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Failure probabilities and tough-brittle crossover of heterogeneous materials
with continuous disorder
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Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, New Jersey 08854-801

~Received 20 October 1998!

The failure probabilities or the strength distributions of heterogeneous one-dimensional systems with con-
tinuous local strength distribution and local load sharing have been studied using a simple, exact, recursive
method. The fracture behavior depends on the local bond-strength distribution, the system size, and the applied
stress, and crossovers occur as system size or stress changes. In the brittle region, systems with continuous
disorders have a failure probability of the modified Gumbel form, similar to that for systems with percolation
disorder. The modified Gumbel form is of special significance in weak stress situations. This new recursive
method has also been generalized to calculate exactly the failure probabilities under various boundary condi-
tions, thereby illustrating the important effect of surfaces in the fracture process.@S0163-1829~99!01206-0#
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I. INTRODUCTION

Due to their importance in many scientific and engine
ing fields, breakdown phenomena in heterogeneous mate
have been studied extensively in recent years.1 It has been
well established that the tensile strength of heterogene
materials is dominated by the ‘‘weakest’’ regions of the s
tems, or by the extreme fluctuations of the stress fields. T
the fracture properties of a given sample are highly non
trinsic, non-self-averaging, and strongly depend on the s
cific realization of the strengths of individual bonds based
the heterogeneity and microstructure. This dependenc
fracture on extreme statistics, hence the lack of s
averaging, often makes mean-field theories rather dubi
The failure probabilityFn(s) of a heterogeneous system
size n under external tensile stresss or identically the cu-
mulative distribution function~cdf! of its strength can be
described by one of the distribution forms of extreme va
statistics, such as the Weibull distribution

Fn~s!512exp@2n~s/s0!m#, ~1!

or themodified Gumbeldistribution2

Fn~s!512exp@2n exp~2L/s1/c!#. ~2!

The modified Gumbel form was introduced by Duxbur
Leath, and Beale2 in their study of percolation disorder o
diluted two-dimensional~2D! fuse networks~simple square
lattice! in which identical lattice bonds~same conductanc
and breakdown threshold! are present with a probabilityp.
They observed that in general the failure of the first f
bonds in the diluted network worsens the situation fata
and leads to the failure of the entire system, or brittle fr
ture. With this result and those of numerical simulations
tough and brittle systems3 it was conjectured that the failur
probability is described for tough fracture by Eq.~1!, and for
brittle fracture by Eq.~2!. Statistically the degree of brittle
ness of fracture can be characterized by the ratio of the
of typical local damage that triggers the system failure to
system size. That is, a fracture is said to be brittle if this ra
is small and tough if it is of order one. Thus the degree
PRB 590163-1829/99/59~6!/4002~9!/$15.00
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brittleness of fracture depends on the disorder type~modeled
by the distribution of the bond strengths! and the system
size.3,4 But also it depends on the applied stress since
critical damage shows a dependence on the external s
which we shall discuss below. A major difference betwe
percolation disorder and continuous disorder is that for p
colation disorder the failure stress of the systemsb is ap-
proximately the fracture stresss1 for the first bond to break,
while for the continuous disorder one may havesb@s1
→ inf$s:G(s).0,s.0%, where G(s) is the local bond-
strength distribution.

The fracture of materials is typically highly localized i
the cracks that nucleate and grow due to the local st
enhancement at crack tips. In real materials, because o
long-range elastic interaction, the stress redistribution
lows a power law,Ds;r 2g, whereDs is the stress increas
on a bond at distancer from a crack tip. The extreme case
of this picture lead to two important models which becau
of their simplicity have received considerable attention. Fi
for g→0 one obtains theglobal load sharingor equal load
sharing~ELS! model, by which the stress released by crac
is equally shared by all the remaining bonds across
sample. This model, analytically solvable, is mean-field-lik
and consequently the system strength has been found to
Gaussian distribution5 rather than of a type of extreme sta
tistics. Second, forg→` one obtains thelocal load sharing
~LLS! model, by which the stress released by a crack
shared only by the intact bonds at the crack tips. This mo
is more realistic in the sense that it does show extreme
tistical aspects. In one dimension, an exact, numerical s
tion of this model is available6,7 and it has been used in th
study of simple 2D systems with linear cracks which can
approximately treated as a stack of independent 1D syste7

Here we propose a simple, exact, recursive method wh
may lead to an ultimate analytical solution to the 1D pro
lem, and with its help, we obtain some insight into the fo
of the strength distribution in more general cases. In ad
tion, by using this powerful method, we have rederived
strength distribution of the diluted model analytically.

Consider an array ofn bonds, each of which is assigned
random strength threshold drawn from a continuous distri
4002 ©1999 The American Physical Society
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PRB 59 4003FAILURE PROBABILITIES AND TOUGH-BRITTLE . . .
tion functionG(x). In this article we shall use, for example
the uniform~0,1! distribution: G(x)5x,0<x<1, and the
Weibull(m) distribution: G(x)512exp(2xm). We assume
the disorder is quenched and when the stress on a local
exceeds its assigned strength threshold, it fractures irrev
ibly and quasistatically. As an external tensile stresss is
applied, some of the bonds may fracture immediately and
stress released will be redistributed among the tempora
surviving bonds and this stress enhancement might trigg
secondary wave of bond fractures, etc. The system fail
one dimension when the last surviving bond fails, or
higher dimensions when a spanning crack forms. It’s eas
see that the failure of a composite depends sensitively
how the stress is redistributed among the surviving bonds
the local load sharing~LLS! model, the stress released b
the formation of an internal crack is equally shared by
two bonds at the tips. However, if the crack is on the end
the sample, the simplest method is to assume that there
intact bond outside to bear the stress. This is called aninte-
rior boundary condition, and is strictly applicable only wh
the sample is embedded in a larger one with intact bon
Thus if a bond hask neighboring failed bonds in the LLS
model, the stress on this bond issk5(11k/2)s, wheres is
the applied stress, and this bond survives with probab
Wk(s)[12G(sk). We shall discuss this and a number
more complicated and realistic boundary conditions, nam
the periodic, semiopen, and open boundary conditions.4

II. RECURSIVE SOLUTION OF THE 1D LATTICE MODEL
WITH LLS

In this section, we discuss the recursive solution of the
LLS model with interior boundary condition. In order to fin
the failure probability~or strength distribution! of the com-
posite given the above, we develop a powerful and sim
recursive method, simpler than the one used previously.7 To
find the failure probability, we need to evaluate the sum
the survival probabilities for all configurations~except the
one with all failed bonds! and we defineSn,l to be the sum of
the survival probabilities for all possible configurations in
sample of sizen with l fractured bonds on the far right end,
so that the failure probability can be writtenFn(s)51
2( l 50

n21Sn,l(s). To find the recursive relation forSn,l , we
consider the following configuration:

where 1 represents an intact bond and 0 represents a
tured bond. Suppose we remove the intact bond and tl
broken bonds at the right-most end, we are left with a sim
configuration, but of smaller sizen2 l 21, therefore the sur-
vival probabilities$Sn,l% should satisfy the recursive relatio

Sn,l5Fn2 l 21Wn21Fl1 (
r 50

n2 l 22

Sn2 l 21,rWr 1 lFl , ~3!

where as a special case the first term corresponds to
surviving configuration having only one intact bond. We fu
ther defineSk,k to be thefailure probability of a such system
of sizek, i.e.,Sk,k[Fk , then the above results can be rewr
ten in the compact form
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Sn,n512 (
l 50

n21

Sn,l , ~4a!

Sn,l5 (
r 50

n2 l 21

Sn2 l 21,rWr 1 lSl ,l , l 50, . . . ,n21, ~4b!

with an initial conditionS0,051 which serves as a ‘‘seed’
for the entire calculations. This exact recursion formula c
be evaluated numerically very efficiently. Despite its sim
plicity, so far we have found that it’s hard to analytical
solve Eq.~4!. Nevertheless, by noticing that bothWl andSn,l
decay rapidly with increasingl, and that for l small,
Sn,l /Sn21,l is essentially a constant, we find an excellent a
proximation to Eq.~4!. Figure 1 shows thel dependence of
Sn,l and Wl for a given system of sizen5100 with bond-
strength distribution Weibull~2! under stresss50.1; it is
obvious that these functions decay in some exponential m
ner. Figure 2 shows the ratio of survival probabilities of tw
systems of sizesn and n21, respectively, withl broken

FIG. 1. Sn,l(s) as a function ofl, the number of broken bond
on the right end. Also shown isWl(s) vs l, where Wl(s)51
2G@(11 l /2)s#. Bond-strength distributionG: Weibull~2!; system
size:n5100; applied stresss50.1.

FIG. 2. 12Sn,l(s)/Sn21,l(s) as a function ofl. The survival
probability ratio Sn,l(s)/Sn21,l(s) is very close to 1 and nearly
independent ofl. Bond-strength distributionG: Weibull~2!; system
size:n5100; applied stresss50.1.
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4004 PRB 59B. Q. WU AND P. L. LEATH
bonds on the right end,Sn,l /Sn21,l , as a function ofl, under
the same conditions. The ratio is very close to 1 and near
constant.

From Eq.~4! it is obvious that

(
r 50

n2 l 21

Sn2 l 21,rWr 1 l5
Sn,l

Sn21,l
(
r 50

n2 l 22

Sn2 l 22,rWr 1 l ,

and also that

12Sn,n5 (
l 50

n21

(
r 50

n2 l 21

Sn2 l 21,rWr 1 lSl ,l

5 (
l 50

n22
Sn,l

Sn21,l
(
r 50

n2 l 22

Sn2 l 22,rWr 1 lSl ,l

1Wn21Sn21,n21 .

So sinceSn,l /Sn21,l is nearly independent ofl, we obtain

12Sn,n'
Sn,0

Sn21,0
(
l 50

n22

(
r 50

n2 l 22

Sn2 l 22,rWr 1 lSl ,l

1Wn21Sn21,n21 ,

or

12Sn,n5
Sn,0

Sn21,0
~12Sn21,n21!1Wn21Sn21,n21 ,

n51,2, . . . , ~5!

where the second termWn21Sn21,n21 is the survival prob-
ability of the configuration with only one single intact bon
at the left end, and the first and dominant term is the to
survival probability for all the other configurations.

This is an extremely good approximation, which giv
both the large and smalln behaviors ofSn,n(s) or Fn(s)
very well, as shown in Fig. 3~a! where the exact results o
numerically evaluating Eq.~4! are compared with Eq.~5!.
We thus focus on the ratioSn,0 /Sn21,0 which gives the pri-
mary behavior of the fracture for sample of sizen. First, for
sufficiently largen, we notice that in Fig. 3~b!, Sn,0 /Sn21,0
goes to a constant. Thus by neglecting the single bond t
in Eq. ~5!, we obtain that asymptotically the survival pro
ability of a system decays exponentially withn, which means
that a system is always brittle forn sufficiently large. Also,
Eq. ~5! shows its consistency with the weak link conditio
with which a large system can be treated as a collection
smaller subsystems that are weakly related or nearly in
pendent. From Eq.~5!, it can be easily shown that

~12Si ,i !~12Sn2 i ,n2 i !'~12Sj , j !~12Sn2 j ,n2 j !, ~6!

for i, j, n2 i , and n2 j all much greater than one, give
Sn,0 /Sn21,0 goes to a constant. This can be interpreted as
if a large system is divided into parts, then the product
survival probabilities for all parts does not depend on h
the system is divided, which is also guaranteed by the w
a
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link condition. Second, forn small then dependence of the
failure probability has a more complicated behavior
shown in Fig. 3~b! and the system is tough. This suggests
existence of a crossover between different statistics, and
lows us to specify a tough-to-brittle size scalenc , such that
the breakdown behavior of a system of size larger thannc

becomes brittle. In other words, a system of sizen@nc can
be treated as a composite of subsystems of sizenc , which
showsbrittlelike properties for cracks larger than the sca
nc . This size scale is analogous to the critical size in
nucleation process of a first-order phase transition. Give
sufficiently large system, the failure of the disordered co
posite behaves like a first-order phase transition8 in that with
the nucleation of a critical crack, the system fails. It’s re
sonable to definenc to be the system size beyond whic
Sn,0 /Sn21,0 becomes essentially a constant@Fig. 3~b!#. The
numerical results show thatnc}s21 independent of the loca
bond threshold distributionG(s), but the coefficient does
depend onG(s), as shown in Fig. 3~b! inset.

We thus come to a two-scale picture of fracture: loca
within sizenc the fracture is tough and globally the fractu
is brittle at scalenc . This confirms the picture proposed b
Curtin9 recently. In his paper, Curtin studied planar syste
under stresses in the normal direction and observed the
istence of a critical sizenc , according to which the system
could be characterized as a collection of subsystems of
nc . A subsystem in Curtin’s picture was formulated in a
equal load sharing~ELS! model, while the whole system
became brittle in that failure of any single subsystem nec
sarily led to the breakdown of the whole system. The qu
tion remaining is to determinenc . In our numerically solv-
able 1D model, we find a power-law stress dependence
nc}s21 whens is small. As we will describe below, with
nc}s2a, the failure probability belongs to the modifie
Gumbel family of the extreme statistics.

For our method we find, and for more general mod
suggest, that for a system of fixed sizen with applied stress
s, the failure distribution will generally have these beha
ioral regions as follows:

~i! n,nc : This is thetoughregion, which corresponds to
the initial downhill portion of the curves in Fig. 3~a!. Gen-
erally this region is characterized by very small stres
~which may be the normal operating stresses in practical
plications! and smaller system sizes. The expansion of
~4! gives the exact failure probabilities and, in particular it
applicable for very smalln’s. The failure probability is a
superposition of a huge number of local distributionsG(s),
and because the failure of the composite is path~or ordering!
dependent, the upper bound of the number can be of o
2n21n!. Fortunately, we are only interested in the left tail
the failure distribution, which is essential in the extrem
~minimum! statistics analysis. Consider a Weibull(m) local
bond-strength distribution:G(s)512exp(2sm), the sur-
vival probability of a bond withk fractured neighbor bonds
is Wk(s)5exp$2@(11k/2)s#m%. For the left tail of the dis-
tribution Sn,n(s) where boths andn are small, we can make
Taylor series expansions ofWk(s) abouts50 in Eq. ~4!,
and we find the failure probabilities for samples of differe
sizes are given by



PRB 59 4005FAILURE PROBABILITIES AND TOUGH-BRITTLE . . .
FIG. 3. ~a! Failure probability as a function of system size under different stresses. Open circle: exact numerical data by Eq.~4!; filled
diamond: approximation with Eq.~5!. ~b! The determination of a critical sizenc . For n.nc ,12Sn,n(s) decays exponentially withn, and
12Sn,0(s)/Sn21,0(s) becomes essentially a constant. Inset: stress dependence ofnc ,nc}s21.
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For weak stresses, we neglect the higher-order terms
obtain

Fn~s!5Sn,n~s!'c~n,m!smn'12exp@2c~n,m!smn#,
~7!
nd

where c(n,m) is a coefficient. It is a Weibull distribution
with the modulus proportional to the system sizen. Figure
4~a! demonstrates the consistency between the numerica
sults and this analytical formula. All lower-order terms ca
cel out in the expansion; physically, this can be understo
with the fact that the failure of the composite requires t
fracture of all the bonds, and each bond has a contributio
;sm to the failure probability. From this point of view, th
failure probability for the tough region at the low stress lim
is always of this form, and the load sharing rule can on
affect the coefficient. The determination of the coefficie
c(n,m) is hard, but a crude estimate can be made from
n! ways of fracture ordering of then bonds. For smalln, due
to the LLS, we estimatec(n,m);(n!) gm, where 0,g,1 is
a parameter depending uponm. Thus the failure probability
for the tough region is of the Weibull form

Fn~s!;12exp@2~n! !gmsmn#. ~8!

The optimum sample size, corresponding to the minim
failure probability as shown in Fig. 1~a!, is now easily esti-
mated. By settingFn215Fn , we obtain the optimal size

nmin;s21/g, ~9!
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4006 PRB 59B. Q. WU AND P. L. LEATH
and the corresponding minimum failure probability

Fmin;exp~2cs21/g!. ~10!

For differentG(s), we found empiricallyg50.59 for expo-
nential, 0.71 for Weibull~2!, 0.76 for Weibull~5! and 0.89 for
uniform~0,1!.

~ii ! n@nc@1: This is thebrittle region, where the system
is macroscopically brittle but microscopically tough. In pra
tice for large system size, most fracture events of real m

FIG. 4. ~a! Failure behavior in the tough region,n,nc . Failure
probability is a Weibull distribution with modulusmn, wheren is
the system size andm is the Weibull modulus for the local bon
strength distribution.~b! Failure behavior in the brittle region,n
@nc@1. For a very wide range of failure probability, from 10230 to
0.999, it has a modified Gumbel form.~c! Failure behavior in the
super-brittle region,nc;1. The strength of the system approach
that of the first broken bond.
-
e-

rials fall into this region, since the other regions are co
pressed. The discussion on the failure probability of a sys
with percolation disorder under a given stress2 is still valid in
principle for a system with continuous disorder whenn
@nc . Roughly speaking, the failure of the system depen
on whether the size of the weakest spot exceeds the cri
sizenc , and the probability to find a weak spot of size larg
than nc decays exponentially, so we would still expect
modified-Gumbel-type failure probability for continuous di
order. We observe, as shown in Fig. 3~b!, for large n and
relatively weak stress, thatSn,0 /Sn21,0 varies only withs,
i.e.,

Sn,0

Sn21,0
~s!;12exp@c ln~s!/sa#, ~11!

where exponenta50.9060.05 for all local bond distribu-
tions tested is close to 1, the value expected with the l
sharing rule LLS. Combining Eq.~5!, we get the form of the
failure probability

Fn~s!512exp$2an exp@c ln~s!/sa#%, ~12!

wherea, c and a are parameters to be determined in da
fitting. If we use the weak link hypothesis and treat the s
tem as a collection of subsystems of sizenc}s21, then the
failure probability can be evaluated by usingFn'12(1
2Fnc

)n/nc, whereFnc
is the failure probability for the tough

region at sizenc . We thus obtain a similar form to Eq.~12!,
which implies that the weak link hypothesis is, in principl
correct. With a minor discrepancy ina, Eq. ~12! belongs
essentially to the modified Gumbel family. Thus for contin
ous disorder, as well as percolation disorder,2 the failure be-
havior can still be described with the modified Gumbel for
Figure 4~b! demonstrates that the failure probability fits th
form extremely well over the very wide range from 10230 to
0.999.

Although this 1D model is only applicable to problems
breaking a sheet-shaped object such as a piece of pape
believe and propose that the fracture properties of hig
dimensional materials are similar and the strength distri
tion form of Eq.~12! is generally applicable.

~iii ! nc;1: This is thesuper-brittle region of fracture.
The stress is so strong that critical nuclei exist almost eve
where, and thus almost all the bonds fail simultaneously. T
failure probability is then simply

Fn~s!512@12G~s!#n, ~13!

whereG(s) is the local bond strength distribution. Figur
4~c! shows that as stress becomes large, the failure prob
ity approaches form Eq.~13! asymptotically. It should be
noted that the interior boundary condition considered h
does not guarantee the total stress to be conserved, espe
for small n, at which a deviation from form Eq.~13! can be
observed.

Based on the above discussion, we can roughly sketch
phase diagram of the different regions as shown in Fig. 5
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tough-brittle–super-brittle crossover occurs as external st
increases, while a tough-brittle crossover occurs as sys
size increases. Though the crossover is gradual, each re
is characterized by a different form of failure probabili
with its own physical interpretations. The tough region ha
Weibull-type failure probability, and in this region, the loa
sharing rule seems to be not very important. Indeed, in
dimensions, Curtin9 has approximated the power-law loa
sharing rule with a mean-field, global, load sharing mod
The local stress enhancement for this case is quite w
especially in higher dimensions, and the bonds fracture r
tively independently. For the brittle region, where the mo
fied Gumbel form applies, the subsystems of sizenc are such
that the fracture of any single subsystem results in the glo
system failure. In the super-brittle region, the subsystem
nc further decreases to the order of the lattice size due to
external stress, and the strength of the system is that o
weakest bond which is distributed with the ultimate form
Eq. ~13!.

Given the strength distribution@Eq. ~12!#, the system size
dependences of the average breakdown stress^sb& and its
variance are of great interest. From Eq.~12!, by neglecting
the slow varying factor ln(s) and taking the median as th
average, we have

FIG. 5. Different regions of fracture behavior.
ss
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-
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^sb&;~ lnn!21/a. ~14!

The variance can be found by considering the change
Fn(s) by a given factor, by which we obtain

A^sb
2&2^sb&

2;~ ln n!2~111/a!. ~15!

Thus both the strength average and its deviation decay lo
rithmically with increasing system size.

III. OTHER BOUNDARY CONDITIONS

In the previous section, we discussed the strength dis
butions of heterogeneous 1D fiber bundles withinterior
boundary conditions, by which each sample~considered em-
bedded in a larger one! has both its ends held by intac
neighboring bonds. The interior boundary condition gives
surface effects which, practically, are of great interest
studies of the strengths of realistic systems. Does the p
ence of a surface affect the strength distributions sign
cantly? The answer is yes, and this issue has been addre
approximately by Chen and Leath,4 by using a transfer-
matrix method with a ‘‘no-lone-bond’’ approximation. In
this section, we shall confirm the results by an exact rec
sive method to calculate the failure probabilities under va
ing boundary conditions, namely, theperiodic, semiopen,
and openboundary conditions. All the boundary condition
concern the load-sharing rules at surfaces: interior bound
conditions ~b.c.! promise extra unbreakable bonds outsi
the sample to bear stresses; open b.c. are for isolated sam
with both ends open; semiopen b.c. have one end of
sample open and the other interior; periodic b.c. roll up
sample, making a closed circular system with no surface
all.

The configuration of a system sizedn must be one of the
following:
s.

ilable.
s which
e to the
n relations
wherek50,1, . . . ,n21 andl 50,1, . . . ,n2k21 with n51,2, . . . . WedefineWk(s) to be the survival probability of a bond
with load (11k/2)s. Also we defineSn,k,l

(•) (s) to be the survival probability of a system with a string ofk andl broken bonds
on each end respectively, andFn

(•)(s) to be the failure probability of the system of sizen, under certain boundary condition
The idea to obtain the recursion relations is the following: in general, we cut off the 0•••01 and 10•••0 strings~each has only
one intact bond! from both ends and are left with a truncated sample with interior b.c. whose survival probability is ava
The survival probabilities of these cut-off parts can be obtained by taking into account the specific boundary condition
involve F ( i ) or F (s) for smaller systems. In doing this, one must be careful about the load reassignments on bonds clos
surfaces. Special cases, i.e., the single and double bond systems must be considered separately. Finally, the recursio
for each kind of boundary conditions turn out to be as follows:
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interior:

Sn,k,l
~ i ! 5Fk

~ i !Wk1 lFl
~ i !dk1 l ,n211Fk

~ i !Wn2 l 22Fn2k2 l 22
~ i ! Wn2k22Fl

~ i !1 (
r 50

n2k2 l 23

(
t50

n2k2 l 2r 23

Fk
~ i !Wk1rSn2k2 l 22,r ,t

~ i ! Wt1 lFl
~ i !,

~16!

periodic:

Sn,k,l
~p! 5Fk1 l

~ i ! W2k12ldk1 l ,n211Fk1 l
~ i ! Wn22Fn2k2 l 22

~ i ! Wn221 (
r 50

n2k2 l 23

(
t50

n2k2 l 2r 23

Fk1 l
~ i ! Wk1r 1 l

3Sn2k2 l 22,r ,t
~ i ! Wk1t1 l , ~17!

semiopen:

Sn,k,l
~s! 5Fk

~ i !Wk12lFl
~s!dk1 l ,n211Fk

~ i !Wn2 l 22Fn2k2 l 22
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FIG. 6. Fracture probabilities of systems wit
different boundary conditions under weak applie
stress (s50.1). Inset: Failure probability curve
under higher applied stress (s50.4) showing the
merging curves.
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with the initial conditionF0
(•)51. Thus the survival and fail-

ure probabilities of the system are given by

Sn
~• !5 (

k50

n21

(
l 50

n2k21

Sn,k,l
~• ! , ~20!

and

Fn
~• !512Sn

~• ! . ~21!

These recursive relations are interconnected with e
other sinceF ( i ),F (s),S( i ) and S(s) appear on the right-han
h

side, so they must be evaluated simultaneously. Figur
shows the exact numerical results of the fracture probabili
under various boundary conditions. It is observed that
following relation holds for most system sizes:

Fn
~o!.~Fn

~p! and Fn
~s!!.Fn

~ i ! , ~22!

while the relation betweenFn
(p) andFn

(s) depends on system
size and applied stress. The differences between the frac
probabilities with various boundary conditions can be ord
of magnitude, especially around the optimal system size.
thus evident that most of the failures originate from the s
faces, as stated in Ref. 4. We also observe a shift of
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FIG. 7. The modified Gumbel distribution
function Fn(s)512exp@2n exp(21/s)# and its
ultimate asymptote, the Gumbel distributio
Fn(s)512exp@2exp(ln2n•s2ln n)# and its pen-
ultimate asymptote, the Weibull distributio
Fn(s)512exp@2(2 ln n•s21)ln n/2#, with n
51020. Inset: A linear-log plot. Observe the dif
ferences between the distributions forFn(s)
small.
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optimal system sizenmin
(•) to a smaller value with more

boundary influence. However, as system sizen becomes very
large or the stress becomes sufficiently strong, these
probability lines merge to one, showing an identic
asymptotic behavior. This means in practice, whenn is ex-
tremely large, the surface effects can be limited, and
interior boundary conditions can be used, and the stren
distributions with all the boundary conditions will have th
same general form.

IV. SOME MATHEMATICAL REMARKS
ON THE STRENGTH DISTRIBUTIONS

Finally, we discuss the importance of the modified Gu
bel form of Eqs.~2! and~12!. We observe that the modifie
Gumbel form does not itself belong to any of the thr
known distribution forms of extreme statistics, but
asymptotic behavior belongs to and is approximated w
one of these three extreme value statistic distributions. F
mally, it’s obvious that the modified Gumbel formF(s)
512exp@2anexp(2b/sa)# is the cdf of the minimum ofan
independent samples drawn from a parent distribut
H(s)5exp(2b/sa) ~known as the Frechet distribution o
maxima!. So we obtain that the asymptotic behavior ofF(s)
for n very large is Gumbel, according to the theory of e
treme value statistics. However, because of the singularit
s→0, the most interesting region of fracture, its asympto
form, the Gumbel distribution, which does not have the s
gularity, loses significantly its accuracy. To see this, for si
plicity, let a, b, and a be unity. Then from the theory o
extreme value statistics, it can be shown that the asymp
form of

F~s!512exp@2n exp~21/s!#, ~23!

or the domain of attraction asn→` is Gumbel-type, i.e.,

F~s!→12exp@2exp~ ln2n•s2 ln n!#, ~24!

which serves as approximation ofF(s)512@12H(s)#n

for n sufficiently large. Unfortunately, this ultimate form, E
~24!, converges very slowly. We here define theconvergence
ur
l

e
th

-

h
r-

n

-
at
c
-
-

tic

rate of the asymptotic form Eq.~24! as its deviation from the
exact formF(s)512@12H(s)#n. Then it can be shown
that the convergence rate is about;1/lnn ~as a comparison
the convergence rate can be;1/n for a fast-converging sys
tem!. This makes the ultimate Gumbel form of little practic
value. One way to deal with this difficulty is to make use
a Weibull-type approximation with the Weibull modulus d
pendent onn, called the penultimate Weibull form, i.e.,

F~s!→12exp@2~2 lnn•s21! ln n/2#, ~25!

which fits very well in almost the entire range of failur
probability. The penultimate Weibull form can be obtain
by comparing three percentiles with those for the exact fo
In this Weibull form, the modulus as a function of syste
size, is about 26 forn51023, which is quite consistent with
experiment results for the Weibull exponent in many re
samples. In fact, most of the extreme value distributions
countered in practical applications can be approximated
the penultimate Weibull form very well. This explains wh
the Weibull form has been so widely used in the study
breakdown phenomenon. But it’s worth pointing out that t
penultimate form suggests that athree parameterfitting in
the form of

F~s!512exp@2~as2b!m# ~26!

should be conducted, instead of the two parameter fitt
widely used in practice@Eq. ~1!#. Detailed study shows tha
despite the fact that the Weibull form is an excellent appro
mation for typical averagebreaking stresses, undervery
small stress there may still be a substantial error of up
several orders of magnitude, though the error decreases l
rithmically with increasingn. As shown in Fig. 7, the ulti-
mate Gumbel form significantly overestimates the failu
probability while the penultimate Weibull form underes
mates it. In engineering applications, tests are usually d
under large stresses with large failure probabilities, and
extrapolated to the weak stresses of normal operating co
tions to estimate reliability. Thus this error becomes ve
important, especially whenn is not very large. The best nu
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merical predictor of brittle failure probabilities under ve
weak stresses and hence most operating conditions is
the modified Gumbel form@Eq. ~2!# which should be used in
the reliability analysis of brittle materials.

V. CONCLUSION

In summary, we have significantly simplified the recu
sive method for exact numerical calculations of the stren
distribution of the fiber bundle or 1D lattice model with co
tinuous, local, strength distribution and local load shari
We observed qualitatively different fracture behavior for s
tems of different sizes and under different stresses. The c
cal sample sizenc is found to depend upon the stress applie
-
x

. J
us

h

.
-
ti-
,

a result which should generally apply in higher dimensio
as well. The results here also support the conjecture
tough fracture can be described with a Weibull form and
brittle fracture with a modified Gumbel form. Tough-to
brittle crossovers for fracture are found to occur as sys
sizes, or stresses change. The modified Gumbel form ca
approximated by a penultimate Weibull form for intermed
ate failure probabilities, but this approximation may not
applicable to very small failure probabilities due to signi
cant errors. So the modified Gumbel form is of special i
portance in the reliability analysis of brittle materials. Th
important effects of surfaces on the strength distributio
have also been discussed with a similar exact recurs
method.
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