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Magnetization properties of some quantum spin ladders
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The experimental realization of various spin ladder systems has prompted their detailed theoretical investi-
gations. Here we study the evolution of ground-state magnetization with an external magnetic field for two
different antiferromagnetic systems: a three-legged spin-1/2 ladder, and a two-legged spin-1/2 ladder with an
additional diagonal interaction. The finite system density-matrix renormalization-group method is employed
for numerical studies of the three-chain system, and an effective low-energy Hamiltonian is used in the limit of
strong interchain coupling to study the two- and three-chain systems. The three-chain system has a magneti-
zation plateau at one-third of the saturation magnetization. The two-chain system has a plateau at zero mag-
netization due to a gap above the singlet ground state. It also has a plateau at half of the saturation magneti-
zation for a certain range of values of the couplings. We study the regions of transitions between plateaus
numerically and analytically, and find that they are described, at first order in a strong-coupling expansion, by
an X XZ spin-1/2 chain in a magnetic field; the second-order terms give correctionsXo<thenodel. We also
study numerically some low-temperature properties of the three-chain system, such as the magnetization,
magnetic susceptibility and specific heg0163-18209)03001-5

[. INTRODUCTION a spin-Peierls transition temperatdrehen the unit cell con-
tains two spin-1/2 sites and the system is gapped.

One-dimensional and quasi-one-dimensional quantum The results for gaps quoted above are all in the absence of
spin systems have been studied extensively in recent yeags external magnetic field. The situation becomes more in-
for several reasons. Many such systems have been realizégresting in the presence of a magnetic ffefthen it is pos-
experimentally, and a variety of theoretical techniques, botlsible for an integer spin chain to be gapless and a half-odd-
analytical and numerical, are available to study the relevaniiteger spin chain to show a gap above the ground state for
models. Due to large quantum fluctuations in low dimen-appropriate values of the fiefd™® This has been demon-
sions, such systems often have unusual properties such astated in several models using a variety of methods such as
gap between a singlet ground state and the excited nonsingléxact diagonalization of small systems, bosonization and
states; this leads to a magnetic susceptibility which vanishegonformal field theory>**and perturbation theo.In par-
exponentially at low temperatures. Perhaps the most famodtsular, it has been shown that the magnetization of the sys-
example of this is the Haldane gap which was predictedem can exhibit plateaus at certain nonzero values for some
theoretically in integer spin Heisenberg antiferromagneticﬁnite ranges of the magnetic field. Further, for a Hamiltonian
chains! and then observed experimentally in a spin-1 systenyvhich is invariant under translation by one unit cell, the
Ni(C,HgN,),NO,(CIO,).2 Other examples include the spin value of the magnetization per unit cell is quantized to be a
ladder systems in which a small number of one-dimensiondlational number at each plateau.
spin-1/2 chains interact amongst each othiéhas been ob- The necessargbut not sufficient condition for the mag-
served that if the number of chains is even, i.e., if each rungetization quantization is given as followd.et us assume
of the ladder(which is the unit cell for the systentontains  that the magnetic field points along tfzeaxis, the total
an even number of spin-1/2 sites, then the system effectivelidamiltonian H is invariant under spin rotations about that
behaves like an integer spin chain with a gap in the low-axis, and the maximum possible spin in each unit cell of the
energy spectrum. Some two-chain ladders which show a galdamiltonian is given byS. Consider a statgs such that the
are (VO),P,0,,* SICu,0; (Ref. 5 and Cy(CsHi,N,),Cl,.b  expectation value o8, per unit cell is equal tang in that
Conversely, a three-chain ladder which effectively behavestate, andy has a periodh, i.e., it is invariant only under
like a half-odd-integer spin chain and doest exhibit a gap  translation by a number of unit cells equalrt@r a multiple
is SKLCU0s.° A related observation is that the quasi-one-of n. (Itis clear that ifn=2, then there must besuch states
dimensional system CuGg@pontaneously dimerizes below with the same energy, sin¢¢is invariant under a translation

0163-1829/99/5d)/396(15)/$15.00 PRB 59 396 ©1999 The American Physical Society



PRB 59 MAGNETIZATION PROPERTIES OF SOME QUANTM . .. 397

by one unit cell. Then the quantization condition says that a

magnetic plateau is possible at the stdtei.e., there is a H=3'2 > Sin Satin

range of values of the external field for which is the o

ground state and is separated by a finite gap from states with 3 3

slightly higher or lower values of tot&,, only if +Jaz’1 ; Sa,n'sa,nu—h;l ; SN )

wherea denotes the chain inder,denotes the rung indek,
n(S—mg)=an integer. (1) denotes the magnetic fieleve have absorbed the gyromag-
netic ratiog and the Bohr magnetopg in the definition of
) o ) _h), andJ,J’>0. For convenience, we choolse=0 since the
This condition is very useful because it enables us to restriglegionh<0 can be deduced from it by reflection about the
our attention to some particular values mf andn when  zero field. It is convenient to scale out the paraméteand
searching for possible plateaus in a given model. Note thajuote all results in terms of the two dimensionless quantities
the saturated state in which all spins point along the magj’/J and h/J. If the length of each chain i&, the total
netic field trivially satisfies Eq(1) since it hasms=S (or number of sites i?N=23L. Since the totak” is a good quan-
—§) andn=1. tum number, it is more convenient to do the numerical com-
In this paper, we will study the magnetization as a func-putationswithout including the magnetic-field term in Eg.
tion of the applied field for a two- and three-chain ladder. We(2), and then to add the effect of the field at the end of the
will do so both numerically, using the density-matrix computation. The labet+1 (or a+1) is appropriately in-
renormalization-group methotDMRG), 2?4 and perturba- terpreted for periodic boundary conditions along the chain
tively, using a low-energy effective HamiltonighEH).}>?>  (or rung.
Our analysis will extend the currently known results in many  For the ground-state properties, we have only considered
ways. We have used DMRG to study two-spin correlationan open boundary conditiof©OBC) in the rung direction,
functions in the ground state, and some finite-temperatureamely, the summation ovex in the first term of Eq.(2)
thermodynamic properties such as magnetic susceptibilityuns over 1,2. However, for low-temperature properties, we
and specific heat. Further, our LEH goes up to the seconbiave studied both OBC, as well as a periodic boundary con-
order in a strong-coupling expansion. Whenever possible, wdition (PBC) in the rung direction in which we sum over
will use the analytical results from the LEH to understand=1,2,3 in the first term(Only the OBC is realized along the
the numerical results. The first-order LEH will turn out to be rungs in the experimental systems studied so far. However,
the well-studiedX XZ spin-1/2 chain in a longitudinal mag- PBC along the rungs is interesting for theoretical reasons as
netic field!*2®and it will usually prove to be sufficient for a we will see below.
qualitative understanding of the results. However, we will For small systems, we have performed exact diagonaliza-
find it necessary to invoke the second-order resgisich  tion with periodic boundary conditions in the chain direction.
give corrections to th&XZ mode) for a more accurate com- For larger systems, we have done DMRG calculati@rsing
parison with the numerics. the finite system algorithff) with open boundary conditions
The paper is organized as follows. In Sec. Il, we will in the chain direction. For exact diagonalization, we have
present all the numerical results we have obtained for thgone up to 24 sites, i.e., a chain length of 8. With DMRG,
three-chain ladder using DMRG. We will see that there is ave have gone up to 120 sitdshain length of 40) after
finite energy gap and exponentially decaying spin correlachecking that the DMRG and exact results match for 24
tions at each plateau, while there is no gap and the two-spisites. The number of dominant density matrix eigenstates,
correlations decay as powers in between two plateaus. We
will also study how the plateaus gradually disappear and how =%
the susceptibility and specific heat evolve as we increase thi (a)
temperature. In Sec. lll, we will derive the LEH for the same -os2f
model and show how it can be used to understand some ¢
the numerical results in Sec. Il. We will also derive the LEH -0s4- .
for a two-chain ladder which can be thought of as a dimer-

ized and frustrated spin-1/2 chdihand we will use it to 096l .
understand magnetization plateaus in the ground state. Wéo
will see that for certain values of the dimerization and frus- _yg| (b) i

tration, the ground state can spontaneously break translatio
invariance leading to an additional plateau at an intermediate _, | |
value of the magnetization. In Sec. IV, we will summarize (c)

our results and point out some directions for future studies. _ | |

-1.04
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STUDY OF THE THREE-CHAIN LADDER
FIG. 1. The energy/site in units af vs 1N at the mg=1/2

We have numerically studied a three-chain spin-1/2 ladplateau, forJ/J’ =1/3. The curves indicate quadratic fits fta)
der governed by the Hamiltonian Eo(M+1N), (b) Eo(M,N), and(c) Eo(M—1,N).
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FIG. 2. Plateau widths vs li/for (a) ms=1/2, (b) ms=0, and FIG. 4. Correlation functioS;, S, ,) at thems=1/2 plateau for
(© ms=1. I =1/3. o

corresponding to then largest eigenvalues of the density Ms=1/2 which can be easily found numerically, and that
matrix, that we retained at each DMRG iteration was Vvalue of the ratio is sufficiently deep inside the strong-
=80. In fact, we varied the value of from 60 to 100, and coupling regime that the second-order perturbation expan-
found thatm= 80 gives satisfactory results in terms of agree-sion of Sec. Il gives results which compare very well with
ment with exact diagonalization for small systems and goodhe numerics.

numerical convergence for large systems. For inputting the We now describe the various ground-state properties we
values of the couplings into the numerical programs, it ishave found with OBC along the rungs. We looked for a
more convenient to think of the system as a single chaifnagnetization plateau as follows. Motivated by the condi-

(rather than as three chajnsith the Hamiltonian tions in Eq.(1), we looked for a plateau ahs=1/2 which
would correspond ta=1 in that equation, sincé=3/2. We

2 also looked for plateaus at;=0 andmg=1, each of which
1—CO{T”S'S+1+J2 SESFEY would correspond t;m=2, i.e., a doubly degenerate state
3) which has a period of two rungs. For a system witlsites,
a given value of magnetization per rung,, corresponds to
The system is grown by adding two new sites at each iteraa sector with tota* equal toM =m,N/3. Using the infinite
tion. Note that our method of construction ensures that weystem algorithm, we found the lowest enerdig$S*,N) in
obtain the three-chain ladder structure after every third iterathe three sectorS’=M+1, M, andM — 1. Then we exam-
tion when the total number of sites becomes a multiple of 6ined the three plots oE,/NJ versus 1IN and extrapolated
At various system sizes, starting from 48 sites and going uphe results up to the thermodynamic linht—oo. We fitted
to 120 sites in multiples of 6 sites, we computed the energiethese plots with the formule&Ey,/NJ=eg,+a;/N+b;/N?,
after doing three finite system iterations; we found that thevhere the labei=1,2,3 denotes th&* sectorsM+1, M,
energy converges very well after three iterations. The energgndM — 1. (We found that a quadratic fit in N/matches the
data is used in Figs. 1 and 2. After reaching 120 sites, welata much better than just a linea).fin the thermodynamic
computed the spin densities and correlations after doingimit, the values of the three intercemsshould match since
three finite system iterations. This data is used in Figs. 3—8&hose are just the energy per site for the three states whose
All our numerical results quoted below are fdvJ’ S,’s differ by only 1. However, the three slopes are not
=1/3. We chose this particular value of the ratio for two equal in general. We now show that there is a magnetization
reasons; there is a particularly broad magnetization plateau ptateau ifa,+a;— 2a, has a nonzero value. Since the three

2
H=§JZi
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FIG. 3. Spin densities at tha;=1/2 plateau fol/J’ = 1/3. The upper point&ircles denote the top chaia=1, while the lower points
(triangles denote the middle chaia=2.n=1 and 20 denote the end and middle rungs, respectively.
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FIG. 5. Correlation functiofS;},S; ) at themg=1/2 plateau.

energiesk, are computed without including the magnetic-
field term, the upper critical fielti., where the states with
S,=M+1 andM become degenerate is given by

het (N)=Eo(M+1N)—Eq(M,N). 4

Similarly, the lower critical fieldh._ where the states with
S,=M andM —1 become degenerate is given by

he_(N)=Eo(M,N)—Eo(M—1N). ©)

We therefore have a finite intervabh(N)=h.,(N)
—h._(N) in which the lowest energy state wi®=M is
the ground state of the system withsites in the presence of
a field h. If this interval has a nonzero limit dd— o, we

have a magnetization plateau. Thus, in the thermodynamic

limit, the plateau widtMh/J is equal toa;+a;—2a,.

We will now quote our numerical results fdrJd’=1/3.
For a rung magnetization ofmg=1/2, i.e., M=N/6, we
found the three slopes; to be equal to 3.77-0.02, and

—1.93; see Fig. 1. This gives the upper and lower critical

fields to be
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FIG. 6. Correlation functiongS;,S; ) in the my=1 state for
J/IJ'=1/3.
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FIG. 7. Correlation functiofS;;S5,,) in themg=1 state.

h he_
—r-a,-a,=3.79, —=a,—az=1.91,
J J
Ah  hep—heo
S =—73 =188 (6)

This is a sizable plateau width, and it agrees with the exact
diagonalization result8 and with the second-order perturba-
tion expansion which will be discussed in the next section.
For a rung magnetization ohs=1, we found thea; to be
equal to 4.97,—0.24, and—5.43. Thus the upper and lower
critical fields are

c+

Ah—002
‘] - — . .

5.21 he- =5.19
. y J - . y ‘]

7
Finally, for a rung magnetization ofn;=0, we need the
energies of states withl =0 andM = £ 1. Since the last two
states must have the same energy, we lsweas; and it is
sufficient to plot onlyEy(O,N) andEy(1,N) versus IN. We
founda, anda, to be equal to 0.39 and 0.34. This gives the
upper and lower fields to be

hes _

Ah
—=0.10.

.05, 3

—0.05, (8

he_

3=
The plateau widths given in Eq&) and(8) are rather small.
In Fig. 2, we indicate the plateau widtAd(N)/J as a func-
tion of 1IN for mg=1/2, 0, and 1. We will see that the LEH
in the next section actually predicts that there should be no
plateaus atm;=0 and 1.

Next, we computed the various spin correlations for the

120-site system. We studied the spin densi(i&s,) where
the chain indexa=1,2,3 andh is the rung index[Due to the

rotation invariance about theaxis, the other two spin den-
sities (S; ,) must vanish. For the plateau ams=1/2, we
found that

<Si,n>:<sg,n>:0'271 <S§,n>: —0.04, 9

for values ofn in the middle of the system. The spin densi-
ties are shown in Fig. 3.
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FIG. 8. Spin densities in then;=1 state forJ/J’=1/3. The upper pointfcircles denote the top chain=1, while the lower points
(triangles denote the middle chaia=2.n=1 and 20 denote the end and middle rungs, respectively.

We also examined several two-spin correlations whichfor targeting the lowest states in differe®t sectors, earlier
can be denoted b{SZ |Sf ) and(S; S, ). For thezzcor-  studies of mixed spin chains have shown that DMRG is quite
relations, it is convenient to subtract the product of the tworeliable for computing low-temperature properties afso.
separate spin densities; the subtractedorrelations then go  There are two reasons for this; the low-lying excited states
to zero for large rung separatiofis-n|, just like the + — generally have a large projection onto the space of DMRG
correlations. Atm,=1/2, we found that all these correlations States which contains the ground state, and the low-lying
decay very rapidly to zero dé—n| grows. In fact, the fall excitations in one sector are usually the lowest states in
offs were so fast that we were unable to compute sensibleearbyS” sectors.
correlation lengths. All the correlation lengths are of the or- We first checked that for systems with 12 sites, the results
der of one or two rungs as can be seen in Figs. 4 and 5. obtained using DMRG agree well with those obtained by

On the other hand, for the staterat=0, we found that exact diagonalization. We then used DMRG to study the
all the two-spin correlations decay quite slowly. The decaysnagnetization, susceptibility and specific heat of 36-site sys-
are consistent with power law fall offs of the form tems with both OBC and PBC along the rungs. We first
A(—1)"="/]I—n|7. It is difficult to find 7 very accurately compute the partition functiod=X;exd — B(E;—h(S);)1,
since the maximum value ¢f—n| is only 20; this is because Where the sum is over all the staies all the S* sectors, and
we fixed one site to be in the middle of the ch&ia mini- B8=21/kgT where kg is the Boltzmann constant. Then the
mize edge effecis and the maximum chain length is 40 for magnetization is given by
our DMRG calculations. Foms=0, the exponent; for all
the correla_tions was fognd to be around 1. There.was no (M= } 2 (Sz)ie*ﬁ[Ei*“(Sz)i]_ (10)
difference in the behaviors of thez and + — correlations Z5
since this was an isotropic system;=0 is the ground state . o o
if the magnetic field is zero. The magnetic susceptibility is related to the fluctuation in

For the state at =1 (which is the ground state only for magnetization,
a substantial value of the magnetic figld/e found that the B 2 2
+ — correlations again decay quite slowly consistent with a x=BLMH)=(M)7], (12)
power law. The exponents for the different+ — correla-  and the specific heat is related to the fluctuation in energy,
tions varied from 0.61 to 0.70 with an average value of 0.66;
see Fig. 6 for an example. However, the correlations ac- Cv s X
tually increased, rather than decreased, with increasing sepa- o =BUE)—(E)]. (12)
ration || —n|; see Fig. 7. We found that this is because of B
large edge effects. Since the magnetic field is particularlyThe plots of magnetization versus magnetic field for various
strong for the state witims=1, and sites at the ends have temperatures are shown in Figs. 9 and 10 for OBC and PBC,
fewer neighbors coupled antiferromagnetically to them, theyespectively, along the rungs. The temperafliie measured
respond more strongly to the magnetic field than sites nedn units of J/kg. We see that the plateau mt=1/2 disap-
the center of the system. This can be seen from Fig. 8 whengears quite rapidly as we increase the temperature. With
the spin densit)SQ’n shows a sharp increase towards the endOBC along rungs, the plateau has almost disappeardd at
of the chain(the rung indexh is equal to 1 at the end =0.4 which is substantially lower than the widthh/J

We now summarize the properties of the three states stud=1.88. The plots of susceptibility in Fig. 11 for OBC also
ied with OBC along the rungs. The state withb=1/2 is  show no surprises. The susceptibility&ponentially small
characterized by a large gap to excited states and extreme#t low temperatures in the region of the plateau because the
short correlation lengths for spin correlations. The states anagnetic excitations there are separated from the ground
m;=0 andm,=1 appear to have no gaps to excited statestate by a gap.

(within our numerical accuragyand have slow fall offs of However, the specific heats shown in Figs. 12 and 13
correlation functions consistent with power laws. demonstrate an interesting difference between OBC and PBC
We now describe some low-temperature thermodynami@along the rungs. While it is very small at low temperatures
properties of the three-chain system obtained using DMRGfor OBC, it is not small for PBC; further, it shows a plateau
Although DMRG is normally expected to be most accuratein the same range of magnetic fields as the magnetization
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FIG. 9. Magnetization vs magnetic field for 36 sites, with OBC along rungs/fidr=1/3.

itself. These two observations strongly suggest that the syshese excitations are nonmagnetic since they have the same
tem with PBC along the rungs ha®nmagnetiexcitations  value of §* as the ground state.

which do not contribute to the magnetization or susceptibil- We should point out that the rapid but small fluctuations
ity, but do contribute to the specific heat. Figure 14 gives aseen in Figs. 11-14, in the susceptibility and specific heat at
more direct comparison between OBC and PBC along thé¢he lowest temperature dfF=0.1, are due to finite-size ef-
rungs. The LEH of Sec. Il will clearly show the origin of fects. Apart from a large plateau at,=1/2, a system with
these excitations. Although these excitations were studied bynly 36 sites also has small plateaus for several values of
previous authorf®?* we believe that our specific-heat at zero temperature. These lead to small wiggles in the mag-
plots prove their existence most physically. To show thesaetization(M) at very low temperature. The wiggles get
excitations even more explicitly, we present in Fig. 15 all theamplified in the susceptibility since it is equal to the first
energy levels for a 12-site chain in the sec&r2 (i.e., derivative, i.e.,y=3d(M)/dh. The specific heat shows low-
ms=1/2) using exact diagonalization. It is clear that thetemperature fluctuations for the same reason.

ground state is well separated from the excited states for We should mention here that a small plateau has been
OBC, but it is at the bottom of a band of excitations for PBC;found atm¢=0 for PBC along the rungs:* The half-width
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FIG. 10. Magnetization vs magnetic field for 36 sites, with PBC along rungs/fir=1/3.
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FIG. 11. Susceptibility vs magnetic field for 36 sites, with OBC along rungs.

is given byh., /J=0.21 in the limitJ'/J—«. However, this  We will therefore consider the strong-coupling linitJ’
plateau is not clearly visible in our low-temperature plots of —0 which corresponds to almost decoupled rungs. In that

magnetization and susceptibility. limit, the LEH has been derived to first order JnJ’ for a
three-chain ladder with PBC along the rurf§$*and for a
I1l. LOW-ENERGY EFFECTIVE HAMILTONIANS two-chain laddet®?°

We will derive the LEH for the three-chain model with
OBC along the rungs and a two-chain modesézond order

We will now discuss the LEH approach for studying thein J/J’, and for the three-chain model with PBC along the
properties of spin ladders. There are two possible limitgungs to first order. For the three-chain system with OBC and
which may be considered. One could examihgJ—0  for the two-chain system, we find that the first-order LEH
which corresponds to weakly interacting chains, and thenakes the form of theXXZ spin-1/2 model in a magnetic
directly use techniques from bosonization and conformafield. A lot of information is available for this model through
field theory; this has been done in detail by oth@rs:1*15  conformal field theory?®In particular, the exponeny for

A. General comments
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FIG. 12. Specific heat in units &fz vs magnetic field for 36 sites, with OBC along rungs 363’ = 1/3.
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FIG. 13. Specific heat in units & for 36 sites, with PBC along rungs.

the correlation power laws can be read off from the first-denoted byh,, for which two or more of the rung states will
order Hamiltonian. We will use the terms of second order inbe degenerate ground states. We will consider each such
J/J’ only to determine the boundarids. of the various value ofhg in turn. The degenerate rung states will constitute
plateaus. The second-order terms should also give correour low-energy states. If the amount of degeneracy in each
tions to the exponeny but we will not consider that problem rung isd, the total number of low-energy states in a system
here. For the three-chain model with PBC along the rungswith L rungs is given by 9. (The numbed depends both on
even the first-order LEH is sufficiently complicated that its the system and on the fielg,. It is two for three chains with
properties are not well understood; however we will presenDBC along the rungs and for two chains, while it is three or
the form of the LEH for completeness. four for three chains with PBC along the rungs. The form of
We derive the LEH as follows. We first set the intrachainthe LEH depends crucially on this degeneradyext, we
couplingJ=0 and consider which of the states of a singledecompose the Hamiltonian of the total systemHasH,
rung are degenerate in energy in the presence of a magneticV, whereH, contains only the rung interactiaH and the
field. In general, there will be several values of the field,field hy, andV contains the small interactiosand the re-

3

T=0.1, OBC T=0.1, OBC

25 15
2

O?.s =10
]

5

05 /\A M
0 0
0 2 4 6 8 0 2 4 6 8

T=0.1, PBC

4 6 8 2 4
h/J h/J

FIG. 14. Comparisons of specific heat and susceptibility of the 36-site systems with OBC and PBC along the rungs.
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-5 0 5
PBC

-10 -5

Energy

FIG. 15. Comparison of the energy spectra in unitd of the 12-site system with OBC and PBC along the rungs. The energies in the

S,=2 sector are shown fal/J’'=1/3.

sidual magnetic fielch—hy which are both assumed to be

much smaller thad'. Let us now denote the degenerate and ~ H=2 [SiShi1+SiSh1+ASIS). 1-h> S},
low-energy states of the system psand the high-energy 3 " (16)
states agg,. The low-energy states all have energy,

while the high-energy states have enerdgigsaccording to where the anisotropy parameter—1. It is known that this
the exactly solvable Hamiltoniakl,. Then the first-order system is gapped foh>1+A with all sites havingS,
LEH is given, up to an overall constant, by degenerate per=1/2 in the ground state, and for<—1—A with all sites
turbation theory, havingS,= —1/2. ForA<1, these are the only two magne-
tization plateaus withm==*=1/2 per site. ForA<1 andh
=0, the two-spin correlations decay asymptotically as

HE =2 [p)(pilVIp){pj.- (13
1 L (_1)n
The second-order LEH is given by (SoSh)~ In[7
2_ L (pilVIga) (gl VP (—1)"
Heft ; ; [ E,—E, (pjl. (14 (S2S2)~ IR (17)
The calculation of the various matrix elements in E4S)
and (14) can be simplified by using the symmetries of the n= EJF isin—l(A).
perturbationV, e.g., translations and rotations about the 2 m
axis. On the other hand, fak > 1, there is an additional plateau at

Finally, if there is a stat@; such thatp;|V|p;)=0forall  m —0: there are two degenerate ground states which have a
low-energy stateg #i, then the unnormalized stag is  period of two sites consistent with the conditiciy. Thus the

given, to first order, by invariance of the Hamiltonian under a translation by one site
is spontaneously broken in the ground states. This is particu-
PP =|p)+ > |q >M' (15) larly obvious forA—o where the two ground states ate
= Eo—E, —+—... and—+—+---. The two-spin correlations de-

. . ) _cay exponentially fod>1 andh=0.
This result will be used to compute the first-order changes in

some quantities like the spin densities and correlations.

Before ending this section, we would like to make a few
comments on th&XXZ spin-1/2 model in a magnetic field
since this will play an important role belott?® Consider a We will decompose the Hamiltonian in E¢2) as H
spin-1/2 chain governed by the Hamiltonian =Hgy+V, where

B. Three-chain ladder with open boundary condition
along the rungs
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3
1 29
Ho=3' 2 2 SunSarin=ho 2 2 S, Her=32 | SiSheat SISt 5—5) SﬁSﬁH]
3 2
, 5J i y
V=12 2 S Saneam(h=ho 2 X 8. "l 2 |2 S SaShatSaSi)
(18)
_ _ o _ 272 1, 1 \(1
We determlne- the _f|g|dho by considering the rung H.amll- - —,E E_Sn—l E_S” E—Snﬂ
tonianH, and identifying the values of the magnetic fidlgl 273" n
where two or more of the rung states become degenerate. 3 3 2952
The eight states in each rung are described by specifying po 2 E s (21)
the S components € and — denoting +1/2 and —1/2, 2 2 727 ’

respectively of the sites belonging to chains 1, 2, and 3.

For instance, the four states with tota+ 3/2 are denoted where we have substitutdég)=3J'/2. Note that the terms of
by 1), ..., |4), where|1)=|+++) and the other three orderJ only involve two neighboring sites. The LEH up to
states can be obtained by acting on it successively withhat order simply describes a0XZ model with anisotropy
the operatoiS™ =X,S, . These four states have the energyA=1/2 in a magnetic fielth—3J3'/2—J/2 [see Eq.(16)].
J'/2 in the absence of a magnetic field. There is oneSome of the terms of orde¥’/J’ involve three neighboring
doublet of states|5) and |6) with S=1/2, where|5) sites; this makes the model unsolvable by the Bethe ansatz at
=[2|+—+)—|—-++)—|++-)]/\6 and |6)~S|5). this order.

These have energy J'. Finally, there is another doublet of ~ We will now use Eq.(21) to compute the values of the
states|7)=[|+ + — )—|— + +)]/v2 and|8)~S|7) which  fieldsh; andh, where the states with all rungs equal| 19
have zero energy. It is now evident that the statewith ~ and all rungs equal t{6), respectively, become the ground
§?=3/2 and the statf5) with S’=1/2 become degenerate at States. We can then identify; with the lower critical field

a magnetic fielho=3J'/2, while state$5) and|6) are trivi-  Nc- for the plateau atns=3/2, andh, with the upper critical
ally degenerate for the field,=0. We will now examine field h¢, for the plateau atms= 1/2.[Recall the definition of
these two cases separately. upper and lower critical fields around Edg) and(5).]

For hy=3J'/2, the low-energy states in each rung are T0 compute the fieldh;, we compare the enerdy, of the
given by |1) and |5), while the other six are high-energy State with all rungs equal tfl) with the minimum energy
states. We thus have an effective spin-1/2 object on eachmin(K) of a spin-wave state in which one rung is equd/3p
rung n. We may introduce three spin-1/2 operatorsand all the other rungs are equal[th). A spin wave with
(SX,8),S) for each rung such tha =S +iS) and S ~ Momentunk is given by
have the following actions:

1 )
St11),=0, S7I5)n=|1), |k>=ﬁ ; en[5,), (22)

S, 1Dn=15n, S,|5)n=0, 19
n[Dn=15)n % 19 where|5,) denotes a state where only the rumg equal to
2 1 2 _ 1 |5). The spin-wave dispersion, i.eq(k)=E(k)—E,, is
Sin=z D, Sil5n==z |5 found from Eq.(21) to be

Note that the state which has|d) on every rung, i.e.,

|111- - -), is just the state with rung magnetization=3/2 1 29J 33 J 2972
corresponding to the saturation plateau. The state wjé) a w(k)=J| cosk— =+ —|+|h—————
- o 2 72y 2 2 3
on every rung corresponds to the=1/2 magnetization pla-
teau. The LEH we are trying to derive will therefore describe (23

the transition between these two plateaus.

We now turn on the perturbatiod in Eq. (18) with the
assumption thal andh—h, are both much smaller thaH.
We can writeV=2X,V, 1,1, where

This is minimum atk= 7 and it turns negative there fdr
<h,, where

!

h1:7+2\]. (24)

3
Vn,n-%—lzcJ aZl Sa,n' Sa,n-%—l
This is therefore the transition point between the ferromag-
1 3 , , netic statg111- - - ) and a spin-wave band lying immediately
—5(h=ho) azl [SantSan+1l- (20 pelow it in energy.
Similarly, we compute the fielth, by comparing the en-
The action ofV,, ;.1 on the four low-energy states involving ergy E, of the state with all rungs equal §&) with the
rungsn andn+1 can be obtained after a long but straight- minimum energyE,,(k) of a spin wave in which d5) at
forward calculation. We then use E@.4) and find that the one rung is replaced by|d). For a spin wave with momen-
LEH to second order id/J’ is given, up to a constant, by tumk, the dispersionw(k) =E(k) — E, is found to be
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1 29] 2/2 5 We will now consider the LEH at the other magnetic field
w(k)=J| cosk— §+ — |+ —,(5— Ecos 2() ho=0 where the rung statés) and|6) are degenerate. We
2y )3 take these as the low-energy states and introduce new effec-

(25)  E0s.(19), except that we repladd) and|5) in those equa-
tions by |5) and|6). We again compute the action of the

S _ N perturbationV on the low-energy states. We then deduce the
This is minimum atk= 7 and it turns positive there fan second-order LEH to be

) tive spin-1/2 operators for each rung with actions similar to

>h,, where
J
3 3J? Heﬁ:‘]; {(1_5)31'%4—1
hy=—o —J+ —. 26
2 2 AL ( )
83 ,
This marks the transition between the std85 - -) and the - ﬁﬁq Sh+2|—h ; Sh- (28)

spin-wave band. Equatio{26) agrees to this order with the
higher-order series given in the literatdfeNote that the This Hamiltonian describes the transition between the mag-
second-order result givels,/J=3.75 for J/J'=1/3, com-  netization plateaus ans=1/2 andmg=—1/2; since these
pared to our DMRG value df.; /J=3.79 in Eq.(6). plateaus are reflections of each other about zero magnetic
From the first-order terms in E¢21), we can deduce the field, it is sufficient to study one of them. By a calculation
asymptotic form of the two-spin correlations. From ELi),  similar to the one used to derive E@4), the fieldh, can be
we see that the exponent=2/3 for A=1/2. Although thisis  found from the dispersion of a spin wave in which one rung
the exponent for the- — correlation of the effective spin-1/2 is equal to|6) and all the other rungs are equal|&). The
defined on each rung, we would expect the same exponent tfispersion is
appear in all the correlations; S, ) studied by DMRG in
the previous section, regardless of how we choose the chain J? 8J?
indicesa,b=1,2,3. We now see that the analytically pre- ~ @(K)=h+|J— ;) (cosk—1)+ ﬁ(l—cos X).
dicted exponent of 2/3 agrees quite well with the numerically (29)
obtained exponents which lie in the range 0.61 to 0.70. Inci-
dentally, this agreement implies thHt)’ = 1/3 is sufficiently ~ This gives
small so that the second-order terms do not significantly af-
fect the correlation exponent. J?
Finally, we can use the first-order wave function given in hy=2J- a (30)
Eq. (15 to compute the spin densities and short-distance
two-spin correlations. As examples, we quote the results folThis is the lower critical fielch,_ of the my=1/2 plateau.
spin densities and some of the nearest-neighbor spin correl&or J/J’ = 1/3, the second-order result gives 1.93 versus the
tions for the plateau ahs=1/2. We will give the first-order DMRG value of 1.91 in Eq(6). The Hamiltonian(28) de-
expressions and their values fdfJ’ = 1/3, followed by the scribes an isotropic spin-1/2 antiferromagnet with a weak
numerical values obtained by DMRG: ferromagnetic next-nearest-neighbor interaction. From the
comments at the end of the previous section, we see that this
1 4] model only has the two saturation plateausngt + 1/2, and
(S1p)=(S5p)= 37 55y ~0-28 vs 0.27 from DMRG,  no other plateau in between. For0, the two-spin correla-
20 tions decay as power laws with the exponent 1 [see Eq.

17].

8
- )=——=+——=—0.07 vs —0.04,
<Sz'”> 6 273 C. Three-chain ladder with periodic boundary condition

along the rungs

1 J In this section, we will present the first order LEH for the
(SinSin+1)= 9~ ——=0.07 vs 0.07, Hamiltonian (2) with PBC along the rungs. The LEH will
8J turn out to be somewhat complicated. We will not study their
properties in any detail, but will limit ourselves to a few
;e 1 4 comments. As in the case with OBC along the rungs, there
(S2nS2n+1)= 36 273 —0.02 vs —0.02, are two different LEH to be considered here because there
are two values of the magnetic field where there are degen-
eracies. We again begin with a description of the eight states
on each rung. The four states wiis 3/2 are the same as the
stated1), ....,|4) introduced in the previous section, except
that they now have energyJ34 in the absence of a field.
23 The doublet states have to be chosen differently now in order
(S3Soni1)=— —=-007 vs —0.11.  (27) that they be eigenstates of the periodic rung Hamiltonian.

9J’ We choose two of the doublet states to|B&)=[|+ + —)

J
(SipStn+1) ="~ a =—0.06 vs —0.08,
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+of+—+)+w—++))/y3 and |6')~S7|5'), where »  Which may be obtained from E¢32) by omitting the state
—exp(27/3). These two states have momenta/2 along  |1) on all the rungs. Equatio(84) has the form of Eq(16)

the rung (right moving. The other two doublet states are with A=0, and is therefore exactly solvable; at low tempera-
17 =[|+ + =)+ 0|+ —+)+ w2 — + +>]/\/§ and [8') ture, it has a specific heat which grows linearly withThe
~S~|7") with momenta—2/3 (left moving. All these situation is therefore quite different from the case of OBC

four states have energy-3J'/4. This extra degeneracy &/ong the rungs where then,=1/2 plateau consists of a
(which is twice the degeneracy of the doublets for OBCSINgle state in which every rung is in the stgfo; all other
along the rungsleads to a more complicated LEH as we will states are separated by a gap, hence the specific heat goes to
see. zero exponentially at low temperature.

We now note that for a fielthy=3J'/2, the three states __Finally, we examine the LEH at the fieft,= 0 where the
1), |5'), and|7’) become degenerate. We now introducefour doublet stateg5’),- - -,[8") become degenerate. This
seven operator®®,L*, 7%, and o? for each rung with the nas been discussed in detail earfief®2*0On each rung, we
following nonzero actions on the three low-energy states, introduce effective spin-1/2 operators Whic+h change or mea-

sureS?, and the two nonmagnetic operatars which inter-

R:|5,>n:|1>na Ry |L)n=15")n, change the left and right moving states. Then the LEH is

+ ! — - — ! J
Lol7)0=11n,  Lol1)n=1[7")n, Heﬁ=§z [1+4(1) Tniqt 7o Tret)]
n

T;|7’>n:|5’>n1 Tr:|5/>n:|7/>na

’ ’ ’ ' XS Sheamh S (35
O Dn=IDn,  oF5)0= 15", 7 )0= 17" SSiamh2 S

31
) . ) 31 This also appears to be nonexactly solvable but it has been
All the actions(of operators on statggsot mentioned in Egs.  stydied numerically®?* It has a small plateau an,=0

(31) are assumed to give zero. We thus observe that there afhere there are two degenerate ground states, each with a
five magnetic operator&™, R*, and o* which change or period of two rungs. Above some magnetic fiald(which is
measure th&” of a state, and two nonmagnetic operatets  again hard to calculate analytically from E5), this model
which do not chang&” but simply interchange the right and ¢rosses over to the,= 1/2 plateau where the rungs can only

left moving states. . o be in the twoS?=1/2 stateg5’) and|7’). We see from Eq.
We then find that the first-order LEH is given, up to a (35 that these two states are again governed by the Hamil-
constant, by tonian in Eq.(34).
3 The phase diagrams of the three-chain ladder for OBC
Het== > [LiL . ,+L LI, +R'R . +R R" and PBC along the rungs are shown as function¥' &f and
© n oL TR Tl e Tl e T h/J in Figs. 6b) and Gc) in Ref. 11. We observe that the
3 3 plateaus withms=1/2 andmg=23/2 (called M =1/3 andM
+ 3 ; (7t 7]+ - ; il =1, respectively, in Ref. )lhave large regions of stability

for both OBC and PBC. The plateau withy=0 exists only
in the case of PBC along the rungs, and it has a small region

S (32  of stability close toh/J=0.
2 3/ "
We can now find the magnetic fielt, at which the ferro- D. A two-chain ladder

magnetic statg¢l11- - -) crosses over to the minimum energy  |n this section, we will use the LEH approach to study a

spin-wave statéin which a|1) is replaced by either ') or  two-chain spin-1/2 ladder with the following Hamiltonian:
a|7’) on exactly one rung The spin-wave dispersion is

2
3\], H:J’ . -l,-J .
w(9=h- -~ J+Jcosk 39 2 SinSoatdz 2 2 SanSansa
2
We thus see thdt;=3J'/2+2J just as for OBC along the n ) _ z
rungs. Thus the lower critical fielth,_ of the saturation 2‘]1; Stn*Son+1 hazl ; San (36)

plateaum;=3/2 has the same value for OBC and PBC along o ) )
the rungs. as shown in Fig. 16. The model may be viewed as a single
Below some fieldh, (which seems rather hard to find
analytically), the low-energy eigenstates of E82) will not
have the statgl) on any rung; only the state§’) and|7') N\
will appear. This gives us the magnetization plateau J
m,=1/2. However, this plateau has a large numbenaf-

1 Jo 1

magneticexcitations described by the Hamiltonian 2 2
3 FIG. 16. Schematic diagram of the two-chain ladder with an
|-|eﬁ:§ Z (70 7q+ 7o 7], (34) additional diagonal interaction. The _Iabels 1 and 2 denote sites in
n the upper and lower chains, respectively.
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chain with an alternation in nearest-neighbor couplidgs states/1) and|4) become degenerate at a figlg=J’. We
and 2J, (dimerizatior), and a next-nearest-neighbor coupling now develop perturbation theory by assuming thatl, and
J, (frustration. Equation (36) has been studied h—hy are all much less thad’. The perturbation isvV
extensively?”?° More recently, it has been studied from the ==V, .., where
point of view of magnetization plateaus using a first-order
LEH, bosonization, and exact diagonalizatiart®2>we will
therefore limit ourselves to deriving the second-order LEH Vont1=J2 azl SanSan+1t2d1S1 0 Sont
and making a few other comments.

We begin by settingl;=J,=0, and studying the four
states on each rung. These are specified by giving the con- - §<h—ho)2 [SantSansal: (37)
figurations* of the spins on chains 1 and 2 as follows. The a=t
three triplet states witB=1 are denoted d4), |2), and|3),  The actions of this operator on the four low-energy states of
where|1)=|+ +) and the other two states are obtained bya pair of neighboring rungs can be easily obtained. We now
acting on it successively wits~. These three states have introduce effective spin-1/2 operatdgs on each rung which
energyJ’/4 in the absence of a magnetic field. The singletact on the two low-energy states. The second-order LEH is
state [4)=[|+—)—|—+)]/\2 has energy—3J'/4. The then found to be

2

J3 1 232 301
32_‘]1_‘]_,); (SiSh 1t ShShe1) + (J2+Jl

H, = S J)"
ef 3 4J’

1 1
o [ R RN IR I N IEE WS
A X 1 A 1 A 1 A
+S +1)( LSS S+ §+Sr1—1)(§_sn §+Sn+1)
J,)? J, J, 31
4J!2 2 (__ )( 1S§+1+S%—1S¥+1)—<h—\]’—El—?z— L ); (38

We now compute the fielch; above which the state This is the lower critical fielch,_ of the saturation plateau
[111 - -) becomes the ground state. The dispersion of a spiwith magnetizatiorms=1 per rung. Similarly, we can find
wave, in which one rung is equal }8) and all the others are the fieldh, from the dispersion of a spin wave in which one
equal to|1), is given by rung is equal td1) and the rest are equal {4). The disper-
sion is given by

i 1
w(k)=h—=3"-J3;-J,— — +(J—J1)cosk+ —cos X. 3(3,—3,)2 J?

2J 2J w(k)=—h+J'+¥——}

(39) 4y J

2

By minimizing this as a function ok in various regions in Ji (31— J3,)?
+1J—J1— ? cosk— T cos X.

the parameter spacd(,J,), and then setting that minimum
value equal to zero, we find thht is given by

(41)
2J% , - : ,
hy=J"+2J; if J,<J;— —, By setting the minimum of this equal to zero, we find that
J’ is given by
=0 +J,+d,+ % + (=30 (31— 32)° 231 Ji
- TR I hy=0"+ ———+3,—J;— — if Jp<Ji+—,
J A 2 0y 2ty iy
235 2J2 2 2
-t -1 J;—J J
if ‘]l T <J2S\]l+ 7 :J,-f—( 1 2) _J2+J1 if J2>J1+ _1 (42)
2J' J'
232 o N :
=3 +2), if 3=+ — (40)  This is the upper critical fieldh., of the saturation plateau

with magnetizatiorm;=0 per rung.
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1.0 - - PBC along the rungs, we found a wide plateau with rung
magnetization given byng=1/2. For the case of OBC, the
two-spin correlations are extremely short-ranged, and the
magnetic susceptibility and specific heat are very small at
1 low temperature in the plateau. All these are consistent with
3 0.5 i the large magnetic gap. At other valuesrof the two-spin
correlations fall off as power laws; the exponents can be
found by using the first-order LEH which takes the form of
an XXZ model in a longitudinal magnetic field. For the case
, of PBC, the magnetic susceptibility is again very small at
0.0 Loy 20 3.0 low temperature in the plateau. However, the specific heat
goes to zero much more slowly which dramatically shows
FIG. 17. Phase diagram of the two-chain ladder as a function othe presence of nonmagnetic excitations. This can be under-
h and @ for J,=0.2. In our notationJ’'=1+« and 2J,=1-a. stood from the LEH in Eq{(34) which is anXY model.
The numbers 0, 1/2, and 1 in the figure correspond to the values d¥inally, we used the LEH approach to study a two-chain
m; at the plateaus. Reproduced with permission from Ref. 16.  ladder with an additional diagonal interaction. In addition to
_ _ _ a plateau atm;=0, this system also has a plateaunaf
Finally, we can see that the first-order terms in 28)  =1/2 for certain regions in parameter space. The=1/2
are of the same form as th€XZ model in Eq.(16). We can  plateau is interesting because it corresponds to degenerate
always make the coefficient of the first term in E§8)  ground states which spontaneously break the translation in-
positive, if necessary by performing a rotation variance of the Hamiltonian. This can be understood from
Si—(—1)"Sy, $—(—1)"S) and S;—S[. We then get a the LEH which, at first order, is aKXZ model withA>1.

first-order Hamiltonian of the form An interesting problem for the future may be to take the
second-order terms in the LEH presented in Secs. IlI B and

Ho=|J,—J XoX L g¥gy 1D, and to compute the corrections produced by them in
o= 12 1|; [SnSn+ 1% SaSna] the exponents of the correlation power laws. This would re-

1 1 quire us to study the effects of a perturbation to ¥z
- 7z _|p_ Ll ¥2 z spin-1/2 chain. This may not be difficult to do analytically
- 2(J2+J1); SiShea (h T3 2); Sh- since theXXZ model is integrable and exactly solvable by
43) the Bethe ansatz.
The quantization condition for magnetization given in Eq.
This is anXXZ model with (1) is reminiscent of the quantum Hall effect where the Hall
conductivity shows plateaus as a function of the magnetic
_ J2td; (44) field 3! However, it is not clear if the magnetization quanti-
2|3,— 34| zation is as insensitive to disorder as the conductivity quan-
éization is known to be. Although a magnetization plateau
may be expected to survive small amounts of disofdeg.,
if the disorder strength is much smaller than the energy,gap
J,=J, (this is called the Shastry-Sutherland fifje the mq there seems to .be no fund_amﬁntal physical plrlinciple, anall10—
=1/2 plateau will then stretch all the way from the uppergous to gauge Invariance |n't e quantum Ha. system, why
o . = " : the value of the magnetization should remain fixed at a
critical field of thems=0 plateau to the lower critical field of . . N
simple rational value. In fact, the derivation of BEd) as-

them,=1 plateau. Th|s c.:an.be seenin F'g.' 17 Wh'.Ch IS t.akensumes translation invariance of the Hamiltonian which is
from Ref. 16; the dimerization parameterin that figure is

related to our couplings by’ =1+ & and 2J;=1— e, Note certainly broken by disorder. It would therefore be interest-

. ; : i his i for i llowi Il
that themg=1/2 plateau is particularly broad at=0.6, i.e., Ing to study this issue, for instance, by allowing a sma

) f di in th li f th in | -
J,=J,=02, and that it actually touches tihe,—1 plateau amount of disorder in the couplings of the spin ladder mod

on the right. The fact that it does not extend all the way up toeIS discussed in this paper.

From the comments in Sec. Il A, we therefore see that th
two-chain ladder will have an additional plateaunat=1/2
for A>1, i.e., ifJ,+J3;>2|J,—J4|. In particular,A= for

the mg=0 plateau on the left is probably because we have ACKNOWLEDGMENTS
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