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Ground-state behavior of the three-dimensional6J random-bond Ising model

Alexander K. Hartmann*
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Large numbers of ground states of the three-dimensional6J random-bond Ising model are calculated for
sizes up to 143 using a combination of a genetic algorithm and cluster-exact approximation. Several quantities
are calculated as functions of the concentrationp of the antiferromagnetic bonds. The critical concentration
where the ferromagnetic order disappears is determined using the Binder cumulant of the magnetization. A
value ofpc50.22260.005 is obtained. From the finite-size behavior of the Binder cumulant and the magne-
tization critical exponentsn51.160.3 andb50.260.1 are calculated. The behavior of the distribution of
overlapsP(q) is used to investigate how the spin-glass phase evolves with increasing concentrationp. The
spin-glass order is characterized by a broad distribution of overlaps which extends down toq50.
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INTRODUCTION

In this work systems ofN spinss i561, described by the
Hamiltonian

H[2(
^ i , j &

Ji j s is j ~1!

are investigated. The spins are placed on a three-dimens
(d53) cubic lattice of linear sizeL with periodic boundary
conditions in all directions. Systems with quenched disor
of the nearest-neighbor interactions~bonds! are investigated.
Their possible values areJi j 561. The concentration of the
antiferromagnetic~AF! bonds (Ji j 521) is denoted withp,
all other (12p) interactions are ferromagnetic. A con
strained is imposed, so that the fraction of the antiferrom
netic bonds is exactlyp for all realizations of the disorder.

The model shows a complex behavior for low tempe
tures. For large concentrations of the ferromagnetic bond
is energetically favorable for two interacting spins to ha
the same orientation. Hence, the system shows ferromag
order, which means that most of the spins have the s
value. For large concentrationsp the system is antiferromag
netically ordered: the system can be divided into two p
etrating sublattices and each sublattice has ferromagneti
der, but the sign of the ordering of the two sublattices
different. For intermediate concentrations of the antifer
magnetic bonds neither ferromagnetic nor antiferromagn
order exists. The system is called a spin glass.1 For finite-
dimensional spin glasses no final agreement about their
havior exists. Recent results from simulations2,3 of small sys-
tems with p50.5 up to size 163 indicate that the three
dimensional spin glass has a complex behavior: the~free!
energy landscape has many stable configurations which
fer strongly from each other. Whether the onset of this sp
glass behavior takes place at the same concentration w
the ferromagnetic order disappears is unclear.

Here the ground-state, i.e., zero temperature (T50), be-
havior of the model as function of the concentrationp is
investigated. Since the phase diagram of the system is s
metrical to p50.5 if one identifies the ferromagnetic wit
PRB 590163-1829/99/59~5!/3617~7!/$15.00
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the antiferromagnetic regime, only valuesp,0.5 are used.
Of special interest is the critical concentrationpc where the
ferromagnetic order disappears.

In the past the6J random-bond Ising model has bee
studied using Monte-Carlo simulations,4 zero-temperature
series expansions,5 high-temperature series expansions,6–8

Monte Carlo renormalization-group calculations,9 and
renormalization-group theory.10 All of these results are quali
tatively consistent with the phase-diagram described abo
but no agreement has been found on the value of the cri
concentrationpc or its temperature dependence. In all
these publications the detailed distribution of the states w
not investigated, which can be done, for example, by cal
lating the distribution of overlaps.

A study of this model using true ground states has
been performed before. Only for special two-dimensio
systems, where exact ground states can be calculated
ciently, some results11–13 are known. There the critical con
centration of a square lattice is estimated to bepc

2d50.10.
The behavior of the6J random bond Ising model is de

termined by the occurrence offrustration.14 The simplest
example of a frustrated system is a triple of spins where
pairs are connected by antiferromagnetic bonds. It is not p
sible to find a spin configuration where all bonds contribu
with a negative value to the energy. One says that it is
possible tosatisfyall bonds. In general a system is frustrate
if closed loops of bonds exists, where the product of th
bond values is negative. For square and cubic systems
smallest closed loops consist of four bonds. They are ca
~elementary! plaquettes.

The presence of frustration makes the calculation of ex
ground states of such systems computationally hard. O
the special case of the two-dimensional system with perio
boundary conditions in no more than one direction and w
out external field a polynomial-time algorithm is known.15

For the general case the simplest method works by e
merating all 2N possible states and has obviously an exp
nential time complexity. Even a system size of 43 is too
large. The basic idea of the branch-and-bound algorithm16 is
to exclude parts of the state-space, where no low-lying st
3617 ©1999 The American Physical Society
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3618 PRB 59ALEXANDER K. HARTMANN
can be found. Using this method the complete low-ene
landscape of systems of size 43 can be calculated.17

A more sophisticated method called branch-and-cut18,19

works by rewriting the energy as a linear function and
additional set of inequalities which must hold for the so
tion. Since not all inequalities are knowna priori the method
iteratively solves the linear problem, looks for inequaliti
which are violated, and adds them to the set until the solu
is found. Since the number of inequalities grows expon
tially with the system size the same holds for the compu
tion time of the algorithm. With branch-and-cut anywa
small systems up to 83 are feasible. The method used here
able to calculate true ground states up to size 143.

By studying ground states one does not encounter erg
icity problems or critical slowing down as in Monte-Car
simulations. Since it is possible to compare with exact res
from branch-and-cut calculations no uncontrolled appro
mations are used. The only uncertainty comes from the
that one is restricted to relatively small systems.

In the next section a short description of the method
presented. Afterwards the results are presented. In the
section a conclusion is driven.

ALGORITHM

The algorithm for the calculation of the ground stat
bases on a special genetic algorithm20,21 and on the cluster-
exact approximation~CEA!22 which is an optimization
method designed especially for spin glasses. Next a s
sketch of these algorithms is given.

Genetic algorithms are biologically motivated. An op
mal solution is found by treating many instances of the pr
lem in parallel, keeping only better instances and replac
bad ones by new ones~survival of the fittest!. The genetic
algorithm starts with an initial population ofMi randomly
initialized spin configurations~5 individuals!, which are lin-
early arranged in a ring. Thenn03Mi times two neighbors
from the population are taken~called parents! and two off-
spring are created using a triadic crossover: a mask is u
which is a third randomly chosen~usually distant! member
of the population with a fraction of 0.1 of its spins reverse
In a first step the offspring are created as copies of the
ents. Then those spins are selected, where the orientatio
the first parent and the mask agree.23 The values of these
spins are swapped between the two offspring. Then a m
tion with a rate ofpm is applied to each offspring, i.e.,
fraction pm of the spins is reversed.

Next for both offspring the energy is reduced by applyi
CEA: The method constructs iteratively and randomly a n
frustrated cluster of spins. Spins adjacent to many unsatis
bonds are more likely to be added to the cluster. During
construction of the cluster a local gauge transformation
the spin variables is applied so that all interactions betw
cluster spins become ferromagnetic.

Figure 1 shows an example of how the construction of
cluster works using a small spin-glass system. For thr
dimensional~3D!6J spin glasses each cluster contains ty
cally 58% of all spins. The noncluster spins act as lo
magnetic fields on the cluster spins, therefore the gro
state of the cluster is not trivial. Since the cluster has o
ferromagnetic interactions, an energetic minimum state
y
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its spins can be calculated in polynomial time by using gra
theoretical methods:24–26 an equivalent network is
constructed,27 the maximum flow is calculated,28,29 and the
spins of the cluster are set to their orientations leading t
minimum in energy. This minimization step is performe
nmin times for each offspring.

Afterwards each offspring is compared with one of
parents. The pairs are chosen in the way that the sum of
phenotypic differences between them is minimal. The p
notypic difference is defined here as the number of sp
where the two configurations differ. Each parent is replac
if its energy is not lower~i.e., not better! than the corre-
sponding offspring. After this whole step is donen03Mi
times, the population is halved: From each pair of neighb
the configuration which has the higher energy is eliminat
If more than four individuals remain the process is continu
otherwise it is stopped and the best individual is taken
result of the calculation.

The whole algorithm is performednR times and all con-
figurations which exhibit the lowest energy are stored, res
ing in nG statistically independent ground-state configu
tions. This algorithm was already applied to examine
ground-state landscape of 3D spin glasses.3

RESULTS

We used the simulation parameters determined in form
calculations forp50.5: For each system size many differe
combinations of the simulation parametersmi ,n0 ,nmin ,pm
were tested. For the final parameter sets it is not possibl
obtain lower energies even by using parameters where
calculation consumes four times the computational effo
Here a mutation rate ofpm50.2 andnR510 runs per real-
ization were used for all system sizes.

For smaller concentrationsp the ground states are easi
to find, because the number of frustrated plaquettes
smaller. But it was not possible to reduce the computatio
effort substantially in order to get still ground states. Con

FIG. 1. Example of the cluster-exact approximation method
part of a spin glass is shown. The circles represent lattice s
spins. Straight lines represent ferromagnetic bonds, the jagged
antiferromagnetic interactions. The left part shows the initial sit
tion. The construction starts with the spin at the center. The r
part displays the final stage. The spins which belong to the clu
carry a plus or minus sign which indicates how each spin is tra
formed, that only ferromagnetic interactions remain inside the c
ter. All other spins cannot be added to the cluster because it is
possible to multiply them by61 to make all adjacent bonds pos
tive. Please note that many other combinations of spins can be
to build a cluster without frustration.
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quently, we used the parameters ofp50.5 for all concentra-
tions p. Table I summarizes the parameters. Also the typ
computer timet spent per run on a 80 MHz PPC601
given. Using these parameters on averagenG.8 ground
states were obtained for every system sizeL using nR510
runs per realization.

We compared our results for 180 sample systems oL
56 with exact ground states which were obtained usin
branch-and-cut program.18,19 The genetic CEA algorithm
found the true ground states for all systems. The same re
was obtained forL54 as well. ForL.6 the branch-and-cu
program needs too much computer time because of the
ponential running time. A more detailed analysis is presen
in Ref. 30. Hence, we can be sure that genetic CEA and
method of choosing the parameters lead to true ground s
or at least to states very close to true ground states.

We performed ground state calculations forpP@0.1,0.4#
for lattice sizesL53,4,5,6,8,10,14. For the largest sizeNL
51000 independent realizations were taken. For smaller
tems this number could be raised up to 30 000. Most of
systems have AF-bond concentrations aroundp50.22

The ground-state energye as function of system size fo
different system sizes is shown in Fig 2. To keep the fig
clear only the sizesL53,4,6,14 are presented. For small co
centrationsp the ground state is mainly ferromagnetic.
follows that all AF bonds are not satisfied, thus the grou

FIG. 2. Average ground state energye per spin as function of
AF-bond concentrationp for system sizesL53,4,6,14. Lines are
guides for the eyes only.

TABLE I. Simulation parameters:L5system size,Mi5 initial
size of population,n05average number of offsprings per config
ration, nmin5number of CEA minimization steps per offspring
t5average computer time per ground state on a 80 MHz PPC

L Mi n0 nmin t ~sec!

3 16 3 1 0.2
4 16 3 1 0.5
5 16 4 2 3
6 16 4 2 5
8 32 4 5 70
10 64 6 10 960
14 256 14 10 32 400
l
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state energy increases linearly ase(p)'2316p with p.
For larger concentrations the ground-state energy approa
thep50.5 limit, because the spins can arrange so that no
AF bonds are broken. With increasingL the ground state
energy decreases, because the periodic boundary condi
impose less constraints on the system. ForL→` and p
50.5 a ground state energy ofe`(0.5)521.7876(3) was
found in Ref. 3.

From Fig. 2 it is clear that the energy as function of co
centration is not well suited for determining the critical co
centrationpc where the ferromagnetic behavior disappea
For this purpose the Binder cumulant31,32

q~p,L ![
1

2S 32
^M4&

^M2&2D ~2!

for the magnetizationM[(1/N)( is i is evaluated. The aver
age^¯& denotes both averages over different ground sta
of a realization and over the disorder. In Fig. 3 the Bind
cumulant is shown forL53,5,8,10,14.L54,6 are omitted in
this figure to keep it clear. For the same reason only typ
error bars for two sample points are shown. All curves int
sect atpc50.22260.002. OnlyL54 ~not shown! is a little
worse, because it meets the others in the intervalp
P@0.217,0.222#. We conclude that the critical concentratio
for the ferromagnetic order ispc50.222(5).

The value for pc is comparable to results from high
temperature series expansions:pc50.19(2),6 pc'0.25,7 pc
5234(2) ~Ref. 33! from Monte Carlo renormalization-grou
resultspc50.233(4)~Ref. 9! and from Monte Carlo simula-
tions: pc'0.24.4 Our value is much larger than the resu
from a zero-temperature expansionpc50.1220.13 ~Ref. 5!
and much lower than a recent result from a renormalizati
group studypc'0.37.10 Since the intersection of the curve
of the Binder cumulant is very sharp, we believe that o
result is very reliable, although the systems investigated h
are rather small.

For the Binder cumulant the following finite-size scalin
relation is assumed:32

FIG. 3. Binder cumulant of magnetization as function of A
bond concentrationp for system sizeL53,5,8,10,14. Two typical
error bars are given. Lines are guides for the eyes only.

1.
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3620 PRB 59ALEXANDER K. HARTMANN
q~p,L !5g̃@L1/n~p2pc!#. ~3!

By plotting g(p,L) againstL1/n(p2pc) with correct param-
eter n the data points for different system sizes should c
lapse onto a single curve. The best results were obtained
pc50.222 and 1/n50.9. In Fig. 4 the resulting scaling plot i
shown. It is possible to change the value ofn in a wide range
without large effects on the scaling plot. We estima
n51.1~3!. This is consistent withn51.7~3! which was found
using Monte Carlo simulations of spin glasses (p50.5) at
finite temperature.34

The average magnetizationm[^M & has the standard
finite-size scaling form35

m~p,L !5L2b/nm̃@L1/n~p2pc!#. ~4!

By plotting Lb/nm(p,L) againstL1/n(p2pc) with correct pa-
rametersb,n the data points for different system sizes sho
collapse onto a single curve. The best result was obta
using 1/n50.9 andb/n50.19. It is shown in Fig. 5 forL
53,5,8,10,14. From variations of the valueb/n we estimate
the value of the exponentb50.2~1!.

FIG. 4. Scaled plot of Binder cumulant. Line is a guide for t
eyes only.

FIG. 5. Scaled plot of magnetization. The inset shows the
data forL53,5,14. Lines are guides for the eyes only.
l-
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So far the behavior of the ferromagnetic regime and
lated characteristic values were investigated. As explai
before the model shows a spin-glass phase for intermed
concentrations of the antiferromagnet bonds. To characte
this spin-glass behavior now the overlapq is used. It com-
pares two different states$s i

a%,$s i
b% of the same realization

of the random bonds

qab[
1

N(
i

s i
as i

b . ~5!

For ferromagnetic or antiferromagnetic order two ind
pendently calculated ground states are identical or relate
a global flip of all spins, i.e.,q561. For spin-glass orde
many different ground states exist,3 consequentlyq can take
also intermediate valuesqP@21,1#. Since the system has n
external field, each state is equivalent to the state where
spins are reversed, consequently only the absolute valueuqu
is considered here.

In Fig. 6 the average value of the overlap^uqu&[^uqabu&
is shown for the lattice sizesL53,4,8,14. The decrease o
^uqu& with increasing concentrationp is clearly visible. Since
this quantity has much larger fluctuations than the magn
zation, it is difficult to use this data for further analysis. Als
the value stays below 1.0 for a large interval, hence it is
possible to extract at which concentration the onset of
spin-glass behavior is located.

More information about the spin-glass phase can be
tained if one calculates not only the average ofuqu, but its
distribution36

P~ uqu![^d~ uqu2uqabu!&, ~6!

which can be used to describe the ground-state landscap
Fig. 7 the distributions for sizesL53,4,8,14 atp'0.18 are
presented~since all realizations of a given sizeL have ex-
actly the same number of ferromagnetic bonds, for each
tem size only a finite number of different concentrations

w

FIG. 6. Average overlap̂ uqu& value as function of AF-bond
concentrationp for L53,4,8,14. With increasing concentratio
more and more spins belong to clusters which contribute to
degeneracy of the ground state, thus the average overlap valu
creases. Where the onset of the spin glass behavior is locate
actly cannot be seen from this figure. Lines are guides for the e
only.
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PRB 59 3621GROUND-STATE BEHAVIOR OF THE THREE- . . .
possible. Here for each lattice size the value ofp is chosen
which is nearest to 0.18!. With increasing size the distribu
tions become narrower. The reason is, that due to the disc
bond distributionJi j 561 there are always some small clu
ters of spins, which can take two orientations in the grou
state. With increasing system sizeL these effects cancel ou
andP(uqu) converges to a delta-functiond(q2qfree), where
qfree is just the fraction of spins not contained in such fr
clusters. This ground-state landscape is similar to tha
random-field Ising systems.37

In Fig. 8 the distributions of overlaps is displayed for
concentration slightly larger thanpc . Here the behavior is
completely different. The distributions extend over a lar
interval down toq50. With increasing lattice sizeL only the
shape of the large-q part changes a little bit while for sma
values no systematic modification is visible. The peak
largeq values, which raises with increasing concentrationp,
results from small clusters of spins which can take two o

FIG. 7. DistributionP(uqu) of overlaps for AF-bond concentra
tions aboutp'0.18 for L53,4,8,14. A finite fraction of spins is
contained in small clusters which can take two orientations in
ground state. ForL→` a delta function is obtained similar to th
distribution found for the ground states of random-field Ising s
tems. Lines are guides for the eyes only.

FIG. 8. DistributionP(uqu) of overlaps for AF-bond concentra
tions aboutp'0.23 for L53,4,8,14. The distribution is broad an
extends toq50 for all sizesL, indicating a spin-glass behavio
Lines are guides for the eyes only.
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entations in the ground state. This is the same as for sm
concentrations of the AF bonds. But the large extent down
q50 cannot be explained in this way. It shows that sp
glass ground states have a very rich ordering, similar to
behavior found for the SK model,36 where each spin interact
with every other spin~for a detailed discussion of th
ground-state landscape see Refs. 3,38!.

To investigate this behavior quantitatively the varian
s2(uqu) of the distributions as a function of AF-bond con
centrationp and system sizeL is calculated:

s2~ uqu![^~ uqabu2^uqu&!2&. ~7!

In Fig. 9 the result forL53,4,8,14 is shown. For sma
concentrationp the width of the distributions is small an
shrinks with increasing sizeL. For larger concentrations th
width increases and remains nonzero even for larger lat
sizes. In Ref. 3 it was shown, that the spin glass ground s

e

-

FIG. 9. Average variances2(uqu) of overlap distribution as
function of AF-bond concentrationp. For small concentrations the
width of the distribution shrinks to zero with increasing sizeL. For
larger values the spin-glass phase is characterized by broad d
butions of overlaps. Lines are guides for the eyes only.

FIG. 10. Average fractionX0.5 of overlap distribution below
q50.5 as function of AF-bond concentrationp for sizes
L53,4,8,14. In the spin-glass phase the distribution of overl
extends toq50 for all lattice sizes. Lines are guides for the ey
only.
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3622 PRB 59ALEXANDER K. HARTMANN
with p50.5 is likely to have a broad distribution even fo
L→`. For larger sizes the statistics is too bad to extract
example a critical concentrationpc

(2) by a finite-size scaling
analysis similar to that presented above.

The onset of the spin glass behavior can even bette
observed by calculating the fractionXq0

of the distribution of

overlaps below a fixed valueq0 :

Xq0
[E

0

q0
P~ uqu! dq. ~8!

In Fig. 10 the value ofX0.5 is shown as function ofp for the
lattice sizesL53,4,8,14. For the limiting casep50.5 the
value ofX0.5 converges to a nonzero value forL→`.39

CONCLUSION

Using a combination of a genetic algorithm and clust
exact approximation ground states of the three-dimensio
6J random-bond Ising model were calculated for differe
concentrations of the antiferromagnetic bonds. A form
comparison with exact ground states calculated usin
branch-and-cut program shows that genetic CEA is able
calculate true ground states.

For small concentrations the ground state is mainly fer
magnetic. The critical concentration where the ferromagn
order disappears was determined using the Binder-cumu
g(p,L) of the magnetization

pc50.22260.005. ~9!

Using a finite-size scaling analysis of the magnetizat
and the Binder-cumulant critical exponents were obtaine

n51.160.3,b50.260.1. ~10!

These values are consistent with results from Monte C
simulations of thep50.5 case at finite temperature, whe
e

r

be
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t
r
a

to

-
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the same analysis presented here was performed for the s
glass order parameterq instead of the magnetizationm.

The onset of the spin-glass behavior with increasing l
tice size was investigated by calculating the distributions
overlaps as a function ofp. The spin-glass phase is chara
terized by a broad distribution of overlaps which exten
down to q50 and does not change substantially with in
creasing system size. For this quantity the bad statistics
larger values of the concentrationp.0.23 does not allow us
to determine a second critical concentrationpc

(2) . Hence, it is
not yet possible to check whether the ferromagnetic ord
disappears at the same concentration where the spin-g
phase appears. Here much more data is needed.
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