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Spatial structure of boson peak vibrations in glasses
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Low-frequency Raman scattering in glasses in the region of the boson peak is described in terms of the
vibration spatial correlation functions. It is shown that the frequency dependence of the light to vibration
coupling coefficientC(v) is determined by the vibration correlation lengthl v and the spatial dimensionality of
the vibration eigenmodes. The linear lawC(v)}v for the boson peak which is found experimentally in many
glasses corresponds in the model to 1D spatial geometry of vibration eigenmodes. The estimated amplitude of
the boson peak in the Raman scattering is in good agreement with the experimental data in vitreous silica.
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Vibrational excitations in disordered solids have been
tensively investigated in past years. Long wavelength vib
tions can be well described as delocalized excitations wh
correspond to the sound waves and have Debye densi
states. At higher frequencies, 0.5–3 THz, the density of
brational states in glasses, when normalized to the De
one, has a bump, the so-called boson peak~see, e.g., Refs
1–3! which also survives in the supercooled liquid state a
in some cases, like in boron oxide, even above the mel
point.4 The nature of the excess excitations which fo
the boson peak is still unclear. The characteristic len
of these vibrations is of the order of a few nanometers;
is a mesoscopic region between the short and long ra
order. There are attempts to describe the excess vibra
within phenomenological models like the soft-potent
model,5 fractal model,6 and models that ascribe the bos
peak to vibrations localized on the structure heterogene
of a nanometer scale7 or due to homogeneous structu
correlations.8 Recently, stringlike clusters of cooperative
moving particles were found in a model glass forming liqu
this result was obtained by a molecular dynamics simula
of a Lennard-Jones mixture.9 The typical length of strings is
of the order of nanometer. A question arises: can th
stringlike fast motions have any relation to the boson pe
In the present paper we will show that a simple interpretat
of the experimental data on the low-frequency Raman s
tering in the region of the boson peak in glasses implies
one-dimensional spatial structure of the boson peak vib
tions and thus indirectly supports a connection betw
stringlike objects of Ref. 9 and the boson peak. To check
model, the estimated intensity of the Raman scattering at
boson peak maximum is compared with the integrated in
sity of the Brillouin line; it is shown that their relative inten
sity is in reasonable agreement with the known experime
data in vitreous silica.

The inelastic light scattering intensity is determined
the Fourier transform of the correlation function of the d
electric susceptibility fluctuationsdxab(r ,t),10

I ~q,v!5AE dtdr1dr2eivt2 iq~r12r2!^dx1~r1 ,t !dx~r2,0!&

~1!
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~A is a constant that depends on the experimental setup;
sor indices are omitted for simplicity since we are not int
ested here by the polarization dependence of the scatter!.
Variation of the dielectric susceptibility by the acoustic
phonons is proportional to the strain tensor,

dxab}Pabgd~]ug /]r d1]ud /]r g!, ~2!

where Pabgd is the tensor of elasto-optic constants a
ua(r ,t) are the atomic displacements. Since the boson p
vibrations lie in the acoustical region and have a charac
istic lengthl *1 nm we assume that they have the same li
to vibration coupling constants as in the case of the acou
cal vibrations. As a result, the following expression for t
Raman intensity holds:11,12

I ~q,v!5AP2E dreiqr^¹uv
1~r !¹uv~0!&g~v!. ~3!

In Eq. ~3! g(v) is the vibrational density of states anduv(r )
is the amplitude of a vibration with a frequencyv. The
brackets mean the spatial and statistical averaging. It is c
venient to introduce a normalized correlation functionFv(r )
defined by the equation

^¹uv~r !¹uv~0!&5Fv~r !^u¹uv~0!u2&. ~4!

Fv(r ) satisfies the normalization conditionFv(r )'1 at r
→a, wherea is the average interatomic distance. From E
~3! and~4! it is clear that the spatial Fourier transform of th
correlation function,Fv(q)5*dreiqrFv(r ), determines the
Raman scattering intensity:

I ~q,v!5AP2Fv~q!^u¹uv~0!u2&g~v!. ~5!

For example, a reasonable choice ofFv(r ) is an exponential
correlation function that may have a power-law prefact
Fv(r )5(a/r )a exp(2r/lv). Here l v is a correlation length
which for the boson peak vibrations presumably is of t
medium range order. Such correlation function has two f
tors. The first one describes the exponential decrease du
localization and the second one is a power law prefac
which reflects a specific geometry~e.g., fractal! of the vibra-
tion eigenmodes. This prefactor corresponds to decreasin
the vibrational correlations in 3D space inside the locali
38 ©1999 The American Physical Society
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tion region of the vibration~i.e., atr , l v!; it can appear, for
example, if the effective dimension of the vibration is le
than 3.

For the purpose of the present paper we do not nee
know the exact form of the spatial correlation function
vibrationsFv(r ). All we need is to suppose that at distanc
higher than some characteristic lengthl v the correlation
function decays faster than a power law. Thus we w
Fv(r ) in a general form

Fv~r !5~a/r !a f ~r / l v!, ~6!

where the functionf (r / l v) describes the particular law of th
spatial decay of the vibrational correlations due to disord

The typical value of the momentum transfer in light sc
tering experiments isq;1022 nm21; with the characteristic
length l v of the boson peak vibrations of the order of
nanometer one hasqlv!1. As a result, in the first approxi
mation one can neglect theq dependence in Eq.~5!. Using
Eq. ~6! it is easy to find that the Fourier transform ofFv(r )
at q50 is equal to

Fv~q50!54pbaal v
32a1O~q2l v

2 !, ~7!

where the constantb is of the order of 1; it is determined b
a particular form of the functionf ,

b5E
0

`

x22a f ~x!dx. ~8!

To find the Raman intensity~5! we use Eq.~7!, a rough
estimate¹uv;uv / l v , and we take into account that th
mean energy of an oscillator in the classical limit is equa
T, so

^uuv~0!u2&'T/rv2, ~9!

wherer is the mass density. This gives for the Raman int
sity the following result:

I ~v!5
4pAP2baal v

12ag~v!T

rv2 . ~10!

The light-to-vibration coupling constantC(v) is defined by
Shucker and Gammon13 for the Stokes Raman scattering
glasses as

I ~v!5C~v!g~v!„n~v!11…/v'C~v!g~v!T/v2

~11!

wheren(v) is the Bose factor that at room temperature c
be approximated byT/v. Comparing Eqs.~10! and~11! one
has

C~v!5~4pAP2baal v
12a/r!} l v

12a . ~12!

This equation gives the frequency dependence of the c
pling coefficient. It is commonly believed that in glasses
the frequencies of the boson peak and higher ones the v
tions fulfill the Ioffe-Regel criterion,14 i.e., they have only
one characteristic length that determines both the vibra
lengthl and the correlation lengthl v , ~Refs. 15–17!

l; l v}v/v. ~13!

According to Eq.~12! it means that in this frequency rang
to
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C~v!}va21. ~14!

The frequency dependence ofC(v) in the region of the bo-
son peak in glasses is known from the comparison of
Raman spectra with the neutron ones18–20 and with specific
heat data.21 It was found that typically

C~v!}v. ~15!

This corresponds toa52 in the correlation function~6!.
Thus, if vibrations are on the Ioffe-Regel limit then accor
ing to Eq.~6! the correlation function decreases asr 22 inside
the localization region, e.g., as the surface of a sphere
surrounds the localization region.

Such type of the spatial correlation decay is demonstra
by the vibrations of one-dimensional~1D! objects embedded
in three-dimensional space. Indeed, if the vibrations have
spatial structure then the correlation functionFv(r ) at a dis-
tancer is proportional to the probability that a 1D line inte
sects the surface of a sphere of the radiusr in some fixed
vicinity S0 of this point. This probability is equal toS0/4pr 2

and corresponds toa52 in the correlation function~6!. S0
has the sense of the cross section of the 1D objects. Le
note that the similar relation describes the correlations in
fractal structures,6,22

F~r !}r df23 exp~2r /j!, ~16!

wheredf is the fractal dimension that characterizes the int
nal geometry of the object andj is the correlation length.
Preexponential factorr 22 corresponds todf51. Within the
frames of the present model it means that vibrations con
tuting the boson peak in Raman spectra are effectively
dimensional. There are also other arguments in favor of
conclusion.23,24

Recently, stringlike cooperative motions have been fou
in a model glass-forming liquid.9 A molecular dynamics
simulation revealed stringlike motions with a typical size
these 1D objects of some nanometers; the total fraction
the particles contributing to these motions is 5–6%. T
well corresponds to the known properties of the boson p
vibrations: their characteristic length is of the order of so
nanometers and the fractional integrated density of state
;10% in a strong glass-former–vitreous silica. Since
system investigated in Ref. 9 is a fragile glass former,
boson peak vibrations should have a smaller fraction of
total density of states than in silica,25 so 5–6% is a reason
able value for such a fragile glass former.

The result of the present model for the intensity of t
boson peak in Raman scattering can be checked by a c
parison of the predicted intensity, Eq.~10!, with that of the
Brillouin lines. Experimentally this ratio was measured
silica glass, Refs. 12 and 26. The expressions for Brillo
scattering are well known~see, e.g., Refs. 27 and 28!. In 90°
geometry of experiment the intensity of depolarized Br
louin light scatteringI VH

Br (v) is the following:

I VH
Br ~v!5A

pvP44
2
„n~v!11…

rv t
2 d~v2v t!, ~17!

where P44 is the respective component of the tensor
elasto-optic constants,v t is the transversal sound velocity,v t
is the frequency of the transversal Brillouin line, andA is the
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same constant as for the Raman scattering in Eq.~10!. The
expression~10! now has to be generalized in order to ta
into account the polarization indices. Neglecting the fluct
tions of the elasto-optic constants, it is easy to show12 that in
the same 90° geometry of the experiment the intensity
depolarized Raman scatteringI VH(v) is determined by the
equation

I VH~v!54pAP44
2 E d3r ^¹uv~r !¹uv~0!&. ~18!

To obtain this equation it was supposed that in a rough
proximation all terms of the tensor¹ iuk(r ,t) have in average
the same amplitude independently of the directionsi and k
and different components of¹ iuk do not correlate. Using the
estimation~10! of the similar expression~3! one obtains

I VH~v!58p2AP44
2 ba2l v

21g~v!
n~v!11

rv
. ~19!

Let us denote byx(v) the ratio of the depolarized Rama
intensity within one instrumental widthg to the integrated
intensity of the depolarized Brillouin line,

x~v!5
I VH~v!g

* I VH
Br ~v!dv

. ~20!

From Eqs.~17!, ~19!, and ~20! one can find forx(v) the
following expression:

x~v!58pba2l v
21v t

2gg~v!/v2. ~21!

For what follows, it is convenient to characterize the dens
of the vibrational statesg(v) in the region of the boson pea
by its ratios(v) to the Debye density of statesgD(v):

g~v!5s~v!gD~v!, ~22!

where

gD~v!53v2/2p2v3, ~23!

andv is the averaged sound velocity defined by the equa
3/v351/v l

312/v t
3 . As a result one has

x~v!5
12

p

a

l v

v t
2

v2

g

v/a
bs~v!. ~24!

In Ref. 26 it was found experimentally that the depolariz
Raman intensity in vitreous silica atv56 cm21 ~within one
instrumental width of 1.9 cm21! is equal to (4.361)31023
i

,

-

f

p-

y

n

d

times the integrated intensity of one depolarized Brillou
line atT5295 K. From the spectra presented in Ref. 26 it
easy to see that at the maximum of the boson peakv0
555 cm21) the depolarized Raman intensity is higher by
factor of 2.8 than atv56 cm21, sox(v0)51.231022. The
experimental data on the low-energy vibrational density
states in vitreous silica is given in Ref. 2. From Fig. 1 of th
paper one can find that the ratio of the actual density
vibrational states to the Debye one,s(v555 cm21), is equal
to ;4.3. With these values ofx, s(v0), andv t53.9 km/s,
v l55.9 km/s,26 g51.9 cm21,26 a51.6 Å, from Eq. ~24!
one can obtain

l v0
/a;3b. ~25!

Normally, the parameterb, defined by Eq.~8!, is of the order
of unity. For example, for an exponential spatial decay of
vibration correlation function,f (r / l v)5exp(2r/lv), accord-
ing to Eq.~8! with a52 one hasb51. Thus, by the order of
magnitude Eq.~25! predicts a reasonable value of the vibr
tion correlation length near the maximum of the boson pe
This is another argument in favor of the presented mode

In conclusion, it is shown that the spectrum of the Ram
scattering in glasses in the frequency range of the boson p
depends on the internal spatial geometry of the vibrat
eigenfunctions. A model is proposed that connects the li
to vibration coupling coefficientC(v) with the vibration
correlation function. It is found that the latter has differe
dependence on the vibration correlation lengthl v for differ-
ent spatial dimensionalities of the vibration eigenmodes. T
frequency dependence ofC(v) was determined as a functio
of the dimensionality at the frequencies equal to or hig
than that of the boson peak maximum using the assump
that the Ioffe-Regel criterion of localization is fulfilled in thi
spectral range. It is shown that within the frames of t
model the linear frequency dependence ofC(v) corresponds
to the one-dimensional vibrational eigenmodes. A poss
connection of the boson peak with the nanoscale string
fast motions in a supercooled liquid found recently in a co
puter simulation9 is discussed. Taking the vibration correl
tion function as that for 1D vibrations embedded in 3D spa
an estimation of the boson peak intensity in the depolari
Raman scattering is obtained. The ratio of this intensity
the integral intensity of the transversal Brillouin line is
reasonable agreement with the experimental data.
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1J. Jäckle, in Amorphous Solids: Low-Temperature Properties, ed-
ited W. A. Phillips ~Springer, New York, 1981!.

2U. Buchenau, M. Prager, N. Nu¨cker, A. J. Dianoux, N. Ahmad
and W. A. Phillips, Phys. Rev. B34, 5665~1986!.

3V. K. Malinovsky, V. N. Novikov, P. P. Parshin, A. P. Sokolov
and M. G. Zemlyanov, Europhys. Lett.11, 43 ~1991!.

4A. Brodin, D. Engberg, L. M. Torell, L. Bo¨rjesson, and A. P.
Sokolov, Phys. Rev. B53, 11 511~1996!.

5U. Buchenau, Yu. M. Galperin, V. L. Gurevich, and H. R
Schober, Phys. Rev. B43, 5039~1991!; Yu. M. Galperin, V. G.
an

,

.

Karpov, and V. I. Kozub, Adv. Phys.38, 770 ~1989!.
6T. Nakayama, K. Yakubo, and R. L. Orbach, Rev. Mod. Phys.66,

381 ~1994!.
7E. Duval, A. Boukenter, and T. Achibat, J. Phys.: Condens. Mat-

ter 2, 10 227 ~1990!; V. K. Malinovsky, and V. N. Novikov,
Phys. Solid State36, 1221~1994!.

8A. J. Martin and W. Brenig, Phys. Status Solidi B64, 163~1974!;
S. R. Elliott, Europhys. Lett.19, 201~1990!; V. K. Malinovsky,
V. N. Novikov, and A. P. Sokolov, J. Non-Cryst. Solids90, 485
~1987!.

9C. Donatti, J. F. Douglas, W. Kob, S. J. Plimpton, P. H. Poole,
and S. C. Glotzer, Phys. Rev. Lett.80, 2338~1998!.



.

e

A.

m.

v.

.

hi-

s.

PRB 59 41BRIEF REPORTS
10B. Berne and R. Pecora,Dynamic Light Scattering~Wiley, New
York, 1976!.

11E. Duval, V. N. Novikov, and A. Boukenter, Phys. Rev. B48,
16 785~1993!.

12V. N. Novikov, E. Duval, A. Kisliuk, and A. P. Sokolov, J. Chem
Phys.102, 4691~1995!.

13R. Shucker and R. W. Gammon, Phys. Rev. Lett.25, 222~1970!.
14A. F. Ioffe and A. R. Regel, Prog. Semicond.4, 237 ~1960!.
15M. Foret, E. Courtens, R. Vacher, and J.-B. Suck, Phys. R

Lett. 77, 3831~1996!.
16T. Achibat, A. Boukenter, and E. Duval, J. Chem. Phys.99, 2046

~1993!.
17V. K. Malinovsky and A. P. Sokolov, Solid State Commun.57,

757 ~1986!.
18J. S. Lannin, Phys. Rev. B15, 3863~1977!.
19A. P. Sokolov, U. Buchenau, W. Steffen, B. Frick, and
v.

Wischnewski, Phys. Rev. B52, R9815~1995!.
20E. Duval, N. Garcia, A. Boukenter, and J. Serughetti, J. Che

Phys.99, 2040~1993!.
21A. P. Sokolov, A. Kisliuk, D. Quitman, and E. Duval, Phys. Re

B 48, 7692~1993!.
22E. Courtens and R. Vacher, Proc. R. Soc. London, Ser. A423, 55

~1989!.
23V. N. Novikov, JETP Lett.51, 77 ~1990!.
24V. G. Karpov, Phys. Rev. B48, 4325~1993!.
25A. P. Sokolov, E. Ro¨ssler, A. Kisliuk, and D. Quitmann, Phys

Rev. Lett.71, 2062~1993!.
26G. Winterling, Phys. Rev. B12, 2432~1975!.
27V. Mazzacurati, M. Nardona, G. Ruocco, and G. Signorelli, P

los. Mag. B59, 3 ~1989!.
28N. J. Tao, G. Li, X. Chen, W. M. Du, and H. Z. Cummins, Phy

Rev. A 44, 6665~1991!.


