure. The atomic vibrations
essentially anharmonic. Many vibrational modes occur int
double-well potential. The theoretical study of such vib
tions lies beyond the QH approximation. In particular,
seems ambiguous to treat the INC phase generation in
framework of a quasiharmonic theory when the therm
atomic vibrations are essentially anharmonic near thea-b
phase transition in quartz.

C. Role of the intrapolyhedron tension in the dynamics
of the framework structures

According to the above results the following properti
could be considered as inherent for the framework structu
built up from the corner-shared rigid polyhedra:~a! there are
a number of RUM’s and QRUM’s in the phonon spectra,~b!

FIG. 6. The potential energy curves for some anharmonic p
non modes inb quartz.

FIG. 7. Free-energy of theb quartz as a function of unit cel
volume at selected temperatures.
-
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the structure could undergo a thermally induced SPT, so
the rigid polyhedra are tilted in the low-temperature pha
the tilt angle coordinateh is, as a rule, the order paramet
~we imply h50 in the high-symmetry phase!, ~c! there ex-
ists a considerable coupling between theV andh variations
]2U/]V]h.0, ~d! the derivatives]v/]V and ]v/]h are
positive for all the RUM’s and QRUM’s.

The true temperature-induced crystal structure evolut
would result from the minimal free energy condition as
balance between the potential energy and entropy contr
tions. The latter@second term in Eq.~3!# decreases, when th
mean phonon frequency decreases, and becomes more
portant with temperature increase. Therefore, pointd is
rather important. It can lead to the nonmonotone volu
versus temperature dependence~and even to the negativ
thermal expansion!, and causes the meanh value to drop
quickly at heating. This provides the softening of ma
RUM’s.

A quite general explanation can be given for the pointd.
Actually, being packed within a framework structure, t
rigid polyhedra are essentially compressed relatively th
free state geometry. For example, the adopted poten
model predicts a free SiO4 tetrahedron to be in equilibrium a
Si-O bond lengthR51.663 Å. Thus, within the crystal lat
tice ]U/]R,0. We denote this value as internal tension.

FIG. 8. The calculated values of the integralf (p).

FIG. 9. The free-energy contribution of the anharmonic doub
well potential mode,Z5cw(cx), as a function ofx5hv/T at dif-
ferent c values in comparison with the harmonic dependenceZ
51/x.
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4042 PRB 59M. B. SMIRNOV
By definition, RUM does not involve the polyhedro
bond length variation. So, if the RUM’s amplitude isq, one
can conclude that]R/]q'0. At the same time, the secon
derivative]2R/]q2 is, as a rule, positive and not small. Th
latter issue follows from a pure geometrical considerat
taking into account that the RUM is a rotation of the po
hedra. The contribution of the intra-polyhedron potential
the squared RUM’s frequency can be written as

v2}
]2U

]R2 S ]R

]q D 2

1
]U

]R

]2R

]q2 .

Since the first term of the above expression vanish
whereas the second one is negative, the intrapolyhedron
teraction destabilises the RUM’s. This effect comes from
internal tension and would diminish atR increasing. There
are two ways for polyhedra to swell: in the course of a latt
expansion and by means of tilting. That is why the pointd is
of general validity.

V. CONCLUSIONS

The LD approach based on the TPM enables us to exp
all the main peculiarities observed in the thermal expans
and in thea-b SPT in quartz. The following unusual prop
erties related to the thermal expansion of thea phase are
revealed: the vibrational pressure tries to compress the la
whereas the static pressure acts to extend it; atT.430 K
some of phonon modes are essentially anharmonic and
imaginary harmonic frequencies. The calculations show
many vibrational modes obey the double-well potential. T
IAO approach provides a meaningful estimation of the c
tributions of such modes to the free-energy.

This theory confirms the existence of the first-order S
in quartz atTc near 850 K. Theb phase is found to be
thermodynamically~but not statically! stable at larger vol-
ume and at higher temperature. Thus, theb phase~and even
thea phase atT.430 K! is an essentially dynamic structur
The theory does predict the negative thermal expansio
the b phase. The above peculiarities are related to the th
factors: ~i! the phonon spectrum of quartz includes a gr
part of RUM’s and QRUM’s providing the dominant contr
bution to the free energy,~ii ! there is a strong coupling be
tween the volume variation and the soft-mode atomic d
placements in thea phase,~iii ! there are the intratetrahedro
tensions which determine the RUM’s spectrum versus st
ture variation dependence.
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APPENDIX: EVALUATION OF THE DOUBLE-WELL
POTENTIAL CONTRIBUTION TO THE FREE-ENERGY

WITHIN THE IAO-APPROXIMATION

By substituting Eq.~7! into Eq. ~2! and after integration
over the impulses one obtains
n

s,
in-
e

e

in
n

ce

ve
at
e
-

T

in
ee
t

-

c-

-
-

is
r-
r

F5U2T(
n

ln Zn , ~A1!

where

Zn5
1

h
A T

2p E e2fn~q!/Tdq. ~A2!

To calculate this integral with the potentialw(q)5 1
2 lq2

1mq4, let us introduce the following notations:

v5sgn~l!Aulu, x5
hv

T
, c5S T

Tm
D 3/4

,

and Tm5h4/3m1/3.

Thus defined,v coincides with the harmonic frequency
l.0, and is negative at negativel value. Then the Eq.~A2!
can be rewritten as follows:

Z5cw~cx!, ~A3!

where functionw is defined as

w~ t !5et4f ~ t2! ~A4!

and f (p) is the integral

f ~p!5
1

A2p
E e2~x21p!2

dx, ~A5!

which can be easily calculated by means of the Gau
Christoffel method. The thus obtained functionf (p) is
shown in Fig. 8. It was used in our numerical calculation

Let us now consider the dependence of theZ value on the
quasiharmonic squared frequencyl and on the anharmonic
ity coefficientm. In the Eq.~A3! the multiplierc is the factor
of anharmonicity. Thus,c5` ~e.g.m50! corresponds to the
pure harmonic case. At this limit one should obtain the cl
sic expressionZ51/x. The value ofZ as a function ofx is
shown in Fig. 9 for differentc values. One can see that fo
any c valueZ→1/x if x→`. This corresponds to the high
frequency region wherel@m, and one can neglect the an
harmonicity. At the same time atc→` the curve Z(x)
nearly coincides with the 1/x curve for allx.0.

The singularity of the harmonic dependenceZ51/x at x
approaching zero restricts the applicability of the QH a
proximation in the case of a harmonically unstable mo
whenx<0. Figure 8 illustrates how the IAO approach pr
vides a smooth extension of the free energy definition i
the negativel region.
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