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The failure probabilities or the strength distributions of heterogeneous one-dimensional systems with con-
tinuous local strength distribution and local load sharing have been studied using a simple, exact, recursive
method. The fracture behavior depends on the local bond-strength distribution, the system size, and the applied
stress, and crossovers occur as system size or stress changes. In the brittle region, systems with continuous
disorders have a failure probability of the modified Gumbel form, similar to that for systems with percolation
disorder. The modified Gumbel form is of special significance in weak stress situations. This new recursive
method has also been generalized to calculate exactly the failure probabilities under various boundary condi-
tions, thereby illustrating the important effect of surfaces in the fracture pro&3563-18209)01206-0

I. INTRODUCTION brittleness of fracture depends on the disorder typedeled
by the distribution of the bond strengjhand the system
Due to their importance in many scientific and engineer-size>* But also it depends on the applied stress since the
ing fields, breakdown phenomena in heterogeneous materiagitical damage shows a dependence on the external stress
have been studied extensively in recent yéatshas been Which we shall discuss below. A major difference between
well established that the tensile strength of heterogeneougercolation disorder and continuous disorder is that for per-
materials is dominated by the “weakest” regions of the sys-colation disorder the failure stress of the systegis ap-
tems, or by the extreme fluctuations of the stress fields. Thugroximately the fracture stress, for the first bond to break,
the fracture properties of a given sample are highly noninwhile for the continuous disorder one may hawg> o
trinsic, non-self-averaging, and strongly depend on the spe—inf{o:G(o)>0,0>0}, where G(o) is the local bond-
cific realization of the strengths of individual bonds based orstrength distribution.
the heterogeneity and microstructure. This dependence of The fracture of materials is typically highly localized in
fracture on extreme statistics, hence the lack of selfthe cracks that nucleate and grow due to the local stress
averaging, often makes mean-field theories rather dubiougnhancement at crack tips. In real materials, because of the
The failure probabilityF (o) of a heterogeneous system of long-range elastic interaction, the stress redistribution fol-
size n under external tensile stressor identically the cu- lows a power lawAo~r~9, whereA o is the stress increase
mulative distribution function(cdf) of its strength can be on a bond at distancefrom a crack tip. The extreme cases
described by one of the distribution forms of extreme valueof this picture lead to two important models which because

statistics, such as the Weibull distribution of their simplicity have received considerable attention. First,
for g— 0 one obtains thglobal load sharingor equal load
Fn(o)=1—exgd —n(al/ay)™], (1)  sharing(ELS) model, by which the stress released by cracks

. o is equally shared by all the remaining bonds across the
or themodified Gumbedlistributior? sample. This model, analytically solvable, is mean-field-like,
—1_ _ _ Uiy and consequently the system strength has been found to be a
Fa(o)=1-exd—nexp—Alo0)]. @ Gaussian distributichrather than of a type of extreme sta-
The modified Gumbel form was introduced by Duxbury, tistics. Second, fog—« one obtains théocal load sharing
Leath, and Beafein their study of percolation disorder on (LLS) model, by which the stress released by a crack is
diluted two-dimensiona(2D) fuse networkgsimple square shared only by the intact bonds at the crack tips. This model
lattice) in which identical lattice bondésame conductance is more realistic in the sense that it does show extreme sta-
and breakdown threshgldire present with a probabilitg. tistical aspects. In one dimension, an exact, numerical solu-
They observed that in general the failure of the first fewtion of this model is availabfe’ and it has been used in the
bonds in the diluted network worsens the situation fatallystudy of simple 2D systems with linear cracks which can be
and leads to the failure of the entire system, or brittle frac-approximately treated as a stack of independent 1D systems.
ture. With this result and those of numerical simulations inHere we propose a simple, exact, recursive method which
tough and brittle systemst was conjectured that the failure may lead to an ultimate analytical solution to the 1D prob-
probability is described for tough fracture by Ed), and for  lem, and with its help, we obtain some insight into the form
brittle fracture by Eq(2). Statistically the degree of brittle- of the strength distribution in more general cases. In addi-
ness of fracture can be characterized by the ratio of the sizgon, by using this powerful method, we have rederived the
of typical local damage that triggers the system failure to thestrength distribution of the diluted model analytically.
system size. That is, a fracture is said to be brittle if this ratio Consider an array af bonds, each of which is assigned a
is small and tough if it is of order one. Thus the degree ofrandom strength threshold drawn from a continuous distribu-
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tion functionG(x). In this article we shall use, for example, 10” QT
the uniform0,1) distribution: G(x)=x,0=<x=<1, and the
Weibull(m) distribution: G(x) =1—exp(—x™). We assume

the disorder is quenched and when the stress on a local bond >
exceeds its assigned strength threshold, it fractures irrevers-
ibly and quasistatically. As an external tensile stresss

applied, some of the bonds may fracture immediately and the 107
stress released will be redistributed among the temporarily
surviving bonds and this stress enhancement might trigger a
secondary wave of bond fractures, etc. The system fails in
one dimension when the last surviving bond fails, or in

| G: Weibull(m=2)

higher dimensions when a spanning crack forms. It's easy to n=100

see that the failure of a composite depends sensitively on 6=01

how the stress is redistributed among the surviving bonds. In 10 0 2'0 4‘0 60 8‘0 100
the local load sharing(LLS) model, the stress released by !

the formation of an internal crack is equally shared by the
two bonds at the tips. However, if the crack is on the end of FIG. 1. S, (o) as a function of, the number of broken bonds
the sample, the simplest method is to assume that there is @1 the right end. Also shown i8Vi(o) vs I, where W(o)=1
intact bond outside to bear the stress. This is callethws ~ —G[(1+1/2)c]. Bond-strength distributio®: Weibull(2); system
rior boundary condition, and is strictly applicable only when Size:n=100; applied stresg=0.1.

the sample is embedded in a larger one with intact bonds.

Thus if a bond hak neighboring failed bonds in the LLS n-1

model, the stress on this bonddg= (1+k/2)o, whereo is Spn=1— IZ Snis (4a)
the applied stress, and this bond survives with probability -0
W, (0)=1-G(oy). We shall discuss this and a number of
more complicated and realistic boundary conditions, namely,
the periodic, semiopen, and open boundary conditfons.

n—1-1

Sni= Z’o S-i-1 WS, 1=0,...h=1, (4b)

Il. RECURSIVE SOLUTION OF THE 1D LATTICE MODEL with an initial conditionSy =1 which serves as a “seed”
WITH LLS for the entire calculations. This exact recursion formula can

be evaluated numerically very efficiently. Despite its sim-
In this section, we discuss the recursive solution of the 10yjicity, so far we have found that it's hard to analytically

LLS model with interior boundary condition. In order to find solve Eq.(4). Nevertheless, by noticing that bott andS,
the failure probability(or strength distributionof the com-  gecay rapidly with increasing, and that for| smail,
posite given the above, we develop a powerful and simples /s . 'is essentially a constant, we find an excellent ap-
recursive method, simpler than the one used previolBly.  proximation to Eq(4). Figure 1 shows thé dependence of
find the failure probability, we need to evaluate the sum ofp , and W, for a given system of siza=100 with bond-
the survival probabilities for all configuration@xcept the stréngth distribution Weibu2) under stressr=0.1; it is
one with all failed bondsand we defines, | to be the sum of  gpyious that these functions decay in some exponential man-
the survival probabilities for all possible configurations in a per. Figure 2 shows the ratio of survival probabilities of two

sample of sizen with | fractured bonds on the far right end systems of sizes and n—1, respectively, withl broken
so that the failure probability can be writteR,(0)=1

—2{‘;018,1,|(a). To find the recursive relation fdg,,, we
consider the following configuration:

0

10

r l 10° + G: Weibull(m=2)
Pt S et n=100
...... 10---010---0 . ool
- R 107 r )
(2

where 1 represents an intact bond and O represents a frac-= |
tured bond. Suppose we remove the intact bond and the
broken bonds at the right-most end, we are left with a similar
configuration, but of smaller size— | —1, therefore the sur-

vival probabilities{S,, |} should satisfy the recursive relation ., 10

Sn,l (6)/ n-1
=

1

n7| 72 10 ((((((({{{{HHHOHOTOTHTHU T O O U
Shi=Fno1-iWhoaFi+ Eo Snoi-1WeiFry (3 14 ‘ . . ‘ .
“
0 20 40 60 80 100
)

where as a special case the first term corresponds to the
surviving configuration having only one intact bond. We fur-  FiG. 2. 1-5, (0)/S,_,(0) as a function ofl. The survival
ther defineS,  to be thefailure probability of a such system  probability ratio S, |(¢)/S,_1,(o) is very close to 1 and nearly
of sizek, i.e., S =F, then the above results can be rewrit- independent of. Bond-strength distributio®: Weibull(2); system
ten in the compact form size:n=100; applied stresg=0.1.
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bonds on the right end, | /S,-1, , as a function of, under
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link condition. Second, fon small then dependence of the

the same conditions. The ratio is very close to 1 and nearly filure probability has a more complicated behavior as

constant.
From Eq.(4) it is obvious that
n—1-1 n—1-2
S
2 Snflfl,r\NrH:— E Sn7I72,r\Nr+Iv
=0 Sh-1) =0

and also that

n

1n-1-1
1-Sn=2 2 Sii-1WriSy
I=0 r=0

n—-2 Sn n—1-2
> - > Si-2WiS,
=0 Sh-1) =0

+Wh-1Sh-1n-1-
So sinceS; | /S,—_1; is nearly independent df we obtain

Sn n-2n-1-2
,0
I=Sin~g- & 2 Si-aWeiSy
-1,01=0 r=0
+Wh-1Sh-1p-1,
or
Sho
1_Sn,n:Sn_10(1_Sn—l,n—1)+Wn—lSn—1,n—1a

n=12,..., 5

where the second terM/,_,S,_,,-1 is the survival prob-

shown in Fig. 8b) and the system is tough. This suggests the
existence of a crossover between different statistics, and al-
lows us to specify a tough-to-brittle size scalg, such that

the breakdown behavior of a system of size larger than
becomes brittle. In other words, a system of sizen, can

be treated as a composite of subsystems of sjzewhich
showsbrittlelike properties for cracks larger than the scale
n.. This size scale is analogous to the critical size in the
nucleation process of a first-order phase transition. Given a
sufficiently large system, the failure of the disordered com-
posite behaves like a first-order phase transftiorthat with

the nucleation of a critical crack, the system fails. It's rea-
sonable to definen. to be the system size beyond which
Sh.o/Sn—1,0 becomes essentially a constafig. 3b)]. The
numerical results show that= o~ independent of the local
bond threshold distributiots (o), but the coefficient does
depend orG(o), as shown in Fig. ®) inset.

We thus come to a two-scale picture of fracture: locally
within sizen, the fracture is tough and globally the fracture
is brittle at scalen.. This confirms the picture proposed by
Curtin® recently. In his paper, Curtin studied planar systems
under stresses in the normal direction and observed the ex-
istence of a critical size., according to which the system
could be characterized as a collection of subsystems of size
n.. A subsystem in Curtin’s picture was formulated in an
equal load sharindELS) model, while the whole system
became brittle in that failure of any single subsystem neces-
sarily led to the breakdown of the whole system. The ques-
tion remaining is to determing;. In our numerically solv-
able 1D model, we find a power-law stress dependence of
n.xo ! wheno is small. As we will describe below, with

ability of the configuration with only one single intact bond Nc> o~ “, the failure probability belongs to the modified
at the left end, and the first and dominant term is the totalGumbel family of the extreme statistics.

survival probability for all the other configurations.

For our method we find, and for more general models

This is an extremely good approximation, which givessuggest, that for a system of fixed sizavith applied stress

both the large and smaii behaviors ofS, (o) or F,(o)

o, the failure distribution will generally have these behav-

very well, as shown in Fig. (8 where the exact results of ioral regions as follows:

numerically evaluating Eq4) are compared with Eq5).
We thus focus on the rati§, o/S;,— 1 o which gives the pri-
mary behavior of the fracture for sample of sizeFirst, for  erally this region is characterized by very small stresses
sufficiently largen, we notice that in Fig. @), S;0/Sh-10  (which may be the normal operating stresses in practical ap-
goes to a constant. Thus by neglecting the single bond teripjicationg and smaller system sizes. The expansion of Eq.
in Eq. (5), we obtain that asymptotically the survival prob- (4) gives the exact failure probabilities and, in particular it is
ability of a system decays exponentially withwhich means o jicaple for very smalh’s. The failure probability is a

that a system is always brittle for sufficiently large. Also, su o e
: : ) ; e perposition of a huge number of local distributi@&r),
Eq. (5) shows its consistency with the weak link condition, nd because the failure of the composite is gattordering

\évrlr:gl;g:“gﬂbas Iztrgrissﬁimarcear\:vg:k}reEriéleadte?js(?r %ﬂgft'?g do_ependent, the upper bound of the number can be of order
pendent Fro?/n Eq5), it can be easilil/ shown that y ezr‘*ln!_. Fortu.na.tely! we are only interest(_ad ip the left tail of

' = the failure distribution, which is essential in the extreme
(minimum) statistics analysis. Consider a Weibuil( local
bond-strength distributionG(o)=1—exp(—¢™), the sur-
vival probability of a bond withk fractured neighbor bonds
for i, j, n—i, andn—j all much greater than one, given is W,(o)=exp[—[(1+k/2)a]™}. For the left tail of the dis-
Sh,0/Sh—1,090€s to a constant. This can be interpreted as thatibution S, ,(o) where botho andn are small, we can make
if a large system is divided into parts, then the product ofTaylor series expansions &/, (o) aboutoc=0 in Eg. (4),
survival probabilities for all parts does not depend on howand we find the failure probabilities for samples of different
the system is divided, which is also guaranteed by the weakizes are given by

(i) n<n,: This is thetoughregion, which corresponds to
the initial downhill portion of the curves in Fig.(8. Gen-

(1-S,)(1=Sin-i)=(1=§ )(1-S,_jn-j), (6
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FIG. 3. (a) Failure probability as a function of system size under different stresses. Open circle: exact numerical datedyfilked

diamond: approximation with Eq5). (b) The determination of a criti

1-S,0(0)/Sy-10(0) becomes essentially a constant. Inset: stress dependengengfo™ .

;1= 0™ +0(a?™),

3 m
sz,z=[—1+2- 5) o?™+0(a®m),
3\m 3 2m
=1—2-| = _2m+4_3m_ _ 3m+o( 4m)
S33 > 5 o o™,
3 m 3 2m
S4,4=[_1+2' E) + E) +22m+21+m_21+m'3m

0_4m

—2. 31+m_21—3m_ 32m. 5m_25m+ 23—m' 15m

+0(a°M),

cal sizg,. Forn>n.,1—-S§, (o) decays exponentially with, and
1

where c(n,m) is a coefficient. It is a Weibull distribution

with the modulus proportional to the system sizeFigure

4(a) demonstrates the consistency between the numerical re-

sults and this analytical formula. All lower-order terms can-

cel out in the expansion; physically, this can be understood

with the fact that the failure of the composite requires the

fracture of all the bonds, and each bond has a contribution of

~ o™ to the failure probability. From this point of view, the

failure probability for the tough region at the low stress limit

is always of this form, and the load sharing rule can only

affect the coefficient. The determination of the coefficient

c(n,m) is hard, but a crude estimate can be made from the

n! ways of fracture ordering of the bonds. For smalh, due

to the LLS, we estimate(n,m)~(n!) "™, where 0< y<1 is

a parameter depending upam Thus the failure probability

for the tough region is of the Weibull form
Fo(o)~1—exd —(n!)"™ag™M.

®

For weak stresses, we neglect the higher-order terms anthe optimum sample size, corresponding to the minimum

obtain

Fn(0)=S, n(o)=~c(n,m)c™"~1—exd —c(n,m)c™"],

(@)

failure probability as shown in Fig.(8), is now easily esti-
mated. By settind-,_,=F, , we obtain the optimal size

1y

©

Nmin™~ T
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FIG. 4. (a) Failure behavior in the tough region<n.. Failure
probability is a Weibull distribution with modulusin, wheren is
the system size anoh is the Weibull modulus for the local bond

strength distribution(b) Failure behavior in the brittle regiom

>n.>1. For a very wide range of failure probability, from 1% to
0.999, it has a modified Gumbel forrtc) Failure behavior in the
super-brittle regionn.~1. The strength of the system approaches

that of the first broken bond.

and the corresponding minimum failure probability

For differentG(o), we found empiricallyy=0.59 for expo-
nential, 0.71 for Weibu(R), 0.76 for Weibul{5) and 0.89 for

uniform(0,1).

Fmin~exp —co~ 7). (10)
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rials fall into this region, since the other regions are com-
pressed. The discussion on the failure probability of a system
with percolation disorder under a given streissstill valid in
principle for a system with continuous disorder whan
>n.. Roughly speaking, the failure of the system depends
on whether the size of the weakest spot exceeds the critical
sizen;, and the probability to find a weak spot of size larger
than n, decays exponentially, so we would still expect a
modified-Gumbel-type failure probability for continuous dis-
order. We observe, as shown in Fighg for large n and
relatively weak stress, th&, o/S,- 1 varies only witho,

ie.,

Sho
Sh-10

(o) ~1—exgcIn(ao)/ o], (11)

where exponente=0.90+0.05 for all local bond distribu-
tions tested is close to 1, the value expected with the load
sharing rule LLS. Combining Ed5), we get the form of the
failure probability

Fo(o)=1—exp{—anexdcIn(a)/a*]}, (12

wherea, ¢ and « are parameters to be determined in data
fitting. If we use the weak link hypothesis and treat the sys-
tem as a collection of subsystems of sigeco !, then the
failure probability can be evaluated by usikg~1—(1

- Fnc)“’”c, whereF,_is the failure probability for the tough

region at sizen,. We thus obtain a similar form to E¢L2),
which implies that the weak link hypothesis is, in principle,
correct. With a minor discrepancy ia, Eq. (12) belongs
essentially to the modified Gumbel family. Thus for continu-
ous disorder, as well as percolation disortiére failure be-
havior can still be described with the modified Gumbel form.
Figure 4b) demonstrates that the failure probability fits this
form extremely well over the very wide range from T8 to
0.999.

Although this 1D model is only applicable to problems of
breaking a sheet-shaped object such as a piece of paper, we
believe and propose that the fracture properties of higher
dimensional materials are similar and the strength distribu-
tion form of Eq.(12) is generally applicable.

(iii) n.~1: This is thesuper-brittle region of fracture.
The stress is so strong that critical nuclei exist almost every-
where, and thus almost all the bonds fail simultaneously. The
failure probability is then simply

Fn(0)=1-[1-G(0)]", (13

where G(o) is the local bond strength distribution. Figure
4(c) shows that as stress becomes large, the failure probabil-
ity approaches form Eq(13) asymptotically. It should be
noted that the interior boundary condition considered here
does not guarantee the total stress to be conserved, especially
for smalln, at which a deviation from form Eq13) can be

(i) n>n>1: This is thebrittle region, where the system observed.

is macroscopically brittle but microscopically tough. In prac-

Based on the above discussion, we can roughly sketch the

tice for large system size, most fracture events of real matephase diagram of the different regions as shown in Fig. 5. A
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(apy~(Inn)~ e, (14)
e pritle The variance can be found by considering the change in
F.(o) by a given factor, by which we obtain

V(g = (op)?~(Inn) ~ (1Y), (15)

Thus both the strength average and its deviation decay loga-
rithmically with increasing system size.

Brittle Region

NN KIS

System Size
i
W

%,
7

AN

M,
oy
Tough Region ////////////////////////

Stress

FIG. 5. Different regions of fracture behavior. IIl. OTHER BOUNDARY CONDITIONS
tough-brittle—super-brittle crossover occurs as external stress In the previous section, we discussed the strength distri-
increases, while a tough-brittle crossover occurs as systetvutions of heterogeneous 1D fiber bundles wittterior
size increases. Though the crossover is gradual, each regitwundary conditions, by which each samftensidered em-
is characterized by a different form of failure probability bedded in a larger ofehas both its ends held by intact
with its own physical interpretations. The tough region has aneighboring bonds. The interior boundary condition gives no
Weibull-type failure probability, and in this region, the load- surface effects which, practically, are of great interest to
sharing rule seems to be not very important. Indeed, in twatudies of the strengths of realistic systems. Does the pres-
dimensions, Curtih has approximated the power-law load ence of a surface affect the strength distributions signifi-
sharing rule with a mean-field, global, load sharing modelcantly? The answer is yes, and this issue has been addressed
The local stress enhancement for this case is quite wealapproximately by Chen and Leathby using a transfer-
especially in higher dimensions, and the bonds fracture relamatrix method with a “no-lone-bond” approximation. In
tively independently. For the brittle region, where the modi-this section, we shall confirm the results by an exact recur-
fied Gumbel form applies, the subsystems of sizare such  sive method to calculate the failure probabilities under vary-
that the fracture of any single subsystem results in the globahg boundary conditions, namely, thgeriodic semiopen
system failure. In the super-brittle region, the subsystem sizand openboundary conditions. All the boundary conditions
n. further decreases to the order of the lattice size due to theoncern the load-sharing rules at surfaces: interior boundary
external stress, and the strength of the system is that of theonditions (b.c) promise extra unbreakable bonds outside
weakest bond which is distributed with the ultimate form of the sample to bear stresses; open b.c. are for isolated samples
Eqg. (13). with both ends open; semiopen b.c. have one end of the

Given the strength distributioriEq. (12)], the system size sample open and the other interior; periodic b.c. roll up the
dependences of the average breakdown stfegs and its  sample, making a closed circular system with no surface at
variance are of great interest. From E#2), by neglecting all.
the slow varying factor Inf) and taking the median as the = The configuration of a system sizadmust be one of the

average, we have following:
k I
—N— ——
(1) 0-.-010---0, k+l=n-1 (single bond) ,

(2) 0---010---010---0, E+l<n-2 (double bonds) ,

k r t i
(3) 0---010---010---010---010---0, kE+r+t+1<n—-3 (3 or more bonds) ,

wherek=0,1,...np—1andl=0,1,... n—k—1withn=1,2,.... WedefineW,(o) to be the survival probability of a bond

with load (1+k/2)o. Also we defineSﬁ"?(’,(a) to be the survival probability of a system with a stringkadnd| broken bonds

on each end respectively, aﬁ(ﬂ')(a) to be the failure probability of the system of simeunder certain boundary conditions.

The idea to obtain the recursion relations is the following: in general, we cut off-theéd@ and 10- - O strings(each has only

one intact bongdfrom both ends and are left with a truncated sample with interior b.c. whose survival probability is available.
The survival probabilities of these cut-off parts can be obtained by taking into account the specific boundary conditions which
involve F() or F( for smaller systems. In doing this, one must be careful about the load reassignments on bonds close to the

surfaces. Special cases, i.e., the single and double bond systems must be considered separately. Finally, the recursion relation
for each kind of boundary conditions turn out to be as follows:



4008 B. Q. WU AND P. L. LEATH PRB 59
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© © Periodic A .
6 00 Semi-open FIG. 6. Fracture probabilities of systems with
~ 10'6 F 4~ Open . different boundary conditions under weak applied
VLT: stress ¢=0.1). Inset: Failure probability curves
¢ under higher applied stress € 0.4) showing the
107 1 merging curves.
o0 Interior
10_10 0—0 Periodic
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1 10 100
n
interior:
n—k—1-3 n—k—1-r-3
S(nl,)kJ:FE)Wk+|F|(I)5k+|,n—1+ F(|<')Wn—|—2':§1|1k—|—2Wn—|<—2':|(')Jr ~ t—Eo F(k')Wk+rS§1'1k—|—2,r,tWt+|F|('),
(16)
periodic:
n—k—1-3 n—k—1-r-3
SR = Pl Wak 21 8kt n— 1+ Fi Wa - oF 0o Wo -2+ 2’0 Zb Frl Wi r1
XS 1o Wikt (17
semiopen:
n—k—1-3 n—k—Il-r—3
S(ns,)k,l:F(|<')Wk+2|':|(S)5k+|,n—1+ F&I)Wn%fZFﬂlkfl72ank+I72FI(S)+ rZO '[ZO FE)WKJrr
XShLoi—ap WeraFi, (18)
open:
n—k—1-3 n—k—1-r-3
Sk = FiWaic 20F ¥ St 1+ FOWa o1 -2F 12 o Wa - oF (2 + Zo t:zo FioWa
XS\ k- ap Wer 2 F1?, 19

with the initial conditionF{’= 1. Thus the survival and fail- side, so they must be evaluated simultaneously. Figure 6
ure probabilities of the system are given by shows the exact numerical results of the fracture probabilities
under various boundary conditions. It is observed that the

n-1n-k-1 following relation holds for most system sizes:
S'=2 2 Sik (20 |
k=o [=o0 ™ FlO>(FP and F®)>F, (22)
and while the relation betweeR” andF(® depends on system
size and applied stress. The differences between the fracture
F)=1-5. (21)  probabilities with various boundary conditions can be orders

of magnitude, especially around the optimal system size. Itis
These recursive relations are interconnected with eacthus evident that most of the failures originate from the sur-
other sinceF®) F©® S0 and S® appear on the right-hand faces, as stated in Ref. 4. We also observe a shift of the
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optimal system sizen{;) to a smaller value with more rateof the asymptotic form E¢(24) as its deviation from the
boundary influence. However, as system sitecomes very exact formF(o)=1—[1—H(0)]". Then it can be shown
large or the stress becomes sufficiently strong, these fouhat the convergence rate is abeul/Inn (as a comparison,
probability lines merge to one, showing an identicalthe convergence rate can bel/n for a fast-converging sys-
asymptotic behavior. This means in practice, wineis ex-  tem). This makes the ultimate Gumbel form of little practical
tremely large, the surface effects can be limited, and th&/alue. One way to deal with this difficulty is to make use of
interior boundary conditions can be used, and the strengtld Weibull-type approximation with the Weibull modulus de-
distributions with all the boundary conditions will have the pendent om, called the penultimate Weibull form, i.e.,
same general form.
F(o)—1l—exg—(2Inn-o—1)""2], (25)
IV. SOME MATHEMATICAL REMARKS

ON THE STRENGTH DISTRIBUTIONS which fits very well in almost the entire range of failure

probability. The penultimate Weibull form can be obtained
Finally, we discuss the importance of the modified Gum-by comparing three percentiles with those for the exact form.
bel form of Egs.(2) and(12). We observe that the modified In this Weibull form, the modulus as a function of system
Gumbel form does not itself belong to any of the threesize, is about 26 fon= 10?3 which is quite consistent with
known distribution forms of extreme statistics, but its experiment results for the Weibull exponent in many real
asymptotic behavior belongs to and is approximated wittsamples. In fact, most of the extreme value distributions en-
one of these three extreme value statistic distributions. Foreountered in practical applications can be approximated by
mally, it's obvious that the modified Gumbel forf(o) the penultimate Weibull form very well. This explains why
=1—exfg—anexp(—b/o9] is the cdf of the minimum on  the Weibull form has been so widely used in the study of
independent samples drawn from a parent distributiorpreakdown phenomenon. But it's worth pointing out that the
H(o)=exp(-blc®) (known as the Frechet distribution of penultimate form suggests thattliree parametefitting in
maxima. So we obtain that the asymptotic behaviofgir)  the form of
for n very large is Gumbel, according to the theory of ex-
treme value statistics. However, because of the singularity at F(o)=1-exd—(aoc—b)™] (26)
o0, the most interesting region of fracture, its asymptotlcshould be conducted, instead of the two parameter fitting

form, the Gumbel distribution, which does not have the sin->". ) . )
gularity, loses significantly its accuracy. To see this, for sim-W'de'y used in practicéEg. (1)]. Detailed study shows that

plicity, let a, b, and & be unity. Then from the theory of despite the fact that the Weibull form is an excellent approxi-

extreme value statistics, it can be shown that the asymptoti'in"’ltlon for typical averag_ebreakmg stresses, underery
small stress there may still be a substantial error of up to

form of several orders of magnitude, though the error decreases loga-
F(o)=1—exd —nexp —1/o)], (23 rithmically with increasingn. As shown in Fig. 7, the ulti-
. . ) ) mate Gumbel form significantly overestimates the failure
or the domain of attraction as— is Gumbel-type, i.e., probability while the penultimate Weibull form underesti-

2 mates it. In engineering applications, tests are usually done
Flo)—1-exq—explin®n-o=Inn)], @) nder large stresses with large failure probabilities, and are
which serves as approximation &f(o)=1-[1—H(o)]" extrapolated to the weak stresses of normal operating condi-
for n sufficiently large. Unfortunately, this ultimate form, Eqg. tions to estimate reliability. Thus this error becomes very
(24), converges very slowly. We here define tumvergence important, especially when is not very large. The best nu-
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merical predictor of brittle failure probabilities under very a result which should generally apply in higher dimensions
weak stresses and hence most operating conditions is thas well. The results here also support the conjecture that
the modified Gumbel formiEq. (2)] which should be used in tough fracture can be described with a Weibull form and the
the reliability analysis of brittle materials. brittle fracture with a modified Gumbel form. Tough-to-
brittle crossovers for fracture are found to occur as system
sizes, or stresses change. The modified Gumbel form can be
V. CONCLUSION approximated by a penultimate Weibull form for intermedi-

In summary, we have significantly simplified the recur- ate failure probabilities, but this approximation may not be

sive method for exact numerical calculations of the strengtPPlicable to very small failure probabilities due to signifi-
distribution of the fiber bundle or 1D lattice model with con- €Nt errors. So the modified Gumbel form is of special im-
tinuous, local, strength distribution and local load Sharing_.portance in the reliability analysis of brittle mate.rlalls. The
We observed qualitatively different fracture behavior for sys-mportant effects of surfaces on the strength distributions
tems of different sizes and under different stresses. The critbave also been discussed with a similar exact recursion
cal sample size. is found to depend upon the stress applied,method.
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