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Calculation of the field and temperature dependence of thec-axis plasmon in Bi2Sr2Ca2Cu2O81d

Ing-Jye Hwang and D. Stroud
Department of Physics, The Ohio State University, Columbus, Ohio 43210

~Received 4 September 1998!

We calculate thec-axis Josephson plasmon frequencyvpl(B,T) versus temperatureT and magnetic induc-
tion B in Bi2Sr2Ca2Cu2O81d, treating the order parameter fluctuations in the lowest Landau level~LLL !
approximation. The calculation agrees qualitatively with recent field-cooled measurements of Matsudaet al.
assuming ac-axis dielectric constante0;20–50. For any givenB, vpl falls monotonically with increasingT,
remains finite in the flux liquid state, and varies continuously across the solid-liquid transition when disorder
is included. We also obtain an expression forvpl which is valid everywhere in the flux liquid state and is not
restricted to the LLL approximation. This expression leads tovpl;1/AB in the flux liquid state, in agreement
with experiment.@S0163-1829~99!03705-4#
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I. INTRODUCTION

The most anisotropic high-Tc superconductors behav
rather like a collection of underdamped Josephson junct
stacked parallel to thec axis. Recent microwave experimen
in these materials see clear evidence of such junctions, in
form of Josephson plasmon oscillations. For example,
c-axis polarized reflectivity measurements a strong abs
tion is measured at a frequency which is interpreted as
Josephson plasmon frequency,vpl(B,T), where B is the
magnetic induction parallel toc and T the temperature. In
single crystals of La22xSrxCuO4, these experiments yield
vpl;20–50 cm21, i.e., 600–1500 GHz,1 but in the more
anisotropic Bi2Sr2Ca2Cu2O81d, they give vpl;30–80
GHz,2,3 much smaller than the superconducting gap a
weakly damped. On the theory side, Tachikiet al.4 have cal-
culated the c-axis plasmon-induced reflectivity and transm
sivity at finite B in Bi2Sr2Ca2Cu2O81d. Bulaevskii and
co-workers5 have derived a relation betweenvpl and the
interlayer Josephson coupling energy, while Koshelev
obtained the leading terms in a high-T expansion for
vpl(B,T).6

In this paper, we calculatevpl(B,T) within the
Lawrence-Doniach~LD! model, incorporating thermal fluc
tuations within the lowest Landau level~LLL ! approxima-
tion. This model, which is suitable at highB andT, accounts
well for first-order flux lattice melting in clean samples
both Bi2Sr2Ca2Cu2O81d and YBa2Cu3O72d.

7–9 We calculate
vpl(B,T) by combining this model with a simple theory fo
the electrodynamics of high-Tc superconductors, based o
Maxwell’s equations. In some respects, but not all, our
sults agree qualitatively with measurements ofvpl over a
range ofT and B. In particular, we find thatvpl remains
nonzero even in theflux liquid. In contrast to experiment
however, the calculatedvpl falls discontinuously at melting
into the flux liquid state, and the contours of constantvpl in
the B-T plane do not cross the flux lattice melting curv
When we extend the model to include columnar disorder,
find that, in this case,vpl(B,T) is continuous inT across the
irreversibility line, in agreement with experiment, though t
constantvpl contours still remain parallel to the meltin
PRB 590163-1829/99/59~5!/3896~6!/$15.00
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transition line~which in this case is generally considered
be a glass transition!. Finally, we obtain a formallyexact
expression, valid beyond the LLL model and in disordered
well as ordered samples, forvpl in the flux liquid state.

II. MODEL

In the LD model, the complex superconducting order p
rametercn(r ) at a pointr[(x,y) within thenth CuO2 layer
is described by the Ginzburg-Landau free energy functio
F@c#5d*dr(nFn@c#, where

Fn@c#5a~T!ucn~r !u21
b

2
ucn~r !u4

1
1

2mab
US 2 i\¹'2

e*

c
A'D cn~r !U2

1tUcn11~r !2cn~r !expS 2p i

F0
E

ns

~n11!s
AzdzD U2

.

~1!

Hered is the superconducting layer thickness,s is the repeat
distance between layers,e* 52e, F05hc/e* , A' andAz are
components of the vector potential, anda(T), b, mab , and
mc are material-dependent parameters. The interlayer
sephson coherencet5\2/(2mcs

2)[\2/@2mabs
2g2#, where

g[Amc /mab. It is readily shown that the free energy~1! is
invariant under the gauge transformationA→A1¹L,
cn(x)→cn(x)exp@ie*L/(\c)#, where L(x) is an arbitrary
function of x[(r ,z). Thus, the free energy is applicable,
principle, to magnetic fields with components perpendicu
as well as parallel to thec axis.

In the extreme-type-II high-Tc materials, the magnetic in
duction B and fieldH are approximately equal. Maxwell’s
equations for thez component of the electric fieldE then
give10

S ¹22
e0

c2

]2

]t2D Ez54pS 1

e0

¹zr1
1

c2

]

]t
JzD , ~2!
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PRB 59 3897CALCULATION OF THE FIELD AND TEMPERATURE . . .
where r is the charge density,Jz is the z component of
current density, ande0 is an appropriate dielectric constan
We seek a wavelike solution to this differential equatio
such that¹zr50. We also include inJz only the supercur-
rent density, and neglect the normal current in paral
which damps the plasmon. The supercurrent density in
regionns<z<(n11)s can then be written

Jz~x,t !5Jn,n11~r !sin un,n11~r ,t !, ~3!

whereun,n11(r ,t) is the gauge-invariant phase difference b
tween layersn and n11 at position r and time t, and
Jn,n11(r ) is the critical current density between those laye
We also use the Josephson relation

]un,n11~r ,t !

]t
5

e* s

\
^Ez~r ,t !&n,n11 , ~4!

where ^¯&n,n11 denotes the average of the quantity
brackets along thez axis in the regionns<z<(n11)s. Fol-
lowing the treatment of Ref. 5, we now assume thatEz is
slowly varying along the z direction, and replace
^Ez(r ,t)&n,n11 by Ez(r ,z,t); we also express theun,n11(r ,t)
as the sum of a time-independent partun,n11

0 (r ) and a small
time-dependent partdun,n11(r ,t). Then differentiating Eq.
~3! and linearizing with respect todun,n11 gives in the re-
gion ns<z<(n11)s

]Jz~x,t !

]t
5Jn,n11~r !cosun,n11

0 ~r !
]dun,n11~r ,t !

]t
. ~5!

In addition, we now assume thatEz is slowly varying along
the z direction, so that̂ Ez(r ,t)&n,n11 can be replaced by
Ez(r ,z,t). Finally, we combine Eqs.~2!, ~4!, and ~5!, and
seek a solution of the formEz(r ,z,t)5Re @E(r ,z,v)
3exp(2ivt)#. In the regionns<z<(n11)s, E(r ,z,v) is
then found to satisfy the differential equation

S ¹'
2 1

]2

]z2
1

e0v2

c2 D Ez~r ,z,v!

5
e* sJn,n11~r !

\c2
cosun,n11~r !Ez~r ,z,v!. ~6!

If we neglect the spatial variation ofEz in thez direction, this
differential equation may be written@for ns<z<(n11)s#

S ¹'
2 1e~r ,n,v!

v2

c2 D Ez~r ,v!50, ~7!

wheree(r ,n,v)5e0@12vpl
2 (r ,n,v)/v2#, and

vpl
2 ~r ,n!5@8p2cs/~e0F0!#Jn,n11~r !cosun,n11

0 ~r !. ~8!

Equation~7! is equivalent to the form previously discuss
by Bulaevskii and co-workers.5 This equation is also for-
mally equivalent to the Schro¨dinger equation for a particle in
a two-dimensional random potential proportional
vpl

2 (r ,n). In general,vpl
2 (r ,n) depends on both transvers

positionr andn, and is also a thermodynamically fluctuatin
quantity, since bothJn,n11(r ,T) and cosun,n11(r ,T) have
these dependencies. We will estimate it by replac
,

l,
e

-

.

g

vpl
2 (r ,n) by ^vpl

2 (r ,n)&[vpl
2 , where ^¯& denotes both a

statistical average in the canonical ensemble and an ave
overr andn. This may be reasonable at high magnetic fiel
where the vortex cores overlap to such an extent that
effects of the randomness in the potential are small.

At sufficiently high fields, it is adequate to expandcn(r )
in LLL states of thenth layer.7,9,11–13With the gauge choice
A52Byx̂, this expansion may be written

cn~r !5S A3aH
2 ~T!

4b2 D 1/4

(
k

ck,n expS ikx2
~y2kl !2

2l 2 D .

~9!

Here l 5AF0 /(2pB), aH(T)5a(T)@12B/Hc2(T)#,
Hc2(T) is defined bya(T)1\e* Hc2(T)/(2mabc)50, and
b52pk2@e* \/(mabc)#2, k5lab

2 (0)/jab
2 (0) @wherelab(0)

and jab(0) are the zero-temperature penetration depth
coherence length#, and finally,Tc0 is the mean-field transi-
tion temperature forB50. The indexk52pp/Lx labels the
different LLL’s in a given layer, with 0<p<Nf21, where
Nf[NxNy5LxLy /(2p l 2) is the number of vortices in eac
layer, andLx5(4p/A3)1/2Nxl ,Ly5(A3p)1/2Nyl are the lin-
ear dimensions of the system in thex andy directions. The
coefficientsckn are the fluctuating amplitudes of the variou
LLL’s in different layers.

With this choice of basis, the final expression forvpl
2 is

vpl
2 5@vpl

MF#2
bA

2

Nx

NfNz
K (

k,n
~cknck,n11* 1c.c.!L

T

,

~10!

where^¯&T denotes a thermal average in the canonical
semble, vpl

MF5A@(Hc2(T)2B)ce* #/@e0k2g2\bA# is the
mean-field Josephson plasmon frequency, andbA
51.159 595 . . . is the Abrikosov ratio.

III. RESULTS

A. Numerical results from Monte Carlo simulations

We evaluatevpl in an Nx3Ny3Nz system with periodic
boundary conditions, usingNz58 layers, and choosing
Nx5Ny to accommodate exactlyNf564 vortex pancakes
in a triangular lattice. We use the following paramete
for Bi2Sr2Ca2Cu2O81d : Tc0585 K, dHc2(T)/dT525.2
3103 Oe/K, s515 Å, d54 Å, g5150, andk5100. We
carry out the required average for variousB and T both
above and below the melting temperatureTM(B).14 To carry
out the simulation, for eachT and B, we average over 3
3105 Monte Carlo~MC! sweeps through the lattice, afte
discarding the first 23104 sweeps for equilibration. At each
field, we gradually warm up from an initial triangular lattic
using the final configuration for a lowerT as the initial one
for the next higherT. This procedure may correspond to th
‘‘field-cooled’’ measurements of Ref. 3. By contrast,
‘‘zero-field-cooled’’ measurement~i.e., one in which the sys-
tem is first cooled to the desired temperature in zero fie
after which the field is turned on at fixedT), might well give
different, possibly nonequilibrium, results.

Figure 1~a! shows the calculated quantityAe0vpl(B,T)
~which is independent ofe0) for Bi2Sr2Ca2Cu2O81d . At all
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3898 PRB 59ING-JYE HWANG AND D. STROUD
fields, vpl(B,T) drops discontinuously atTM(B),7 but vpl
remains finite even above TM, as already predicted by sever
calculations6 and also reported experimentally.15 This finite
vpl is due to the persistence of interlayer short range ph
order even in the flux liquid state. If we assumee0;20
250, thenvpl;100–200 GHz at very lowT ~only weakly
dependent onB), which agrees with the values in the ran
105–220 GHz found atB50 by Walkenhorstet al.15 Our
calculatedvpl(B,T);10–50 GHz near and aboveTM(B)
~for ane0;20–50!. In Fig. 1~b!, we show calculated lines o
constantvpl in the B-T plane, which are directly measure
in experiments. Qualitatively, our curves somewhat resem
those shown in Refs. 1–3, but in contrast to those, ne
cross the measured irreversibility line. Note that because
LLL approximation is not reliable at lowB and lowT, nei-
ther the melting curve nor the lines of constantvpl are ac-
curately calculated at lowB and lowT.

Our calculatedvpl(B,T) also drops discontinuously a
TM(B). This discontinuity, which is not reported experime
tally, is probably due to the first-order melting transition
this model, which produces discontinuities in measura
quantities across the melting line. One way to remove

FIG. 1. ~a! Perspective plot ofAe0vpl(B,T) for clean
Bi2Sr2Ca2Cu2O81d vs temperatureT for a range of magnetic induc
tionsB. vpl is thec-axis plasmon frequency ande0 the background
interlayer dielectric constant. Curves at constantB are straight-line
interpolations between calculated points.~b! Calculated lines of
constant Ae0vpl(B,T) in the B-T plane, for clean
Bi2Sr2Ca2Cu2O81d ~in units of 100 GHz!. Points denote the calcu
lated melting curve.
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discontinuity is to include quenched disorder in the LL
model. Such disorder should, of course, be present in m
real samples, and is expected to convert the first-order m
ing line into a continuous transition. For example, rando
point disorder should lead to a continuous vortex-gla
transition,19 while randomly distributed columnar defec
parallel to thec axis16,17are thought to produce a continuou
transition in the Bose-glass universality class.18 In our model
calculations, we choose to consider random columnar
fects, simply because, at comparable strengths of pinn
potential, these produce a much larger shift in the melt
temperature than do point defects, and hence are easi
study numerically. However, random point defects presu
ably have a similar effect in convertingvpl(B,T) from dis-
continuous to continuous across the melting curve.

To describe these defects, we add to the free energy~1! an
additional term,

Fd@c#52kBTc0(
n,Rn

DRn
d~r2Rn!ucn~r !u2. ~11!

HereRn is the position of a pinning center at thenth layer,
and DRn

is its strength. For columnar defects, theRn’s and

DRn
’s are independent ofn. We choseDR to equal 1.1 and

0.9310210 cm2 at random, and considered three differe
densitiesD: 4, 8, and 16310110 cm22. At B52 T, there
are 26, 52, and 105 columnar defects in theNf564 system.

In Fig. 2, we compare the helicity modulus7 gzz(B,T) and
Ae0vpl(B,T) for the clean system and one with column
disorder atB52 T. The latter are averaged over 10 disord
realizations at each temperature; the error bars repre
root-mean-square deviations with respect to these rea
tions. Columnar disorder eliminates the obvious discontin
ties in gzz(B,T) that exist in the clean system, and itraises
TM(H) ~here usually called the irreversibility line!, as ex-
pected for columnar defects.18,20 As in the clean system,vpl
is clearly nonzeroin the liquid phase.21 Moreover, for any
field and defect density,Ae0vpl appears to be slightly re
duced at low temperatures, but substantially enhance
high temperatures, relative to the clean material at the s
temperature. There is no obviously special behavior at
‘‘matching field’’ D5B/F0, perhaps because our statisti
are not adequate to see such an effect at these small sy
sizes.

In Fig. 3, we show calculated lines of constantAe0vpl in
the B-T plane with defect densityD5431010 cm2. Once
again, as in the clean case, our curves look quite simila
the measured curves in Refs. 16 and 17, but in contras
those, appear not to cross the measured irreversibility l
This is the same discrepancy noted earlier in our results
the clean sample. Because of the error bars in the dirty
culation, however, the absence of a crossing is not so
equivocal as in the calculations for the clean material.

B. An analytical result for vpl
2 in the liquid phase

Next, we obtain an expression forvpl in the liquid state,
which is validbeyondthe LLL approximation. Our result is
based on the fact thatgzz vanishes in the liquid. We star
with Eq. ~8!, the average of which gives thevpl

2 in either the
vortex solid or the vortex liquid phase. This expression,
ing independent of the LLL approximation, is applicable,
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principle, at both low fields as well as high fields, and
disordered as well as ordered systems.

To obtain our result, we use a general formula forgzz
22 to

cast the average of Eq.~8! into a different form. Using the
vanishing ofgzz in the liquid state, together with Eq.~8! of
Ref. 22, we find that in the flux liquid state,vpl

2 (B,T) can be
expressed in the form

vpl
2 ~B,T!5

4p^Jz
2&T

e0VkBT
. ~12!

Here Jz[*d3x jz(x) is the volume integral of the supercu
rent density j z(x) in the c direction, andV is the system
volume. To obtain this expression, we have used the fact
Jz5Jn,n11(T)(n* sinun.n11(r )dr . Equation~8! of Ref. 22
can then be applied directly once this integral is discreti
on a suitable lattice, provided that thermalamplitudefluctua-
tions in Jn,n11(r ,T) can be neglected.

FIG. 2. ~a! Calculated helicity modulusgzz(B,T) ~in units of
10216 cm!, and~b! the productAe0vpl(B,T) ~in units of 100 GHz!
as functions ofT at B52 T, in clean Bi2Sr2Ca2Cu2O81d and with
various densitiesD of randomly distributed columnar defects pa
allel to thec axis. For each defect density, the calculated points
averages over ten disorder realizations; the error bars are rm
viations over the disorder. For the clean system, the lines are q
Hermite spline fits; for the dirty systems, straight-line interpo
tions.
at

d

Equation~12! may be further simplified if we make th
approximation that̂ j z(x) j z(x8)&, in the liquid, depends only
on x2x8. ~In fact, this assumption is exact in the clean sy
tem, but not in the dirty system, where impurities break
translational invariance.! This assumption leads to the form

vpl
2 ~B,T!5

4p

e0kBT
E ^ j z~0! j z~j!&d3j. ~13!

To estimatevpl
2 (B,T) from Eq. ~13!, we assume that the

integrand equals its zero-j value, ^ j z
2(0)&, wheneverj lies

within a correlation volumevc , and vanishes everywher
else. Deep into the liquid phase, a reasonable estimatevc

;sl 0
2, wherel 05AF0 /B is the average intervortex spacin

With these approximations, we obtain

vpl
2 ~B,T!;

4pF0s

e0BkBT
^ j z

2~0!&. ~14!

Equation~14! is similar to Koshelev’s expression,6 obtained
from a high-temperature expansion in the liquid state o
clean material, but differs slightly because we have estima
the relevant correlation function using different approxim
tions.

According to Eq.~14!, vpl should vary as 1/AB at fixed
temperature everywhere in the flux liquid state. This is p
cisely the field dependence that is observed experimen
in both the liquid and the solid phases.4 We do not have a
similar argument for the behavior ofvpl

2 in the solid phase,
however.

IV. DISCUSSION AND CONCLUSIONS

Using a Monte Carlo method, we have calculat
vpl

2 (B,T) for a model of Bi2Sr2Ca2Cu2O81d in the LLL ap-
proximation both with and without the columnar defects,
both the flux solid and flux liquid state. In both cases,

e
de-
si-
-

FIG. 3. Calculated lines of constantAe0vpl(B,T) in the B-T
plane, for Bi2Sr2Ca2Cu2O81d with a densityD5431010 cm22 of
columnar defects, averaged over 10 disorder realizations. Cir
are melting points for clean system. Squares denote estimated
transition temperatures for dirty systems; error bars represent c
putational uncertainty in these temperatures.
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3900 PRB 59ING-JYE HWANG AND D. STROUD
find, as expected, thatvpl
2 is nonzero in the liquid phase

Randomly distributed columnar defects are found to raise
melting temperature above that of the clean systemTM(B).
They also appear to convert melting from a first-order ph
transition to a continuous transition, as expected from pre
ous work.18 Likewise, in the presence of columnar disord
vpl

2 (B,T) appears to vary continuously with temperature
fixed B, while without it, vpl

2 is discontinuous across th
melting line.

Besides our numerical results, we have also obtaine
general analytical expression forvpl

2 in the flux liquid state,
in terms of thermal fluctuations of current density. The e
pression is valid in both clean and dirty systems, and is
limited to the LLL approximation. It strongly suggests th
vpl

2 is nonzero everywhere in the liquid state. If we furth
approximate this exact result, we obtain an expression v
similar to Koshelev’s result from a high-temperatu
expansion.6 This expression predicts, in agreement w
experiment,4 that vpl(B,T);1/AB in the flux liquid state.

Our numerical results agree qualitatively with experime
in some respects, but not all. In the absence of disorder,
calculated vpl

2 (B,T) decreases monotonically withT, in
agreement with field-cooled experiments.3 But in contrast to
experiment, the calculatedvpl

2 for clean systems is discon
tinuous across the melting curve, and the contours of c
stantvpl

2 do not cross the melting curve. When disorder
introduced ~in our case, random columnar disorde!,
vpl

2 (B,T) varies continuously withT across the glass trans
tion. Presumably, the experimental curves are continuous
cause the experimentally studied materials undergo a
tinuous glass transition rather than the first order melt
transition expected for the clean system. Even in our syst
with quenched columnar disorder, the calculated contour
constantvpl

2 appear not to cross the glass transition line.
Quenched point disorder should produce similar conti

ous behavior ofvpl
2 across the melting line, since such di

order is believed to convert the first-order melting curve t
continuous vortex-glass transition.19 We have not studied
this case numerically purely for convenience: since rand
columnar disorder produces a much more dramatic effec
the melting curve, it hence is easier to study numerically

A recent paper by Glazman and Koshelev23 suggests that
in a highly anisotropic superconductor such
Bi2Sr2Ca2Cu2O81d,there are actuallytwo transitions in the
clean limit: a lower melting temperature where the pha
stiffnessgzz vanishes, and an upper one where the lay
become decoupled. Although the lower temperature co
sponds to a sharp phase transition, the upper one is prob
a crossover rather than a sharp phase transition. In the p
ence of point disorder, these transitions exhibit more co
plex behavior,24 while the nature of the upper transition
the presence of line disorder is unclear.
e

e
i-
,
t

a

-
ot

r
ry

t
ur

n-

e-
n-
g
s

of

-

a

m
n

e
rs
e-
bly
es-
-

Our results suggest that, in both clean samples and o
with line disorder, there is indeed a melting transition, fo
lowed at higher temperatures by a decoupling transition. T
phase stiffness in thec direction vanishes at the lower tran
sition, whilevpl

2 becomes very small at the upper transitio
which might conceivably be identified with the Glazma
Koshelev decoupling transition in either the ordered or lin
disordered system. We believe that the upper transition
least in our LLL approximation, is a crossover rather than
sharp phase transition in both the ordered and line-disord
samples.

The Glazman-Koshelev theory leads to a so-called dec
pling field, which is in the range of 1 kOe fo
Bi2Sr2Ca2Cu2O81d.Near that field, the melting curve coul
exhibit some anomalies, even in the clean system. Howe
such behavior would be very difficult to detect in our prese
LLL approximation, which is appropriate for high fields
probably above 1 T. For the same reason, we are unab
use the LLL approximation to study the behavior of the me
ing curve in the clean system at low magnetic fields.~The
melting curve of clean Bi2Sr2Ca2Cu2O81d,as calculated in
the LLL, has been further discussed in Ref. 25.!

Finally, at low magnetic fields,vpl(B,T) has been re-
ported to vary as 1/AB. Our exact expression forvpl

2 in the
flux liquid state does lead to such a variation when cert
further approximations are made@cf. Eq. ~14!#. This expres-
sion is applicable even to the moderately low-field regim
where such behavior is reported.4

The present work leaves open a number of future pr
lems. For example there should be aspreadin vpl

2 , rather
than a single sharp line, arising from fluctuations in loc
magnetic field; this spread should be included in the cal
lations. There will be further damping from the normal i
terlayer current in parallel with the supercurrent. Also, it
possible that the electrodynamics underlying our calculat
for vpl

2 are oversimplified~neglecting, for example, thez
dependence ofEz). Finally, of course, it will be important to
carry out calculations beyond the LLL approximation, and
connectvpl

2 more completely to the details of the phase d
gram in theH-T plane. We hope to return to some of the
points in future work.
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