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Calculation of the field and temperature dependence of the-axis plasmon in BLSr,Ca,Cu,0g, 5
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We calculate the-axis Josephson plasmon frequengy(B,T) versus temperatur€ and magnetic induc-
tion B in Bi,Sr,CaCw0g, 5 treating the order parameter fluctuations in the lowest Landau ig&vel)
approximation. The calculation agrees qualitatively with recent field-cooled measurements of Mztalida
assuming &-axis dielectric constant,~20-50. For any givel, w, falls monotonically with increasing,
remains finite in the flux liquid state, and varies continuously across the solid-liquid transition when disorder
is included. We also obtain an expression dgy which is valid everywhere in the flux liquid state and is not
restricted to the LLL approximation. This expression leads o~ 1/\/B in the flux liquid state, in agreement
with experiment[S0163-182609)03705-4

I. INTRODUCTION transition line(which in this case is generally considered to
be a glass transition Finally, we obtain a formallyexact

The .most anlso_troplc highzT superconductors pehav_e expression, valid beyond the LLL model and in disordered as
rather like a collection of underdamped Josephson junctiong | as ordered samples, far,, in the flux liquid state
i) p .

stacked parallel to the axis. Recent microwave experiments
in these materials see clear evidence of such junctions, in the
form of Josephson plasmon oscillations. For example, in
c-axis polarized reflectivity measurements a strong absorp- |n the LD model, the complex superconducting order pa-
tion is measured at a frequency which is interpreted as theametery, (r) at a pointr=(x,y) within the nth CuG, layer
Josephson plasmon frequenayp,(B,T), where B is the s described by the Ginzburg-Landau free energy functional
magnetic induction parallel to and T the temperature. In A ¢]=dfdr=,F,[ ], where
single crystals of La ,Sr,CuQ,, these experiments yield
wp~20-50 cm*, i.e., 600-1500 GHZ,but in the more ,. b .
anisotropic  BjSr,CaCu,0g, 5 they give w,~30-80 Fal]=a(T)|yn(r)|*+ §|¢n(r)|
GHz?® much smaller than the superconducting gap and
weakly damped. On the theory side, Taclekial* have cal-
culated the c-axis plasmon-induced reflectivity and transmis-
sivity at finite B in Bi,SrCaCuw0Og, s Bulaevskii and
co-workers have derived a relation between,, and the 24 ((n+1)s
interlayer Josephson coupling energy, while Koshelev has | ¢ a(r) = P(r)ex QTJ Adz
obtained the leading terms in a high-expansion for 0 ne
wp(B,T).° (1)
In this paper, we calculatewy(B,T) within the
Lawrence-DoniaciLD) model, incorporating thermal fluc-
tuations within the lowest Landau levéllLL ) approxima-
tion. This model, which is suitable at highand T, accounts
well for first-order flux lattice melting in clean samples of
both Bi,SKLCaCW,0s, s and YBaCu0,_ 5"~ We calculate
wpi(B,T) by combining this model with a simple theory for
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Hered is the superconducting layer thicknesss the repeat
distance between layest =2e, d,=hc/e*, A, andA, are
components of the vector potential, aafT), b, m,,, and

m. are material-dependent parameters. The interlayer Jo-
sephson coherende=%2/(2m.s?)=#2/[2m,,s?y?], where
y=+m./my,. It is readily shown that the free energi) is

he el d . ¢ hiah q based invariant under the gauge transformatioh—A+VA,
the electrodynamics of highz superconductors, based on U (X)— () explie* Al(fic)], where A(x) is an arbitrary

Maxwell's equatl_ons_. In some respects, but not all, our "®Function ofx=(r,z). Thus, the free energy is applicable, in
sults agree qualitatively with measurementsagji over a  principle, to magnetic fields with components perpendicular
range of T and B. In particular, we find thatw, remains 5 well as parallel to the axis.

nonzero even in thélux liquid. In contrast to experiment, In the extreme-type-Il hig-, materials, the magnetic in-
however, the calculatedy, falls discontinuously at melting qgyction B and fieldH are approximately equal. Maxwell's

into the flux liquid state, and the contours of constaptin  equations for thez component of the electric fiel& then
the B-T plane do not cross the flux lattice melting curve. gjgl

When we extend the model to include columnar disorder, we

find that, in this casay, (B, T) is continuous inl across the pr 1 19
irreversibility line, in agre.ement vyith experiment, though_ the v2_— 6_2 — |E;=47| —Vpt+ — _JZ) ’ 2)
constantw,, contours still remain parallel to the melting c” ot € c? at
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where p is the charge density], is the z component of w,2)|(l’,n) by <w§|(r,n)>zw;|, where (---) denotes both a
current density, and, is an appropriate dielectric constant. statistical average in the canonical ensemble and an average
We seek a wavelike solution to this differential equation,overr andn. This may be reasonable at high magnetic fields,
such thatV,p=0. We also include irJ, only the supercur- here the vortex cores overlap to such an extent that the
rent density, and neglect the normal current in paralleleffects of the randomness in the potential are small.

which damps the plasmon. The supercurrent density in the At sufficiently high fields, it is adequate to exparg(r)

regionns<z=<(n+1)s can then be written in LLL states of thenth layer”%1~33Wwith the gauge choice
I 1) =3 e 2(1)SIN Gy 1 (1,1), 3) A=—ByXx, this expansion may be written

whereé,, . 1(r,t) is the gauge-invariant phase difference be- \/§aa(T) va _ (y—kI?

tween layersn and n+1 at positionr and timet, and n(r)= T ; Cx.n €Xpl ikx— 2

Jnn+1(r) is the critical current density between those layers. ©)
We also use the Josephson relation
Here I1=+®y/(27B), ay(T)=a(T)[1-B/H(T)],
30 n+1(r,t)  €*s £ 4 Heo(T) is defined bya(T)+#e*H(T)/(2m,,c)=0, and
ap EdDana @ b=2mie* hl(Mase) ) k=N2(0)/24(0) [Where (0)
~_and &,,(0) are the zero-temperature penetration depth and
where (-}, n41 denotes the average of the quantity in conerence lengihand finally, T, is the mean-field transi-
brackets along the axis in the regioms<z=(n+1)s. Fol-  tjon temperature foB=0. The indexk=2mp/L, labels the
lowing the treatment of Ref. 5, we now assume tBatis  gifferent LLL's in a given layer, with 8p<N,—1, where
slowly varying along the z direction, and replace Ng=NN,= LXLy/(27T|2) is the number of vortices in each
<Ez(r,t))nyn+l by I_Ez(r,_z,t); we also express th@n’nJrl(l',t) |ayer, andLX:(477/\/§)1/2NXI ,Ly=(\/§ﬂ-)1’2Nyl are the lin-
as the sum of a time-independent paftt, . ,(r) and a small  ear dimensions of the system in teandy directions. The

time-dependent parédy, . 1(r,t). Then differentiating EQ.  coefficientscy, are the fluctuating amplitudes of the various
(3) and linearizing with respect t66, .1 gives in the re- | || 's in different layers.

gionns<z<(n+1)s With this choice of basis, the final expression fof; is
33, (x,t) . 38001 1(r,1) N
o onnea(N)e0S () —— ——. (5) w2 =[P % S (et oo )
¢z | ©N T
In addition, we now assume thgt is slowly varying along (10)

the z direction, so thatE,(r,t)), -1 can be replaced by
E,(r,z,t). Finally, we combine Egs(2), (4), and (5), and
seek a solution of the formE,(r,z,t)=Re [E(r,z,)
Xexp(—iwt)]. In the regionns<sz<(n+1)s, E(r,z,w) is
then found to satisfy the differential equation

where(---) denotes a thermal average in the canonical en-
semble, wy" = [(Hco(T) —B)ce* 1/[eok’y? i Bal is the
mean-field Josephson plasmon frequency, amg}
=1.159595. .. is the Abrikosov ratio.

2 eow?

) P I1l. RESULTS
v2+ 2+ % E(rzw)
a2 2 )

A. Numerical results from Monte Carlo simulations

We evaluatew, in an N, XN, XN, system with periodic
oS 0, 11 1(NELTr,Z,). ()  boundary conditions, usindN,=8 layers, and choosing
’ Ny=N, to accommodate exactl)},=64 vortex pancakes
in a triangular lattice. We use the following parameters
for Bizsrzcagcl,bOng[g: T00:85 K, dch(T)/dT: —-5.2
x10°Oe/K, s=15A, d=4 A, y=150, and x=100. We
2 carry out the required average for varioBsand T both
V24 e(r,n,o) w_) E,(r,)=0, (77  above and below the melting temperatig(B)."* To carry
c? out the simulation, for eacii and B, we average over 3
X 10° Monte Carlo(MC) sweeps through the lattice, after
discarding the first X 10* sweeps for equilibration. At each
2 _ 2 0 field, we gradually warm up from an initial triangular lattice,
@pi(1,N) =[87°CS/(€0P0) [+ 1(1)COS b, 4(1)- (8) using the final configuration for a lowdr as the initial one
Equation(7) is equivalent to the form previously discussed for the next highef. This procedure may correspond to the
by Bulaevskii and co-workers.This equation is also for- “field-cooled” measurements of Ref. 3. By contrast, a
mally equivalent to the Schdinger equation for a particle in *“‘zero-field-cooled” measuremertt.e., one in which the sys-
a two-dimensional random potential proportional totem is first cooled to the desired temperature in zero field,
wﬁ,(r,n). In general,wﬁﬂ(r,n) depends on both transverse after which the field is turned on at fix&g, might well give
positionr andn, and is also a thermodynamically fluctuating different, possibly nonequilibrium, results.
quantity, since bothl, ,.,(r,T) and cosf,,.(r,T) have Figure Xa) shows the calculated quantitye_oww(B,T)
these dependencies. We will estimate it by replacingwhich is independent o) for Bi,SL,CaCu,Og, 5. At all

_ e*SJn,n+1(r)
hc?

If we neglect the spatial variation &, in thez direction, this
differential equation may be writteior ns<z<(n+1)s]

wheree(r,n, ) = e[ 1— w3 (r,n,0)/w?], and
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discontinuity is to include quenched disorder in the LLL
model. Such disorder should, of course, be present in most
real samples, and is expected to convert the first-order melt-
ing line into a continuous transition. For example, random
point disorder should lead to a continuous vortex-glass
transition'® while randomly distributed columnar defects
parallel to thec axist®'” are thought to produce a continuous
transition in the Bose-glass universality cla&#n our model
calculations, we choose to consider random columnar de-
fects, simply because, at comparable strengths of pinning
potential, these produce a much larger shift in the melting
temperature than do point defects, and hence are easier to
study numerically. However, random point defects presum-
ably have a similar effect in converting,, (B, T) from dis-
continuous to continuous across the melting curve.

6 ﬁ“ contour plot Tp_ describe these defects, we add to the free endyggn
€0'/2wp(100GHz) additional term,
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Here R, is the position of a pinning center at tinéh layer,
and ARn is its strength. For columnar defects, tRg's and

Ag 's are independent af. We choseAg to equal 1.1 and

0.9x10 1% cn? at random, and considered three different
densitiesD: 4, 8, and 1&1071° cm 2. At B=2 T, there
0.0 are 26, 52, and 105 columnar defects in Mg=64 system.
0.0 20.0 40.0 60.0 80.0 In Fig. 2, we compare the helicity modulug, (B, T) and
b) T(K) \/e—owm(B,T) for the clean system and one with columnar
disorder aB=2 T. The latter are averaged over 10 disorder
realizations at each temperature; the error bars represent
root-mean-square deviations with respect to these realiza-
tions. Columnar disorder eliminates the obvious discontinui-
ties in y,AB,T) that exist in the clean system, anddises

~
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FIG. 1. (a) Perspective plot of Jeqwy(B,T) for clean
Bi,Sr,CaCu,0q, s Vs temperaturd for a range of magnetic induc-
tionsB. wy, is thec-axis plasmon frequency ang the background

interlayer dielectric constant. Curves at constartre straight-line To(H) (h I led the i ibility i
interpolations between calculated pointb) Calculated lines of m(H) (here usually calle 20 e |rreverS| ility lineas ex-
constant \egwy(B,T) in the B-T plane, for clean pected for columnar defect&2°As in the clean systemy

Bi,SKLCaCW0g, 5 (in units of 100 GHx. Points denote the calcu- 'S clearly nonzeroin th.e liquid phasé’ Moreover,.for any

lated melting curve. field and defect densityy/epw, appears to be slightly re-
duced at low temperatures, but substantially enhanced at

fields, wp (B, T) drops discontinuously afy(B),” but wp, high temperatures, relative to the clean material at the same

remains finite even above,T as already predicted by several tempergturg. There is no obviously special behavior .at' the
calculation and also reported experimentalfyThis finite ~ “Matching field” D=B/®,, perhaps because our statistics
wp is due to the persistence of interlayer short range phas@'e not adequate to see such an effect at these small system
order even in the flux liquid state. If we assurag~20  SIZ€S. _ _
—50, thenw,~100-200 GHz at very lovl (only weakly In Fig. 3, we ;how calculatedlllnes of constaf%wm in
dependent ofB), which agrees with the values in the range the B-T plane with defect densitp=4x10'> cn?. Once
105-220 GHz found aB=0 by Walkenhorstet al’®* Our ~ @gain, as in the clean case, our curves look quite similar to
calculatedwy, (B, T)~10-50 GHz near and abovéy(B) the measured curves in Refs. 16 and 17, .but in contrast to
(for an e,~20-50. In Fig. 1(b), we show calculated lines of thqse_, appear not to cross the measure_d |rreverS|b|I|ty line.
constantw,, in the B-T plane, which are directly measured This is the same discrepancy noted earlier in our res'ults for
in experiments. Qualitatively, our curves somewhat resembl&1€ clean sample. Because of the error bars in the dirty cal-
those shown in Refs. 1-3, but in contrast to those, nevefulation, however, the absence of a crossing is not so un-
cross the measured irreversibility line. Note that because th@duivocal as in the calculations for the clean material.
LLL approximation is not reliable at loB and low T, nei-
ther the melting curve nor the lines of constasy, are ac-
curately calculated at low and lowT. Next, we obtain an expression far, in the liquid state,
Our calculatedw,,(B,T) also drops discontinuously at which is validbeyondthe LLL approximation. Our result is
Tm(B). This discontinuity, which is not reported experimen- based on the fact thag,, vanishes in the liquid. We start
tally, is probably due to the first-order melting transition in with Eg. (8), the average of which gives the%, in either the
this model, which produces discontinuities in measurablesortex solid or the vortex liquid phase. This expression, be-
guantities across the melting line. One way to remove théng independent of the LLL approximation, is applicable, in

B. An analytical result for w§| in the liquid phase
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| + cleon system FIG. 3. Calculated lines of constagieowy(B,T) in the B-T
| 0 0 Dedx100 cm-2 plane, for BjSr,CaCu,0g, s With a densityD=4x 10" cm~? of
~ . A2 D=8x1010 cm-2 columna_r defe_cts, averaged over 10 disorder realizatiqns. Circles
% 80 L = 8 |.o p=16x1010 cm—2) are melting points for clean system. Squares denote estimated glass
IS) ’ | R\ transition temperatures for dirty systems; error bars represent com-
© | Ry putational uncertainty in these temperatures.
= s R
N§ 40 | 1 i éé % | Equation(12) may be further simplified if we make the
> approximation tha{j,(x)j,(x')), in the liquid, depends only
> | » % tion th the liquid, d ds onl
) | *s 1 + onx—x". (In fact, this assumption is exact in the clean sys-
| \ o Aa tem, but not in the dirty system, where impurities break the
00 Lo, s e B translational invariancgThis assumption leads to the form
0.0 20.0 40.0 60.0 80.0 ) A
B, T)= f i(0)] d3¢. 13
o T(K) op(BT)=_ <) (0i&)F 13

FIG. 2. (a) Calculated helicity modulug,(B,T) (in units of ~ To estimatew? (B, T) from Eq. (13), we assume that the
1071¢ cm), and(b) the product\/e_owp|(B,T) (in units of 100 GHy  integrand equals its zerdvalue, <j§(0)), wheneveré lies
as functions ofT atB=2 T, in clean BjSr,CaCu,0g, s and with  within a correlation volumes., and vanishes everywhere
various densitie® of randomly distributed columnar defects par- g|se. Deep into the liquid phase, a reasonable estimatg is
allel to thec axis. For_ each defec_t de_nsny, the calculated points are_q| 2’ wherel g= /(DO/B is the average intervortex spacing.
averages over ten disorder realizations; the error bars are rms dW' . - ;

o : ) ith these approximations, we obtain
viations over the disorder. For the clean system, the lines are quasi-
Hermite spline fits; for the dirty systems, straight-line interpola-

H 4’77(1)03
tions. (1)5|(B,T)""

GoB kBT

(j2(0)). (14)

principle, at both low fields as well as high fields, and in
disordered as well as ordered systems.

To obtain our result, we use a general formulafo&? to
cast the average of E@8) into a different form. Using the
vanishing ofy,, in the liquid state, together with E¢8) of
Ref. 22, we find that in the flux liquid state2 (B, T) can be
expressed in the form

Equation(14) is similar to Koshelev's expressiémbtained
from a high-temperature expansion in the liquid state of a
clean material, but differs slightly because we have estimated
the relevant correlation function using different approxima-
tions.

According to Eq.(14), oy should vary as /B at fixed
temperature everywhere in the flux liquid state. This is pre-
cisely the field dependence that is observed experimentally

2
w2(B,T)= 47T<‘JZ>T_ (12) in both the liquid and the solid phastVe do not have a
P eVkgT similar argument for the behavior mjf” in the solid phase,
however.

Here J,=[d®xj,(x) is the volume integral of the supercur-
rent densityj Z(x)_ in _the C direc_:tion, andV is the system IV. DISCUSSION AND CONCLUSIONS
volume. To obtain this expression, we have used the fact that
J,=Inn+1(T)Z,S Sin 6,,41(r)dr. Equation(8) of Ref. 22 Using a Monte Carlo method, we have calculated

can then be applied directly once this integral is discretizeduﬁ(B,T) for a model of BySrLCaCuw,0g, s in the LLL ap-
on a suitable lattice, provided that thernaahplitudefluctua-  proximation both with and without the columnar defects, in
tions inJ, h+1(r,T) can be neglected. both the flux solid and flux liquid state. In both cases, we
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find, as expected, thabgI is nonzero in the liquid phase. Our results suggest that, in both clean samples and ones
Randomly distributed columnar defects are found to raise thgith line disorder, there is indeed a melting transition, fol-
melting temperature above that of the clean sysigpiB). lowed at higher temperatures by a decoupling transition. The
They also appear to convert melting from a first-order phasg@hase stiffness in the direction vanishes at the lower tran-
transition to a continuous transition, as expected from previsition, while w;zn becomes very small at the upper transition,
ous work*® Likewise, in the presence of columnar disorder, which might conceivably be identified with the Glazman-
w5 (B,T) appears to vary continuously with temperature atkoshelev decoupling transition in either the ordered or line-
fixed B, while without it, w3 is discontinuous across the disordered system. We believe that the upper transition, at
melting line. least in our LLL approximation, is a crossover rather than a

Besides our numerical results, we have also obtained gharp phase transition in both the ordered and line-disordered
general analytical expression fmﬁl in the flux liquid state, samples.

in terms of thermal fluctuations of current density. The ex-  The Glazman-Koshelev theory leads to a so-called decou-
pression is valid in both clean and dirty systems, and is nopjing field, which is in the range of 1 kOe for
Iirgitgd to the LLL approximation. It strongly suggests that Bi,Sr,Ca,Cu,0s, 5 Near that field, the melting curve could
wp is nonzero everywhere in the liquid state. If we further gypibit some anomalies, even in the clean system. However,
approximate this exact result, we obtain an expression verych pehavior would be very difficult to detect in our present
similar to Koshelev's result from a high-temperature | || anproximation, which is appropriate for high fields,
expan_smr?. This expression predicts, in agreement with 5. hapiy above 1 T. For the same reason, we are unable to
experiment, thatwpl(B'T)”ll‘/E in the flux liquid state. use the LLL approximation to study the behavior of the melt-
Our numerical results agree qualitatively with expenmenting curve in the clean system at low magnetic fieltEne

in some resgects, but not all. In the absepce of d'isord'er, OUhelting curve of clean BSLCaCWOs, 5as calculated in
calculated wp,(B,T) decreases monotonically witfi, in e LLL, has been further discussed in Ref.)25.
agreement with field-cooled experimeftBut in contrast to Finally, at low magnetic fieldsw,(B,T) has been re-

e_xpenment, the calculat.edf,I for clean systems is discon- ported to vary as 4/B. Our exact expression fcwgl in the
tinuous across the melting curve, and the contours of Cofx liquid state does lead to such a variation when certain
_stantwm do _not cross the melting curve. When d|.'_sorder ISfurther approximations are madef. Eq. (14)]. This expres-
lngroduced (in our case, random columnar disorder sjon is applicable even to the moderately low-field regime
wp (B, T) varies continuously witlT" across the glass transi- where such behavior is reportéd.
tion. Presumably, the experimental curves are continuous be- The present work leaves open a number of future prob-
cause the experimentally studied materials undergo a conems. For example there should bespreadin wgl, rather
tinuous glass transition rather than the first order meltinghan a single sharp line, arising from fluctuations in local
transition expected for the clean system. Even in our systemgagnetic field; this spread should be included in the calcu-
with quenched columnar disorder, the calculated contours ggtions. There will be further damping from the normal in-
constantwé appear not to cross the glass transition line.  terlayer current in parallel with the supercurrent. Also, it is
Quenched point disorder should produce similar continupossible that the electrodynamics underlying our calculation
ous behavior ofpf,, across the melting line, since such dis- for wgl are oversimplified(neglecting, for example, the
order is believed to convert the first-order melting curve to adependence dt,). Finally, of course, it will be important to
continuous vortex-glass transition.We have not studied carry out calculations beyond the LLL approximation, and to
this case numerically purely for convenience: since randon@onnecwgl more completely to the details of the phase dia-

columnar disorder produces a much more dramatic effect ogram in theH-T plane. We hope to return to some of these
the melting curve, it hence is easier to study numerically. points in future work.

A recent paper by Glazman and Koshéfesuggests that,
in a highly anisotropic superconductor such as
Bi,SrLCaCw,0g, 5there are actuallywo transitions in the
clean limit: a lower melting temperature where the phase
stiffness y,, vanishes, and an upper one where the layers This work was supported by DOE Grant No. DE-FGO02-
become decoupled. Although the lower temperature correS0ER45427 through the Midwest Superconductivity Consor-
sponds to a sharp phase transition, the upper one is probaltiym, and by NSF Grants Nos. DMR94-02131 and DMR97-
a crossover rather than a sharp phase transition. In the pre31511. We are most grateful to Dr. Romaas8 for use of
ence of point disorder, these transitions exhibit more comhis LLL code. Calculations were carried out, in part, on the
plex behavio?* while the nature of the upper transition in SP2’s of the Ohio Supercomputer Center, with the help of a
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