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Lattice dynamics and thermal expansion of quartz
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The mechanism of the thermal expansion anddath@phase transition of quartz are jointly studied within the
framework of a lattice-dynamical treatment using the pair-wise potential by Tsuneyaki[Phys. Rev. Lett.
61, 869 (1988]. This shows that the essentially anomalous thermal expansion of quartz originates from the
low-frequency phonon modes most of which have negativee@isen coefficients. The main factor driving
the a-phase structure variation at heating is the rotation of thg &tahedra towards the-phase positions.
The volume variation follows this process thus keeping the static pressure small. The model reveals that at
T>430K a number of the phonons have imaginary quasiharmonic frequencies being governed by a double-
well potential. This result does not suggest any large-scale lattice instability, and just indicates that the relevant
vibrations are essentially anharmonic and that the actual crystal structure is of a dynamically averaged char-
acter. The contribution of such modes to the free energy has been included by the extension of the quasihar-
monic theory proposed by Boyer and Hard8hys. Rev. B24, 2577 (1981)]. Then the accurate free-energy
optimization with respect to all the structural parameters provides-fjeartz structure at<T.. We reveal
that there is no free-energy minimum in tlestructure atT>T.~850K, but it exists in the8 phase at
850 K< T< 1100 K. Taking into account the discovered negativegBrisen constants our approach provides
a natural explanation for the negative thermal expansion oftheartz.[S0163-18289)02505-9

I. INTRODUCTION sitions Si(u,0,0 and O(x,y,2. Thus, the static potential en-
ergy (PE) of the latticeU is a function of six independent
Structural coordinates. It was revealed that only two of the

; . . - structural coordinates vary significantly in course of the ther-
microscopic nature is not yet completely clarified. Moreover,

the true nature of the high-temperatyBephase remains an mal expansion and at-f3 phase trgnsmon. Th“? are the
unanswered and existing problem. volume and the S|@tetrahgdra rotation. The Iatter is .closely
Recently a model for simulation of the structural and dy-related to the soft-mode eigenvector and in the vicinity of the
namical properties of silica was proposed by Tsuneyukphase transition it is near-parallel to the vector of the
et all This model represents the potential function of thea;-8-«a, atomic displacementsAll the other structural de-
condensed silica as a sum of pair-wise interactions describegtees of freedom involve considerable amount of the
by simple analytic expressions with the parameters detersjO,-tetrahedra distortions and vary insignificantly because
mined from theab initio molecular cluster study. Below we those tetrahedra are rather stiff. Thus, in our study we shall
shall refer to this model as the Tsuneyuki potential modekycys our attention on two structural coordinates: the unit
(TPM). Molecular dynamic¢MD) simulations using TPM cell volumeV, and the Si@tetrahedra tilt angle;, defined

beautifully agree with the observed properties of tg :

SPT: both the critical temperature and the volume increastehrongh the parametetsx,y,zby the expression frpm Ref. 3.

were well reproduced. _ _'_I'he depend_ence dd from V and » was _studled byab
initio methods in Refs. 4, 5, and by TPM in Ref. 6. It was

However, the MD method is not quite suitable if one tries .
to reveal the microscopic nature of the phenomena. MD reshown that the thermally and pressure-induced crystal struc-

sults are of statistically average character and depend essdH!® evolution necessarily involves a strong coupling be-
tially on the number of particles taken into consideration.Ween these coordinates. Itis rather instructive to regard the
Thus, it is not easy to conclude from these results the micro! (V. ) function to be defined by minimization with respect
scopic pattern of the phenomena under studly. of all other coordinates. This function is plotted in Fig. 1.
The lattice dynamic$LD) modeling dealing with the in-  The two deep valleys on the(V, ») surface relate to the
finite regular crystal lattice is free of these shortcomings in-Dauphine twins. Their minima correspond to g and a,
herent to the MD method. The central objects of the LDstatic equilibrium configurations of quartz. The cross section
theory are phonon modes which are both experimentally obwith =0 providesU(V) curve for theg-phase configura-
servable and microscopically obvious. The LD approach betion. It is worth noting that there is no surface minimum
comes a very powerful method if one can extend it by aalong this curve, its lowest energy poigitis a saddle point
proper consideration of the anharmonicity. In this paper, theinstable in they direction. The dotted line in Fig.(h) is the
results of the LD treatmeriusing TPM of the thermal ex-  get of minima with respect tg at V=const. This line rep-
pansion andx- SPT in quartz are presented. resents the structure evolution at the static negative pressure
regime which involves the PE minimization with respect to
all the structural parameters ®t=const. One can see that
The crystal structure ofr quartz (space groug?32,) is  along this linea configuration transforms int@ configura-
specified by the unit cell dimensiorsc and the atomic po- tion at pointP. This corresponds to the volume vallde

Despite the number of experimental and theoretical stud
ies of thea-B structural phase transitigfsPT) in quartz, its

Il. STATIC ENERGY CONSIDERATION
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U (102 ) . THERMODYNAMIC EQUILIBRIUM ANALYSIS
60 At finite temperature the equilibrium structure is deter-
mined by the minimization of the free energg=U—-TS
401 (unlike the onlyU in the static energy approactere and
20 A N below we use in all the formulae the temperatdirén an
\Q‘Q‘ ,,,,"I' energy scale omitting the Boltzman constant. Within the
ol \g,",/:{",:% guasiharmonic(QH) approximation, which is the most
= s widely used in the theory of the thermal expansion, the en-
tropy contribution is defined by the, phonon frequencies:

F=U-T>, In[2sinhw,/2T)]. @

Volume increment (%) -20 -40 ) ) ) )
Tiltangle (degree) Since the phenomena under consideration take place at

high temperature, one can neglect the quantum effects and
use the classic expression
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é FHAO-trajectory where g, and p, are vibrational coordinates and impulses,
§ [ QR-trajectory K(p) is the kinetic energy, andU=U(q)—U(0). Within

the framework of the QH approximation, after integration
over impulses, Eq(2) assumes the form

20

Tilt angle (degree) F=U- TE In(T/'hw,). 3
n

FIG. 1. Potential energy of quartz as a function of volume and
tilt angle. (a) The U(V, 5) surface.(b) I1zoenergy contour lines on This expression enables us to reveal the main forces driving
theV- 7 plane; the dashed line correspond®tg=0, the dotted line  the thermal expansion. Usually, in “normal” crystals, the
corresponds té, =0, @; anda, points are ther-phase static equi- phonon frequencies drop at volume expansion. Thus, the sec-
librium configurations, thé&-point is the energy minimung-phase  ond term in Eq(3) drives the crystal to extend, whereas the
configuration, theP point corresponds to the volume value when first one keeps the lattice stalilgp to the melting limit. The

the double-minima/(») function transforms into a one-minimum  thermodynamic equilibrium condition is written as
one. The bold dotted lines display the calculated thermal expansion

geometry evolution. The critical temperature values Bge 0, T, JF oU 9S
=430K, T,=850K, T,=1100K. The arrow(denoted byT,) NN T N Ps—Tvy,=0, (4)
shows the “geometry jump” at the-8 SPT.

wherePg is the static internal pressure amglis the volume-

—V, at which the double-welU(7) curve transforms into a dependent Greneisen constant defined as
one-minimum one.

It was showf that the LD description of the-g trans- y,=—> — _
formation based on the static negative pressure regime en- ! n wy IV
ables us to accurately reproduce the variation of all structuralln a normal crvstal. the positive value of is related to the
and dynamical properties of quartz including such intriguing 1 crystal, the positive valu ?L'

. : ) . anharmonicity of the interatomic forces: the curvature of the
one as the negative Poisson ratios. At the same time this . . S . U )
. . Ihteratomic potentials diminishes at increasing interatomic

approach essentially overestimates giphase volume/,.:

) . separation.
it predicts V/—Vo)/V, of 13% whereas the observed s \orth emphasizing thay, may be very small and

Va'_ug'S is about 6%(Vy is the unit cell volume af =0).  gyen negative in the so-called framework crystal structures,
Evidently, the main failure of the static approach is the neyyhich are built up as a frame of stiff corner-connected poly-
glect of the atomic thermal vibrations which are anharmonighegra. In some cases such crystals do manifest the negative
and play an important role in the mechanism of éth8 SPT.  thermal expansiof.Such an “unusual” situation is related
Consequently, this approach is incapable of describing the the so-called rigid unit modé®UM'’s), which exist in the
thermal expansion. The present lattice-dynamical study iphonon spectra of the framework crystals and which involve
aimed to overcome the shortcomings inherent to the statithe rotations or translations of the rigid polyhedra. These
consideration and to clarify the role of thermal vibrations inmodes are of low frequency. Thus, they give large contribu-
this SPT. tions to they, value. As a rule, RUM'’s have positive deriva-

1 dw,
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tivesdw/dV. It was first noted in Ref. 9. This inherent prop-
erty of RUM’s can be explained by the intrapolyhedron
tension contributiof.

The high-frequency modes in a framework crystal have
the negativgnorma) value of dw/dV. Thus, the total mag-
nitude of vy, is determined as a subtle balance between the
negative RUM’s contributions and the positive ones from the
high-frequency normal modes. The result depends on how
many RUM'’s are there in the phonon spectrum of the crystal.

The detailed analysi8 shows that almost all the acoustic
branches and the considerable part of the low-frequency op-
tic branches i quartz consist of RUM'’s. Irw quartz many
of them transform into quasi-RUNQRUM). The latter re-
semble RUM’s but they involve a small amount of polyhedra
deformations. They also havks/dV>0.

The negativey, value should induce negative thermal
expansion, e.g., volume contraction at heating. It would be
inevitably so, if there were n¥-» coupling. In general, the
thermally induced crystal structure evolution involves not
only the volume variation but also the microscopic
relaxation—the shifts of the mean atomic positions. This re- U S
laxation should be taken into account by the minimization of 0 100 200 300 400 500 600 700 800 900 10001100
the free energy with respect to internal structural parameters. T (K)

Let us recall that in the case of quartz only theariation is
of primary importance. Thus, in addition to conditig#),
one should consider the condition
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FIG. 2. Volume thermal expansidn) and tilt angle versus tem-
perature variatioitb) in quartz. The theoretical results are shown by
dashed linegQH approximatioh and by solid linegIAO approxi-
JF  oU S mation. The scattered experimental data are from Refli@mond

% = %— T % =f,—Ty,=0, (5) mark9 and from Ref. 8bold squares

wheref, is the force conjugated tg and v, is the corre- g art7 |attice. The phonon contribution was calculated by
sponding Greneisen parameter summation over the X 7 x 7 grid in the Brillouin zongBZ).
1 dw, (Further augmentation of Fhe number of p_oints sh_ifts the free
— i energy scale and only slightly changes its relative values.
n wn J7 For the optimization we have used a gradient method evalu-

As it was noticed above, the dependehtiey) has a double-  ating the derivativegw/dV and dw/dq by the explicit ana-
well form atV<V,. There are two minima ay= =+ 7, cor- lytic differentiation of the dynamical matrix.
responding to the two Dauphine twins. For definiteness, let
us consider ther-phase corresponding t@g,>0. It should be
noted that the vibration along the coordinate is a typical
QRUM (this is the soft mode driving the SPand its fre- First we have studied the thermal expansiomnofuartz
guency would drop when the structure varies frgm 7, to  starting from zero temperature by using the gquasiharmonic
»=0. One can expect that all other QRUM'’s should have thedefinition of the free energyEq. (1)]. We have found the
similar behavior. Hence, the corresponding contributions okero-temperature thermodynamic equilibrium configuration
these modes iny, value would be negative. So it can be (V=120.60 &%) not far from the static equilibrium onev(
concluded that the entropy contribution to the free energy= 119.38 &8%). The zero-temperature free-energy minimum
[second term in Eq(1)] causes the thermally averageto  corresponds to static pressure B§=9.1kbar. The calcu-
decrease at increasing temperature. latedV(T) and »(T) dependencies are shown in Fig. 2. The
Taking into account the strong coupling betwaéand»  obtainedV-» QH trajectory is displayed in Fig.(h) by bold
variation one has to consider the conditio@® and (5)  dotted lines.
jointly. It can be seen from Fig. 1 that the decreasexyof Becauser quartz has a rather deep potential energy mini-
causes the decrease P§ thus provoking an additional vol- mum one could expect that quartz should behave at ther-
ume expansiofor damping the negative thermal expangion mal expansion as a normal crystal in which the phonon ther-
The total effect results from the competition between thesgnal pressurdsecond term in Eq(4)] drives the crystal to
two factors. A quantitative study of the situation must in- expand, whereas the static internal presdeiges positive.
volve an accurate six-dimension free-energy function optimi-However, this is not the case wquartz. One can see from
zation. Owing to its conceptual simplicity, the adopted TPMFig. 1(b) that with increasing temperatuRg diminishes and
enables us to solve this problem without any additional apbecomes negative aI>330K. This originates from the
proximations. negative value ofy, [see Eq.(4)]. To elucidate such an
We have done an accurate free-energy minimization withunusual situation, let us consider thg(w) frequency distri-
respect to all the six independent structural parameters of theution defined as

Y=~

A. Quasiharmonic approximation
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L ' In o« quartz it is equal to about 5°PASuch a rather strong
coupling overcomes the tendency to volume contraction
coming from the negative, value.

T=0 The high and positive QRUM values @fw/dn and the
considerabley(T) variation lead to the essential softening of
J_nﬂ? the low-frequency QRUM'’s at heating. The numerical re-

sults show that the zone-boundary acoustic modes alithe
and A points of BZ are the softest. This peculiarity of the
phonon spectra of quartz was early established
experimentally* and theoretically? In our calculations, this
softening leads to the vanishing abra(A) at T=T;
T S T R S =430K. Beyond this temperature, strictly speaking, the QH
approximation ceases to be applicable.

The disappearance of some harmonic phonon frequencies
T=300K does not mean a des_tabilization of the Iattic_e_ and k_)y no

means indicates the existence of a phase transition. This only

means that those vibrations are essentially anharmonic and
: s Ll | are governed by the double-well potential. The phase transi-
” 5:_5 i tion condition still should be tested by the free-energy mini-

i mum investigation. The question is how to calculate the free-
energy contributions of these anharmoiwith imaginary
harmonic frequencigsnodes. In the case of quartz we can
@) not neglect these contributions because those harmonically

O S unstable modes spread over a consider@bith a nonzero
0 200 400 600 80 1000 1200 volume part of the BZ. Whernw—0 such a mode gives an
infinite negative contribution to the QH free-enelgge Eq.
(3)]. As a result, in the QH approximation the free-energy
FIG. 3. Calculated Greneisen parametets, andy,, as a func- minimum geometry fall very quickly frona to 8 configura-

Frequency (cm™)

tion of phonon frequency at selected temperature buartz. tion. Hence, to treat properly the free energy of quartZ at
>T,, one should go beyond the limits of the QH approxi-
mation.
1 dw,
W(w)==2 =~ 5wy~ w). (®) o
n @p B. Independent anharmonic oscillators

The similar situation was found in Ref. 13 for the CaRbF
lattice. It was proposed there to account the free-energy con-
tributions of the harmonically unstable QRUM'’s by treating
Ithese modes as independent anharmonic oscilléta3’s).
is means that the potential energy is assumed to be a sum
all the phonon mode contributions

The calculatedy,(w) functions are shown in Fig. 3.
Comparing those calculated a0 andT=300K, one can
see that they change very little with the variation of crysta
geometry. It is seen that all the modes whose frequencies ap_&%1
lower than 400 cm® have Jw/dV>0. The eigenvector °
analysis shows that all those modes involve a considerable
amount of SiQ-tetrahedra rotations. Thus, they are QRUM’s AU(Q)=2 on(dy). 7)

(in notation of Ref. 9. n

As it was mentioned above, the distinguished feature ofoy the harmonically stable modes, one can still use the har-
the thermal expansion af quartz is the decrease of the tilt ,5nic expressionp(q) = %wzqzl For the essentially anhar-
angle with increasing temperature. The calculatedT)  monic modes(in particular for those with imaginary har-
dependence presented in Fig. 2 is in accordance with thignonic frequencigsthe high-order terms must be taken into
Such a decrease of is caused by the positive value of 5-count. We have studied theU(q) dependence for some
dw/d7. The calculatedy,(w) distribution[similar to y,(o)  ynstable modes of quartz at several volume values. All the
in Eq. (6)] is also presented in Fig. 3. One can see that the,gientials were found to have a double-well shape which

samellow-frequency QRUM'’s cause both and vy, to be may be described by the expression
negative.

The calculations show that the crystal volume expands 1, .
despite the negative, value. It is the decrease of which ¢(Q)=5Aq"+uq™. (8)
causeddue to the strony-» coupling the volume expan-

sion of a quartz. Our calculations enable us to estimate the The negative\ values are obtained by the dynamical ma-
coefficient of such a coupling defined as trix diagonalization. The anharmonicity parameteshould

be estimated numerically. This value varies from mode to

5 mode. But its variation is not too significant as well as its

ﬂ: _ i 9°U volume dependence. To simplify the numerical calculations,

Y w?® NIy we assume thew parameters to be volume independent and
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FIG. 4. Free-energy of the quartz as a function of tilt angle at
selected temperatures around the critical point850 K).

equal to the average value for all the modes. It is more con- TK

venient(see the Appendjxto use instead ofc another pa-

rameter T, =h*3u%. According to our calculations, the @

mean value of this parameterTs,=25K in the « phase. lines (QH approximation and by solid line{IAO approximation.
The thermal expansion ef quartz was studied within the 1 scattered experimental data are from Ref. 8.

IAO approximation by using the optimization of the free

energy defined by Eq42), (7), and (8). The details of the

FIG. 5. Temperature dependencemsfluartz Si-O bond lengths
and Si-O-Si angle. The theoretical results are shown by dashed

, , : i sion was often considered as an evidence of existence of
calculations are discussed in the Appendix. T@) and  some special mechanisms of the Si-O bond stabilization: or
V(T) dependencies thus obtained are presented in Fig. %y means of the bond-angle interacfigither by means of

The correspondiny/-7 IAO trajectory is displayed in Fig. tne jonicity augmentatioift The model used in this study

1(b) by the bold dotted line. One can see that all the mainyoegs not include any special terms. It explains the observed
ten_de_nmes revealed within the QH approximation are stillsi-0 bond shortening at heating as a purely dynamic effect:
valid in the IAO approach. But now the crystal is more stabley,e sig-tetrahedra rotation towards thephase orientation

with respect to thex- transformation. We have found the 1645 1o the essential RUM'’s softening and to the relevant
free energy minimum in ther configuration at increasing enropy augmentation. Thus, it becomes more and more pref-
temperature up =850 K. The calculate®(T) and7(T)  graple” despite of an inevitable potential energy increase
dependencies agree well with the experimental datal At ¢4ysed by the concomitant bond length shortening. The latter

— T, we have revealed the situation typical for a first-orderca ses the intratetrahedron tension and leads to a volume
SPT: the free-energy well becomes more shallow and morgypansion.

flat. At T>850K there is no minimum at-configuration.
The calculated~(#») curves forT around 850 K are pre-
sented in Fig. 4.

Thus, atT approachingrl., the entropy contribution pre-
dominates over the potential one, and the lattice configura- The problem of anharmonicity is much more difficult at
tion falls down intoB phase. It is worth emphasizing that we the search for the free-energy minimum in tfgephase,
are dealing with the thermally averaged lattice configurawhere a considerable part of the phonon modes is harmoni-
tions. They by no means correspond to the static equilibriuncally unstable. Now not only the above mentioned zone-
geometry. The obtained-B “geometry jump” [displayed boundary modes but whole acoustic branches and zone-
by the arrow in Fig. (b)] takes place at rather high tempera- center lowest-frequenci, (“soft mode”) have imaginary
ture, when many phonon modes are essentially anharmonibarmonic frequencies. The study of the potential energy

variation at large-amplitude atomic displacements has shown

IV. DISCUSSION that the true potentials of all these unstable modes still have

the double-well shape. The potential curves of some such
modes are shown in Fig. 6.

The main factor driving thex-phase structure variation at ~ The anharmonicity is more pronounced@rphase than in
heating is the rotation of the SjQetrahedra towards their « phase. Numerical evaluations of the anharmonicity coeffi-
B-phase positions. The volume change follows this processient gives forg phase the average value Bf =36 K. We
thus keeping the static pressure small. This also accounts févave applied the same IAO model and, by using this value of
the relevant Si-O bond shortening. The calculated temperaF,, have found the free-energy minimum &tT.. These
ture dependence of Si-O bond lengths and Si-O-Si angle am@sults are presented in Fig. 7.
compared with the experimental data in Fig. 5. One can see There is noV-» coupling in theB phase: the average
that all the main tendencies are well reproduced. The shortralue of the tilt angle drops tg=0 atT=T.. Therefore, in
ening of the Si-O bond length at thequartz thermal expan- B quartz the negative,, value actually drives the negative

B. The thermodynamic equilibrium and crystal structure
of B phase

A. Thermal expansion of @ quartz
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FIG. 8. The calculated values of the integfép).
FIG. 6. The potential energy curves for some anharmonic pho-

non modes ing quartz. the structure could undergo a thermally induced SPT, so that

) the rigid polyhedra are tilted in the low-temperature phase,
thermal expansion. The calculatedT) dependence al e it angle coordinate; is, as a rule, the order parameter
>T. is shown in Flg. 2. Our calculations shd\s_/ee Fig. 7 (we imply »=0 in the high-symmetry phase(c) there ex-
that at further heatingat T>T,=1100K) there is no free- g5 g considerable coupling between ¥hand 7 variations
energy minimum at all. This does not coincide with the €X-32U/aVap>0, (d) the derivativesdw/dV and dwldy are
perimentally stated melting limit of 1400 K. However, this is positive for all the RUM’s and QRUM's.
a qualitative conclusion only since such a large-scale ampli-  The rye temperature-induced crystal structure evolution
tude atomic motion, as observed in thephase at high tem- o result from the minimal free energy condition as a
perature, makes the applicability of the IAO approximationpajance between the potential energy and entropy contribu-
questionable. _ _ o tions. The lattefsecond term in Eq(3)] decreases, when the

The obtained results obviously confirm the opinion that,aan phonon frequency decreases, and becomes more im-

the B phase is a dynamic structure. The atomic vibrations argyoriant with temperature increase. Therefore, paints
essentially anharmonic. Many vibrational modes occur into a5iher important. It can lead to the nonmonotone volume
double-well potential. The theoretical study of such vibra-yersys temperature dependeri@d even to the negative
tions lies beyond the QH approximation. In particular, it {hermal expansion and causes the mean value to drop

seems ambiguous to treat the INC phase generation in ”ﬁhickly at heating. This provides the softening of many
framework of a quasiharmonic theory when the thermalyyns.

atomic vibra}t_ions are essentially anharmonic near ¢he A quite general explanation can be given for the paint
phase transition in quartz. Actually, being packed within a framework structure, the
rigid polyhedra are essentially compressed relatively their
C. Role of the intrapolyhedron tension in the dynamics free state geometry. For example, the adopted potential
of the framework structures model predicts a free SiQetrahedron to be in equilibrium at

According to the above results the following propertiesSi-O bond lengttR=1.663 A. Thus, within the crystal lat-
could be considered as inherent for the framework structurelice dU/dR<<0. We denote this value as internal tension.
built up from the corner-shared rigid polyhedta) there are

a number of RUM’s and QRUM'’s in the phonon spectia, 2

20 . . ; . ;

- =
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g g
3 g
- {1
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Tilt angle (degree) FIG. 9. The free-energy contribution of the anharmonic double-

well potential modeZ=cg(cx), as a function ok=hw/T at dif-
FIG. 7. Free-energy of th@ quartz as a function of unit cell ferentc values in comparison with the harmonic dependedce
volume at selected temperatures. =1/K.
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By definition, RUM does not involve the polyhedron
bond length variation. So, if the RUM’s amplitudedsone F=U-TX InZ,, (A1)
can conclude tha#R/dq~0. At the same time, the second 3
derivative 9°R/dq? is, as a rule, positive and not small. The
latter issue follows from a pure geometrical consideratiorivhere
taking into account that the RUM is a rotation of the poly-
hedra. The contribution of the intra-polyhedron potential to

the squared RUM'’s frequency can be written as 1 T
— — (/T
., U (R|? U PR Zn=p \/gf e #@Tdq. (A2)
aRZ\aq) " 9R ag?

Since the first term of the above expression vanishes, To calculate this integral with the potentia(q)=3\g?
whereas the second one is negative, the intrapolyhedron in: ;g% let us introduce the following notations:
teraction destabilises the RUM'’s. This effect comes from the

internal tension and would diminish & increasing. There a4
are two ways for polyhedra to swell: in the course of a lattice

expansion and by means of tilting. That is why the paimg ) '
of general validity.

h
w=sgri\) V], X=7w, c=(

<

V. CONCLUSIONS and T,=h*3,1%

The LD approach based on the TPM enables us to explain . o . .
all the main peculiarities observed in the thermal expansiord uS defined.w coincides with the harmonic frequency at
and in thea-8 SPT in quartz. The following unusual prop- A >0, and is negative at negati%evalue. Then the EqA2)
erties related to the thermal expansion of thephase are Can be rewritten as follows:
revealed: the vibrational pressure tries to compress the lattice
whereas the static pressure acts to extend iffzav30K
some of phonon modes are essentially anharmonic and have
imaginary harmonic frequencies. The calculations show that
many vibrational modes obey the double-well potential. Thewhere functione is defined as
IAO approach provides a meaningful estimation of the con-
tributions of such modes to the free-energy. 4

This theory confirms the existence of the first-order SPT o(t)=e"f(t?) (A4)
in quartz atT. near 850 K. TheB phase is found to be
thermodynamically(but not statically stable at larger vol-  anqf(p) is the integral
ume and at higher temperature. Thus, ghphase(and even
the a phase af >430K) is an essentially dynamic structure.
The theory does predict the negative thermal expansion in 1 .
the 8 phase. The above peculiarities are related to the three f(p)= —f e” P dy, (A5)
factors: (i) the phonon spectrum of quartz includes a great \/Z
part of RUM’s and QRUM'’s providing the dominant contri-
bution to the free energyiji) there is a strong coupling be- which can be easily calculated by means of the Gauss-
tween the volume variation and the soft-mode atomic disChristoffel method. The thus obtained functidifp) is
placements in ther phase(iii ) there are the intratetrahedron shown in Fig. 8. It was used in our numerical calculations.
tensions which determine the RUM'’s spectrum versus struc- Let us now consider the dependence of Zhealue on the

Z=cp(cX), (A3)

ture variation dependence. guasiharmonic squared frequencyand on the anharmonic-
ity coefficientu. In the Eq.(A3) the multiplierc is the factor
ACKNOWLEDGMENTS of anharmonicity. Thusz= (e.g.u=0) corresponds to the

. _pure harmonic case. At this limit one should obtain the clas-
The author acknowledges Dr. A. Mirgorodsky for encour sic expressiorZ=1/x. The value ofZ as a function ofx is

agement, fruitful discussion, and his kind suggestpns to 'Mshown in Fig. 9 for different values. One can see that for
prove the paper. Thanks are also due to A. Solov’ev for h|san ¢ value Z— 1/x if X—so. This corresponds to the hiah-
help in numerical calculations and Dr. J. Poirson for encours y ) P 9

agement. The author would like to thank Professor B. DorneHequen.CY region wherﬁ>,u,_ and one can neglect the an-
X . armonicity. At the same time at—o the curve Z(x)
for carefully reading the manuscript.

nearly coincides with the 4/curve for allx>0.

The singularity of the harmonic dependeri¢e 1/x at x
approaching zero restricts the applicability of the QH ap-
proximation in the case of a harmonically unstable mode
whenx=0. Figure 8 illustrates how the IAO approach pro-

By substituting Eq(7) into Eq. (2) and after integration vides a smooth extension of the free energy definition into
over the impulses one obtains the negativex region.

APPENDIX: EVALUATION OF THE DOUBLE-WELL
POTENTIAL CONTRIBUTION TO THE FREE-ENERGY
WITHIN THE IAO-APPROXIMATION
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