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Quantum-classical escape-rate transition of a biaxial spin system with a longitudinal field:
A perturbative approach
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The quantum-classical transition of the escape rate of the spin ritodet DSf—HZSZJr B§ is investi-
gated by a perturbative approach with resped {®. A. Garanin, J. Phys &4, L61 (1991)]. The transition
is first order forB<B.(H,), the boundary line going to zero & /D~1—H,/(2SD) in the strongly biased
limit. The range of the first-order transition is thus larger than for the mptet DSf— H,S,—H,S, studied
earlier, where in the strongly biased casg./(2SD)~[1—H,/(2SD)]¥2 The temperature of the quantum-
classical transitionT, behaves linearly in the strongly biased case for both modgts:2SD—H,.
[S0163-182699)02205-5

Recently we have shown that the order of the quantum- on the form of the spin Hamiltoniafsee Ref. & In many
classical escape-rate transitfan the spin system described cases, such as for the model wﬁ;ﬁ, it is difficult to find a
by the HamiltonianH=—DS:—H,S, is controlled by the particle mapping. On the other hand, one needs a simple
transverse fielH, . According to Ref. 2, for the reduced criterion for roughly estimating the order of the transition for
field h,=H,/(2SD) in the interval 1/4<h,<1 the transition  different spin systems. This criterion can be constructed as
is second order, which is a common situatifer h,>1 the  follows. The first-order transitions occur if a spin system is
barrier between the two wells disappearh contrast, for  ¢|gse to a uniaxial oné{=F(S,). In this case the maximum
0<h,<1/4 there is a first-order transition of the escape ratgy the classical energy of the spib(S), corresponds to a
I'(T) characterized by the discontinuity ofl'/dT at the  grtain value of the polar anglé)= 6., and there is no
transitio.n temperaturg, in the large-spin Iimi.t. Subsequent ggqdle point ofU(8,¢). If nonuniaxial terms, such as the
calculatlo_nﬁ rendered the whole phase d|agr§1m for thetransverse field, are added to the Hamiltonian, then a saddle
model with an arbitrarily directed fieldit=—-DS;—H,S,  point appears. This brings the spin system closer to the com-
—H,S,, where the first-order transition occurs foy below  mon case, and if the saddle is strongly pronounced, one can
the lineh,(h,), whereh,=H,/(2SD). This line starts from  expect a second-order transition. Thus, one can propose the
the value 1/4 ath,=0 and approaches zero @g.~(1  following heuristic criterion for the boundary between first-
—h,)¥2 in the strongly-biased limit. This limit can be rel- and second-order transitiortse depth of the saddle is of the
evant for observation of the crossover between first- an@rder of the height of the barrieri.e., U ma— Usaq™ Usad
second-order transitions on single-domain magnetic par=-y_ . . For the model with the transverse field one has
ticles, where the barrier should be lowered by applying theAUEUsad—Umm=52D(1—hx)2 and U Usai=4S°Dhy, .
field to make escape rates measurable. On the other hand, fefuating these expressions one obtaihg.=3— 22
molecular magnets, such as Mn(S=10, D=0.6 K), ex-  ~0.17, which has a proper order of magnitude. In the case
periments can pe done even in the unp|as.ed dase0. H,#0, the parameters of the barrier cannot be calculated

The mechanism leading to an exotic first-order escapeanalytically, but estimations can be done. In particular, in the
rate transition in spin systems is the following. In the absensgtrong|y biased cas#=1—h,<1, for h,=0 the top of the
of the transverse field the eigenstates of the system are thOB%rrier corresponds {8.=m— 0.=25, andAU=S2D 52
of the operatorS,, and there is no tunneling between the N ¢ ey~ '
wells. This implies that the barrier of the effective potential FOT N7 0, one can use) ya,—Usar~ S'Dh, 6, and the same
of the spin system, which can be obtained by a mapping ontBarrier height for %stlmanns, which results in the correct
a particle probleni;? becomes infinitely thick in the limit dependencé,~ 6°° (Ref. 4. _
H,—0, preserving, however, its heightU (see Fig. 1 of In _thls commumcauonl\_/ve will study the qua_ntum—.
Ref. 4. That is, the barrier has a very flat top and it re- classical escape-rate transition for the spin model with a bi-

sembles a rectangular barrier. Tunneling just below the tog™ia! anisotropy, which is described by the Hamiltonian
of such a barrier is very unprobable. The thermally assisted

tunneling is thus suppressed, and the thermal activation com- H=— DS§— H,S,+ Bﬁ. (0]
petes directly with the ground-state tunneling, leading to a
sharp escape-rate transition. This model has the easy axis hard axisx, and thus the

Mapping of a spin problem onto a particle one is, how-middle axisy. Applying the longitudinal field is the simplest
ever, not a regular procedure, and its form strongly dependway to reduce the barrier. Sometimes another form of the
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biaxial spin modeI,H=K(S§+)\S§)+-~-, is used, which Within the perturbative method, the quantum-classical
for A<1 has the easy axis hard axisz, and the middle axis transitions correspond to different types of behavior of the

y. These two forms are related bp=AK and B=(1 functior?

—\)K. A realization of this spin model is the magnetic mol- F(m = (A N2ext( — /T 2

ecule Fg (S=10, D=0.31 K, B=0.092 K, Refs. 6 and (M) = (Aemm)"ex = em/T), @

7). wheree,,= —Dm?—H,m are unperturbed energy levels of
In the unbiased case{,=0, using the criterionU .,  the spin system andeny is the splitting of the pair of

~Uga=Usaq= Umin readily yields b,=1 for the critical in-resonance levels, ande, belonging to different poten-

value of the reduced quantity=B/D corresponding to the tial wells. This resonance condition is fulfilled for the values

boundary between the first- and second-order transitions. 0&f the bias f'eld!"z: Hz=kD, wherek=0,21,£2,...;

casionally, this coincides with the exact valuetpfwhich ~ then one hasm’=-m-—k. The function f(m) is the

. - . 2
has been obtained recently in Ref. 8 by the periodic instantoﬂ”?”;urg'meh‘:hﬁ”'Call tunneling probabﬂiﬁﬁ]m,o;(Asﬁ]m,)
method .= 1/2). In the biased case, for the reduced energ eighed with the Boltzmann exponent gxp{m T) charac-

erizing the probability of thermal activation to the levsl

BEU/(SZD) one finds Upin=—1+2N,, Usai=h7, and  The task is to find the escape level, i.e., the value ofn
Umax=b+h§/(1+b). Our criterion vyields b,=(1—h,) which maximizesf. The maximum off is searched at the
X(\1+hZ=h,), i.e. b decreases linearly with=1—h, in interval —Ss=m=m,, where m=-S corresponds to the
the strongly biased case. Thus, in this case the region wheRottom of the well andn=m, corresponds to the top of the
a first-order transition can be expected' is wider for the biaxbarrier which is determined from the condition that the level

ial model than for the model with a transverse fiell,{ splitting Ae,,y reaches the value of the level separation
~ 8%, em—em-1 (see, e.g., Ref.)1 For temperatures above the

Now we proceed to an actual calculation of the boundanyffansition temperaturely, the result will be mese=my,
line b.(h,) for the model above. In principle, this could be which corresponds to thermal activation over the barrier. For
Cc z . 1

done by a kind of instanton or other quasiclassical methodT<T0’ one obtainsmes{T)<m,, which means thermally

However, the problem of obtaining relevant instantdos ﬁst?::tgg t:r?gglr'lzg)r gf?uir;ds'f;iﬁ;um:gn?nfg"e&ce: m_usrz der
even the action without computing instantons expligiily P es{T) ’ Spin sy Co
goes a second-order escape-rate transition. If there is a jump

the whole field range appears to be mathematically d|ff|cult.Of m..(T) at some temperature, there is a first-order transi-

Thus we choose to solve the problem with the help of th%ion
high-order perturbation theory with respectte B/D in Eq. For the model with an arbitrarily directed field and with-

(1). The latter was applied to calculate the splittings of the,t yransverse anisotropy the level splittings are given by the
ground and excited states for the unbiased model in Ref. 9. Ky mula

was shown that the instanton results of Ref. 10 for the

ground-state splitting are recovered in the liroi1, and 2D
that the Kramers degeneracy for half-integer valueS ap- Ay P PEE—
pears in a natural way. For the model with a transverse field, [(m'—m-1)!]

this method was used in Ref. 11 to calculate ground-state - m—m

splitting in rare-earth compounds. It has been generalized for (S+m)!(S— m)!/i

excited states in Ref. 9. Similar results have been obtained in (S—m")!(S+m)! \ 2D

Ref. 12 for the model of two coupled nonlinear oscillators = o )

(quantum dimex, which can be considered as a Schwinger-Wh'Ch is a generahzaﬂon of the _zgro-blas result of R_ef. 9

boson equivalent of the spin model with a transverse field. (S€€, €.g., Ref.)1 Numerical maximization of the function
The perturbative method was first to show the first- and

second-order transitions in the spin model with a transverse 4 mesc/f9

.

field in Ref. 1. The perturbatively determined valbeg. i T

=0.145 was, however, wrong by a numerical factor in com- ] op —]
parison to the exact valug .= 1/4 obtained subsequently by S=100 ) N
a quasiclassical methddThe reason for this inaccuracy is 0640 0115013, 0.145. 0.16 i i
that the order of the escape-rate transition is controlled by the B Toojols
situation near the top of the barrier, just where the perturba- ] 0.145

tion theory breaks down. A plausible way to improve the :

accuracy of the perturbative results is to rescale them by 084 0.13 |
fitting to the exact quasiclassical resultshat=0. Then one Ol &0 & F

can expect improving the results in the whole rangehQ ] &S

<1, where, for the biaxial model, exact quasiclassical calcu- Bottom Pt

lations have not yet been performed. At first we will test this e =
method on the model with a transverse field, for which the 0.09 0.10 0.11 0.12 T/(SD)0'13

guasiclassical boundary ling(h,) is known from Ref. 4.

We will see that, surprisingly, a simple rescaling of the per-  FIG. 1. The level making the dominant contribution into the
turbative results yields the accurate quasiclassical ones in th&cape raten... vs temperature for the unbiased transversed field
whole range 6<h,<1. model.
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FIG. 2. Boundary between the first- and the second-order tran- FIG. 4. Boundary between the first- and the second-order tran-
sitions for the modeH=—DS?—H,S,— H,S,. sitions for the modeH=-DS?—H,S,+BS..
f(m) of Eq. 2 leads to the results fones{T) shown in Fig. The results for the transition temperatdigat the bound-

1. One can see that the transition is second orderhfor ary between first- and second-order escape-rate transitions in
>0.145 and first order foh,<0.145. The results in Fig. 1 the whole range of the bias field is shown in Fig. 3. Again,
suggest that in some rangefof (as, e.g., foh,=0.13) there  the perturbative results can be corrected by multiplying by
are two transition temperatures: With lowering temperatureq 1378/0.1198 1.150 to fit to the exact value in the unbi-
Megcat first deviates fronmy, (a second-order transitipand  55¢q caseTo(hyo) =[3/(47)]SD=0.1378SD (Ref. 2.

then jumps downwardga first-order transition In fact, this  This makes them accurate in the whole rangehgf as
feature is an artifact of the perturbative approach to tunnelgpows the comparison with the exact asymptdigh, )

ing, which breaks down near the top of the barr(ﬁor this. =0.1642(1-h,)SD (Ref. 4 in the strongly biased limit.
reason also the crossover figigb=0.145 substantially devi- Having tested the perturbative method with rescaling on
ates from the exact value,.=0.25 obtained in Ref. 2.In {he model with an arbitrarily directed field, let us now pro-

the following we will associate the crossover from first- t0 -ged to the biaxial model of Eql), where a quasiclassical
second-order transitions with the transverse field at whickg|tion is still lacking in the biased casd,0. For this

the jump in the dependenee,s(T) appears. ~ model the formula for the level splittings reads
The values of the crossover fiely. for different longi-
tudinal fieldsh,, which have been obtained by the perturba- 8D

tive method described above, are shown by the solid symbols  Agpy = - 5
in Fig. 2. These data can be corrected by multiplying by the {{(m"—m)/2—1]t}
factor 0.25/0.1451.274 to fit to the exact quasiclassical \/

(S+m)I(S—m)!( B \(M-m?2

value h,.=0.25 in the unbiased case. Surprisingly, this re-
(S—m’)!(S+m)!| 16D

scaling leads to the results which completely coincide in the
whole range of the bias field with the results obtained in Ref. = o .
vhich is a generalization of the zero-bias result of Ref. 9.

4 by the quasiclassical method based on the particle ma
y a P F%'vhis formula is only applicable ifn" —m is even, otherwise

C)

ping.
o Tl (SD) , , To(B)/(SD)
= = L 1 L 1 n 1 n 1
b §=100, raw
vy . . R o )
v quasiclassical asymptote | 0.3 A .. S= 1000, raw |
M . ‘7\;\ v S§=100, corrected
0.10- Y N 5 1 R 5 §=1000, corrected
. v w N
s ANEEEEEE 0.39(1—4,)
v 024 o , | ‘% i -
v
v w v v Y ®
v >~ v \\
0.054 v, - v %
v §=100, raw MR 0.1 v R -
& §=1000, raw 2 I * ., *
S =100, corrected "8 ] R
S = 1000, corrected b, '\i\ﬁ
000 T T ,' T T T T T T 00 T T 1 1 T ‘
0.0 0.2 04 0.6 08 4 10 0.0 0.2 0.4 0.6 08 4 10
zZ z
FIG. 3. Quantum-classical transition temperatirg at the FIG. 5. Quantum-classical transition temperatirg at the

boundary between first- and second-order transitions for the modédoundary between first- and second-order transitions for the model
H=-DS?—H,S,—H,S,. H=-DS?—H,S,+BS.
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the perturbative method yieldse,,,,y =0, i.e., the Kramers pect some deviations of the rescaled perturbative results from
degeneracy. Hence, f&integer and the resonant values of the exact quasiclassical ones fdr#0. Thus obtaining of
the bias fieldH,=H,,=kD, the level pairs are splitted for the latter is an actual problem.

k=0,22,+4,..., but remain degenerate fok==*1, For single-domain magnetic particles with small trans-
*=3,... . ForShalf integer, the situation is reversed. Below verse anisotropy, i.e., for nearly uniaxial ones, the cross-
we will only consider the resonant values 8%, for which  gver from first- to second-order escape-rate transitions
there is no Kramers degeneracy. should be searched for in the strongly biased casel
The dependencese{T) for the biaxial model are simi- _p <1 where the barrier is reduced. Here our result for the

lar to those for the model with an arbitrarily directed field, {ransition temperature at the boundary between first- and
and they are asse_ssed in the same way. The_ results for t8@8cond-order transitions iBo(B.)~0.39SDs (see Fig. 5.
bondary between first- and second-order transiti@gs,are  On the other hand, the unperturbed barrier height is given by
shown in Fig. 4. For rescaling of these results we have useg j = s2p 52 Eliminating & from the above formulas, one
the exact valu®./D=1 atH,=0 (Ref. 8. One can see that ¢4, relateT, andAU as follows: Ty~ (0.39FDAU/T,. The
Bc1—h, in the strongly biased case, as was conjectureqatio AU/T, is fixed by the requirement that the escape rate
above. The transition temperatulig at the boundary be- pe not too high and not too low. Adopting a typical value
tween first- and second-order transitions in the whole ranga u/T,=40, as was done in Ref. 4 for the model with an
of the bias field is shown in Fig. 5. Here we have used for theypitrarily directed field, one arrives at the estimation
rescaling of the results the exact vallig(B.) =(1/m)SD 1B )~6.3D, which is substantially higher than that of
=0.3183SD at H,=0, which can be extracted from Ref. 8. Ref. 4,To(h)~D.

In comparison to the previously considered model with an
arbitrarily directed field, here the crossover between first- This work has been supported in part by the U.S. Na-
and second-order transitions occurs at higher values of thiéonal Science Foundation through Grant No. DMR-
control parameteB, thus the range of the first-order transi- 9024250. D. G. thanks S. Flach for pointing out the analogy
tions is extended. On the other hand, for this reason using &ith the quantum dimer problem and for the critical reading
perturbation theory iB/D is less justified, and one can ex- of the manuscript.
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