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Ground-state behavior of the three-dimensional=J random-bond Ising model
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Large numbers of ground states of the three-dimensianhrandom-bond Ising model are calculated for
sizes up to 1#using a combination of a genetic algorithm and cluster-exact approximation. Several quantities
are calculated as functions of the concentraioof the antiferromagnetic bonds. The critical concentration
where the ferromagnetic order disappears is determined using the Binder cumulant of the magnetization. A
value of p.=0.222+0.005 is obtained. From the finite-size behavior of the Binder cumulant and the magne-
tization critical exponente=1.1+0.3 and8=0.2+0.1 are calculated. The behavior of the distribution of
overlapsP(q) is used to investigate how the spin-glass phase evolves with increasing concergratibe
spin-glass order is characterized by a broad distribution of overlaps which extends dogrGo
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INTRODUCTION the antiferromagnetic regime, only valups<0.5 are used.
Of special interest is the critical concentratipp where the
In this work systems o spinso;= * 1, described by the ferromagnetic order disappears.

Hamiltonian In the past thexJ random-bond Ising model has been
studied using Monte-Carlo simulatiohszero-temperature
series expansiors high-temperature series expansi6ns,
I Monte Carlo renormalization-group calculatichsand
) . ) . _renormalization-group theory. All of these results are quali-
are investigated. The spins are placed on a three-dimensio ively consistent with the phase-diagram described above,

(d::).’). CUb,iC Iattiqe Of, linear sizé With_periodic bounqary but no agreement has been found on the value of the critical
conditions in all directions. Systems with quenched d'SordeEoncentrationpc or its temperature dependence. In all of

of the nearest-neighbor interactiofi®ond3 are investigated. these publications the detailed distribution of the states were

Their possible values ar&;= = 1. The concentration of the . : . i
antiferromagneti¢AF) bonds 0, = —1) is denoted witrp, no_t mvesUg_atgd, Whlch can be done, for example, by calcu
] lating the distribution of overlaps.

all other (1-p) interactions are ferromagnetic. A con- A study of this model using true around states has not
strained is imposed, so that the fraction of the antiferromag- study 9 gro ) .
been performed before. Only for special two-dimensional

netic bonds is exactlp for all realizations of the disorder. ,
The model shows a complex behavior for low tempera-SyStemS' where exact ground states can be calculated effi-

tures. For large concentrations of the ferromagnetic bonds fiently, some results™? are known. There the critical con-
is energetically favorable for two interacting spins to havecentration of a square lattice is estimated topl3é=0.10.
the same orientation. Hence, the system shows ferromagnetic The behavior of the- J random bond Ising model is de-
order, which means that most of the spins have the sami@rmined by the occurrence dfustration'® The simplest
value. For large concentratiopsthe system is antiferromag- example of a frustrated system is a triple of spins where all
netically ordered: the system can be divided into two penpairs are connected by antiferromagnetic bonds. It is not pos-
etrating sublattices and each sublattice has ferromagnetic osible to find a spin configuration where all bonds contribute
der, but the sign of the ordering of the two sublattices iswith a negative value to the energy. One says that it is not
different. For intermediate concentrations of the antiferro-possible tcsatisfyall bonds. In general a system is frustrated,
magnetic bonds neither ferromagnetic nor antiferromagnetiif closed loops of bonds exists, where the product of these
order exists. The system is called a spin gfagar finite-  bond values is negative. For square and cubic systems the
dimensional spin glasses no final agreement about their bemallest closed loops consist of four bonds. They are called
havior exists. Recent results from simulatibhef small sys-  (elementary plaquettes
tems with p=0.5 up to size 1% indicate that the three- The presence of frustration makes the calculation of exact
dimensional spin glass has a complex behavior: (fheg) ground states of such systems computationally hard. Only
energy landscape has many stable configurations which dithe special case of the two-dimensional system with periodic
fer strongly from each other. Whether the onset of this spinboundary conditions in no more than one direction and with-
glass behavior takes place at the same concentration wheoet external field a polynomial-time algorithm is knowh.
the ferromagnetic order disappears is unclear. For the general case the simplest method works by enu-
Here the ground-state, i.e., zero temperatre-Q), be-  merating all 2 possible states and has obviously an expo-
havior of the model as function of the concentratipris  nential time complexity. Even a system size of ¥ too
investigated. Since the phase diagram of the system is synarge. The basic idea of the branch-and-bound algofithisn
metrical top=0.5 if one identifies the ferromagnetic with to exclude parts of the state-space, where no low-lying states

= — >JijUin (1)
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can be found. Using this method the complete low-energy NN
landscape of systems of sizé dan be calculatet. O—~=0 O }X{ﬂ ® 4

A more sophisticated method called branch-and®ctt ‘ ‘ ‘ J ‘ N
works by rewriting the energy as a linear function and an . g
additional set of inequalities which must hold for the solu- O— N0  &@——Dd —— =)
tion. Since not all inequalities are knovarpriori the method N |
iteratively solves the linear problem, looks for inequalities # ‘ | AN ‘ ‘
which are violated, and adds them to the set until the solution Lo . !
is found. Since the number of inequalities grows exponen- O—O -0 ZXZQ@_%@'
tially with the system size the same holds for the computa- (@ ()

tion time of the algorithm. With branch-and-cut anyway
small systems up to’8are feasible. The method used here ISpart of a spin glass is shown. The circles represent lattice sites/

able to calculate true ground states up to sizé 14 spins. Straight lines represent ferromagnetic bonds, the jagged lines
By studying ground states one does not encounter ergoditiferromagnetic interactions. The left part shows the initial situa-
icity problems or critical slowing down as in Monte-Carlo jon, The construction starts with the spin at the center. The right
simulations. Since it is possible to compare with exact resultpat displays the final stage. The spins which belong to the cluster
from branch-and-cut calculations no uncontrolled approXi-arry a plus or minus sign which indicates how each spin is trans-
mations are used. The only uncertainty comes from the fadbrmed, that only ferromagnetic interactions remain inside the clus-
that one is restricted to relatively small systems. ter. All other spins cannot be added to the cluster because it is not
In the next section a short description of the method igpossible to multiply them by-1 to make all adjacent bonds posi-

presented. Afterwards the results are presented. In the lasite. Please note that many other combinations of spins can be used
section a conclusion is driven. to build a cluster without frustration.

FIG. 1. Example of the cluster-exact approximation method. A

its spins can be calculated in polynomial time by using graph
theoretical method¥~% an equivalent network is
The algorithm for the calculation of the ground statesconstructed, the maximum flow is calculated;* and the
bases on a special genetic algoritift and on the cluster- spins of the cluster are set to their orientations leading to a
exact approximation(CEA)??> which is an optimization Minimum in energy. This minimization step is performed
method designed especially for spin glasses. Next a shofmin times for each offspring.
sketch of these algorithms is given. Afterwards each offspring is compared with one of its
Genetic algorithms are biologically motivated. An opti- Parents. The pairs are chosen in the way that the sum of the
mal solution is found by treating many instances of the probPhenotypic differences between them is minimal. The phe-
lem in parallel, keeping only better instances and replacindgiotypic difference is defined here as the number of spins
bad ones by new ondsurvivgd of the f|tte9t The genetic where the two Configurations differ. Each parent is replaced
algorithm starts with an initial population dfl; randomly if its energy is not lower(i.e., not better than the corre-
initialized spin configurations= individualg, which are lin-  sponding offspring. After this whole step is dongXxM;
early arranged in a ring. Themyx M; times two neighbors times, the population is halved: From each pair of neighbors
from the population are takeftalled parentsand two off- the configuration which has the higher energy is eliminated.
Spring are created using a triadic crossover: a mask is uséamore than four individuals remain the process is continued
which is a third randomly chosefusually distant member otherwise it is stopped and the best individual is taken as
of the population with a fraction of 0.1 of its spins reversed.result of the calculation.
In a first step the offspring are created as copies of the par- The whole algorithm is performedy times and all con-
ents. Then those spins are selected, where the orientations figurations which exhibit the lowest energy are stored, result-
the first parent and the mask agféeThe values of these ing in ng statistically independent ground-state configura-
spins are swapped between the two offspring. Then a mutdions. This algorithm was already applied to examine the
tion with a rate ofp,, is applied to each offspring, i.e., a ground-state landscape of 3D spin glasbes.
fraction p,,, of the spins is reversed.
Next for both offspring the energy is reduced by applying RESULTS
CEA: The method constructs iteratively and randomly a non-
frustrated cluster of spins. Spins adjacent to many unsatisfied We used the simulation parameters determined in former
bonds are more likely to be added to the cluster. During thealculations fopp=0.5: For each system size many different
construction of the cluster a local gauge transformation otombinations of the simulation parameters,ng,Nmin,Pm
the spin variables is applied so that all interactions betweewere tested. For the final parameter sets it is not possible to
cluster spins become ferromagnetic. obtain lower energies even by using parameters where the
Figure 1 shows an example of how the construction of thecalculation consumes four times the computational effort.
cluster works using a small spin-glass system. For threeHere a mutation rate gb,,=0.2 andng=10 runs per real-
dimensional3D)=*J spin glasses each cluster contains typi-ization were used for all system sizes.
cally 58% of all spins. The noncluster spins act as local For smaller concentratiornsthe ground states are easier
magnetic fields on the cluster spins, therefore the grountb find, because the number of frustrated plaquettes is
state of the cluster is not trivial. Since the cluster has onlysmaller. But it was not possible to reduce the computational
ferromagnetic interactions, an energetic minimum state foeffort substantially in order to get still ground states. Conse-
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TABLE I. Simulation parameterd.=system sizeM;=initial J J J J T J
size of populationny,=average number of offsprings per configu- 1.0 === E
ration, nhi,=number of CEA minimization steps per offspring, S
T=average computer time per ground state on a 80 MHz PPC601.
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quently, we used the parameterspoef 0.5 for all concentra-

tionsp. Table | summarizes the parameters. Also the typical FIG. 3. Binder cumulant of magnetization as function of AF-
computer timer spent per run on a 80 MHz PPC601 is bond concentratiop for system sizeL=3,5,8,10,14. Two typical
given. Using these parameters on average>8 ground  error bars are given. Lines are guides for the eyes only.

states were obtained for every system dizasing ng=10

runs per realization. state energy increases linearly a@)~ —3+6p with p.

We compared our results for 180 sample system& of For larger concentrations the ground-state energy approaches
=6 with exact ground states which were obtained using ahe p=0.5 limit, because the spins can arrange so that not all
branch-and-cut prograf®*® The genetic CEA algorithm AF bonds are broken. With increasirgthe ground state
found the true ground states for all systems. The same reswhergy decreases, because the periodic boundary conditions
was obtained fot. =4 as well. ForL.>6 the branch-and-cut impose less constraints on the system. Eer> and p
program needs too much computer time because of the ex0.5 a ground state energy ef.(0.5)=—1.7876(3) was
ponential running time. A more detailed analysis is presenteound in Ref. 3.
in Ref. 30. Hence, we can be sure that genetic CEA and our From Fig. 2 it is clear that the energy as function of con-
method of choosing the parameters lead to true ground statgentration is not well suited for determining the critical con-
or at least to states very close to true ground states. centrationp, where the ferromagnetic behavior disappears.

We performed ground state calculations fe[0.1,0.4  For this purpose the Binder cumuldht?
for lattice sizesL=3,4,5,6,8,10,14. For the largest sikie

= 1000 independent realizations were taken. For smaller sys-

tems this number could be raised up to 30 000. Most of the L= 1 3 (M%) 5
systems have AF-bond concentrations aroprdD.22 a(p.L)= 2 (M2)2 )
The ground-state energyas function of system size for

different system sizes is shown in Fig 2. To keep the figure o )

clear only the sizek = 3,4,6,14 are presented. For small con-fOr the magnetizatiom =(1/N)Z;o; is evaluated. The aver-
centrationsp the ground state is mainly ferromagnetic. It 29€¢ *-) denotes both averages over different ground states
follows that all AF bonds are not satisfied, thus the ground®f @ realization and over the disorder. In Fig. 3 the Binder
cumulant is shown fot. = 3,5,8,10,14L = 4,6 are omitted in
this figure to keep it clear. For the same reason only typical
error bars for two sample points are shown. All curves inter-
sect atp,=0.222+0.002. OnlyL=4 (not shown is a little
worse, because it meets the others in the interpal
€[0.217,0.222. We conclude that the critical concentration
for the ferromagnetic order ig.=0.2245).

The value forp. is comparable to results from high-
temperature series expansiops=0.192),° p.~0.25/ p;
=234(2) (Ref. 33 from Monte Carlo renormalization-group
resultsp.=0.233(4)(Ref. 9 and from Monte Carlo simula-
tions: p,~0.24% Our value is much larger than the result
from a zero-temperature expansipp=0.12—-0.13 (Ref. 5
and much lower than a recent result from a renormalization-
group studyp.~0.371° Since the intersection of the curves
o of the Binder cumulant is very sharp, we believe that our
result is very reliable, although the systems investigated here
are rather small.

For the Binder cumulant the following finite-size scaling
relation is assumetf:

FIG. 2. Average ground state energyer spin as function of
AF-bond concentratiop for system sized =3,4,6,14. Lines are
guides for the eyes only.



3620 ALEXANDER K. HARTMANN PRB 59

1.00 T T T T T

0.95

0.90

0.85

<lql>

0.80

0.75

1 1 1 1
0.4 -03 -02 -01 00 0.1 010 015 020 025 030 0.35
(p-0.222) * L*° p

FIG. 4. Scaled plot of Binder cumulant. Line is a guide for the ~ FIG. 6. Average overlag|q|) value as function of AF-bond
eyes only. concentrationp for L=3,4,8,14. With increasing concentration

more and more spins belong to clusters which contribute to the
~ 1 degeneracy of the ground state, thus the average overlap value de-
q(p,L)=g[L™"(p—pc)]. () creases. Where the onset of the spin glass behavior is located ex-

. . 1 . actly cannot be seen from this figure. Lines are guides for the eyes
By plotting g(p,L) againstL~”(p—p.) with correct param- only.

eter v the data points for different system sizes should col-

lapse onto a single curve. The best results were obtained for gq far the behavior of the ferromagnetic regime and re-
p.=0.222 and =0.9. In Fig. 4 the resulting scaling plotis |ated characteristic values were investigated. As explained
shown. Itis possible to change the valuevofi a wide range  pefore the model shows a spin-glass phase for intermediate
without large effects on the scaling plot. We estimateconcentrations of the antiferromagnet bonds. To characterize
v=1.1(3). This is consistent with=1.7(3) which was found  this spin-glass behavior now the overlgps used. It com-
using Monte Carlo simulations of spin glassgs=0.5) at  pares two different statdar?},{o¥} of the same realization

finite temperaturé? of the random bonds
The average magnetizatiom=(M) has the standard

finite-size scaling forrf? 1
g q*h= NZ Uia(,iﬁ_ (5)
m(p,L)=L~""m[LY(p—p.)]. (4) _ , _ _
For ferromagnetic or antiferromagnetic order two inde-
By plotting L#’"m(p,L) against_'(p— p.) with correct pa-  pendently calculated ground states are identical or related by
rametersB,v the data points for different system sizes shoulda global flip of all spins, i.e.q=*1. For spin-glass order
collapse onto a single curve. The best result was obtaineshany different ground states existonsequently can take
using 1#=0.9 andB/v=0.19. It is shown in Fig. 5 folL also intermediate valuepe [ — 1,1]. Since the system has no
=3,5,8,10,14. From variations of the valpér we estimate external field, each state is equivalent to the state where all
the value of the exponem@=0.2(1). spins are reversed, consequently only the absolute yglue
is considered here.
' ' ' In Fig. 6 the average value of the overldg|)=(|q*?|)
‘ is shown for the lattice sizeks=3,4,8,14. The decrease of
- (|q|) with increasing concentratigmis clearly visible. Since
this quantity has much larger fluctuations than the magneti-
-] zation, it is difficult to use this data for further analysis. Also
] the value stays below 1.0 for a large interval, hence it is not
0.3 possible to extract at which concentration the onset of the
spin-glass behavior is located.
More information about the spin-glass phase can be ob-
tained if one calculates not only the averagdqiff but its
distributior?®

P(lah=(a(lal—|a*?])), (6)

which can be used to describe the ground-state landscape. In
Fig. 7 the distributions for sizels=3,4,8,14 atp~0.18 are
presentedsince all realizations of a given size have ex-

FIG. 5. Scaled plot of magnetization. The inset shows the rawactly the same number of ferromagnetic bonds, for each sys-
data forL = 3,5,14. Lines are guides for the eyes only. tem size only a finite number of different concentrations is

-0.5 0.0 0.5
(p-0.222) * L*°
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FIG. 7. DistributionP(|q]) of overlaps for AF-bond concentra- FIG. 9. Average variancer?(|q|) of overlap distribution as

tions aboutp~0.18 for L=3,4,8,14. A finite fraction of spins is function of AF-bond concentratiop. For small concentrations the
contained in small clusters which can take two orientations in theyidth of the distribution shrinks to zero with increasing sizeFor
ground state. Fok — a delta function is obtained similar to the |arger values the spin-glass phase is characterized by broad distri-
distribution found for the ground states of random-field Ising sys-putions of overlaps. Lines are guides for the eyes only.
tems. Lines are guides for the eyes only.

entations in the ground state. This is the same as for smaller
possible. Here for each lattice size the valugpaé chosen  concentrations of the AF bonds. But the large extent down to
which is nearest to 0.18With increasing size the distribu- g=0 cannot be exp|ained in this way. It shows that Spin_
tions become narrower. The reason is, that due to the discrefgiass ground states have a very rich ordering, similar to the
bond distribution;; = =1 there are always some small clus- behavior found for the SK modé¥,where each spin interacts
ters of spins, which can take two orientations in the groundyith every other spin(for a detailed discussion of the
state. With increasing system sizethese effects cancel out ground-state landscape see Refs. 8,38
andP(|q|) converges to a delta-functio®(q—qyed , Where To investigate this behavior quantitatively the variance
Oiree IS just the fraction of spins not contained in such freeq2(|q|) of the distributions as a function of AF-bond con-
clusters. This ground-state landscape is similar to that ofentrationp and system size is calculated:
random-field Ising system.

In Fig. 8 the distributions of overlaps is displayed for a a2(|q))={((|q*#|—(]a|))?). 7

concentration slightly larger thap,. Here the behavior is . i
completely different. The distributions extend over a large In Fig. 9 the result fol.=3,4,8,14 is shown. For small
interval down tog=0. With increasing lattice size only the ~ concentrationp the width of the distributions is small and
shape of the largg-part changes a little bit while for small shrmks with increasing SIZ!E'. For larger concentrations the.
values no systematic modification is visible. The peak avidth increases and remains nonzero even for larger lattice
|argeq Va'uesl which raises with increasing Concentraﬁon sizes. In Ref 3itwas ShOWﬂ, that the Spln g|aSS ground state

results from small clusters of spins which can take two ori-

T T T T 0-20 I~

0.15

T

X< 0.10

P(lal)

0.05 |

0.10 015 020 025 030 035

0.00 &

p

FIG. 10. Average fractionXys of overlap distribution below
FIG. 8. DistributionP(|q|) of overlaps for AF-bond concentra- q=0.5 as function of AF-bond concentratiop for sizes
tions aboutp~0.23 forL=3,4,8,14. The distribution is broad and L=3,4,8,14. In the spin-glass phase the distribution of overlaps
extends tog=0 for all sizesL, indicating a spin-glass behavior. extends tog=0 for all lattice sizes. Lines are guides for the eyes
Lines are guides for the eyes only. only.
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with p=0.5 is likely to have a broad distribution even for the same analysis presented here was performed for the spin-

L—oo. For larger sizes the statistics is too bad to extract foiglass order parameterinstead of the magnetizatian.

example a critical concentratiqn‘tz) by a finite-size scaling The onset of the spin-glass behavior with increasing lat-

analysis similar to that presented above. tice size was investigated by calculating the distributions of
The onset of the spin glass behavior can even better beverlaps as a function gf. The spin-glass phase is charac-

observed by calculating the fractiof  of the distribution of  terized by a broad distribution of overlaps which extends

overlaps below a fixed valugy: down tog=0 and does not change substantially with in-
creasing system size. For this quantity the bad statistics for
do i
X%EJ P(|ql) da. ®) larger values of the concentratigr>0.23 does not allow us

to determine a second critical concentratiiff . Hence, it is

In Fig. 10 the value oK, s is shown as function o for the not yet possible to check whether the ferromagnetic order
lattice sizesL =3.4.8 12:5For the limiting casp=0.5 the disappears at the same concentration where the spin-glass
value of X, 5 converges to a nonzero value fior- . phase appears. Here much more data is needed.
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