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We investigate the electron tunneling through a normal-metal—quantum-dot—superco(iu@drS) sys-
tem where multiple discrete levels of the QD are considered. By using the nonequilibrium-Green’s-function
method, the currertand the probability of the Andreev reflectidf(w) are derived and studied in detail. In
addition to the resonant behavior of the Andreev tunneling as obtained in previous works, we find that the
currentl versus the gate voltage, exhibits different kinds of peaks, depending on the bias voltage, the level
spacing of the QD, and the energy gap of the superconducting electrode. Besid&scharacteristics extra
peaks superimposed on the conventional current plateaus emerge, which stem from the resonant Andreev
reflections. In the case with strongly asymmetric barriers, the BCS spectral density can be obtained directly
from thel-V characteristicg.S0163-18209)00405-]

. INTRODUCTION neling for a single-level QD in the zero-bias limit.
Beenakker's theory has been extended by Claughton,
In recent years there has been increasing interest in studyeadbeater, and Lambert to the finite bias case and they
ing the transport properties of mesoscopic “hybrid” normal- found that the differential conductance resonances are
metal—-superconductor systems. The interplay of basic feastrongly suppressed in the weak-coupling lifiery re-
tures from both of mesoscopics and superconductivity makesently, Fazio and Raimondi investigated the resonant
this subdiscipline of condensed-matter physics a very fruitfulAndreev tunneling through a strongly interacting QD in a
research field3 Many works have been done on the subgapN-QD-S structure, discussed how the Kondo effect can in-
structures of the S-I-S or S-N-S junctions due to the effectsluence the two-particle tunneling, and obtained an enhance-
of multiple Andreev reflection$? the quantization of the ment of the Kondo anomaly in the'V curves due to the
maximum supercurrent of the superconducting quantunpresence of a superconducting electrétle.
point contacts;® the “zero-bias anomaly” of the S-I-N In this work, we shall investigate the electron tunneling
junctions!®*etc. The electron resonant tunneling through athrough a N-QD-S structure, i.e., a normal quantum-dot con-
quantum-dot(QD), either superconducting SQD or normal nected to two leads, one is a normal metal and the other is a
NQD, connected to two electrodes is another subject invessuperconductor. Different from Refs. 3 and 22 where only a
tigated extensively, including a variety of hybrid structuressingle level of the QD has been considered, here we assume
such as S-SQD-S, N-SQD-N, S-NQD-S, N-NQD-S, etc. Forthat the QD has discrete multiple levels, but the intradot
a small superconducting island with the energy gap greataCoulomb interactions will be neglected for simplicity. Using
than the Coulomb charging energy, the even-odd numbethe nonequilibrium-Green’s-functicfNGF) method, the cur-
effect produces a & periodicity in the tunneling current rent| and the probability of the Andreev reflectidif'(w)
versus gate-induced charge in S-SQD-S and N-SQD-Mre derived which satisfied the gauge-invariant condition,
systems**®Ralph, Black, and Tinkhnam measured th&/  i.e., the current remains unchanged when the pote(viit-
characteristics for a S-NQD-S from which the density ofage everywhere is changed by the same améfifthe de-
states of the quasiparticles in the superconducting leads hggendence of and TA(w) upon the gate voltage, the bias
been obtained® A similar system has been studied theoreti-voltage, the level spacing of the QD, and the energy gap of
cally by Yeyati et al. in the weak-coupling regime with the superconducting electrode have also been studied in de-
asymmetric barriers by using the nonequilibrium-Green’s+ail. For this simple model system, we found very interesting
function (NGF) techniqué® Ishizaka, Sone, and Ando inves- results:
tigated the Kondo effect in a S-NQD-S system by the non- (1) Different from the N-QD-N system where the current
crossing approximation and obtained some interesting or the differential conductancdl/dV versus the gate-
results?! As for the N-NQD-S structuresimply by N-QD-S  induced charge (Q=Cgyv,) (or the gate voltage ) ex-
hereaftey, Beenakker presented a general multichannehibits a series of peaks with equal interval, for the N-QD-S,
Smatrix description and predicted the resonant Andreev tunthe currentl versusQ (or vg) at small fixed biad/ exhibits
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more complicated pattern, which may have several different
kinds of peaks with the same equal spacing for each kind of Hdot:,z (Eio_evg)CiToCia-
the peaks. This property originates from the multiple equal- "
spacing levels of the QD we assumed. If the energy levels of
the QD are not equal spacing, the series of peaks will be Hr= E [tLaJ[Yk(,ci,,H’L‘ ciToaL,ka]
much more complicated. Kool
(2) The resonant behavior can be seen either frasiv ) )
or from the probability of Andreev reflectiofAR), TA(w). + > [trer7al | i, +the Rl ag ],
For a single N-S contact, the probability of the Andreev re- Pt
flection strongly depends on the barrier hefgfaind is usu- whereH  describes the noninteracting electrons in the left
ally quite small for the realistic structuré€.However, in a normal-metal leada , (a,,) are the creatiorfannihila-
N-QD-S system we considered, the probability of the An-tion) operators of the electron in the left lead, andis the
dreev reflection exhibits resonance under certain conditiorvoltage of the left leadH g describes the right superconduct-
although the transmission amplitudes of the left barrier andng lead with the energy gap. Hgq is the Hamiltonian of
the right barrier are quite small. The two barriers between théhe quantum dot with multiple discrete energy levels, char-
QD and two leads play the role of two “mirrors” as in a acterized by the indekand spino. For simplicity, the intra-
Fabry-Perot interferometer. dot electron-electron Coulomb interaction has been ne-
(3) Extra peaks are found superimposed on the converglected.vy is the gate voltage which controls the energy
tional current plateaus ih-V curves due to the resonant levels in the dotH; denotes the tunneling part of the Hamil-
Andreev reflections. tonian, andt, (v=L,R) is the hopping matrix and is as-
(4) Finally, for the case with strongly asymmetric barriers, sumed to be independent of the sthtef the leads and the
the density of states of quasiparticles in superconductingot state {,o) for simplicity. In order to obtain the Hamil-
electrode can be obtained directly from th&/ characteris- tonian(1) and(2), we have performed a unitary transforma-
tics. This result is similar to the experimental result bytion similar to Ref. 9, so that the voltage of the right lead
Ralph, Black, and Tinkhaf and the theoretical work by appears as a phase factor in the hopping elements.
Yeyati et al?° for the S-NQD-S system. Since the current is conserved, it is enough to calculate
The rest of this paper is organized as follows. In Sec. llithe current from the left lead to the QD from the evolution of
we present the model and derive the gauge-invariant formulthe total number operator of the electrons in the left lead,
of the current and the probability of the Andreev reflection N =%, ,a] \,a ko :2%%’
TA(w) by using the NGF technique. In Sec. Il we study the .
properties of the curremtversu_s the_gate voltage on the pasis I(7)=— E<N|_(’T)> _€ (INL,H])
of the theoretical results obtained in Sec. Il. We also discuss fi
the resonant behavior and the different kinds of peaks of the 26
resonant Andreev r_eflect|ons which de_pend upon various fac- =" Re 2 t{((Ci o T)|aI,ko( )<, (3)
tors such as the bias, the level spacing of the QD, and the h ki,o
energy gap of the superconducting electrode. The coefﬁcie%here the Green functioki(A(7)|B(7')))< is defined as

of the Andreev reflection is studied in Sec. IV. The proper-;/a A\ IB(+))<=i(B(+)A With the help of Dvson’s
ties of thel-V curves and the density of states of the quaSi'ééqu(a?Ln(Ihza»Greeﬁl’s(]Z-uzlct(i(;?{c; (T)|aT (T,F))>>< c)r:m be
particles in the superconducting electrode are presented ' o Like

Sec. V. Finally, a brief summary is given in Sec. VI. Written as

<<Ci0'(7-)|al,ka'(7,)>><
II. MODEL AND FORMULATION

— T ’
We assume that the system under consideration is de- _; fdTltt[<<CiU(T)|CjU(Tl)>>rg|fk(Tl’T )
scribed by the following Hamiltoniah?!

+{(Cio(DIefy(r)) 0L (72, 7)1, @
H(7)=H, +Hg+Hgo+ Hr(7), (1) here <<'?~(T_)|B(Tl)>>75—i9(TTT1)<{A(T),B(71)}>: and
gk (7,7") is the exact Green'’s function of the electron in
the left lead(normal-metal without the coupling between

wher
ere the dot and the lead:
g i(n ) =Fio(x7¥ T')e_i(fgk_e”'-)”_ R )
Ho=> (fE,k_eUL)aI,kaaL,k(r, i) 0 ,
Ko L7 ) =if (e u e, ®)

where f| (x) =[exp{/ksZ ) +1] ! is the Fermi distribution

function with 7 being the temperature. Substituting the ex-

pression of((ci(,(r)|a[k(,(7-’)))< into Eq.(3), the sum over

k can be changed into an integral with the help of the density

+ A*ag . ap o +Aal_.ab 1, of states in the left lead[dwp, (), and introducing the
Ep: [A%8rp1 3R p1 + AdR i8] linewidth functionl", (w)=27|t, |20 (w), we then have

— 0 T
HR_ pE: ER,paR,pUaR,po'
T
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4e do T . ’ <
|<T>=—;Imf ﬂrLfmdr'e'w—evL)“—”iZJ [({ein(nlef: (7 fu(@)+({ein(nlefi (7)) 7]

4e do T I al(w—ev ) (1—17") r ’ < ’
E—?Im EFL B dr'e L [G'(7, 7" (w)+GC~(7,7")]11, 7

where we have introduced thex2 matrix Green functions ) ta(7) O
G'(r,7') andG™(r,7'):%% E(rm) =2 (o —taw)
) (s T)(t;m) )
=Fig(zr¥r’) rplT1:72)| g ()
» (<{CiT(7'),C]TT(T,)}> <{CiT(7'),Cu(7',)}>) __ir f do 6(r,—1y)e @172
) - R 5
T el (e (el (e ()b 27 Jw?-AZ
(8) |w|eievR(7177'2) _AeieuR(Tl+ T5)
X( —Ae_ievR(Tl+TZ) |w|e_ievR(71_72)>’

G (r,7)=i2

]

(<cﬁ<r'>cm<r>> <cu<r'>cn<7>>) »
(cfi(x)eli(n) (e, (=)el ()]

(9)  wheretg(7) in Eq. (14) is trexdievgr], andl'y is defined as
27|tg|?pR(w) Where pR(w) is the density of states of the
right lead in normal state. Hergl , and gg , are defined
similar to Eq.(8). Notice that3(r1,7,) has nondiagonal

elements, representing the character of superconducting elec-

In order to obtain the expression of the currgntve have
to solve the Green's function&,(7,7') and Giy(7,7’).
First, we solveG,(7,7’) andG’,(,7") by using the Dyson

equation: trode. From Dyson’s equation, E€L0), we have
Gr(T,T'):gr(T,T’)-i‘J'J'dTldeGr(T,Tl) Gly(77)=9%(7,7")
X2'(11,7)0 (72, 7"), (10 +jjdTldeGg_l(T,Tl)zg_l(Tl,Tz)gg_l(Tz,T,)
whereX"(74,7,) is the self-energy function, and the Green’s
functiong’(7,7') is given by +J' J' dTldeerlz(Ty71)251(7'1,7'2)951(7'2,7"),
gr(T! T,) (15)
=—if(7—1")

it [ [ amtnGbi St
» e i(L—erg(—7) 1A T) 11d7,G10( 7, 1) 21 71, T2) Yo 72, 7')
|

x +J'J'dTldTZGg_Z(Tr71)2;2(71172)952(7'217',)-

0 2 ei(éio—evg)(T—'r')
' (16)
11 L " L
By iteratingG1,(7,7') in Egs.(16) and(15), one easily finds
Under the wide-bandwidth approximation, i.e., the linewidth
H H 26,27,29
I' (o) [or I'gr(w)] is a constant independent of and Gly(r,7)=gly(7,7")

since the current and the probability of the Andreev reflec-

tion TA(w) depend only ott, |2, for simplicity we assume, . i i )
(v=L,R) is real. Then the self-energ¥'(r;,7,) can be + d7yd75G14(7,71)214(71,72)914( 72, 7)
easily obtained as
r
Er(TlvTZ):ErL(Tll7-2)+2|r?(7-1172) (12 +f f f fd71d72d73dT4Gll(T’Tl)

and XA 11, 72)A (72, 73)251(73,74)914( 74, 7'),
s => t.thg T Lo o

™) = 2 WO ) == 5 3= )| o 1]\ here we have introduced a new quan#(r,7') defined

(13 as
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A (s =dhdr 7+ | [ dmdrghanry
X071, 72) 95 T2, 7")

+f f f fd71d72d73d7'4gr22(7,71)222(71,7'2)

X Qoo 72,73) 20 73, T4) Qo T4, T )+, (18)
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Notice that the Green’s functioB},(7,7’) is not a function

of the time difference except farg=0. Also, thatG Aw) in
Eq. (22) is the Fourier transform oB’,(7,7’) in the special
case withvg=0.

In the following, we solve the Green’s functi@i( 7, 7)
by using the Keldysh equationG==(1+G"2")g~(1
+32G?) + G2 g% One can easily find that the first term on
the right-hand side is zefS.Under the wide-bandwidth ap-

I y < :
which can be calculated exactly by substituting the Green,grommaﬂon, the self-energy = (;,7,) can be obtained as

function g5, of Eq. (11), and the self-energy functian), of
Eq. (12), into Eq.(18),

TT)_J _e i(o+evg)(r—17")

1 -1
X
Ei w+ei0—evg+evR
Il e o] -
22 st
do
= I(w+euR)(T ')
277 Al(w). (19

Then substitutindA"(7,7"), 3'(7,7'), andd'(7,7’) into Eq.
(17), the Green’s functiol},(7,7') is easily obtained:

do . e
El(m’)zf Eef'“”*evw“*”egl(w), (20)

whereG!,(w) is the Fourier transform oB},(7— 7') given
by

- 1 “1oir,
r — 4+ —
Culw) (Z w—6i0+evg—evR> 2
iy ol rgAZ A !
+ = 5 —w — 2 A'(w)

Notice that the Green'’s functi(ﬁ’n( T, 7-’) is only a function
of the time differences—7'.

Then we solve the retarded Green’s functiGhy,(7,7’)
which is needed for solving the Green’s functiGig,(7,7').
By iteratingG},(7,7’) in Eqg. (16), we obtain

G;_z(T,T')Zf f drd7,Gl(7,70) 2 o 71, 72) A (75, 7).
(22)

With the help of Egs(12)—(14), (19), and(20), the Green’s
function G},(7,7") is found to be

do . S .
GEZ(Ti Tr):f o e*lw(Tfr )elevR(T+T )GE_Z(w)i (22)
where

iTRA

—A
2Jor—p2 "

G rlz(w) = érll(w)

35(7y, 1) =3 (71, 7))+ 2R(71,70) (23

with
S0(7, 1) = Z Lty o (71, 72)
do .
—i — a—lw(ry—1p)
|FLf 27_re

(29

fL(aH—evL) 0
“lo f(w—ev,)

and
2;(7'1-72)
_2 ( R(T1)

ir)

_t*F(Q(Tl)
0

Xng(Tl’TZ)( Y _tR(TZ))

d .
“irg [ 5o e gl w)pglo)

eievR(Tlffz) o eievR(Tl+7—2)

ol

_ A g ievr(m1+ 7)) g ievR(T1— 1)

|
(25
wherefg(w)="f (w) is the Fermi distribution function, and
pr(w) is the corresponding dimensionless BCS density

of states, i.e.pr(w) is the ratio of superconducting density
of states, pg(w), to the normal density of states,

pr(©)Pr(®)=pR(®)/pr(w). From

p§<w>=(1/w>lm§ R p(®),

one easily find$%

Pr(@)=0(|o|—A)|o|/Jo? - A% (26)
Substituting the expressions of the self-energy
3<(r,,7), Egs. (23—(25, and the Green’s functions

Giy(7,7"), and Gi,(7,7") into the Keldysh equation, then
Giy(7,7) can be obtained straightforwardly,



PRB 59 RESONANT ANDREEV REFLECTION IN A NORMAL. .. 3835
Gl<l( T, T)= f f dr,d 7'2[Gr112 1<1Gril1+ GrllE 1<2631+ Gr1222<16i1+ Gr1222<2631]
do ~r 2 do ~r 2
- E|Gll(a))| |F|_f|_(w+eUL_el)R)+ Z|G12(w)| |F|_f|_(w_eU|_+eUR)

~ ~ 2A ~ ~
|Gly(@)|?+|G 1y @) > = 7 REGy(@) (Gl w)* . (27)

|o]

do
+f ElFRpR(w)fR(w)

Notice that for the N-QD-S system, the current should bethat at zero temperature [i#V|<A one had;=0, i.e., only

independent of time for the dc bias. As expected, the Green'the Andreev reflection process contributes to the current.

function G3;(7,7) does not depend on time, although However, when|eV|>A, all of the processes mentioned

Gl,(7,7") andX ,(7,7') depend on two time variablesand ~ above make the contributions to the current.

7. Finally, the probability of the Andreev reflectioff*(w)
Finally, substituting the retarded Green’s function can be easily found from the expression of the curtgrdue
'(7,7"), Eq. (20), and the distribution Green’s function to the Andreev reflection, Eq28), as

Gii(7,7), Eq. (27), into the expression of the current, Eq.

(7), then the current is obtained as TA(0)=T?|Gy w)|2. (30)
I=1a+1q,
with Ill. DIFFERENT SERIES OF RESONANT
ANDREEV REFLECTION PEAKS
_2el“f J' do ~, 2 _ On the basis of the current formulas, E¢88), and(29),
I p= — |G [fL(w+ev —evR) : . .
h 2 we investigate the properties of the currémersus the gate
voltagev 4 (or the gate-induced char@®. Unlike the system
—fL(o—ev +evg)], (28 of N-QD-N in which the current versus the gate voltage,
26l T d at small biasV exhibits a single series of equally spaced
= LR [ 29~ G120 |ar |2 resonance peaks. Now with one of the leads replaced by a
Iy f pr(®)||G14*+|G1 . I .
f 2 superconducting lead, the situation becomes more compli-
oA B B cated. In the following we shall discuss in detail two differ-
S — Rd:GELl(w)(G?LZ(w))*]} ent cases foeV<A andeV>A. We set(1) the temperature
|| 7=0, (2) the voltage of the right leadsg=0 due to the
X[ fL(w+ev, —evg)—fr(®)]. (29 gauge invariance, and carry out all calculations in units of

The formulas of the current, Eq&28) and (29), are the
central results of this paper. Obviously, the expression of the A. The case withV<A
current for the N-QD-S system under consideration is inde- )
pendent on the time, and only depends on the dc bias In the case oW<A, only the Andreev reflection current
voltageV. If the voltages of the left lead, the right lead, and '~ €XiSts, i-e.1;=0. Figure 1 presents the currenvs the
the gate(v, , vg, andu) are shifted by the same amount gate voltagev at different bias. In r_1umer|cal studies, we
AV, the current , andl , do not change, i.e., they satisfy the Nave @ssumed that the QD has ten discrete ldfrels €, to
gauge-invariant conditio?® The currentl, represents the €9 With equal level spacing. These levels move downward
contribution from the Andreev reflection, in which an elec- 25Vg increases. At small bias, the currénis the gate volt-
tron incoming from the left lead will be reflected as a hole29€vg €xhibits a single series of peaks with equal spacing
backwards into the left lead and an extra Cooper pair is crelmarked with “A”in Fig. 1(a)]. We emphasize that although
ated in the right superconducting lead. The currignton- these resonance peaks are similar to those peaks in a normal

sists of three different processe&l) The conventional elec- N-QD-N system, they are not due to from the conventional
tron tunneling through the system, i.e., the termesonant tunneling, because the conventional tunneling is

' pe(Glw)|% (2) An electron incident from the left ¢oRR e aUCE A R e ot st
lead will convert into a holeﬂke in the right superconducting the QD is lined up with the .chemical potential of the right
lead, i.e., the ternT T'rpr|G’(w)|?, corresponding to @ syperconducting leadky (ur=—uvg is Set to be zefo then
“branch crossing” process in Blonder-Tinkham-Klapwijk an electron incident from the left lead with the energy
(BTK) theory? (3) An electron(or a holg incident from the = ug can tunnel into the statieof the QD, leading to a hole
left Ieac_i tun_nels into the right sgperconducting lead, picks Umhropagating back to the staitén the QD and the creation of

a quasiparticle(or a quasiholein the superconductor and 3 Cooper pair in the right superconducting lead because of
creates (or annlhllatezs a *Cooper pair, i.e., the term Andreev reflectioisee Fig. 23)]. As a result, a current peak
—I' I'rpr(2A/|w|)REG}1G,]. It should be pointed out emerges in thé-vy curve. Notice that in this Andreev re-



3836 QING-FENG SUN, JIAN WANG, AND TSUNG-HAN LIN PRB 59

tions: the chemical potential of the right superconducting
0.08 |- lead ugr, is located in the middle of the two levels; while
both of these two levels are below the chemical potential of
the left lead,u, (u.=—v.). So an electron incident with

0.06

.08 A energye= €, ; (Or ¢) tunnels from the left lead through the
0.02 | /\ j\ J\ j\ left barrier into the QD’s statei{1) (or statei), then
0.00 1 ! ! | Andreev reflected at the right barrier as a hole back to the
005 | (b) QD’s statei [or state {+1)], with a Cooper pair created in

the superconductor in the meantifeee Fig. 2b)]. Notice

B
0.06 |- that in theB-type Andreev reflection both staté+1) and
0.04 | A statei contribute to the current, while th&-type Andreev
0.02 reflection only involves a single state, so Bype peak has
‘ J\ ,/\\ j\\ approximately twice the amplitude as that of thetype
0.00 - 1 L

A

I (arb. units)

peak. It should be emphasized thatix A e/2, the B-type
Andreev reflection cannot happen at zero temperature for the
following reasons(1) The electron cannot tunnel from the
left lead to the QD’s statei {-1) with u, <e; ;1 since the
state (+1) is empty, in another words, it is occupied by a
hole. (2) Although an electron can tunnel from the left lead
to the QD'’s staté, the Andreev reflection is prohibited since
0.6 0.8 1.0 1.2 the state (+ 1) has already been occupied by a hole.
v_ (arb. units) WhenV is less thame the amplitude of thé\-type peak
& is smaller than that of thB-type peak. As the biag is larger
FIG. 1. The current vs the gate voltage, for V<A. The QD thanAe (within the energy range df), the amplitude of the
has ten states with equal level spacidg=0.2; ande,=0 atv, ~ Atype peak becomes larger than thatftype peak and
=0. Other parameters are choseas-T'r=0.01,A=1. (a), (),  eventually reaches a height three times it original vakee
and(c) correspond to three different bia¢=0.02, 0.15, and 0.25, Fig. 1(c)]. The positions of thé\-type peaks do not change.
respectively. In fact, for a certain gate voltage,, a QD’s state will line
up with the chemical potentialgy, so the Andreev reflection
flection process the incident electron and the reflected holéhrough the state itself replaces the originah-type peak.
go through the same statef the QD. If the energy level is Meanwhile, not only the state { 1) and the statei(-1) are
not lined up withug, the Andreev reflection will be very just atAe and —Ag, respectively, both of them are below the
weak, corresponding to a very small Andreev reflection curdeft chemical potential, as well, due to the conditioW
rentl . >Ae. So the Andreev reflection can also occur through the
Gradually increasing the biag, the basic feature of the state (+1) and statei(—1). Now three states £ 1), i, and
currentl versus the gate voltagg, does not change much, as (i+1) contribute to theA-type peaks, resulting in a much
long asV<Ae€/2, whereAe is the level spacing of the QD. higher peak.
Hence the corresponding differential conductad¢&V is It should be mentioned that in the above numerical calcu-
almost zero folV<Ae/2. However, wherV is greater than lation, we have assumed that the energy levels in the dot are
Ae€l2, a series of extra peaks emerges in the, curve  equally spaced. If the level spacings are unequal, the results
[marked with ‘B” in Fig. 1(b)]. The B-type peaks are lo- will be more complicated. Generally, the interval between
cated in the middle of thé-type peaks with the same peak peaks of each type becomes different from peak to peak. To
spacing as that of thA-type peaks, but have much larger see this change concretely, let us consider a special case of
amplitudes than that of thé-type peaks(approximately the quantum dot with ten energy levels and the level spacing

(o)

0.08

doubled. as Ae;=0.17 for eveni, and Ae;=0.23 for oddi (Ae;
The B-type peaks are originated from the following =e¢;,,— €;). First, at the small bias case, i.¥.<A¢€;/2, the
Andreev reflection. For a certain gate voltagg two neigh-  1-v4 curve only has a single series of pedfype-A) with the

boring states of the QD, say ande; ., satisfy two condi- same height as in Fig.(d), but the intervals are not equal
(not shown herg Second, with the increase of the bids
(&) [ | ] O [ ] from smaller thanAe;/2 to larger thanAe;/2, a different
B-type peak will emerge at different bias due to the de-
} A pendence oA ¢;/2 oni. The peaks corresponding to smaller
¢ P A€ will emerge first, i.e., at a smaller value ¥f and the
P e8> . leem 0 peaks corresponding to largare; will emerge at largeiv.
| Notice that there is no change of the heights of all peaks, and
the locations of théB-type peaks are still in the middle be-
| A‘A %’A tween theA-type peakgnot shown here Figure 3 shows the
case ofV>Ag¢; . In contrast to the equal-spacing cgsem-
FIG. 2. A schematic diagram for the Andreev reflecticfagthe ~ pare to Fig. 1c)], the originalA-type peaks are splitted into
Andreev reflection through the statéself; (b) the Andreev reflec- two peaks(marked withA; andA, in Fig. 3). The reason is:
tion through two states, the statand statei(+1). The A-type peaks in Fig. (£) originate from two kinds of
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FIG. 3. The current vs the gate voltage, for V<A. The QD
has ten states but with unequal level spacikg;=0.17 for even, @ 02r B
A€;=0.23 for oddi, ande;=0 atvy=0. The other parameters are g
the same as in Fig.(&). .

'% 0.1 A

Andreev reflections, one is the Andreev reflection through = o
the statei itself, another through the staté+1) and state
(i—1). In the equal-spacing case, these two completely 0.0 3‘6 4'8 - 712

overlap to combine into a much highértype peak. How-

. V (arb. units)
ever, for the unequal level-spacing case, the two peaks from &

the two kinds of Andreev reflections described above no

longer overlap completely. So one sees a series of splitteﬁla
two-peak resonances. In the rest of this paper, we will keeB
the assumption of equal level spacing for simplicity.

FIG. 4. The current vs the gate voltage, for V>A. The QD
s ten states with equal level spacing; @ge0 atvy=0. Other
arameters are chosen Bg=I"gr=0.02,A=1, andV=1.04. (a)
and(b) correspond td\e=0.8 and 1.2, respectively.

B. The case withvV>A here, and bothe; ande, are below the chemical potential of

In the case ok/>A, all kinds of the processes contribute the left lead, 4, . Then the Andreev reflection occurs
to the currentl, including Andreev reflection and all three through the stateg, and e3, corresponding to th&-type

kinds of tunneling processes mentioned above, i.e., bpth peaks. For the case with symmetric barricas assumed in
andl, are nonzero. our calculationy i.e.,I'y =T'g, the maximum probability of

Here we studied the case df slightly larger than the the Andreev reflection can reach ofsee Sec. IV beloyy but
energy gap\. Figure 4 shows the currehtvs the gate volt- the conventional transmission probability is less than one
agev, in this case. The difference between Fig&)4and  becausd’, #I'rpr. Therefore the height of the-type peak
4(b) is due to the different level spacing of the QD’s statesis the smallest one.

Now three series of peaks emerge in the curve o6 v,
(marked byA, B, and C, respectively, and with the same
intervals(or periods between the peaks for each series. The
positions of theB-type peaks are in the middle of tietype Now we turn to investigate the probability of the Andreev
peaks; and the position of tii@&type peak is shifted from the reflection, TA(w). Figure &a) shows the dependence of
A-type peak by a certain amount which depends on the level(w) on the energy. Here we have assumed that the QD
spacingAe and the gap\. The height of theC-type peak is only has two stategey, and €;) with eg=—0.25 ande;
the smallest one. =0.25, i.e., the energy difference betwegnor ¢; and the

To understand the origin and the position of each kind ofchemical potentiajuy are equal. Two peaks emerge in the
peak, in the following numerical studies, we fix the param-
eters as indicated in Fig.(d, and setAe=0.8. Sincee; (a)
=€’ —vgy, which varies with the gate voltage,, the state c
€, is just below the chemical potential and above the gap
A whenv 4= 2.2[see Fig. §3)]. So the conventional electron €
and quasiparticle tunneling processes are allowed, leading to
the C-type peaks. With the increase of the gate voltage, each €, c
level of the QD moves downward. When = 2.4, the state
€5 is lined up with the chemical potentigly, and the energy
difference between the statg or €, and ug are equalsee
Fig. 5(b)]. So the Andreev reflection can occur through either
the statee; itself or the other two states, ande;, leading to  siple for theC-type and theA-type peaks(a) and (b) describe the
the A-type peaks with the largest amplitufisee Fig. 4)].  positions of the QD’s states, and show the related conventional
As vy is increased further aty=2.8, the energy difference tunneling (C-type) and the Andreev tunnelingA-type) processes,
between the state, or statee; andwg are equalnot shown  respectively.

IV. PROBABILITY OF THE ANDREEV REFLECTION

(b)

FIG. 5. A schematic diagram for the tunneling processes respon-
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0.6

(b)

I(arb. units)

1A 2A
W w 0.1

FIG. 6. (a) The probability of the Andreev reflectiof\(w) vs P
the energyw. The QD has two states(,e;) with e,=—0.25 and ' biias V(érb uﬁits)
€,=0.25. Other parameters are chosenlas=1'3=0.02, A=1. ’
The dotted curve shows the Breit-Winger transmission probability £ 7. The current vs the biasV, assuming that the QD's
T(w) for comparison(b) The resonant Andreev reflection probabil- ¢ tas are fixed relative #0r. The QD has ten statémarked from
ity TA.{(®) Vs o at different ratios o g/T", . The curves 1, 2, 3, € 10 €5) With Ae=0.5. Other parameters ai§ =T'r=0.02, A
and 4 correspond td', /I'r=1, 2, 5, and 20, respectively; with —1 The curves 1 and 2 correspond do=0.4 and 0.25, respec-
I =0.01. tively. The dotted curve is thé-V of a N-QD-N with the same

A parameters as the curve 2.
curve of T?(w) versusw, one atw= €; and the other atg.

Only the peak atv= €, is shown in Fig. 6a). Notice that in AT2T2A2
the case of symmetric barriers, the maximum probability of +A L0)= LR
the Andreev reflection is one, and is independent pf(or ma (T2+T2)%(A%— w?) + 4T T 302
T'g). Itis well known from BTK theorg® that the probability
of the Andreev reflection for a single barrier is related to the 242 £ 2
transmission probability through the barrier the height of AI'T'RA
the barriey. The smaller the transmission probability of the [(T2+4T2)Jw?— A%+ 2T [glo|]?
barrier, the smaller the Andreev reflection probability. The
probability of the Andreev reflection can reach one only if for [w|>A. (31
there is no barrier at all. Usually, for a realistic single-barrier
N-S structure, the probability of the Andreev reflection is
very small, much smaller than oRddowever, in the system FR/FL' On_e can see clearly that) For the case of sym-
with two barriers like the one under consideration, the prob_metrlc.barrlersI’,T.=F§) and.|w|<A_, the resonant Andreev
ability of the Andreev reflection exhibits strong resonant be-"€flection probabilityT ., (w) is one independent of energy
havior, even if boti", andT' are very small. For a meso- (One has to change the gaAte voltageto satisfy the resonant
scopic N-QD-S system, an electréor a holé maintains its ~ condition. (2) If |o[>A, Tj,(w) cannot reach one even for
phase coherence during the process of multiple reflectionie symmetric barriers. With the increase |af, Tr(w)
between the two barriers, the resonant Andreev reflection oirops very fast in the form of a power law™2. (3) The
the resonant Andreev tunneling can be achieved. Here thealue ofTﬁmg(w) is always smaller for the asymmetric barri-
two barriers play a similar role as the two mirrors in a Fabry-ers compared with symmetric ong8) If |w|=A, T4 () is
Perot interferometer. This result is consistent with the onene for both symmetric and asymmetric barriers. Notice that
obtained in Refs. 22 and 3. the dependence df,,(w) on the energyv at different ratio

If the value ofw slightly deviates frome; (or €o), the  of I'x/T is similar to the dependence of the Andreev reflec-

probability of the Andreev reflectionT”(w) decreases tion probabilityA on the energy at different heightZ of the
quickly as shown in Fig. @), where the Breit-Winger trans- barrier in BTK theory?®

mission probabilityT (w)

for |w|<A,

Trnal ®) =

Figure &b) shows T4 (w) versusw at different ratios of

V. THE 1-V CHARACTERISTICS

T(w)= I' g In this section we assume that each level of the QD re-
(w—€)?+ (T +TR)%4 mains a fixed difference with respect jor and does not
change with the biagthis can be done by varying the gate
is also shown for comparisofthe dotted ling One clearly  voltage simultaneously Several observations are in order.

sees that the probability of the Andreev reflecti_ﬁﬁgw), (1) If any two intradot states do not satisfy the conditions of
drops much faster than the Breit-Winger transmission probthe resonant Andreev reflection: one is above and the other is
ability T(w). below the chemical potential of the superconducting elec-

In order to see the dependence of the maximum value afode and the differences between each state agpcare
the Andreev reflectiofidenoted byT#.(w)] on », we con-  equal. Then the Andreev reflection is very small, leading to
sider any two states of the QD, sayande¢;, and assume an almost invisible currenit for V<A, and the plateaus in
w=¢€=—¢€; wWhich can be achieved by adjusting the gatel-V will not emerge untiV>A (see curve one in Fig.)7(2)
voltagev 4. Now the resonant Andreev reflection occurs, andif the conditions of the resonant Andreev reflection are sat-
the maximum value oT*(w) can be obtained from E¢30): isfied, then plateaus iV emerge even fo¥ <A, and the
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FIG. 8. The current vs biasV for I'y =I'r=0.01 andA=1. 24 aa 64 84
The QD has 20 statgsnarked frome ;4 to €g) with Ae=0.5, and bias V(arb. units)

€0=0.25 at biasv=0. . .
FIG. 9. The current vs the biasV for strongly asymmetric

barriers. Only a single state of the QD is considered, veigk

heiah f th di | hiah h —1.4 at biasV=0. The solid and dotted curves correspond to
eig FS of the corresponding plateaus are nig _er than thleR/l“L=0.1 and 0.02, respectively, with, =0.1, andA=1.
ones in a N-QD-N system. The dotted curve in Fig. 7 shows

the currentl versus the biag/ for a N-QD-N system for
comparison, and the curve ofversusV is a series of ap- probability on the energy,T*(w). This means that the
proximately equal interval plateaus. N-QD-S system is quite different from the one-barrier sys-
Next, we consider the case in which the levels of the QDtem such as the N-S or S-S quantum point contact, in which
vary with the biasV. In the case of symmetric barriers, we T"(w) is always very small if the barrier is high. For the
set the energies of the states as: e)—V/2. The depen- N-QD-S system with multiple levels, the-vy curve has
dence of current with the gate voltage,, is given in Fig. 8, ~more complicated resonance patterns, with different kinds of
where one can see extra peaks superimposed on the convégaks, depending on the bids the level spacing of the QD,
tional plateaus of thé-V curve. No plateau appears until and the energy gap of the superconducting electrode. From
V>A; then plateaus emerge with approximate equal interthe study ofl-V curves we found some extra peaks super-
val. Notice that even foV<A the extra peaks with equal imposed on the conventional current plateaus, originating
interval due to the Andreev reflections can still emerge. Thigrom Andreev reflections. In the case with highly asymmetric
is because for a certain bi&s which satisfies the conditions barriers, thel-V curve can directly reflect the BCS spectral
of the resonant Andreev reflection, the currérincreases densitypr of the superconducting electrode, providing an
drastically and a peak emerges. When the Mias increased aIterr_1at|v§a way to determine the BCS density of states of the
slightly, the condition of the resonant Andreev reflection isquasiparticles of the superconductors.
violated, and hence the currehtrops rapidly. The differ- It is worth mentioning that in this paper we have ne-
ence Of the relative he|ghts Of the peaks Shown in F|g 8 iglected the intradot Coulomb interaction. If the Coulomb in-
determined by the different number of states participating iferactionU is included, we would expect that each kind of
the resonant Andreev reflections. peak in thel-v 4 curve and the corresponding extra peaks in
Finally, we study the-V characteristics for the case with the I-V curve will still emerge, with the same peak width.
strongly asymmetric barrief&ig. 9. Now the BCS spectral But the interval of the peaks will be widened, frof to
density,p3(w), is directly manifested in the-V curve. This A€+U. In addition, some substructure of the peak may
result is similar to the one obtained experimentally by Ralph€merge. The effects of the intradot Coulomb interaction on
Black, and Tinkham? and the theoretical result by Yeyati the resonant Andreev reflection will be investigated else-
et al,2° both of which are for a QD coupled to two super- Where.
conducting leads, i.e., a S-QD-S system. Different from the
system studied in Refs. 19 and 20, the system studied in this
work has only one superconducting electrode. We gratefully acknowledge the financial support by a
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