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Magnetization properties of some quantum spin ladders
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The experimental realization of various spin ladder systems has prompted their detailed theoretical investi-
gations. Here we study the evolution of ground-state magnetization with an external magnetic field for two
different antiferromagnetic systems: a three-legged spin-1/2 ladder, and a two-legged spin-1/2 ladder with an
additional diagonal interaction. The finite system density-matrix renormalization-group method is employed
for numerical studies of the three-chain system, and an effective low-energy Hamiltonian is used in the limit of
strong interchain coupling to study the two- and three-chain systems. The three-chain system has a magneti-
zation plateau at one-third of the saturation magnetization. The two-chain system has a plateau at zero mag-
netization due to a gap above the singlet ground state. It also has a plateau at half of the saturation magneti-
zation for a certain range of values of the couplings. We study the regions of transitions between plateaus
numerically and analytically, and find that they are described, at first order in a strong-coupling expansion, by
anXXZ spin-1/2 chain in a magnetic field; the second-order terms give corrections to theXXZ model. We also
study numerically some low-temperature properties of the three-chain system, such as the magnetization,
magnetic susceptibility and specific heat.@S0163-1829~99!03001-5#
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I. INTRODUCTION

One-dimensional and quasi-one-dimensional quan
spin systems have been studied extensively in recent y
for several reasons. Many such systems have been rea
experimentally, and a variety of theoretical techniques, b
analytical and numerical, are available to study the relev
models. Due to large quantum fluctuations in low dime
sions, such systems often have unusual properties such
gap between a singlet ground state and the excited nonsi
states; this leads to a magnetic susceptibility which vanis
exponentially at low temperatures. Perhaps the most fam
example of this is the Haldane gap which was predic
theoretically in integer spin Heisenberg antiferromagne
chains,1 and then observed experimentally in a spin-1 syst
Ni~C2H8N2!2NO2~ClO4!.

2 Other examples include the sp
ladder systems in which a small number of one-dimensio
spin-1/2 chains interact amongst each other.3 It has been ob-
served that if the number of chains is even, i.e., if each r
of the ladder~which is the unit cell for the system! contains
an even number of spin-1/2 sites, then the system effecti
behaves like an integer spin chain with a gap in the lo
energy spectrum. Some two-chain ladders which show a
are ~VO!2P2O7,

4 SrCu2O3 ~Ref. 5! and Cu2~C5H12N2!2Cl4.
6

Conversely, a three-chain ladder which effectively beha
like a half-odd-integer spin chain and doesnot exhibit a gap
is Sr2Cu3O5.

5 A related observation is that the quasi-on
dimensional system CuGeO3 spontaneously dimerizes belo
PRB 590163-1829/99/59~1!/396~15!/$15.00
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a spin-Peierls transition temperature;7 then the unit cell con-
tains two spin-1/2 sites and the system is gapped.

The results for gaps quoted above are all in the absenc
an external magnetic field. The situation becomes more
teresting in the presence of a magnetic field.8 Then it is pos-
sible for an integer spin chain to be gapless and a half-o
integer spin chain to show a gap above the ground state
appropriate values of the field.9–19 This has been demon
strated in several models using a variety of methods suc
exact diagonalization of small systems, bosonization a
conformal field theory,20,21and perturbation theory.22 In par-
ticular, it has been shown that the magnetization of the s
tem can exhibit plateaus at certain nonzero values for so
finite ranges of the magnetic field. Further, for a Hamiltoni
which is invariant under translation by one unit cell, th
value of the magnetization per unit cell is quantized to b
rational number at each plateau.

The necessary~but not sufficient! condition for the mag-
netization quantization is given as follows.9 Let us assume
that the magnetic field points along theẑ axis, the total
Hamiltonian H is invariant under spin rotations about th
axis, and the maximum possible spin in each unit cell of
Hamiltonian is given byS. Consider a statec such that the
expectation value ofSz per unit cell is equal toms in that
state, andc has a periodn, i.e., it is invariant only under
translation by a number of unit cells equal ton or a multiple
of n. ~It is clear that ifn>2, then there must ben such states
with the same energy, sinceH is invariant under a translation
396 ©1999 The American Physical Society
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PRB 59 397MAGNETIZATION PROPERTIES OF SOME QUANTUM . . .
by one unit cell!. Then the quantization condition says tha
magnetic plateau is possible at the statec, i.e., there is a
range of values of the external field for whichc is the
ground state and is separated by a finite gap from states
slightly higher or lower values of totalSz , only if

n~S2ms!5an integer. ~1!

This condition is very useful because it enables us to res
our attention to some particular values ofms and n when
searching for possible plateaus in a given model. Note
the saturated state in which all spins point along the m
netic field trivially satisfies Eq.~1! since it hasms5S ~or
2S) andn51.

In this paper, we will study the magnetization as a fun
tion of the applied field for a two- and three-chain ladder. W
will do so both numerically, using the density-matr
renormalization-group method~DMRG!,23,24 and perturba-
tively, using a low-energy effective Hamiltonian~LEH!.15,25

Our analysis will extend the currently known results in ma
ways. We have used DMRG to study two-spin correlat
functions in the ground state, and some finite-tempera
thermodynamic properties such as magnetic susceptib
and specific heat. Further, our LEH goes up to the sec
order in a strong-coupling expansion. Whenever possible
will use the analytical results from the LEH to understa
the numerical results. The first-order LEH will turn out to b
the well-studiedXXZ spin-1/2 chain in a longitudinal mag
netic field,11,26 and it will usually prove to be sufficient for a
qualitative understanding of the results. However, we w
find it necessary to invoke the second-order results~which
give corrections to theXXZ model! for a more accurate com
parison with the numerics.

The paper is organized as follows. In Sec. II, we w
present all the numerical results we have obtained for
three-chain ladder using DMRG. We will see that there i
finite energy gap and exponentially decaying spin corre
tions at each plateau, while there is no gap and the two-
correlations decay as powers in between two plateaus.
will also study how the plateaus gradually disappear and h
the susceptibility and specific heat evolve as we increase
temperature. In Sec. III, we will derive the LEH for the sam
model and show how it can be used to understand som
the numerical results in Sec. II. We will also derive the LE
for a two-chain ladder which can be thought of as a dim
ized and frustrated spin-1/2 chain,27 and we will use it to
understand magnetization plateaus in the ground state.
will see that for certain values of the dimerization and fru
tration, the ground state can spontaneously break transla
invariance leading to an additional plateau at an intermed
value of the magnetization. In Sec. IV, we will summari
our results and point out some directions for future studi

II. DENSITY-MATRIX RENORMALIZATION-GROUP
STUDY OF THE THREE-CHAIN LADDER

We have numerically studied a three-chain spin-1/2 l
der governed by the Hamiltonian
ith
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H5J8(
a

(
n

Sa,n•Sa11,n

1J(
a51

3

(
n

Sa,n•Sa,n112h(
a51

3

(
n

Sa,n
z , ~2!

wherea denotes the chain index,n denotes the rung index,h
denotes the magnetic field~we have absorbed the gyroma
netic ratiog and the Bohr magnetonmB in the definition of
h), andJ,J8.0. For convenience, we chooseh>0 since the
regionh,0 can be deduced from it by reflection about t
zero field. It is convenient to scale out the parameterJ, and
quote all results in terms of the two dimensionless quanti
J8/J and h/J. If the length of each chain isL, the total
number of sites isN53L. Since the totalSz is a good quan-
tum number, it is more convenient to do the numerical co
putationswithout including the magnetic-field term in Eq
~2!, and then to add the effect of the field at the end of
computation. The labeln11 ~or a11) is appropriately in-
terpreted for periodic boundary conditions along the ch
~or rung!.

For the ground-state properties, we have only conside
an open boundary condition~OBC! in the rung direction,
namely, the summation overa in the first term of Eq.~2!
runs over 1,2. However, for low-temperature properties,
have studied both OBC, as well as a periodic boundary c
dition ~PBC! in the rung direction in which we sum overa
51,2,3 in the first term.~Only the OBC is realized along th
rungs in the experimental systems studied so far. Howe
PBC along the rungs is interesting for theoretical reason
we will see below!.

For small systems, we have performed exact diagonal
tion with periodic boundary conditions in the chain directio
For larger systems, we have done DMRG calculations~using
the finite system algorithm23! with open boundary conditions
in the chain direction. For exact diagonalization, we ha
gone up to 24 sites, i.e., a chain length of 8. With DMR
we have gone up to 120 sites~chain length of 40) after
checking that the DMRG and exact results match for
sites. The number of dominant density matrix eigensta

FIG. 1. The energy/site in units ofJ vs 1/N at the ms51/2
plateau, forJ/J851/3. The curves indicate quadratic fits for~a!
E0(M11,N), ~b! E0(M ,N), and~c! E0(M21,N).
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398 PRB 59TANDON, LAL, PATI, RAMASESHA, AND SEN
corresponding to them largest eigenvalues of the densi
matrix, that we retained at each DMRG iteration wasm
580. In fact, we varied the value ofm from 60 to 100, and
found thatm580 gives satisfactory results in terms of agre
ment with exact diagonalization for small systems and go
numerical convergence for large systems. For inputting
values of the couplings into the numerical programs, it
more convenient to think of the system as a single ch
~rather than as three chains! with the Hamiltonian

H5
2

3
J8(

i
F12cosS 2p i

3 D GSi•Si 111J(
i

Si•Si 13 .

~3!

The system is grown by adding two new sites at each ite
tion. Note that our method of construction ensures that
obtain the three-chain ladder structure after every third ite
tion when the total number of sites becomes a multiple o
At various system sizes, starting from 48 sites and going
to 120 sites in multiples of 6 sites, we computed the energ
after doing three finite system iterations; we found that
energy converges very well after three iterations. The ene
data is used in Figs. 1 and 2. After reaching 120 sites,
computed the spin densities and correlations after do
three finite system iterations. This data is used in Figs. 3

All our numerical results quoted below are forJ/J8
51/3. We chose this particular value of the ratio for tw
reasons; there is a particularly broad magnetization platea

FIG. 2. Plateau widths vs 1/N for ~a! ms51/2, ~b! ms50, and
~c! ms51.
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ms51/2 which can be easily found numerically, and th
value of the ratio is sufficiently deep inside the stron
coupling regime that the second-order perturbation exp
sion of Sec. II gives results which compare very well wi
the numerics.

We now describe the various ground-state properties
have found with OBC along the rungs. We looked for
magnetization plateau as follows. Motivated by the con
tions in Eq.~1!, we looked for a plateau atms51/2 which
would correspond ton51 in that equation, sinceS53/2. We
also looked for plateaus atms50 andms51, each of which
would correspond ton52, i.e., a doubly degenerate sta
which has a period of two rungs. For a system withN sites,
a given value of magnetization per rung,ms , corresponds to
a sector with totalSz equal toM5msN/3. Using the infinite
system algorithm, we found the lowest energiesE0(Sz,N) in
the three sectorsSz5M11, M , andM21. Then we exam-
ined the three plots ofE0 /NJ versus 1/N and extrapolated
the results up to the thermodynamic limitN→`. We fitted
these plots with the formulaE0 /NJ5ei1ai /N1bi /N2,
where the labeli 51,2,3 denotes theSz sectorsM11, M ,
andM21. ~We found that a quadratic fit in 1/N matches the
data much better than just a linear fit!. In the thermodynamic
limit, the values of the three interceptsei should match since
those are just the energy per site for the three states w
Sz’s differ by only 1. However, the three slopesai are not
equal in general. We now show that there is a magnetiza
plateau ifa11a322a2 has a nonzero value. Since the thr

FIG. 4. Correlation function̂S2,l
1 S2,n

2 & at thems51/2 plateau for
J/J851/3.
FIG. 3. Spin densities at thems51/2 plateau forJ/J851/3. The upper points~circles! denote the top chaina51, while the lower points
~triangles! denote the middle chaina52. n51 and 20 denote the end and middle rungs, respectively.
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energiesE0 are computed without including the magneti
field term, the upper critical fieldhc1 where the states with
Sz5M11 andM become degenerate is given by

hc1~N!5E0~M11,N!2E0~M ,N!. ~4!

Similarly, the lower critical fieldhc2 where the states with
Sz5M andM21 become degenerate is given by

hc2~N!5E0~M ,N!2E0~M21,N!. ~5!

We therefore have a finite intervalDh(N)5hc1(N)
2hc2(N) in which the lowest energy state withSz5M is
the ground state of the system withN sites in the presence o
a field h. If this interval has a nonzero limit asN→`, we
have a magnetization plateau. Thus, in the thermodyna
limit, the plateau widthDh/J is equal toa11a322a2.

We will now quote our numerical results forJ/J851/3.
For a rung magnetization ofms51/2, i.e., M5N/6, we
found the three slopesai to be equal to 3.77,20.02, and
21.93; see Fig. 1. This gives the upper and lower criti
fields to be

FIG. 5. Correlation function̂S1,l
z S1,n

z & at thems51/2 plateau.

FIG. 6. Correlation functionŝS1,l
1 S2,n

2 & in the ms51 state for
J/J851/3.
ic

l

hc1

J
5a12a253.79,

hc2

J
5a22a351.91,

Dh

J
5

hc12hc2

J
51.88. ~6!

This is a sizable plateau width, and it agrees with the ex
diagonalization results10 and with the second-order perturb
tion expansion which will be discussed in the next secti
For a rung magnetization ofms51, we found theai to be
equal to 4.97,20.24, and25.43. Thus the upper and lowe
critical fields are

hc1

J
55.21,

hc2

J
55.19,

Dh

J
50.02. ~7!

Finally, for a rung magnetization ofms50, we need the
energies of states withM50 andM561. Since the last two
states must have the same energy, we havea15a3 and it is
sufficient to plot onlyE0(0,N) andE0(1,N) versus 1/N. We
founda1 anda2 to be equal to 0.39 and 0.34. This gives t
upper and lower fields to be

hc1

J
50.05,

hc2

J
520.05,

Dh

J
50.10. ~8!

The plateau widths given in Eqs.~7! and~8! are rather small.
In Fig. 2, we indicate the plateau widthsDh(N)/J as a func-
tion of 1/N for ms51/2, 0, and 1. We will see that the LEH
in the next section actually predicts that there should be
plateaus atms50 and 1.

Next, we computed the various spin correlations for t
120-site system. We studied the spin densities^Sa,n

z & where
the chain indexa51,2,3 andn is the rung index.@Due to the
rotation invariance about theẑ axis, the other two spin den
sities ^Sa,n

6 & must vanish.# For the plateau atms51/2, we
found that

^S1,n
z &5^S3,n

z &50.27, ^S2,n
z &520.04, ~9!

for values ofn in the middle of the system. The spin dens
ties are shown in Fig. 3.

FIG. 7. Correlation function̂S2,l
z S2,n

z & in the ms51 state.
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FIG. 8. Spin densities in thems51 state forJ/J851/3. The upper points~circles! denote the top chaina51, while the lower points
~triangles! denote the middle chaina52. n51 and 20 denote the end and middle rungs, respectively.
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We also examined several two-spin correlations wh
can be denoted bŷSa,l

z Sb,n
z & and ^Sa,l

1 Sb,n
2 &. For thezz cor-

relations, it is convenient to subtract the product of the t
separate spin densities; the subtractedzzcorrelations then go
to zero for large rung separationsu l 2nu, just like the12
correlations. Atms51/2, we found that all these correlation
decay very rapidly to zero asu l 2nu grows. In fact, the fall
offs were so fast that we were unable to compute sens
correlation lengths. All the correlation lengths are of the
der of one or two rungs as can be seen in Figs. 4 and 5

On the other hand, for the state atms50, we found that
all the two-spin correlations decay quite slowly. The deca
are consistent with power law fall offs of the form
A(21)u l 2nu/u l 2nuh. It is difficult to find h very accurately
since the maximum value ofu l 2nu is only 20; this is because
we fixed one site to be in the middle of the chain~to mini-
mize edge effects!, and the maximum chain length is 40 fo
our DMRG calculations. Forms50, the exponenth for all
the correlations was found to be around 1. There was
difference in the behaviors of thezz and 12 correlations
since this was an isotropic system;ms50 is the ground state
if the magnetic field is zero.

For the state atms51 ~which is the ground state only fo
a substantial value of the magnetic field!, we found that the
12 correlations again decay quite slowly consistent with
power law. The exponentsh for the different12 correla-
tions varied from 0.61 to 0.70 with an average value of 0.
see Fig. 6 for an example. However, thezz correlations ac-
tually increased, rather than decreased, with increasing s
ration u l 2nu; see Fig. 7. We found that this is because
large edge effects. Since the magnetic field is particula
strong for the state withms51, and sites at the ends hav
fewer neighbors coupled antiferromagnetically to them, th
respond more strongly to the magnetic field than sites n
the center of the system. This can be seen from Fig. 8 wh
the spin densitySa,n

z shows a sharp increase towards the e
of the chain~the rung indexn is equal to 1 at the end!.

We now summarize the properties of the three states s
ied with OBC along the rungs. The state withms51/2 is
characterized by a large gap to excited states and extre
short correlation lengths for spin correlations. The state
ms50 andms51 appear to have no gaps to excited sta
~within our numerical accuracy!, and have slow fall offs of
correlation functions consistent with power laws.

We now describe some low-temperature thermodyna
properties of the three-chain system obtained using DMR
Although DMRG is normally expected to be most accur
h

o
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s
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a
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y
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d

d-

ely
at
s
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e

for targeting the lowest states in differentSz sectors, earlier
studies of mixed spin chains have shown that DMRG is qu
reliable for computing low-temperature properties also28

There are two reasons for this; the low-lying excited sta
generally have a large projection onto the space of DM
states which contains the ground state, and the low-ly
excitations in one sector are usually the lowest states
nearbySz sectors.

We first checked that for systems with 12 sites, the res
obtained using DMRG agree well with those obtained
exact diagonalization. We then used DMRG to study
magnetization, susceptibility and specific heat of 36-site s
tems with both OBC and PBC along the rungs. We fi
compute the partition functionZ5( iexp@2b(Ei2h(Sz) i)#,
where the sum is over all the statesi in all theSz sectors, and
b51/kBT where kB is the Boltzmann constant. Then th
magnetization is given by

^M &5
1

Z (
i

~Sz! ie
2b@Ei2h~Sz! i #. ~10!

The magnetic susceptibility is related to the fluctuation
magnetization,

x5b@^M2&2^M &2#, ~11!

and the specific heat is related to the fluctuation in energ

CV

kB
5b2@^E2&2^E&2#. ~12!

The plots of magnetization versus magnetic field for vario
temperatures are shown in Figs. 9 and 10 for OBC and P
respectively, along the rungs. The temperatureT is measured
in units of J/kB . We see that the plateau atms51/2 disap-
pears quite rapidly as we increase the temperature. W
OBC along rungs, the plateau has almost disappearedT
50.4 which is substantially lower than the widthDh/J
51.88. The plots of susceptibility in Fig. 11 for OBC als
show no surprises. The susceptibility is~exponentially! small
at low temperatures in the region of the plateau because
magnetic excitations there are separated from the gro
state by a gap.

However, the specific heats shown in Figs. 12 and
demonstrate an interesting difference between OBC and P
along the rungs. While it is very small at low temperatur
for OBC, it is not small for PBC; further, it shows a platea
in the same range of magnetic fields as the magnetiza
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FIG. 9. Magnetization vs magnetic field for 36 sites, with OBC along rungs forJ/J851/3.
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itself. These two observations strongly suggest that the
tem with PBC along the rungs hasnonmagneticexcitations
which do not contribute to the magnetization or suscepti
ity, but do contribute to the specific heat. Figure 14 give
more direct comparison between OBC and PBC along
rungs. The LEH of Sec. III will clearly show the origin o
these excitations. Although these excitations were studied
previous authors,10,11,24 we believe that our specific-hea
plots prove their existence most physically. To show th
excitations even more explicitly, we present in Fig. 15 all t
energy levels for a 12-site chain in the sectorSz52 ~i.e.,
ms51/2) using exact diagonalization. It is clear that t
ground state is well separated from the excited states
OBC, but it is at the bottom of a band of excitations for PB
s-

l-
a
e

by

e

or
;

these excitations are nonmagnetic since they have the s
value ofSz as the ground state.

We should point out that the rapid but small fluctuatio
seen in Figs. 11–14, in the susceptibility and specific hea
the lowest temperature ofT50.1, are due to finite-size ef
fects. Apart from a large plateau atms51/2, a system with
only 36 sites also has small plateaus for several values om
at zero temperature. These lead to small wiggles in the m
netization ^M & at very low temperature. The wiggles g
amplified in the susceptibility since it is equal to the fir
derivative, i.e.,x5]^M &/]h. The specific heat shows low
temperature fluctuations for the same reason.

We should mention here that a small plateau has b
found atms50 for PBC along the rungs.11,24The half-width
FIG. 10. Magnetization vs magnetic field for 36 sites, with PBC along rungs forJ/J851/3.
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FIG. 11. Susceptibility vs magnetic field for 36 sites, with OBC along rungs.
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h

is given byhc1 /J50.21 in the limitJ8/J→`. However, this
plateau is not clearly visible in our low-temperature plots
magnetization and susceptibility.

III. LOW-ENERGY EFFECTIVE HAMILTONIANS

A. General comments

We will now discuss the LEH approach for studying t
properties of spin ladders. There are two possible lim
which may be considered. One could examineJ8/J→0
which corresponds to weakly interacting chains, and th
directly use techniques from bosonization and conform
field theory; this has been done in detail by others.10,11,14,15
f

s

n
l

We will therefore consider the strong-coupling limitJ/J8
→0 which corresponds to almost decoupled rungs. In t
limit, the LEH has been derived to first order inJ/J8 for a
three-chain ladder with PBC along the rungs,20,24 and for a
two-chain ladder.15,25

We will derive the LEH for the three-chain model wit
OBC along the rungs and a two-chain model tosecond order
in J/J8, and for the three-chain model with PBC along t
rungs to first order. For the three-chain system with OBC a
for the two-chain system, we find that the first-order LE
takes the form of theXXZ spin-1/2 model in a magnetic
field. A lot of information is available for this model throug
conformal field theory.11,26 In particular, the exponenth for
FIG. 12. Specific heat in units ofkB vs magnetic field for 36 sites, with OBC along rungs forJ/J851/3.
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FIG. 13. Specific heat in units ofkB for 36 sites, with PBC along rungs.
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the correlation power laws can be read off from the fir
order Hamiltonian. We will use the terms of second order
J/J8 only to determine the boundarieshc6 of the various
plateaus. The second-order terms should also give cor
tions to the exponenth but we will not consider that problem
here. For the three-chain model with PBC along the run
even the first-order LEH is sufficiently complicated that
properties are not well understood; however we will pres
the form of the LEH for completeness.

We derive the LEH as follows. We first set the intracha
coupling J50 and consider which of the states of a sing
rung are degenerate in energy in the presence of a mag
field. In general, there will be several values of the fie
-
n

c-

s,

t

tic
,

denoted byh0, for which two or more of the rung states wi
be degenerate ground states. We will consider each s
value ofh0 in turn. The degenerate rung states will constitu
our low-energy states. If the amount of degeneracy in e
rung isd, the total number of low-energy states in a syste
with L rungs is given byLd. ~The numberd depends both on
the system and on the fieldh0. It is two for three chains with
OBC along the rungs and for two chains, while it is three
four for three chains with PBC along the rungs. The form
the LEH depends crucially on this degeneracy.! Next, we
decompose the Hamiltonian of the total system asH5H0
1V, whereH0 contains only the rung interactionJ8 and the
field h0, andV contains the small interactionsJ and the re-
FIG. 14. Comparisons of specific heat and susceptibility of the 36-site systems with OBC and PBC along the rungs.
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FIG. 15. Comparison of the energy spectra in units ofJ of the 12-site system with OBC and PBC along the rungs. The energies i
Sz52 sector are shown forJ/J851/3.
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sidual magnetic fieldh2h0 which are both assumed to b
much smaller thanJ8. Let us now denote the degenerate a
low-energy states of the system aspi and the high-energy
states asqa . The low-energy states all have energyE0,
while the high-energy states have energiesEa according to
the exactly solvable HamiltonianH0. Then the first-order
LEH is given, up to an overall constant, by degenerate p
turbation theory,

Heff
~1!5(

i j
upi&^pi uVupj&^pj u. ~13!

The second-order LEH is given by

Heff
~2!5(

i j
(
a

upi&
^pi uVuqa&^qauVupj&

E02Ea
^pj u. ~14!

The calculation of the various matrix elements in Eqs.~13!
and ~14! can be simplified by using the symmetries of t
perturbationV, e.g., translations and rotations about theẑ
axis.

Finally, if there is a statepi such that̂ pj uVupi&50 for all
low-energy statesj Þ i , then the unnormalized statepi is
given, to first order, by

upi&
~1!5upi&1(

a
uqa&

^qauVupi&
E02Ea

. ~15!

This result will be used to compute the first-order change
some quantities like the spin densities and correlations.

Before ending this section, we would like to make a fe
comments on theXXZ spin-1/2 model in a magnetic fiel
since this will play an important role below.11,26 Consider a
spin-1/2 chain governed by the Hamiltonian
d

r-

in

H5(
n

@Sn
xSn11

x 1Sn
ySn11

y 1DSn
zSn11

z #2h(
n

Sn
z ,

~16!

where the anisotropy parameterD.21. It is known that this
system is gapped forh.11D with all sites havingSz
51/2 in the ground state, and forh,212D with all sites
havingSz521/2. ForD<1, these are the only two magne
tization plateaus withm561/2 per site. ForD<1 and h
50, the two-spin correlations decay asymptotically as

^S0
1Sn

2&;
~21!n

unuh
,

^S0
zSn

z&;
~21!n

unu1/h
, ~17!

h5
1

2
1

1

p
sin21~D!.

On the other hand, forD.1, there is an additional plateau a
ms50; there are two degenerate ground states which ha
period of two sites consistent with the condition~1!. Thus the
invariance of the Hamiltonian under a translation by one s
is spontaneously broken in the ground states. This is part
larly obvious forD→` where the two ground states are1
212••• and 2121•••. The two-spin correlations de
cay exponentially forD.1 andh50.

B. Three-chain ladder with open boundary condition
along the rungs

We will decompose the Hamiltonian in Eq.~2! as H
5H01V, where
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H05J8 (
a51,2

(
n

Sa,n•Sa11,n2h0 (
a51

3

(
n

Sa,n
z ,

V5J (
a51

3

(
n

Sa,n•Sa,n112~h2h0! (
a51

3

(
n

Sa,n
z .

~18!

We determine the fieldh0 by considering the rung Hamil
tonianH0 and identifying the values of the magnetic fieldh0
where two or more of the rung states become degenera

The eight states in each rung are described by specif
the Sz components (1 and 2 denoting 11/2 and 21/2,
respectively! of the sites belonging to chains 1, 2, and
For instance, the four states with totalS53/2 are denoted
by u1&, . . . , u4&, where u1&5u111& and the other three
states can be obtained by acting on it successively w
the operatorS25(aSa

2 . These four states have the ener
J8/2 in the absence of a magnetic field. There is o
doublet of statesu5& and u6& with S51/2, where u5&
5@2u121&2u211&2u112&]/A6 and u6&;S2u5&.
These have energy2J8. Finally, there is another doublet o
statesu7&5@ u112&2u211&]/A2 andu8&;S2u7& which
have zero energy. It is now evident that the stateu1& with
Sz53/2 and the stateu5& with Sz51/2 become degenerate
a magnetic fieldh053J8/2, while statesu5& andu6& are trivi-
ally degenerate for the fieldh050. We will now examine
these two cases separately.

For h053J8/2, the low-energy states in each rung a
given by u1& and u5&, while the other six are high-energ
states. We thus have an effective spin-1/2 object on e
rung n. We may introduce three spin-1/2 operato
(Sn

x ,Sn
y ,Sn

z) for each rung such thatSn
65Sn

x6 iSn
y and Sn

z

have the following actions:

Sn
1u1&n50, Sn

1u5&n5u1&n ,

Sn
2u1&n5u5&n , Sn

2u5&n50, ~19!

Sn
zu1&n5 1

2 u1&n , Sn
zu5&n52 1

2 u5&n .

Note that the state which has au1& on every rung, i.e.,
u111•••&, is just the state with rung magnetizationms53/2
corresponding to the saturation plateau. The state with au5&
on every rung corresponds to thems51/2 magnetization pla-
teau. The LEH we are trying to derive will therefore descri
the transition between these two plateaus.

We now turn on the perturbationV in Eq. ~18! with the
assumption thatJ andh2h0 are both much smaller thanJ8.
We can writeV5(nVn,n11, where

Vn,n115J (
a51

3

Sa,n•Sa,n11

2
1

2
~h2h0! (

a51

3

@Sa,n
z 1Sa,n11

z #. ~20!

The action ofVn,n11 on the four low-energy states involvin
rungsn andn11 can be obtained after a long but straigh
forward calculation. We then use Eq.~14! and find that the
LEH to second order inJ/J8 is given, up to a constant, by
.
g

.

th

e

ch

Heff5J (
n

FSn
xSn11

x 1Sn
ySn11

y 1S 1

2
2

29J

72J8
D Sn

zSn11
z G

2
5J2

18J8
(

n
S 1

2
2Sn

zD ~Sn21
x Sn11

x 1Sn21
y Sn11

y !

2
2J2

27J8
(

n
S 1

2
2Sn21

z D S 1

2
2Sn

zD S 1

2
2Sn11

z D
2S h2

3J8

2
2

J

2
2

29J2

72J8
D(

n
Sn

z , ~21!

where we have substitutedh053J8/2. Note that the terms o
orderJ only involve two neighboring sites. The LEH up t
that order simply describes anXXZ model with anisotropy
D51/2 in a magnetic fieldh23J8/22J/2 @see Eq.~16!#.
Some of the terms of orderJ2/J8 involve three neighboring
sites; this makes the model unsolvable by the Bethe ansa
this order.

We will now use Eq.~21! to compute the values of th
fields h1 andh2 where the states with all rungs equal tou1&
and all rungs equal tou5&, respectively, become the groun
states. We can then identifyh1 with the lower critical field
hc2 for the plateau atms53/2, andh2 with the upper critical
field hc1 for the plateau atms51/2. @Recall the definition of
upper and lower critical fields around Eqs.~4! and ~5!.#

To compute the fieldh1, we compare the energyE0 of the
state with all rungs equal tou1& with the minimum energy
Emin(k) of a spin-wave state in which one rung is equal tou5&
and all the other rungs are equal tou1&. A spin wave with
momentumk is given by

uk&5
1

AL
(

n
eiknu5n&, ~22!

whereu5n& denotes a state where only the rungn is equal to
u5&. The spin-wave dispersion, i.e.,v(k)5E(k)2E0, is
found from Eq.~21! to be

v~k!5JS cosk2
1

2
1

29J

72J8
D 1S h2

3J8

2
2

J

2
2

29J2

J8
D .

~23!

This is minimum atk5p and it turns negative there forh
,h1, where

h15
3J8

2
12J. ~24!

This is therefore the transition point between the ferrom
netic stateu111•••& and a spin-wave band lying immediate
below it in energy.

Similarly, we compute the fieldh2 by comparing the en-
ergy E0 of the state with all rungs equal tou5& with the
minimum energyEmin(k) of a spin wave in which au5& at
one rung is replaced by au1&. For a spin wave with momen
tum k, the dispersionv(k)5E(k)2E0 is found to be
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v~k!5JS cosk2
1

2
1

29J

72J8
D 1

J2

J8
S 2

9
2

5

18
cos 2kD

2S h2
3J8

2
2

J

2
2

29J2

72J8
D . ~25!

This is minimum atk5p and it turns positive there forh
.h2, where

h25
3J8

2
2J1

3J2

4J8
. ~26!

This marks the transition between the stateu555•••& and the
spin-wave band. Equation~26! agrees to this order with th
higher-order series given in the literature.11 Note that the
second-order result givesh2 /J53.75 for J/J851/3, com-
pared to our DMRG value ofhc1 /J53.79 in Eq.~6!.

From the first-order terms in Eq.~21!, we can deduce the
asymptotic form of the two-spin correlations. From Eq.~17!,
we see that the exponenth52/3 for D51/2. Although this is
the exponent for the12 correlation of the effective spin-1/2
defined on each rung, we would expect the same expone
appear in all the correlations^Sa,l

1 Sb,n
2 & studied by DMRG in

the previous section, regardless of how we choose the c
indices a,b51,2,3. We now see that the analytically pr
dicted exponent of 2/3 agrees quite well with the numerica
obtained exponents which lie in the range 0.61 to 0.70. In
dentally, this agreement implies thatJ/J851/3 is sufficiently
small so that the second-order terms do not significantly
fect the correlation exponent.

Finally, we can use the first-order wave function given
Eq. ~15! to compute the spin densities and short-dista
two-spin correlations. As examples, we quote the results
spin densities and some of the nearest-neighbor spin cor
tions for the plateau atms51/2. We will give the first-order
expressions and their values forJ/J851/3, followed by the
numerical values obtained by DMRG:

^S1,n
z &5^S3,n

z &5
1

3
2

4J

27J8
50.28 vs 0.27 from DMRG,

^S2,n
z &52

1

6
1

8J

27J8
520.07 vs 20.04,

^S1,n
z S1,n11

z &5
1

9
2

J

8J8
50.07 vs 0.07,

^S2,n
z S2,n11

z &5
1

36
2

4J

27J8
520.02 vs 20.02,

^S1,n
1 S1,n11

2 &52
J

6J8
520.06 vs 20.08,

^S2,n
1 S2,n11

2 &52
2J

9J8
520.07 vs 20.11. ~27!
to

in

y
i-

f-

e
r

la-

We will now consider the LEH at the other magnetic fie
h050 where the rung statesu5& and u6& are degenerate. We
take these as the low-energy states and introduce new e
tive spin-1/2 operators for each rung with actions similar
Eqs.~19!, except that we replaceu1& and u5& in those equa-
tions by u5& and u6&. We again compute the action of th
perturbationV on the low-energy states. We then deduce
second-order LEH to be

Heff5J (
n

F S 12
J

9J8
D Sn•Sn11

2
8J

27J8
Sn•Sn12G2h (

n
Sn

z . ~28!

This Hamiltonian describes the transition between the m
netization plateaus atms51/2 andms521/2; since these
plateaus are reflections of each other about zero magn
field, it is sufficient to study one of them. By a calculatio
similar to the one used to derive Eq.~24!, the fieldh1 can be
found from the dispersion of a spin wave in which one ru
is equal tou6& and all the other rungs are equal tou5&. The
dispersion is

v~k!5h1S J2
J2

9J8
D ~cosk21!1

8J2

27J8
~12cos 2k!.

~29!

This gives

h152J2
2J2

9J8
. ~30!

This is the lower critical fieldhc2 of the ms51/2 plateau.
For J/J851/3, the second-order result gives 1.93 versus
DMRG value of 1.91 in Eq.~6!. The Hamiltonian~28! de-
scribes an isotropic spin-1/2 antiferromagnet with a we
ferromagnetic next-nearest-neighbor interaction. From
comments at the end of the previous section, we see that
model only has the two saturation plateaus atms561/2, and
no other plateau in between. Forh50, the two-spin correla-
tions decay as power laws with the exponenth51 @see Eq.
~17!#.

C. Three-chain ladder with periodic boundary condition
along the rungs

In this section, we will present the first order LEH for th
Hamiltonian ~2! with PBC along the rungs. The LEH wil
turn out to be somewhat complicated. We will not study th
properties in any detail, but will limit ourselves to a fe
comments. As in the case with OBC along the rungs, th
are two different LEH to be considered here because th
are two values of the magnetic field where there are deg
eracies. We again begin with a description of the eight sta
on each rung. The four states withS53/2 are the same as th
statesu1&, . . . ., u4& introduced in the previous section, exce
that they now have energy 3J8/4 in the absence of a field
The doublet states have to be chosen differently now in or
that they be eigenstates of the periodic rung Hamiltoni
We choose two of the doublet states to beu58&5@ u112&
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1v2u121&1vu211&]/A3 and u68&;S2u58&, where v
5exp(i2p/3). These two states have momenta 2p/3 along
the rung ~right moving!. The other two doublet states a
u78&5@ u112&1vu121&1v2u211&]/A3 and u88&
;S2u78& with momenta22p/3 ~left moving!. All these
four states have energy23J8/4. This extra degenerac
~which is twice the degeneracy of the doublets for OB
along the rungs! leads to a more complicated LEH as we w
see.

We now note that for a fieldh053J8/2, the three states
u1&, u58&, and u78& become degenerate. We now introdu
seven operatorsR6,L6,t6, and sz for each rung with the
following nonzero actions on the three low-energy states

Rn
1u58&n5u1&n , Rn

2u1&n5u58&n ,

Ln
1u78&n5u1&n , Ln

2u1&n5u78&n ,

tn
1u78&n5u58&n , tn

2u58&n5u78&n ,

sn
zu1&n5u1&n , sn

zu58&n52u58&n , sn
zu78&n52u78&n .

~31!

All the actions~of operators on states! not mentioned in Eqs
~31! are assumed to give zero. We thus observe that there
five magnetic operatorsL6, R6, and sz which change or
measure theSz of a state, and two nonmagnetic operatorst6

which do not changeSz but simply interchange the right an
left moving states.

We then find that the first-order LEH is given, up to
constant, by

Heff5
J

2 (
n

@Ln
1Ln11

2 1Ln
2Ln11

1 1Rn
1Rn11

2 1Rn
2Rn11

1 #

1
J

3 (
n

@tn
1tn11

2 1tn
2tn11

1 #1
J

12 (
n

sn
zsn11

z

2
1

2S h2
3J8

2
2

2J

3 D(
n

sn
z . ~32!

We can now find the magnetic fieldh1 at which the ferro-
magnetic stateu111•••& crosses over to the minimum energ
spin-wave state~in which au1& is replaced by either au58& or
a u78& on exactly one rung!. The spin-wave dispersion is

v~k!5h2
3J8

2
2J1J cosk. ~33!

We thus see thath153J8/212J just as for OBC along the
rungs. Thus the lower critical fieldhc2 of the saturation
plateaums53/2 has the same value for OBC and PBC alo
the rungs.

Below some fieldh2 ~which seems rather hard to fin
analytically!, the low-energy eigenstates of Eq.~32! will not
have the stateu1& on any rung; only the statesu58& and u78&
will appear. This gives us the magnetization plate
ms51/2. However, this plateau has a large number ofnon-
magneticexcitations described by the Hamiltonian

Heff5
J

3 (
n

@tn
1tn11

2 1tn
2tn11

1 #, ~34!
re

g

u

which may be obtained from Eq.~32! by omitting the state
u1& on all the rungs. Equation~34! has the form of Eq.~16!
with D50, and is therefore exactly solvable; at low tempe
ture, it has a specific heat which grows linearly withT. The
situation is therefore quite different from the case of OB
along the rungs where thems51/2 plateau consists of a
single state in which every rung is in the stateu5&; all other
states are separated by a gap, hence the specific heat go
zero exponentially at low temperature.

Finally, we examine the LEH at the fieldh050 where the
four doublet statesu58&,•••,u88& become degenerate. Th
has been discussed in detail earlier.11,20,24On each rung, we
introduce effective spin-1/2 operators which change or m
sureSz, and the two nonmagnetic operatorst6 which inter-
change the left and right moving states. Then the LEH is

Heff5
J

3 (
n

@114~tn
1tn11

2 1tn
2tn11

1 !#

3Sn•Sn112h(
n

Sn
z . ~35!

This also appears to be nonexactly solvable but it has b
studied numerically.11,24 It has a small plateau atms50
where there are two degenerate ground states, each w
period of two rungs. Above some magnetic fieldh1 ~which is
again hard to calculate analytically from Eq.~35!, this model
crosses over to thems51/2 plateau where the rungs can on
be in the twoSz51/2 statesu58& and u78&. We see from Eq.
~35! that these two states are again governed by the Ha
tonian in Eq.~34!.

The phase diagrams of the three-chain ladder for O
and PBC along the rungs are shown as functions ofJ8/J and
h/J in Figs. 6~b! and 6~c! in Ref. 11. We observe that th
plateaus withms51/2 andms53/2 ~called M51/3 andM
51, respectively, in Ref. 11! have large regions of stability
for both OBC and PBC. The plateau withms50 exists only
in the case of PBC along the rungs, and it has a small reg
of stability close toh/J50.

D. A two-chain ladder

In this section, we will use the LEH approach to study
two-chain spin-1/2 ladder with the following Hamiltonian:

H5J8(
n

S1,n•S2,n1J2 (
a51

2

(
n

Sa,n•Sa,n11

12J1 (
n

S1,n•S2,n112h(
a51

2

(
n

Sa,n
z , ~36!

as shown in Fig. 16. The model may be viewed as a sin

FIG. 16. Schematic diagram of the two-chain ladder with
additional diagonal interaction. The labels 1 and 2 denote site
the upper and lower chains, respectively.
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chain with an alternation in nearest-neighbor couplingsJ8
and 2J1 ~dimerization!, and a next-nearest-neighbor couplin
J2 ~frustration!. Equation ~36! has been studied
extensively.27,29 More recently, it has been studied from th
point of view of magnetization plateaus using a first-ord
LEH, bosonization, and exact diagonalization.15,16,25We will
therefore limit ourselves to deriving the second-order LE
and making a few other comments.

We begin by settingJ15J250, and studying the four
states on each rung. These are specified by giving the
figurations6 of the spins on chains 1 and 2 as follows. T
three triplet states withS51 are denoted asu1&, u2&, andu3&,
where u1&5u11& and the other two states are obtained
acting on it successively withS2. These three states hav
energyJ8/4 in the absence of a magnetic field. The sing
state u4&5@ u12&2u21&]/A2 has energy23J8/4. The
p

r

n-

t

statesu1& and u4& become degenerate at a fieldh05J8. We
now develop perturbation theory by assuming thatJ1 ,J2 and
h2h0 are all much less thanJ8. The perturbation isV
5(nVn,n11 where

Vn,n115J2 (
a51

2

Sa,n•Sa,n1112J1S1,n•S2,n11

2
1

2
~h2h0! (

a51

2

@Sa,n
z 1Sa,n11

z #. ~37!

The actions of this operator on the four low-energy states
a pair of neighboring rungs can be easily obtained. We n
introduce effective spin-1/2 operatorsSn on each rung which
act on the two low-energy states. The second-order LEH
then found to be
Heff5S J22J12
J1

2

J8
D(

n
~Sn

xSn11
x 1Sn

ySn11
y !1

1

2S J21J11
2J1

2

J8
2

3~J12J2!2

4J8
D(

n
Sn

zSn11
z

1
J1

2

2J8
(

n
F S 1

2
1Sn

zD ~Sn21
x Sn11

x 1Sn21
y Sn11

y !1S 1

2
1Sn21

z D ~Sn
xSn11

x 1Sn
ySn11

y !

1S 1

2
1Sn11

z D ~Sn21
x Sn

x1Sn21
y Sn

y!1S 1

2
1Sn21

z D S 1

2
2Sn

zD S 1

2
1Sn11

z D G
2

~J12J2!2

4J8
(

n
S 1

2
2Sn

zD ~Sn21
x Sn11

x 1Sn21
y Sn11

y !2S h2J82
J1

2
2

J2

2
2

3~J12J2!2

8J8
D(

n
Sn

z . ~38!
e

We now compute the fieldh1 above which the state
u111•••& becomes the ground state. The dispersion of a s
wave, in which one rung is equal tou4& and all the others are
equal tou1&, is given by

v~k!5h2J82J12J22
J1

2

2J8
1~J22J1!cosk1

J1
2

2J8
cos 2k.

~39!

By minimizing this as a function ofk in various regions in
the parameter space (J1 ,J2), and then setting that minimum
value equal to zero, we find thath1 is given by

h15J812J1 if J2<J12
2J1

2

J8
,

5J81J11J21
J1

2

J8
1

~J12J2!2J8

4J1
2

if J12
2J1

2

J8
<J2<J11

2J1
2

J8
,

5J812J2 if J2>J11
2J1

2

J8
. ~40!
in
This is the lower critical fieldhc2 of the saturation plateau
with magnetizationms51 per rung. Similarly, we can find
the fieldh2 from the dispersion of a spin wave in which on
rung is equal tou1& and the rest are equal tou4&. The disper-
sion is given by

v~k!52h1J81
3~J12J2!2

4J8
2

J1
2

J8

1S J22J12
J1

2

J8
D cosk2

~J12J2!2

4J8
cos 2k.

~41!

By setting the minimum of this equal to zero, we find thath2
is given by

h25J81
~J12J2!2

2J8
1J22J12

2J1
2

J8
if J2<J11

J1
2

J8
,

5J81
~J12J2!2

2J8
2J21J1 if J2>J11

J1
2

J8
. ~42!

This is the upper critical fieldhc1 of the saturation plateau
with magnetizationms50 per rung.
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Finally, we can see that the first-order terms in Eq.~38!
are of the same form as theXXZ model in Eq.~16!. We can
always make the coefficient of the first term in Eq.~38!
positive, if necessary by performing a rotatio
Sn

x→(21)nSn
x , Sn

y→(21)nSn
y and Sn

z→Sn
z . We then get a

first-order Hamiltonian of the form

Heff5uJ22J1u(
n

@Sn
xSn11

x 1Sn
ySn11

y #

1
1

2
~J21J1!(

n
Sn

zSn11
z 2S h2J82

J1

2
2

J2

2 D(
n

Sn
z .

~43!

This is anXXZ model with

D5
J21J1

2uJ22J1u
. ~44!

From the comments in Sec. III A, we therefore see that
two-chain ladder will have an additional plateau atms51/2
for D.1, i.e., if J21J1.2uJ22J1u. In particular,D5` for
J25J1 ~this is called the Shastry-Sutherland line30!; the ms
51/2 plateau will then stretch all the way from the upp
critical field of thems50 plateau to the lower critical field o
thems51 plateau. This can be seen in Fig. 17 which is tak
from Ref. 16; the dimerization parametera in that figure is
related to our couplings byJ8511a and 2J1512a. Note
that thems51/2 plateau is particularly broad ata50.6, i.e.,
J25J150.2, and that it actually touches thems51 plateau
on the right. The fact that it does not extend all the way up
the ms50 plateau on the left is probably because we ha
ignored the second-order terms in Eq.~38! which lead to
deviations from theXXZ model.

IV. SUMMARY AND OUTLOOK

We studied a three-chain spin-1/2 ladder with a large ra
of interchain coupling to intrachain coupling using th
DMRG method and a LEH approach. For both OBC a

FIG. 17. Phase diagram of the two-chain ladder as a functio
h and a for J250.2. In our notation,J8511a and 2J1512a.
The numbers 0, 1/2, and 1 in the figure correspond to the value
ms at the plateaus. Reproduced with permission from Ref. 16.
e

r

n

o
e

o

d

PBC along the rungs, we found a wide plateau with ru
magnetization given byms51/2. For the case of OBC, th
two-spin correlations are extremely short-ranged, and
magnetic susceptibility and specific heat are very smal
low temperature in the plateau. All these are consistent w
the large magnetic gap. At other values ofm, the two-spin
correlations fall off as power laws; the exponents can
found by using the first-order LEH which takes the form
anXXZ model in a longitudinal magnetic field. For the ca
of PBC, the magnetic susceptibility is again very small
low temperature in the plateau. However, the specific h
goes to zero much more slowly which dramatically sho
the presence of nonmagnetic excitations. This can be un
stood from the LEH in Eq.~34! which is an XY model.
Finally, we used the LEH approach to study a two-cha
ladder with an additional diagonal interaction. In addition
a plateau atms50, this system also has a plateau atms
51/2 for certain regions in parameter space. Thems51/2
plateau is interesting because it corresponds to degen
ground states which spontaneously break the translation
variance of the Hamiltonian. This can be understood fr
the LEH which, at first order, is anXXZ model withD.1.

An interesting problem for the future may be to take t
second-order terms in the LEH presented in Secs. III B a
III D, and to compute the corrections produced by them
the exponents of the correlation power laws. This would
quire us to study the effects of a perturbation to theXXZ
spin-1/2 chain. This may not be difficult to do analytical
since theXXZ model is integrable and exactly solvable b
the Bethe ansatz.

The quantization condition for magnetization given in E
~1! is reminiscent of the quantum Hall effect where the H
conductivity shows plateaus as a function of the magn
field.31 However, it is not clear if the magnetization quan
zation is as insensitive to disorder as the conductivity qu
tization is known to be. Although a magnetization plate
may be expected to survive small amounts of disorder~e.g.,
if the disorder strength is much smaller than the energy g!,
there seems to be no fundamental physical principle, an
gous to gauge invariance in the quantum Hall system, w
the value of the magnetization should remain fixed at
simple rational value. In fact, the derivation of Eq.~1! as-
sumes translation invariance of the Hamiltonian which
certainly broken by disorder. It would therefore be intere
ing to study this issue, for instance, by allowing a sm
amount of disorder in the couplings of the spin ladder mo
els discussed in this paper.
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