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Quantum-classical escape-rate transition of a biaxial spin system with a longitudinal field:
A perturbative approach
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The quantum-classical transition of the escape rate of the spin modelH52DSz
22HzSz1BSx

2 is investi-
gated by a perturbative approach with respect toB @D. A. Garanin, J. Phys A24, L61 ~1991!#. The transition
is first order forB,Bc(Hz), the boundary line going to zero asBc /D;12Hz /(2SD) in the strongly biased
limit. The range of the first-order transition is thus larger than for the modelH52DSz

22HzSz2HxSx studied
earlier, where in the strongly biased caseHxc /(2SD);@12Hz /(2SD)#3/2. The temperature of the quantum-
classical transition,T0 , behaves linearly in the strongly biased case for both models:T0;2SD2Hz .
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Recently we have shown1,2 that the order of the quantum
classical escape-rate transition3 in the spin system describe
by the HamiltonianH52DSz

22HxSx is controlled by the
transverse fieldHx . According to Ref. 2, for the reduce
field hx[Hx /(2SD) in the interval 1/4<hx,1 the transition
is second order, which is a common situation~for hx.1 the
barrier between the two wells disappears!. In contrast, for
0,hx,1/4 there is a first-order transition of the escape r
G(T) characterized by the discontinuity ofdG/dT at the
transition temperatureT0 in the large-spin limit. Subsequen
calculations4 rendered the whole phase diagram for t
model with an arbitrarily directed field,H52DSz

22HzSz

2HxSx , where the first-order transition occurs forhx below
the linehxc(hz), wherehz[Hz /(2SD). This line starts from
the value 1/4 athz50 and approaches zero ashxc;(1
2hz)

3/2 in the strongly-biased limit. This limit can be re
evant for observation of the crossover between first-
second-order transitions on single-domain magnetic p
ticles, where the barrier should be lowered by applying
field to make escape rates measurable. On the other han
molecular magnets, such as Mn12 (S510, D50.6 K), ex-
periments can be done even in the unbiased case,Hz50.

The mechanism leading to an exotic first-order esca
rate transition in spin systems is the following. In the abse
of the transverse field the eigenstates of the system are t
of the operatorSz , and there is no tunneling between th
wells. This implies that the barrier of the effective potent
of the spin system, which can be obtained by a mapping o
a particle problem,5,2 becomes infinitely thick in the limit
Hx→0, preserving, however, its heightDU ~see Fig. 1 of
Ref. 4!. That is, the barrier has a very flat top and it r
sembles a rectangular barrier. Tunneling just below the
of such a barrier is very unprobable. The thermally assis
tunneling is thus suppressed, and the thermal activation c
petes directly with the ground-state tunneling, leading t
sharp escape-rate transition.

Mapping of a spin problem onto a particle one is, ho
ever, not a regular procedure, and its form strongly depe
PRB 590163-1829/99/59~5!/3671~4!/$15.00
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on the form of the spin Hamiltonian~see Ref. 5!. In many
cases, such as for the model withSz

4 , it is difficult to find a
particle mapping. On the other hand, one needs a sim
criterion for roughly estimating the order of the transition f
different spin systems. This criterion can be constructed
follows. The first-order transitions occur if a spin system
close to a uniaxial one,H5F(Sz). In this case the maximum
of the classical energy of the spin,U(S), corresponds to a
certain value of the polar angle,u5uc , and there is no
saddle point ofU(u,w). If nonuniaxial terms, such as th
transverse field, are added to the Hamiltonian, then a sa
point appears. This brings the spin system closer to the c
mon case, and if the saddle is strongly pronounced, one
expect a second-order transition. Thus, one can propose
following heuristic criterion for the boundary between firs
and second-order transitions:the depth of the saddle is of th
order of the height of the barrier, i.e., Umax2Usad;Usad
2Umin . For the model with the transverse field one h
DU[Usad2Umin5S2D(12hx)

2 and Umax2Usad54S2Dhx .
Equating these expressions one obtainshxc5322A2
'0.17, which has a proper order of magnitude. In the c
HzÞ0, the parameters of the barrier cannot be calcula
analytically, but estimations can be done. In particular, in
strongly biased case,d[12hz!1, for hx50 the top of the
barrier corresponds toũc[p2uc>A2d, andDU>S2Dd2.
For hxÞ0, one can useUmax2Usad;S2Dhxũc and the same
barrier height for estimations, which results in the corre
dependencehxc;d3/2 ~Ref. 4!.

In this communication we will study the quantum
classical escape-rate transition for the spin model with a
axial anisotropy, which is described by the Hamiltonian

H52DSz
22HzSz1BSx

2 . ~1!

This model has the easy axisz, hard axisx, and thus the
middle axisy. Applying the longitudinal field is the simples
way to reduce the barrier. Sometimes another form of
3671 ©1999 The American Physical Society
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biaxial spin model,H5K(Sz
21lSy

2)1•••, is used, which
for l,1 has the easy axisx, hard axisz, and the middle axis
y. These two forms are related byD5lK and B5(1
2l)K. A realization of this spin model is the magnetic mo
ecule Fe8 (S510, D50.31 K, B50.092 K, Refs. 6 and
7!.

In the unbiased case,Hz50, using the criterionUmax

2Usad5Usad2Umin readily yields bc51 for the critical
value of the reduced quantityb[B/D corresponding to the
boundary between the first- and second-order transitions.
casionally, this coincides with the exact value ofbc which
has been obtained recently in Ref. 8 by the periodic instan
method (lc51/2). In the biased case, for the reduced ene

Ũ[U/(S2D) one finds Ũmin52112hz, Ũsad5hz
2 , and

Ũmax5b1hz
2/(11b). Our criterion yields bc5(12hz)

3(A11hz
22hz), i.e.,bc decreases linearly withd[12hz in

the strongly biased case. Thus, in this case the region w
a first-order transition can be expected, is wider for the bi
ial model than for the model with a transverse field (hxc

;d3/2).
Now we proceed to an actual calculation of the bound

line bc(hz) for the model above. In principle, this could b
done by a kind of instanton or other quasiclassical meth
However, the problem of obtaining relevant instantons~or
even the action without computing instantons explicitly! in
the whole field range appears to be mathematically diffic
Thus we choose to solve the problem with the help of
high-order perturbation theory with respect tob[B/D in Eq.
~1!. The latter was applied to calculate the splittings of t
ground and excited states for the unbiased model in Ref.
was shown that the instanton results of Ref. 10 for
ground-state splitting are recovered in the limitb!1, and
that the Kramers degeneracy for half-integer values ofS ap-
pears in a natural way. For the model with a transverse fi
this method was used in Ref. 11 to calculate ground-s
splitting in rare-earth compounds. It has been generalized
excited states in Ref. 9. Similar results have been obtaine
Ref. 12 for the model of two coupled nonlinear oscillato
~quantum dimer!, which can be considered as a Schwing
boson equivalent of the spin model with a transverse fie

The perturbative method was first to show the first- a
second-order transitions in the spin model with a transve
field in Ref. 1. The perturbatively determined valuehxc
50.145 was, however, wrong by a numerical factor in co
parison to the exact valuehxc51/4 obtained subsequently b
a quasiclassical method.2 The reason for this inaccuracy
that the order of the escape-rate transition is controlled by
situation near the top of the barrier, just where the pertur
tion theory breaks down. A plausible way to improve t
accuracy of the perturbative results is to rescale them
fitting to the exact quasiclassical results athz50. Then one
can expect improving the results in the whole range 0,hz
,1, where, for the biaxial model, exact quasiclassical cal
lations have not yet been performed. At first we will test th
method on the model with a transverse field, for which
quasiclassical boundary linehxc(hz) is known from Ref. 4.
We will see that, surprisingly, a simple rescaling of the p
turbative results yields the accurate quasiclassical ones in
whole range 0,hz,1.
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Within the perturbative method, the quantum-classi
transitions correspond to different types of behavior of
function1

f ~m!5~D«mm8!
2exp~2«m /T!, ~2!

where«m52Dm22Hzm are unperturbed energy levels o
the spin system andD«mm8 is the splitting of the pair of
in-resonance levels«m and«m8 belonging to different poten-
tial wells. This resonance condition is fulfilled for the valu
of the bias fieldHz5Hzk5kD, where k50,61,62, . . . ;
then one hasm852m2k. The function f (m) is the
quantum-mechanical tunneling probabilityGmm8}(D«mm8)

2

weighed with the Boltzmann exponent exp(2«m/T) charac-
terizing the probability of thermal activation to the levelm.
The task is to find the escape levelmesc, i.e., the value ofm
which maximizesf. The maximum off is searched at the
interval 2S<m<mb , where m52S corresponds to the
bottom of the well andm5mb corresponds to the top of th
barrier which is determined from the condition that the lev
splitting D«mm8 reaches the value of the level separati
«m2«m21 ~see, e.g., Ref. 1!. For temperatures above th
transition temperatureT0 , the result will be mesc5mb ,
which corresponds to thermal activation over the barrier.
T,T0 , one obtainsmesc(T),mb , which means thermally
assisted tunneling~or ground-state tunneling formesc52S).
If the dependencemesc(T) is smooth, the spin system unde
goes a second-order escape-rate transition. If there is a j
of mesc(T) at some temperature, there is a first-order tran
tion.

For the model with an arbitrarily directed field and with
out transverse anisotropy the level splittings are given by
formula

D«mm85
2D

@~m82m21!! #2

3A~S1m8!! ~S2m!!

~S2m8!! ~S1m!!
S Hx

2D D m82m

, ~3!

which is a generalization of the zero-bias result of Ref
~see, e.g., Ref. 1!. Numerical maximization of the function

FIG. 1. The level making the dominant contribution into th
escape ratemesc vs temperature for the unbiased transversed fi
model.
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f (m) of Eq. 2 leads to the results formesc(T) shown in Fig.
1. One can see that the transition is second order forhx
.0.145 and first order forhx,0.145. The results in Fig. 1
suggest that in some range ofhx ~as, e.g., forhx50.13) there
are two transition temperatures: With lowering temperatu
mescat first deviates frommb ~a second-order transition! and
then jumps downwards~a first-order transition!. In fact, this
feature is an artifact of the perturbative approach to tunn
ing, which breaks down near the top of the barrier.~For this
reason also the crossover fieldhxc50.145 substantially devi-
ates from the exact valuehxc50.25 obtained in Ref. 2.! In
the following we will associate the crossover from first-
second-order transitions with the transverse field at wh
the jump in the dependencemesc(T) appears.

The values of the crossover fieldhxc for different longi-
tudinal fieldshz , which have been obtained by the perturb
tive method described above, are shown by the solid sym
in Fig. 2. These data can be corrected by multiplying by
factor 0.25/0.14551.274 to fit to the exact quasiclassic
value hxc50.25 in the unbiased case. Surprisingly, this
scaling leads to the results which completely coincide in
whole range of the bias field with the results obtained in R
4 by the quasiclassical method based on the particle m
ping.

FIG. 3. Quantum-classical transition temperatureT0 at the
boundary between first- and second-order transitions for the m
H52DSz

22HzSz2HxSx .

FIG. 2. Boundary between the first- and the second-order t
sitions for the modelH52DSz

22HzSz2HxSx .
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The results for the transition temperatureT0 at the bound-
ary between first- and second-order escape-rate transitio
the whole range of the bias field is shown in Fig. 3. Aga
the perturbative results can be corrected by multiplying
0.1378/0.119851.150 to fit to the exact value in the unb
ased case:T0(hxc)5@A3/(4p)#SD50.1378SD ~Ref. 2!.
This makes them accurate in the whole range ofhz , as
shows the comparison with the exact asymptoteT0(hxc)
>0.1642(12hz)SD ~Ref. 4! in the strongly biased limit.

Having tested the perturbative method with rescaling
the model with an arbitrarily directed field, let us now pr
ceed to the biaxial model of Eq.~1!, where a quasiclassica
solution is still lacking in the biased case,HzÞ0. For this
model the formula for the level splittings reads

D«mm85
8D

$@~m82m!/221#! %2

3A~S1m8!! ~S2m!!

~S2m8!! ~S1m!!
S B

16D D ~m82m!/2

, ~4!

which is a generalization of the zero-bias result of Ref.
This formula is only applicable ifm82m is even, otherwise

el

FIG. 4. Boundary between the first- and the second-order t
sitions for the modelH52DSz

22HzSz1BSx
2 .

FIG. 5. Quantum-classical transition temperatureT0 at the
boundary between first- and second-order transitions for the m
H52DSz

22HzSz1BSx
2 .
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the perturbative method yieldsD«mm850, i.e., the Kramers
degeneracy. Hence, forS integer and the resonant values
the bias fieldHz5Hzk5kD, the level pairs are splitted fo
k50,62,64, . . . , but remain degenerate fork561,
63, . . . . ForShalf integer, the situation is reversed. Belo
we will only consider the resonant values ofHz for which
there is no Kramers degeneracy.

The dependencesmesc(T) for the biaxial model are simi-
lar to those for the model with an arbitrarily directed fiel
and they are assessed in the same way. The results fo
bondary between first- and second-order transitions,Bc , are
shown in Fig. 4. For rescaling of these results we have u
the exact valueBc /D51 atHz50 ~Ref. 8!. One can see tha
Bc}12hz in the strongly biased case, as was conjectu
above. The transition temperatureT0 at the boundary be
tween first- and second-order transitions in the whole ra
of the bias field is shown in Fig. 5. Here we have used for
rescaling of the results the exact valueT0(Bc)5(1/p)SD
50.3183SD at Hz50, which can be extracted from Ref. 8

In comparison to the previously considered model with
arbitrarily directed field, here the crossover between fi
and second-order transitions occurs at higher values of
control parameterB, thus the range of the first-order trans
tions is extended. On the other hand, for this reason usin
perturbation theory inB/D is less justified, and one can ex
tt
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pect some deviations of the rescaled perturbative results fr
the exact quasiclassical ones forHzÞ0. Thus obtaining of
the latter is an actual problem.

For single-domain magnetic particles with small tran
verse anisotropyB, i.e., for nearly uniaxial ones, the cross
over from first- to second-order escape-rate transitio
should be searched for in the strongly biased case,d[1
2hz!1, where the barrier is reduced. Here our result for t
transition temperature at the boundary between first- a
second-order transitions isT0(Bc)'0.39SDd ~see Fig. 5!.
On the other hand, the unperturbed barrier height is given
DU5S2Dd2. Eliminating d from the above formulas, one
can relateT0 andDU as follows:T0'(0.39)2DDU/T0 . The
ratio DU/T0 is fixed by the requirement that the escape ra
be not too high and not too low. Adopting a typical valu
DU/T0540, as was done in Ref. 4 for the model with a
arbitrarily directed field, one arrives at the estimatio
T0(Bc)'6.3D, which is substantially higher than that o
Ref. 4,T0(hxc)'D.
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