
PHYSICAL REVIEW B 1 FEBRUARY 1999-IVOLUME 59, NUMBER 5
Resonant Andreev reflection in a normal-metal–quantum-dot–superconductor system
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We investigate the electron tunneling through a normal-metal–quantum-dot–superconductor~N-QD-S! sys-
tem where multiple discrete levels of the QD are considered. By using the nonequilibrium-Green’s-function
method, the currentI and the probability of the Andreev reflectionTA(v) are derived and studied in detail. In
addition to the resonant behavior of the Andreev tunneling as obtained in previous works, we find that the
currentI versus the gate voltagevg exhibits different kinds of peaks, depending on the bias voltage, the level
spacing of the QD, and the energy gap of the superconducting electrode. Besides, inI -V characteristics extra
peaks superimposed on the conventional current plateaus emerge, which stem from the resonant Andreev
reflections. In the case with strongly asymmetric barriers, the BCS spectral density can be obtained directly
from the I -V characteristics.@S0163-1829~99!00405-1#
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I. INTRODUCTION

In recent years there has been increasing interest in st
ing the transport properties of mesoscopic ‘‘hybrid’’ norma
metal–superconductor systems. The interplay of basic
tures from both of mesoscopics and superconductivity ma
this subdiscipline of condensed-matter physics a very frui
research field.1–3 Many works have been done on the subg
structures of the S-I-S or S-N-S junctions due to the effe
of multiple Andreev reflections,4,5 the quantization of the
maximum supercurrent of the superconducting quan
point contacts,6–9 the ‘‘zero-bias anomaly’’ of the S-I-N
junctions,10–12etc. The electron resonant tunneling through
quantum-dot~QD!, either superconducting SQD or norm
NQD, connected to two electrodes is another subject inv
tigated extensively, including a variety of hybrid structur
such as S-SQD-S, N-SQD-N, S-NQD-S, N-NQD-S, etc. F
a small superconducting island with the energy gap gre
than the Coulomb charging energy, the even-odd num
effect produces a 2e periodicity in the tunneling curren
versus gate-induced charge in S-SQD-S and N-SQD
systems.13–18 Ralph, Black, and Tinkham measured theI -V
characteristics for a S-NQD-S from which the density
states of the quasiparticles in the superconducting leads
been obtained.19 A similar system has been studied theore
cally by Yeyati et al. in the weak-coupling regime with
asymmetric barriers by using the nonequilibrium-Green
function~NGF! technique.20 Ishizaka, Sone, and Ando inves
tigated the Kondo effect in a S-NQD-S system by the n
crossing approximation and obtained some interes
results.21 As for the N-NQD-S structures~simply by N-QD-S
hereafter!, Beenakker presented a general multichan
S-matrix description and predicted the resonant Andreev t
PRB 590163-1829/99/59~5!/3831~10!/$15.00
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neling for a single-level QD in the zero-bias limit.22

Beenakker’s theory has been extended by Claugh
Leadbeater, and Lambert to the finite bias case and t
found that the differential conductance resonances
strongly suppressed in the weak-coupling limit.3 Very re-
cently, Fazio and Raimondi investigated the reson
Andreev tunneling through a strongly interacting QD in
N-QD-S structure, discussed how the Kondo effect can
fluence the two-particle tunneling, and obtained an enhan
ment of the Kondo anomaly in theI -V curves due to the
presence of a superconducting electrode.23

In this work, we shall investigate the electron tunneli
through a N-QD-S structure, i.e., a normal quantum-dot c
nected to two leads, one is a normal metal and the other
superconductor. Different from Refs. 3 and 22 where onl
single level of the QD has been considered, here we ass
that the QD has discrete multiple levels, but the intrad
Coulomb interactions will be neglected for simplicity. Usin
the nonequilibrium-Green’s-function~NGF! method, the cur-
rent I and the probability of the Andreev reflectionTA(v)
are derived which satisfied the gauge-invariant conditi
i.e., the current remains unchanged when the potential~volt-
age! everywhere is changed by the same amount.24 The de-
pendence ofI and TA(v) upon the gate voltage, the bia
voltage, the level spacing of the QD, and the energy gap
the superconducting electrode have also been studied in
tail. For this simple model system, we found very interest
results:

~1! Different from the N-QD-N system where the curre
I or the differential conductancedI/dV versus the gate-
induced chargeQ (Q5Cgvg) ~or the gate voltagevg! ex-
hibits a series of peaks with equal interval, for the N-QD
the currentI versusQ ~or vg! at small fixed biasV exhibits
3831 ©1999 The American Physical Society
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more complicated pattern, which may have several differ
kinds of peaks with the same equal spacing for each kind
the peaks. This property originates from the multiple equ
spacing levels of the QD we assumed. If the energy level
the QD are not equal spacing, the series of peaks will
much more complicated.

~2! The resonant behavior can be seen either fromI vs vg
or from the probability of Andreev reflection~AR!, TA(v).
For a single N-S contact, the probability of the Andreev
flection strongly depends on the barrier height25 and is usu-
ally quite small for the realistic structures.4,5 However, in a
N-QD-S system we considered, the probability of the A
dreev reflection exhibits resonance under certain condit
although the transmission amplitudes of the left barrier a
the right barrier are quite small. The two barriers between
QD and two leads play the role of two ‘‘mirrors’’ as in
Fabry-Perot interferometer.

~3! Extra peaks are found superimposed on the conv
tional current plateaus inI -V curves due to the resonan
Andreev reflections.

~4! Finally, for the case with strongly asymmetric barrie
the density of states of quasiparticles in superconduc
electrode can be obtained directly from theI -V characteris-
tics. This result is similar to the experimental result
Ralph, Black, and Tinkham19 and the theoretical work by
Yeyati et al.20 for the S-NQD-S system.

The rest of this paper is organized as follows. In Sec
we present the model and derive the gauge-invariant form
of the currentI and the probability of the Andreev reflectio
TA(v) by using the NGF technique. In Sec. III we study t
properties of the currentI versus the gate voltage on the ba
of the theoretical results obtained in Sec. II. We also disc
the resonant behavior and the different kinds of peaks of
resonant Andreev reflections which depend upon various
tors such as the bias, the level spacing of the QD, and
energy gap of the superconducting electrode. The coeffic
of the Andreev reflection is studied in Sec. IV. The prop
ties of theI -V curves and the density of states of the qua
particles in the superconducting electrode are presente
Sec. V. Finally, a brief summary is given in Sec. VI.

II. MODEL AND FORMULATION

We assume that the system under consideration is
scribed by the following Hamiltonian:9,21

H~t!5HL1HR1Hdot1HT~t!, ~1!

where

HL5(
k,s

~eL,k
0 2evL!aL,ks

† aL,ks , ~2!

HR5(
p,s

eR,p
0 aR,ps

† aR,ps

1(
p

@D* aR,p↓aR,2p↑1DaR,2p↑
† aR,p↓

† #,
nt
of
l-
of
e

-

-
n,
d
e

n-

,
g

I
la

ss
e
c-
e

nt
-
i-
in

e-

Hdot5(
i ,s

~e i
02evg!cis

† cis ,

HT5 (
k,s,i

@ tLaL,ks
† cis1tL* cis

† aL,ks#

1 (
p,s,i

@ tReievRtaR,ps
† cis1tR* e2 ievRtcis

† aR,ps#,

whereHL describes the noninteracting electrons in the l
normal-metal lead,aL,ks

† (aL,ks) are the creation~annihila-
tion! operators of the electron in the left lead, andvL is the
voltage of the left lead.HR describes the right superconduc
ing lead with the energy gapD. Hdot is the Hamiltonian of
the quantum dot with multiple discrete energy levels, ch
acterized by the indexi and spins. For simplicity, the intra-
dot electron-electron Coulomb interaction has been
glected.vg is the gate voltage which controls the ener
levels in the dot.HT denotes the tunneling part of the Ham
tonian, andtv (v5L,R) is the hopping matrix and is as
sumed to be independent of the statek of the leads and the
dot state (i ,s) for simplicity. In order to obtain the Hamil-
tonian~1! and~2!, we have performed a unitary transform
tion similar to Ref. 9, so that the voltage of the right leadvR
appears as a phase factor in the hopping elements.

Since the current is conserved, it is enough to calcu
the current from the left lead to the QD from the evolution
the total number operator of the electrons in the left le
NL5(k,saL,ks

† aL,ks :26,27

I ~t!52e^ṄL~t!&5
ie

\
^@NL ,H#&

5
2e

\
Re (

k,i ,s
tL^^cis~t!uaL,ks

† ~t!&&,, ~3!

where the Green function̂^A(t)uB(t8)&&, is defined as
^^A(t)uB(t8)&&,[ i ^B(t8)A(t)&. With the help of Dyson’s
equation, the Green’s function̂̂cis(t)uaL,ks

† (t8)&&, can be
written as

^^cis~t!uaL,ks
† ~t8!&&,

5(
j
E dt1tL* @^^cis~t!ucj s

† ~t1!&& rgL,k
, ~t1 ,t8!

1^^cis~t!ucj s
† ~t1!&&,gL,k

a ~t1 ,t8!#, ~4!

here ^^A(t)uB(t1)&&t[2 iu(t2t1)^$A(t),B(t1)%&, and
gL,k

a,,(t,t8) is the exact Green’s function of the electron
the left lead~normal-metal! without the coupling between
the dot and the lead:

gL,k
r ,a~t,t8!57 iu~6t7t8!e2 i ~eLk

0
2evL!~t2t8!, ~5!

gL,k
, ~t,t8!5 i f L~eLk

0 !e2 i ~eLk
0

2evL!~t2t8!, ~6!

where f L(x)5@exp(x/kBT )11#21 is the Fermi distribution
function with T being the temperature. Substituting the e
pression of̂ ^cis(t)uaL,ks

† (t8)&&, into Eq.~3!, the sum over
k can be changed into an integral with the help of the den
of states in the left lead,*dvrL(v), and introducing the
linewidth functionGL(v)52putLu2rL(v), we then have
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I ~t!52
4e

\
Im E dv

2p
GLE

2`

t

dt8ei ~v2evL!~t2t8!(
i , j

@^^ci↑~t!ucj↑
† ~t8!&& r f L~v!1^^ci↑~t!ucj↑

† ~t8!&&,#

[2
4e

\
Im E dv

2p
GLE

2`

t

dt8ei ~v2evL!~t2t8!@Gr~t,t8! f L~v!1G,~t,t8!#11, ~7!
’s

th

-

e

l
elec-
where we have introduced the 232 matrix Green functions
Gr(t,t8) andG,(t,t8):9,28

Gr ,a~t,t8!

[7 iu~6r 7r 8!

3(
i , j

S ^$ci↑~t!,cj↑
† ~t8!%& ^$ci↑~t!,cj↓~t8!%&

^$ci↓
† ~t!,cj↑

† ~t8!%& ^$ci↓
† ~t!,cj↓~t8!%&

D ,

~8!

G,~t,t8!5 i(
i , j

S ^cj↑
† ~t8!ci↑~t!& ^cj↓~t8!ci↑~t!&

^cj↑
† ~t8!ci↓

† ~t!& ^cj↓~t8!ci↓
† ~t!&

D .

~9!

In order to obtain the expression of the currentI, we have
to solve the Green’s functionsG11

r (t,t8) and G11
, (t,t8).

First, we solveG11
r (t,t8) andG12

r (t,t8) by using the Dyson
equation:

Gr~t,t8!5gr~t,t8!1E E dt1dt2Gr~t,t1!

3S r~t1 ,t2!gr~t2 ,t8!, ~10!

whereS r(t1 ,t2) is the self-energy function, and the Green
function gr(t,t8) is given by

gr~t,t8!

52 iu~t2t8!

3S (
i

e2 i ~e i
0
2evg!~t2t8! 0

0 (
i

ei ~e i
0
2evg!~t2t8!

D .

~11!

Under the wide-bandwidth approximation, i.e., the linewid
GL(v) @or GR(v)# is a constant independent ofv,26,27,29and
since the currentI and the probability of the Andreev reflec
tion TA(v) depend only onutvu2, for simplicity we assumetv
(v5L,R) is real. Then the self-energyS r(t1 ,t2) can be
easily obtained as

S r~t1 ,t2!5SL
r ~t1 ,t2!1SR

r ~t1 ,t2! ~12!

and

SL
r ~t1 ,t2!5(

k
tLtL* gL,k

r ~t1 ,t2!52
iG

2
d~t12t2!S 1 0

0 1D ,

~13!
SR
r ~t1 ,t2!5(

p
S tR~t1!

0
0
2tR* ~t1! D

3gR,p
r ~t1 ,t2!S tR* ~t2!

0
0
2tR~t2! D

52 iGRE dv

2p

u~t12t2!e2 iv~t12t2!

Av22D2

3S uvueievR~t12t2!

2De2 ievR~t11t2!

2DeievR~t11t2!

uvue2 ievR~t12t2!D ,

~14!

wheretR(t) in Eq. ~14! is tRexp@ievRt#, andGR is defined as
2putRu2rR

N(v) whererR
N(v) is the density of states of th

right lead in normal state. HeregL,k
r and gR,p

r are defined
similar to Eq. ~8!. Notice thatSR

r (t1 ,t2) has nondiagona
elements, representing the character of superconducting
trode. From Dyson’s equation, Eq.~10!, we have

G11
r ~t,t8!5g11

r ~t,t8!

1E E dt1dt2G11
r ~t,t1!S11

r ~t1 ,t2!g11
r ~t2 ,t8!

1E E dt1dt2G12
r ~t,t1!S21

r ~t1 ,t2!g11
r ~t2 ,t8!,

~15!

G12
r ~t,t8!5E E dt1dt2G11

r ~t,t1!S12
r ~t1 ,t2!g22

r ~t2 ,t8!

1E E dt1dt2G12
r ~t,t1!S22

r ~t1 ,t2!g22
r ~t2 ,t8!.

~16!

By iteratingG12
r (t,t8) in Eqs.~16! and~15!, one easily finds

G11
r ~t,t8!5g11

r ~t,t8!

1E E dt1dt2G11
r ~t,t1!S11

r ~t1 ,t2!g11
r ~t2 ,t8!

1E E E E dt1dt2dt3dt4G11
r ~t,t1!

3S12
r ~t1 ,t2!Ar~t2 ,t3!S21

r ~t3 ,t4!g11
r ~t4 ,t8!,

~17!

where we have introduced a new quantityAr(t,t8) defined
as
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Ar~t,t8!5g22
r ~t,t8!1E E dt1dt2g22

r ~t,t1!

3S22
r ~t1 ,t2!g22

r ~t2 ,t8!

1E E E E dt1dt2dt3dt4g22
r ~t,t1!S22

r ~t1 ,t2!

3g22
r ~t2 ,t3!S22

r ~t3 ,t4!g22
r ~t4 ,t8!1¯ , ~18!

which can be calculated exactly by substituting the Gree
function g22

r of Eq. ~11!, and the self-energy functionS22
r of

Eq. ~12!, into Eq. ~18!,

Ar~t,t8!5E dv

2p
e2 i ~v1evR!~t2t8!

3F S (
i

1

v1e i
02evg1evR

D 21

1
iGL

2
1

iGR

2

uvu

Av22D2G21

[E dv

2p
e2 i ~v1evR!~t2t8!Ar~v!. ~19!

Then substitutingAr(t,t8), S r(t,t8), andgr(t,t8) into Eq.
~17!, the Green’s functionG11

r (t,t8) is easily obtained:

G11
r ~t,t8!5E dv

2p
e2 i ~v2evR!~t2t8!G̃11

r ~v!, ~20!

whereG̃11
r (v) is the Fourier transform ofG11

r (t2t8) given
by

G̃11
r ~v!5F S (

i

1

v2e i
01evg2evR

D 21

1
iGL

2

1
iGR

2

uvu

Av22D2
1

GR
2D2

4~v22D2!
Ar~v!G21

.

Notice that the Green’s functionG11
r (t,t8) is only a function

of the time difference,t2t8.
Then we solve the retarded Green’s functionG12

r (t,t8)
which is needed for solving the Green’s functionG11

, (t,t8).
By iteratingG12

r (t,t8) in Eq. ~16!, we obtain

G12
r ~t,t8!5E E dt1dt2G11

r ~t,t1!S12
r ~t1 ,t2!Ar~t2 ,t8!.

~21!

With the help of Eqs.~12!–~14!, ~19!, and~20!, the Green’s
function G12

r (t,t8) is found to be

G12
r ~t,t8!5E dv

2p
e2 iv~t2t8!eievR~t1t8!G̃12

r ~v!, ~22!

where

G̃12
r ~v!5G̃11

r ~v!
iGRD

2Av22D2
Ar~v!.
’s

Notice that the Green’s functionG12
r (t,t8) is not a function

of the time difference except forvR50. Also, thatG̃12
r (v) in

Eq. ~22! is the Fourier transform ofG12
r (t,t8) in the special

case withvR50.
In the following, we solve the Green’s functionG11

, (t,t)
by using the Keldysh equation:G,5(11GrS r)g,(1
1SaGa)1GrS,ga. One can easily find that the first term o
the right-hand side is zero.26 Under the wide-bandwidth ap
proximation, the self-energyS,(t1 ,t2) can be obtained as

S,~t1 ,t2!5SL
,~t1 ,t2!1SR

,~t1 ,t2! ~23!

with

SL
,~t1 ,t2!5(

k
tLtL* gL,k

, ~t1 ,t2!

5 iGLE dv

2p
e2 iv~t12t2!

3S f L~v1evL!

0
0
f L~v2evL! D ~24!

and

SR
,~t1 ,t2!

5(
p

S tR~t1!

0
0
2tR* ~t1! D

3gR,p
, ~t1 ,t2!S tR* ~t2!

0
0
2tR~t2! D

5 iGRE dv

2p
e2 iv~t12t2! f R~v!r̃R~v!

3S eievR~t12t2! 2
D

uvu
eievR~t11t2!

2
D

uvu
e2 ievR~t11t2! e2 ievR~t12t2!

D ,

~25!

where f R(v)5 f L(v) is the Fermi distribution function, and
r̃R(v) is the corresponding dimensionless BCS dens
of states, i.e.,r̃R(v) is the ratio of superconducting densi
of states, rR

S(v), to the normal density of states
rR

N(v): r̃R(v)[rR
S(v)/rR

N(v). From

rR
S~v!5~1/p!Im(

p
gR,p

a ~v!,

one easily finds9,20

r̃R~v!5u~ uvu2D!uvu/Av22D2. ~26!

Substituting the expressions of the self-ener
S,(t1 ,t2), Eqs. ~23!–~25!, and the Green’s functions
G11

r (t,t8), and G12
r (t,t8) into the Keldysh equation, then

G11
, (t,t) can be obtained straightforwardly,
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G11
, ~t,t!5E E dt1dt2@G11

r S11
, G11

a 1G11
r S12

, G21
a 1G12

r S21
, G11

a 1G12
r S22

, G21
a #

5E dv

2p
uG̃11

r ~v!u2iGL f L~v1evL2evR!1E dv

2p
uG̃12

r ~v!u2iGL f L~v2evL1evR!

1E dv

2p
iGRr̃R~v! f R~v!H uG̃11

r ~v!u21uG̃12
r ~v!u22

2D

uvu
Re@G̃11

r ~v!„G̃12
r ~v!…* #J . ~27!
b
en

n
n
q.

th
de
s
d

nt
e

c-
le

cr

-
rm
t
ng

k

u
d

t

nt.
d

ed
y a
pli-
r-

of

t

e

rd

ing
h
rmal

nal
g is
e

ht

f
e of
k
-

Notice that for the N-QD-S system, the current should
independent of time for the dc bias. As expected, the Gre
function G11

, (t,t) does not depend on timet, although
G12

r (t,t8) andS12
r (t,t8) depend on two time variablest and

t8.
Finally, substituting the retarded Green’s functio

G11
r (t,t8), Eq. ~20!, and the distribution Green’s functio

G11
, (t,t), Eq. ~27!, into the expression of the current, E

~7!, then the current is obtained as

I 5I A1I 1 ,

with

I A5
2eGL

2

\ E dv

2p
uG̃12

r u2@ f L~v1evL2evR!

2 f L~v2evL1evR!#, ~28!

I 15
2eGLGR

\ E dv

2p
r̃R~v!F uG̃11

r u21uG̃12
r u2

2
2D

uvu
Re@G̃11

r ~v!„G̃12
r ~v!…* #G

3@ f L~v1evL2evR!2 f R~v!#. ~29!

The formulas of the current, Eqs.~28! and ~29!, are the
central results of this paper. Obviously, the expression of
current for the N-QD-S system under consideration is in
pendent on the timet, and only depends on the dc bia
voltageV. If the voltages of the left lead, the right lead, an
the gate~vL , vR , and vg! are shifted by the same amou
DV, the currentI 1 andI A do not change, i.e., they satisfy th
gauge-invariant condition.30 The currentI A represents the
contribution from the Andreev reflection, in which an ele
tron incoming from the left lead will be reflected as a ho
backwards into the left lead and an extra Cooper pair is
ated in the right superconducting lead. The currentI 1 con-
sists of three different processes:9 ~1! The conventional elec
tron tunneling through the system, i.e., the te
GLGRr̃RuG̃11

r (v)u2; ~2! An electron incident from the lef
lead will convert into a hole like in the right superconducti
lead, i.e., the termGLGRr̃RuG̃12

r (v)u2, corresponding to a
‘‘branch crossing’’ process in Blonder-Tinkham-Klapwij
~BTK! theory;25 ~3! An electron~or a hole! incident from the
left lead tunnels into the right superconducting lead, picks
a quasiparticle~or a quasihole! in the superconductor an
creates ~or annihilates! a Cooper pair, i.e., the term

2GLGRr̃R(2D/uvu)Re@G̃11
r G̃12

r* #. It should be pointed ou
e
’s

e
-

e-

p

that at zero temperature ifueVu,D one hasI 150, i.e., only
the Andreev reflection process contributes to the curre
However, whenueVu.D, all of the processes mentione
above make the contributions to the current.

Finally, the probability of the Andreev reflectionTA(v)
can be easily found from the expression of the currentI A due
to the Andreev reflection, Eq.~28!, as

TA~v!5GL
2uG̃12

r ~v!u2. ~30!

III. DIFFERENT SERIES OF RESONANT
ANDREEV REFLECTION PEAKS

On the basis of the current formulas, Eqs.~28!, and~29!,
we investigate the properties of the currentI versus the gate
voltagevg ~or the gate-induced chargeQ!. Unlike the system
of N-QD-N in which the currentI versus the gate voltagevg
at small biasV exhibits a single series of equally spac
resonance peaks. Now with one of the leads replaced b
superconducting lead, the situation becomes more com
cated. In the following we shall discuss in detail two diffe
ent cases foreV,D andeV.D. We set~1! the temperature
T50, ~2! the voltage of the right leadsvR50 due to the
gauge invariance, and carry out all calculations in units
\5e51.

A. The case withV<D

In the case ofV,D, only the Andreev reflection curren
I A exists, i.e.,I 150. Figure 1 presents the currentI vs the
gate voltagevg at different bias. In numerical studies, w
have assumed that the QD has ten discrete levels~from e0 to
e9! with equal level spacing. These levels move downwa
asvg increases. At small bias, the currentI vs the gate volt-
agevg exhibits a single series of peaks with equal spac
@marked with ‘‘A’’ in Fig. 1~a!#. We emphasize that althoug
these resonance peaks are similar to those peaks in a no
N-QD-N system, they are not due to from the conventio
resonant tunneling, because the conventional tunnelin
completely forbidden forV,D. In fact, these peaks com
from the Andreev reflections. When the energy of a statei of
the QD is lined up with the chemical potential of the rig
superconducting lead,mR ~mR52vR is set to be zero!, then
an electron incident from the left lead with the energye
5mR can tunnel into the statei of the QD, leading to a hole
propagating back to the statei in the QD and the creation o
a Cooper pair in the right superconducting lead becaus
Andreev reflection@see Fig. 2~a!#. As a result, a current pea
emerges in theI -vg curve. Notice that in this Andreev re
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flection process the incident electron and the reflected h
go through the same statei of the QD. If the energy level is
not lined up withmR , the Andreev reflection will be very
weak, corresponding to a very small Andreev reflection c
rent I A .

Gradually increasing the biasV, the basic feature of the
currentI versus the gate voltagevg does not change much, a
long asV,De/2, whereDe is the level spacing of the QD
Hence the corresponding differential conductancedI/dV is
almost zero forV,De/2. However, whenV is greater than
De/2, a series of extra peaks emerges in theI -vg curve
@marked with ‘‘B’’ in Fig. 1~b!#. The B-type peaks are lo-
cated in the middle of theA-type peaks with the same pea
spacing as that of theA-type peaks, but have much larg
amplitudes than that of theA-type peaks~approximately
doubled!.

The B-type peaks are originated from the followin
Andreev reflection. For a certain gate voltagevg , two neigh-
boring states of the QD, saye i ande i 11 , satisfy two condi-

FIG. 1. The currentI vs the gate voltagevg for V,D. The QD
has ten states with equal level spacing,De50.2; ande050 at vg

50. Other parameters are chosen asGL5GR50.01,D51. ~a!, ~b!,
and~c! correspond to three different bias:V50.02, 0.15, and 0.25
respectively.

FIG. 2. A schematic diagram for the Andreev reflections:~a! the
Andreev reflection through the statei itself; ~b! the Andreev reflec-
tion through two states, the statei and state (i 11).
le

r-

tions: the chemical potential of the right superconduct
lead mR , is located in the middle of the two levels; whil
both of these two levels are below the chemical potentia
the left lead,mL(mL52vL). So an electron incident with
energye5e i 11 ~or e i! tunnels from the left lead through th
left barrier into the QD’s state (i 11) ~or state i!, then
Andreev reflected at the right barrier as a hole back to
QD’s statei @or state (i 11)#, with a Cooper pair created in
the superconductor in the meantime@see Fig. 2~b!#. Notice
that in theB-type Andreev reflection both state (i 11) and
state i contribute to the current, while theA-type Andreev
reflection only involves a single state, so theB-type peak has
approximately twice the amplitude as that of theA-type
peak. It should be emphasized that ifV,De/2, the B-type
Andreev reflection cannot happen at zero temperature for
following reasons:~1! The electron cannot tunnel from th
left lead to the QD’s state (i 11) with mL,e i 11 since the
state (i 11) is empty, in another words, it is occupied by
hole. ~2! Although an electron can tunnel from the left lea
to the QD’s statei, the Andreev reflection is prohibited sinc
the state (i 11) has already been occupied by a hole.

WhenV is less thanDe the amplitude of theA-type peak
is smaller than that of theB-type peak. As the biasV is larger
thanDe ~within the energy range ofG!, the amplitude of the
A-type peak becomes larger than that ofB-type peak and
eventually reaches a height three times it original value@see
Fig. 1~c!#. The positions of theA-type peaks do not change
In fact, for a certain gate voltagevg , a QD’s statei will line
up with the chemical potentialmR , so the Andreev reflection
through the statei itself replaces the originalA-type peak.
Meanwhile, not only the state (i 11) and the state (i 21) are
just atDe and2De, respectively, both of them are below th
left chemical potentialmL as well, due to the conditionV
.De. So the Andreev reflection can also occur through
state (i 11) and state (i 21). Now three states (i 21), i, and
( i 11) contribute to theA-type peaks, resulting in a muc
higher peak.

It should be mentioned that in the above numerical cal
lation, we have assumed that the energy levels in the dot
equally spaced. If the level spacings are unequal, the res
will be more complicated. Generally, the interval betwe
peaks of each type becomes different from peak to peak
see this change concretely, let us consider a special cas
the quantum dot with ten energy levels and the level spac
as De i50.17 for even i, and De i50.23 for odd i (De i
[e i 112e i). First, at the small bias case, i.e.,V,De i /2, the
I -vg curve only has a single series of peaks~type-A! with the
same height as in Fig. 1~a!, but the intervals are not equa
~not shown here!. Second, with the increase of the biasV,
from smaller thanDe i /2 to larger thanDe i /2, a different
B-type peak will emerge at different biasV due to the de-
pendence ofDe i /2 on i. The peaks corresponding to small
De i will emerge first, i.e., at a smaller value ofV; and the
peaks corresponding to largerDe i will emerge at largerV.
Notice that there is no change of the heights of all peaks,
the locations of theB-type peaks are still in the middle be
tween theA-type peaks~not shown here!. Figure 3 shows the
case ofV.De i . In contrast to the equal-spacing case@com-
pare to Fig. 1~c!#, the originalA-type peaks are splitted into
two peaks~marked withA1 andA2 in Fig. 3!. The reason is:
The A-type peaks in Fig. 1~c! originate from two kinds of
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Andreev reflections, one is the Andreev reflection throu
the statei itself, another through the state (i 11) and state
( i 21). In the equal-spacing case, these two comple
overlap to combine into a much higherA-type peak. How-
ever, for the unequal level-spacing case, the two peaks f
the two kinds of Andreev reflections described above
longer overlap completely. So one sees a series of spl
two-peak resonances. In the rest of this paper, we will k
the assumption of equal level spacing for simplicity.

B. The case withV>D

In the case ofV.D, all kinds of the processes contribu
to the currentI, including Andreev reflection and all thre
kinds of tunneling processes mentioned above, i.e., bothI A
and I 1 are nonzero.

Here we studied the case ofV slightly larger than the
energy gapD. Figure 4 shows the currentI vs the gate volt-
agevg in this case. The difference between Figs. 4~a! and
4~b! is due to the different level spacing of the QD’s stat
Now three series of peaks emerge in the curve ofI vs vg
~marked byA, B, and C, respectively!, and with the same
intervals~or periods! between the peaks for each series. T
positions of theB-type peaks are in the middle of theA-type
peaks; and the position of theC-type peak is shifted from the
A-type peak by a certain amount which depends on the le
spacingDe and the gapD. The height of theC-type peak is
the smallest one.

To understand the origin and the position of each kind
peak, in the following numerical studies, we fix the para
eters as indicated in Fig. 4~a!, and setDe50.8. Sincee i

5e i
02vg , which varies with the gate voltagevg , the state

e4 is just below the chemical potentialmL and above the gap
D whenvg52.2 @see Fig. 5~a!#. So the conventional electro
and quasiparticle tunneling processes are allowed, leadin
theC-type peaks. With the increase of the gate voltage, e
level of the QD moves downward. Whenvg52.4, the state
e3 is lined up with the chemical potentialmR , and the energy
difference between the statee4 or e2 andmR are equal@see
Fig. 5~b!#. So the Andreev reflection can occur through eith
the statee3 itself or the other two statese4 ande2 , leading to
the A-type peaks with the largest amplitude@see Fig. 4~a!#.
As vg is increased further atvg52.8, the energy difference
between the statee4 or statee3 andmR are equal~not shown

FIG. 3. The currentI vs the gate voltagevg for V,D. The QD
has ten states but with unequal level spacing:De i50.17 for eveni,
De i50.23 for oddi, ande050 at vg50. The other parameters ar
the same as in Fig. 1~c!.
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here!, and bothe3 ande4 are below the chemical potential o
the left lead, mL . Then the Andreev reflection occur
through the statese4 and e3 , corresponding to theB-type
peaks. For the case with symmetric barriers~as assumed in
our calculations!, i.e., GL5GR , the maximum probability of
the Andreev reflection can reach one~see Sec. IV below!, but
the conventional transmission probability is less than o
becauseGLÞGRr̃R . Therefore the height of theC-type peak
is the smallest one.

IV. PROBABILITY OF THE ANDREEV REFLECTION

Now we turn to investigate the probability of the Andree
reflection, TA(v). Figure 6~a! shows the dependence o
TA(v) on the energyv. Here we have assumed that the Q
only has two states~e0 , and e1! with e0520.25 ande1
50.25, i.e., the energy difference betweene0 or e1 and the
chemical potentialmR are equal. Two peaks emerge in th

FIG. 4. The currentI vs the gate voltagevg for V.D. The QD
has ten states with equal level spacing; ande050 at vg50. Other
parameters are chosen asGL5GR50.02, D51, andV51.04. ~a!
and ~b! correspond toDe50.8 and 1.2, respectively.

FIG. 5. A schematic diagram for the tunneling processes resp
sible for theC-type and theA-type peaks.~a! and ~b! describe the
positions of the QD’s states, and show the related conventio
tunneling ~C-type! and the Andreev tunneling~A-type! processes,
respectively.
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curve ofTA(v) versusv, one atv5e1 and the other ate0 .
Only the peak atv5e1 is shown in Fig. 6~a!. Notice that in
the case of symmetric barriers, the maximum probability
the Andreev reflection is one, and is independent ofGL ~or
GR!. It is well known from BTK theory25 that the probability
of the Andreev reflection for a single barrier is related to
transmission probability through the barrier~or the height of
the barrier!. The smaller the transmission probability of th
barrier, the smaller the Andreev reflection probability. T
probability of the Andreev reflection can reach one only
there is no barrier at all. Usually, for a realistic single-barr
N-S structure, the probability of the Andreev reflection
very small, much smaller than one.5 However, in the system
with two barriers like the one under consideration, the pr
ability of the Andreev reflection exhibits strong resonant b
havior, even if bothGL andGR are very small. For a meso
scopic N-QD-S system, an electron~or a hole! maintains its
phase coherence during the process of multiple reflect
between the two barriers, the resonant Andreev reflectio
the resonant Andreev tunneling can be achieved. Here
two barriers play a similar role as the two mirrors in a Fab
Perot interferometer. This result is consistent with the o
obtained in Refs. 22 and 3.

If the value of v slightly deviates frome1 ~or e0!, the
probability of the Andreev reflectionTA(v) decreases
quickly as shown in Fig. 6~a!, where the Breit-Winger trans
mission probabilityT(v)

T~v!5
GLGR

~v2e1!21~GL1GR!2/4

is also shown for comparison~the dotted line!. One clearly
sees that the probability of the Andreev reflection,TA(v),
drops much faster than the Breit-Winger transmission pr
ability T(v).

In order to see the dependence of the maximum valu
the Andreev reflection@denoted byTmax

A (v)# on v, we con-
sider any two states of the QD, saye i and e j , and assume
v5e i52e j which can be achieved by adjusting the ga
voltagevg . Now the resonant Andreev reflection occurs, a
the maximum value ofTA(v) can be obtained from Eq.~30!:

FIG. 6. ~a! The probability of the Andreev reflectionTA(v) vs
the energyv. The QD has two states (e0 ,e1) with e0520.25 and
e150.25. Other parameters are chosen asGL5GR50.02, D51.
The dotted curve shows the Breit-Winger transmission probab
T(v) for comparison.~b! The resonant Andreev reflection probab
ity Tmax

A (v) vs v at different ratios ofGR /GL . The curves 1, 2, 3,
and 4 correspond toGL /GR51, 2, 5, and 20, respectively; with
GL50.01.
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Tmax
A ~v!5

4GL
2GR

2D2

~GL
21GR

2 !2~D22v2!14GL
2GR

2v2
for uvu,D,

Tmax
A ~v!5

4GL
2GR

2D2

@~GL
21GR

2 !Av22D212GLGRuvu#2

for uvu.D. ~31!

Figure 6~b! showsTmax
A (v) versusv at different ratios of

GR /GL . One can see clearly that~1! For the case of sym-
metric barriers (GL5GR) anduvu,D, the resonant Andreev
reflection probabilityTmax

A (v) is one independent of energyv
~one has to change the gate voltagevg to satisfy the resonan
condition!. ~2! If uvu.D, Tmax

A (v) cannot reach one even fo
the symmetric barriers. With the increase ofuvu, Tmax

A (v)
drops very fast in the form of a power lawv22. ~3! The
value ofTmax

A (v) is always smaller for the asymmetric barr
ers compared with symmetric ones.~4! If uvu5D, Tmax

A (v) is
one for both symmetric and asymmetric barriers. Notice t
the dependence ofTmax

A (v) on the energyv at different ratio
of GR /GL is similar to the dependence of the Andreev refle
tion probabilityA on the energyv at different heightZ of the
barrier in BTK theory.25

V. THE I -V CHARACTERISTICS

In this section we assume that each level of the QD
mains a fixed difference with respect tomR and does not
change with the bias~this can be done by varying the ga
voltage simultaneously!. Several observations are in orde
~1! If any two intradot states do not satisfy the conditions
the resonant Andreev reflection: one is above and the oth
below the chemical potential of the superconducting el
trode and the differences between each state andmR are
equal. Then the Andreev reflection is very small, leading
an almost invisible currentI for V,D, and the plateaus in
I -V will not emerge untilV.D ~see curve one in Fig. 7!. ~2!
If the conditions of the resonant Andreev reflection are s
isfied, then plateaus inI -V emerge even forV,D, and the

FIG. 7. The currentI vs the biasV, assuming that the QD’s
states are fixed relative tomR . The QD has ten states~marked from
e0 to e9! with De50.5. Other parameters areGL5GR50.02, D
51. The curves 1 and 2 correspond toe550.4 and 0.25, respec
tively. The dotted curve is theI -V of a N-QD-N with the same
parameters as the curve 2.
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heights of the corresponding plateaus are higher than
ones in a N-QD-N system. The dotted curve in Fig. 7 sho
the currentI versus the biasV for a N-QD-N system for
comparison, and the curve ofI versusV is a series of ap-
proximately equal interval plateaus.

Next, we consider the case in which the levels of the Q
vary with the biasV. In the case of symmetric barriers, w
set the energies of the states as:e i5e i

02V/2. The depen-
dence of currentI with the gate voltagevg is given in Fig. 8,
where one can see extra peaks superimposed on the co
tional plateaus of theI -V curve. No plateau appears un
V.D; then plateaus emerge with approximate equal in
val. Notice that even forV,D the extra peaks with equa
interval due to the Andreev reflections can still emerge. T
is because for a certain biasV, which satisfies the condition
of the resonant Andreev reflection, the currentI increases
drastically and a peak emerges. When the biasV is increased
slightly, the condition of the resonant Andreev reflection
violated, and hence the currentI drops rapidly. The differ-
ence of the relative heights of the peaks shown in Fig. 8
determined by the different number of states participating
the resonant Andreev reflections.

Finally, we study theI -V characteristics for the case wit
strongly asymmetric barriers~Fig. 9!. Now the BCS spectra
density,rR

s (v), is directly manifested in theI -V curve. This
result is similar to the one obtained experimentally by Ral
Black, and Tinkham,19 and the theoretical result by Yeya
et al.,20 both of which are for a QD coupled to two supe
conducting leads, i.e., a S-QD-S system. Different from
system studied in Refs. 19 and 20, the system studied in
work has only one superconducting electrode.

VI. CONCLUSIONS

In this paper, we have studied the electron tunnel
through the system of a quantum dot with multiple discr
levels and coupled to two leads in which one is superc
ducting. The gauge-invariant formula of the currentI and the
probability of the Andreev reflectionTA(v) are derived. The
resonant behavior and the resonant conditions for Andr
reflection are discussed. The resonant behavior can be cl
seen either fromI versusvg or from the dependence of th

FIG. 8. The currentI vs biasV for GL5GR50.01 andD51.
The QD has 20 states~marked frome210 to e9! with De50.5, and
e050.25 at biasV50.
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probability on the energy,TA(v). This means that the
N-QD-S system is quite different from the one-barrier sy
tem such as the N-S or S-S quantum point contact, in wh
TA(v) is always very small if the barrier is high. For th
N-QD-S system with multiple levels, theI -vg curve has
more complicated resonance patterns, with different kinds
peaks, depending on the biasV, the level spacing of the QD
and the energy gap of the superconducting electrode. F
the study ofI -V curves we found some extra peaks sup
imposed on the conventional current plateaus, originat
from Andreev reflections. In the case with highly asymmet
barriers, theI -V curve can directly reflect the BCS spectr
density r̃R of the superconducting electrode, providing
alternative way to determine the BCS density of states of
quasiparticles of the superconductors.

It is worth mentioning that in this paper we have n
glected the intradot Coulomb interaction. If the Coulomb
teractionU is included, we would expect that each kind
peak in theI -vg curve and the corresponding extra peaks
the I -V curve will still emerge, with the same peak widt
But the interval of the peaks will be widened, fromDe to
De1U. In addition, some substructure of the peak m
emerge. The effects of the intradot Coulomb interaction
the resonant Andreev reflection will be investigated el
where.
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FIG. 9. The currentI vs the biasV for strongly asymmetric
barriers. Only a single state of the QD is considered, withe05
21.4 at biasV50. The solid and dotted curves correspond
GR /GL50.1 and 0.02, respectively, withGL50.1, andD51.
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