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Numerical study of low-frequency vibrations in amorphous silicon
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Exact numerical vibrational eigenvectors and eigenvalues are studied for atomistic models of amorphous
silicon (a-Si! with 216, 1000, and 4096 atoms in the periodic repeat unit. At the lowest frequencies, eigen-
values are sparse and eigenvectors are fairly plane-wave-like. However, some eigenvectors are ‘‘quasilocal-
ized’’ or ‘‘resonant.’’ They are temporarily trapped in local regions of undercoordination. The present paper
finds the following.~1! The ‘‘quasilocalized’’ modes are to a large extent artifacts of the finite size of the
model systems.~2! The lower energy modes of realistic models in the harmonic approximation are broadened
versions of the corresponding crystalline acoustic vibrations, with fairly well-defined wave vectorsQ. The
intrinsic broadening due to glassy disorder increases rapidly withQ, until at intermediate frequencies a mean-
ingful Q can no longer be assigned.~3! The intrinsic broadening due to disorder is strong enough to suppress
thermal conductivity to the level seen experimentally, with no need for special anharmonic effects or local-
ization, except for the influence of two-level systems on the modes at very low frequencies.~4! There is no
inconsistency between the broadened propagating-wave description of low-energy modes and the occurrence
of ‘‘excess modes’’ in specific heat or in spectra. However, amorphous silicon seems to have very few such
excess modes.~5! ‘‘Excess modes’’ and the plateau ink(T) are not closely related, since the former is absent
and the latter present in both experiment and in our calculations fora-Si. Our analysis agrees closely with the
recent study of amorphous SiO2 by Dell’Anna et al. @S0163-1829~99!08805-0#
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I. INTRODUCTION

The glassy phase of silicon is available only in film
Therefore there are fewer measurements of vibrations
for glassy SiO2 . However the structural simplicity of this
single-component network glass has enabled realistic th
retical modeling, and we have now microscopic theories
vibrational properties such as mode diffusivity and therm
conductivity,1,2 vibrational equilibration,3,4 and thermal
expansion.5 At a theoretical level, the vibrations of amo
phous silicon~a-Si! are quite well understood. These calc
lations are based on exact diagonalization of the dynam
matrix for the harmonic vibrations. The atomic coordina
were built by the Wooten-Weiner-Weaire~WWW!
algorithm6 and resemble closely the measured struct
factors.7,8 We use the interatomic force model of Stilling
and Weber.9 The models used so far had 216 or 1000 silic
atoms in a periodically repeated cell. When eigenvectors
given periodic boundary conditions, these models have o
sparse information about low-frequency vibrations. The lo
est group of nonzero eigenvalues in these models co
sponds roughly to crystalline transverse-acoustic vibrati
at QW 5(2p/a)(0.333,0,0) and (0.2,0,0) respectively, a
have energies'6 meV and'4 meV (a is approximately
the lattice constant of crystalline silicon, 5.43 Å!. We did not
previously attempt to extract information about low-ener
vibrations from these models. The present paper inclu
PRB 590163-1829/99/59~5!/3551~9!/$15.00
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eigenvectors and eigenvalues for a 4096-atom mode10

whose lowest eigenvalues correspond to a crystallineQW at
(0.125,0,0) with a lowest energy'2 meV. By combining
information from all three models we propose and tes
method to extrapolate to the large system limit.

Experimentally, glasses have several characteristic l
frequency anomalies, namely~i! quasielastic scattering at
tributed to relaxational motions,11 ~ii ! a plateau in therma
conductivity k(T), ~iii ! excess specific heat or a bump
C(T)/T3, and ~iv! excess vibrational modes, or a bump
the density of statesD(v)/v2 seen in various spec
troscopies. The recent development of inelastic x-ray sca
ing tools for long wavelengths and low energies12–15 gives
information which has reinvigorated the long-standing d
bate about these low-frequency anomalies, and motivates
work.

II. VIBRATIONAL FREQUENCY DISTRIBUTION

Figure 1 shows eigenfrequency distributionsD(v) calcu-
lated from three models of different sizes, using the form

D~v!5
1

pN (
i

g

~v2v i !
21g2

, ~1!

where the broadeningg is chosen to be somewhat larger th
the average level spacing. Except at very low and very h
3551 ©1999 The American Physical Society
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3552 PRB 59FELDMAN, ALLEN, AND BICKHAM
frequencies, there is not much information in the larger m
els which is not already contained in the 216-atom mod
The three models are very similar in character, but there
true differences in detail, as should be expected for finite-s
pieces of a real glass. There is a close similarity to the sp
tra measured using neutrons by Kamitakaraet al.16 as shown
in Fig. 2 of Ref. 2.

Figure 2 shows the same curves, blown up in the lo
frequency region. The sparseness of low-energy mode
evident. The specific location of individual modes is accide
tal, but modes tend to cluster in ways which vary predicta
as the size of the system changes. The aim of this paper
investigate how predictable these features are, and the
use the predictability to extrapolate to the infinite syst
size.

III. CONTROVERSIES OF INTERPRETATION

Lacking a good wave vectorQW to label vibrational states
a theory of glassy vibrations must include new descript
terms. The existing glossary contains terms such as ‘‘bo
peak’’ and ‘‘fracton’’ which are poorly chosen since all ha
monic vibrations qualify as bosons and since fractal prop

FIG. 1. Density of vibrational states ofa-Si using the three
models. Individual states are represented as Lorentzian lines
widths g50.5, 0.2, and 0.1 meV@see Eq.~1!# for the 216-, 1000-,
and 4096-atom model, respectively. All three models have a mo
ity edge near 72 meV, as can be seen for the 1000-atom mod
Fig. 12.

FIG. 2. Same as the previous figure except shown enlarge
low frequencies. The dashed line is the transverse phonon de
of states extrapolated to infinite system size according to Eq.~6!.
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ties are not present. There are also ambiguous terms su
‘‘phonon’’ which is sometimes used as a generic term for
harmonic eigenstates, and sometimes as a specific term
states which propagate ballistically over a mean free patl

long enough that a wavelengthl can be defined (l .l).
Finally there is confusion about the distinction between
Ioffe-Regel ~I-R! crossover, wherel 'l and wave vectors
become poorly defined, and Anderson localization. The la
term refers to a property of certain harmonic eigenstates

the eigenvectorsê(RW l ) fall off exponentially in magnitude

exp(2uRW l 2RW 0u/j) on a distance scale of a localizatio

length j from their centerRW 0 of vibration. In harmonic ap-
proximation, such states contribute nothing to the heat c
ductivity k. A sharp mobility edgevc separates these state
from extended states. There is no theorem requiring exten
states~which probably exist only in dimensionalityD.2) to
have an approximate wave vector. InD51 or 2, the exis-
tence of an approximate wave vectorQ52p/l does not
protect a state from localization withj@l, but in D53 an
approximate wave vectoris sufficient ~but not necessary! to
prevent localization.

Corresponding to these descriptive ambiguities, both
periment and computer simulation have been given diame
cally opposite interpretations by researchers looking at
sentially equivalent information. On the theoretical side,
simulation of Guillot and Guisani17 is consistent with the
calculations of Dell’Annaet al.,18 but ‘‘excess modes’’ are
claimed in the former calculation and not in the latter. On t
experimental side, the data of Foretet al.15 are consistent
with those of Masciovecchioet al.,12–14but Foretet al.claim
evidence for acoustic localization, whereas Masciovecc
et al. see evidence for ballistic propagation. Since the av
age one-particle Green’s function, and thus the dyna
structure factor, cannot distinguish Anderson-localized fr
delocalized states, Foretet al. cannot prove localization. We
reinterpret their language to mean that the I-R crossover
been seen. This does not have a compulsory relationsh
localization.

There is a clean theoretical distinction between localiz
and delocalized modes. For electrons, localization can
seen experimentally when the Fermi level lies within t
band of localized states, because then the zero-temper
conductivity is zero. Conductivity atT.0 shows activated
hopping, but not activated number density or thermopow
For vibrations, experiments which probe the distinction b
tween localized and delocalized states are not yet desig
One of the problems is that heat conduction involves
whole thermal spectrum of vibrations. At low energies~long
wavelengths! vibrations are delocalized, so there is no po
sibility of an Anderson heat insulator.

We believe that a sharper language can diminish th
ambiguities. The term ‘‘excess modes’’ is used here in pla
of ‘‘boson peak,’’ and the term ‘‘phonon’’ will not be used
We prefer3 ‘‘vibron’’ as a generic term for harmonic norma
modes, ‘‘propagon’’ for ballistically propagating modes, a
‘‘locon’’ ~rather than fracton! for Anderson-localized modes
There are open arguments about how many other kind
vibron occur in glasses. In our opinion~supported by de-
tailed analysis1–5,19–21of a-Si; other workers, e.g., Ref. 22
find similar results for other glasses! the I-R crossover lies
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PRB 59 3553NUMERICAL STUDY OF LOW-FREQUENCY VIBRATIONS . . .
fairly low in the spectrum, perhaps around 20 meV, wh
the mobility edge lies near the upper end, at 72 meV in
models. Therefore the majority of modes are neith
‘‘propagons’’ nor ‘‘locons.’’ These intermediate modes co
tribute to heat conductivity by a property of intrins
diffusivity;1,2 we call3 them ‘‘diffusons.’’ Further discussion
of terminology is in Appendix A. Cahillet al.23 have re-
ported a systematic study of thermal conduction of am
phous hydrogenated silicon films, which provides stro
support for our ideas.

This leaves open a further question: are there still ad
tional types of vibration at lower frequencies? The spar
ness of low-frequency information in finite models mak
this question challenging to answer numerically. A view a
vocated by Sokolovet al.,24 which we test here, is that th
excess modes at low frequency are contained in the propa
branch and arise from a strong frequency dependenc
damping. Recently Schirmacheret al.25 found softening of
the transverse-acoustic peak of the vibrational density
states as a ‘‘generic’’ consequence of force-constant di
der. A third view holds that other kinds of modes such
‘‘resonant modes’’ coexist with the propagons or lie in
band near the I-R crossover. A fourth view attributes exc
modes to anharmonic vibrations in locally soft regions.26,27

These views are not necessarily mutually exclusive, nor
necessary that a single ‘‘universal’’ view should be equa
correct for all glasses. For example, ‘‘floppy modes’’28 are
expected in underconstrained network glasses, but not ina-Si
which is an overconstrained network glass. Our aim is
answer this question for the WWW model ofa-Si.

‘‘Resonant modes,’’ like resonances in scattering the
or nuclear physics, are delocalized modes which have a l
magnitude in a localized region and smaller magnitude~but
not exponentially damped! elsewhere. The term ‘‘quasiloca
ized’’ is sometimes used. If prepared in an initially localiz
state, such a vibration will eventually tunnel out~in har-
monic approximation! and propagate or diffuse away. Figu
3, taken from the Ph.D. thesis of Fabian,29 shows the behav
ior of the squared magnitude of the vibrational eigenvec

FIG. 3. Eigenvector profile from Ref. 29 of three selected eig
states for the 1000-atom model ofa-Si. R50 corresponds to the
atom where the eigenvector has maximum size. ForR.0, averages
over approximately spherical shells of atoms are made. The cir
are for a typical diffuson, withv557 meV and a participation ratio
P5500. The squares show a highly localized state atv577 meV
and P56. The filled line is a resonance atv56.5 meV with P
575.
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as a function of distance for some selected modes ina-Si.
The distinction between localized and delocalized mode
clear. The distinction between resonant modes and other
localized modes is less sharp and is a matter of judgeme

Agreeing with earlier work,19,20 we find definite evidence
for isolated resonant modes at low frequency infinite WWW
models fora-Si. In recent work on thermal expansion5 we
discovered that these modes~which center on undercoordi
nated Si atoms! have anomalously large and usually negat
Grüneisen parameters. In this paper we propose a metho
extrapolation to infinite-size samples. According to this e
trapolation, the resonant modes become less prominent a
sample size increases. In the infinite-size limit of homog
neous~no voids! a-Si, the resonant character of these lon
wavelength modes is likely to disappear. The lo
temperature thermal expansion is affected by these mo
and will thus be hard to determine by a finite-size calcu
tion.

IV. DYNAMICAL STRUCTURE FACTOR

To what extent do the low-lying eigenvibrations of o
models resemble the plane-wave Bloch states of a crys
To answer this, we need to Fourier transform the eigenv
torseW i(RW n) which give the pattern of the displacement vec
on the atomRW n in normal modei. The eigenvectors are nor
malized to one over the whole sample,SnueW i(RW n)u251. Fou-
rier wave vectors are chosen consistent with the perio
behavior of the eigenvectors in our supercell. We defi
transverse Fourier weights

CT~QW , i![
1

2NQW
(
T,R

U(
n

eWT~RQW !•eW i~RW n!exp~ iRQW •RW n!U2

,

~2!

whereT labels two unit vectorseT(QW ) which are perpendicu-
lar to QW , and all NQW vectorsRQW in the ‘‘star’’ of QW are
averaged. The factor of 1/2 compensates for two transv
polarization directions. Appendix B discusses further t
meaning of this formula. Figure 4 shows these Fourier co
ponents for the lowest normal modes of our biggest mod

-

es

FIG. 4. For the lowest 65 modes of the 4096-atom model, t
figure shows eigenfrequencies on the horizontal scale with ver
lines indicating transverse Fourier weights, Eq.~2!, for the first

three groups of wave vectors,QW 5(2p/A)(1,0,0), etc. withA
58a being the size of the cell.
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3554 PRB 59FELDMAN, ALLEN, AND BICKHAM
From this figure we see a striking regularity of behav
of the lowest eigenstates. The lowest group of wave vec
is six of the type (2p/A)(1,0,0). In diamond structure sili
con (c-Si! there are 12 corresponding degenerate modes~six
wave vectors and two transverse polarizations!. In a-Si we
find ten closely spaced eigenfrequencies near 3.4 m
which are built almost completely from this group of wa
vectors, plus two modes at lower frequencies~2.2 and 3.0
meV! and two at higher frequency~both near 3.7 meV!
which have mixed character but contain a lot of this low
wave vector. The next lowest group, (2p/A)(1,1,0), has 12
TA1 and 12 TA2 modes inc-Si. In Fig. 4 fora-Si, we see as
expected that the two polarization types are not split. Twe
modes bunched near 4.8 meV are almost comple
(2p/A)(1,1,0) in character, and four more nearby ha
more than half of this character, with the tails out in bo
directions, especially to higher frequency. Further groups
wave vectors show similar behavior, with bunches of cor
sponding glassy modes, but less and less narrow in t
frequency distribution.

Motivated by the x-ray structure factor, we define a qua
tity

ST~QW ,v!5(
i

CT~QW ,i !d~v2v i !. ~3!

The corresponding longitudinal quantity is almost exac
what is measured by inelasticx-ray or neutron scattering
Graphs of these functions for the lowest few groups of wa
vectors are shown in Fig. 5 for the 1000-atom model and
Fig. 6 for the 4096 atom model. The result is surprising
smooth and symmetrical. A Lorentzian line

LQW ~v!5AQW ImF 2v/p

v22vQW
2

2 ivGQW
G ~4!

has been fitted to each structure function and is shown in
figures as dashed lines. The fits are reasonably good nea

FIG. 5. Transverse structure factors, Eq.~3!, plotted as a solid
lines versus frequency for the 1000-atom model and for the low
two groups of wave vectors. The delta functions in Eq.~3! were
broadened into Lorentzians of width 0.2 meV. The dashed lines
Lorentzians, Eq.~4! fitted to the solid curves. The vertical line
starting on the frequency axis give the inverse participation ratio
the states, showing the quasilocalized or resonant nature of the
est eigenstate at 4.2 meV.
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peak, but the calculatedST does not have as much weight a
LQW in the tail (uv2vQW u.GQW ).

Also shown in Figs. 5 and 6 as vertical lines are the
verse participation ratios30 1/pi of each mode. This quantity
discussed in our earlier paper@see Ref. 2, Eq.~3!#, measures
the degree of spatial localization of an eigenvector. T
modes of mixed character which lie outside or in betwe
the central groups of pure plane-wave modes are typic
resonances as indicated by the large values of 1/pi . How-
ever, these modes are also reasonably well interprete
filling in the appropriate tails of Lorentzian response fun
tions, modulosmall statistical fluctuations to be expected
finite systems.

V. INTERPRETATION: RESONANT STATES
OR PROPAGONS?

The eigenstates below and in between the pure pla
wave groups are quasilocalized or resonant; this is show
Fig. 3 for a resonant mode which appears in Fig. 5 as a la
1/pi at 6.5 meV. However, the evidence of Figs. 4, 5, and
plus further considerations given below lead us to belie
that the resonant nature of this and similar states is an art
of the finite size and will diminish in importance as the si
of the system increases.

The Lorentzian fit of Eq.~4! gives three parameters
vQ , GQ , and AQ which characterize groups of norma
modes. Figures 7, 8, and 9 show these parameters plo
versusQ. The evolution withQ is smooth. Especially the
frequencyvQ is well behaved, yielding a transverse sou
velocity of 3570 m/s. This agrees closely with the value 36
m/s calculated independently for the same model by Fe
manet al.31 and cited in Ref. 2. There is a rigorous sum ru

E
0

`

dvST~QW ,v!515(
i

CT~QW ,i !, ~5!

which for smaller Q is well-fulfilled by the lowest 200
~1.6%! of the modes as shown by the filled circles and so
line in Fig. 9. The corresponding Lorentzian line should th

st

re

of
w-

FIG. 6. Same as previous figure except for the 4096-at
model. Lorentzian broadening of 0.1 meV is used. At 4.1 meV
mode occurs which practically coincides with the lowest mode
the 1000-atom model, and is similarly quasilocalized. We now
lieve that this is an accidental coincidence and that all evidence
quasilocalization of harmonic modes will disappear in larger m
els as long as surfaces and voids are not present.
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PRB 59 3555NUMERICAL STUDY OF LOW-FREQUENCY VIBRATIONS . . .
haveAQ51 if the sum rule is exhausted by the Lorentzi
part of the spectral function. There are fluctuations of or
10% in the numerical values ofAQ as shown in Fig. 9. One
can attribute the irregularities ofGQ and AQ to expected
statistical fluctuations. There is also a systematically lar
spectral weight in the Lorentzian areasAQ than in the com-
puted spectral function, because in order to fit the peak,
Lorentzian is overestimating the size of the tails.

Notice that the resonant mode at 6.5 meV in the 10
atom model~Fig. 5! is not resonant in the 4096-atom mod
~Fig. 6!. This mode is in a gap between the Lorentzian str
tures centered at 5.5 and 7.7 meV in Fig. 5, whereas Fi
has Lorentzian structures centered at 5.8 and 6.7 meV, l
ing little gap for a state which does not ‘‘belong’’ to one
the plane-wave-like Lorentzian groups. Figure 8 shows t
bigger models have widths of Lorentzian groups essenti
as wide as smaller models. Therefore when models bec

bigger and smalluQW u ’s become less sparse, Lorentzians
fixed width will overlap increasingly, and can force out th
resonant states which otherwise would inhabit the gaps.

uQW u of order 1/L there will always be gaps, no matter ho
big the systemL ~see for instance the region near 4.1 meV
Fig. 6 where a resonance occurs!, but these gaps drift toward
uQW u50 andv50 asL increases. Therefore the distinctio
between special frequencies lying in gaps, and other frequ
cies lying in Lorentzian peaks, must disappear asL increases.
There are two possibilities: either resonant behavior enti
disappears, or else it remains in a diluted form and is sha
uniformly by all the normal modes. That is, at any giv
frequency there may be isolated parts of a large sam
which are particularly sensitive to oscillation at just this fr
quency and temporarily trap selected traveling waves of
frequency. If this behavior is found for all normal mode
then any one normal mode will be freely propagating alm
everywhere, and it becomes a subtle matter of definition
taste whether they should be called resonances at all.

Real glasses are less homogeneous than a large W
network model, with internal voids. These will interact wi
long-wavelength modes in a fashion which we cannot pre
from our calculations. Therefore, we cannot argue that re
nances do not occur in real glasses, only that they do

FIG. 7. Central frequencyvQ versus wave vectorQ as extracted
from the transverse structure factors shown in Figs. 5~1000-atom
model, filled squares! and 6~4096-atom model, filled circles!. The
line corresponds to a transverse sound velocity of 3570 m/s.
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seem to occur in homogeneous network models of
WWW type which model idealized homogeneousa-Si.

VI. SPECIFIC HEAT AND EXCESS MODES

Many glasses show two kinds of anomalies in spec
heat,~i! linear behaviorgT at T,1 K, and ~ii ! excess spe-
cific heat appearing as a greater bulge in aC(T)/T3 vs T
curve than occurs in a corresponding crystal. The sm
sample size and largeQD of a-Si makes measurements di
ficult. The measurement of Mertiget al.32 shows thatg, if
present, is significantly smaller ina-Si than in SiO2 . It is
customary to attribute thegT behavior to two-level systems
Measurements of internal friction by Liuet al.33 did find a
measureable density of two-level systems in pure amorph
silicon, but none in an hydrogenated sample. The meas
ment of Mertiget al. also shows thatC(T)/T3 versus Tis
similar to crystalline Si except with a reducedQD ~from 645
to 528 K! and with the bulge setting in at lowerT ~centered
at 25 rather than 40 K!. This indicates no thermally signifi
cant excess modes. Raman experiments34,21 also fail to find
excess modes ina-Si. Our normal mode calculations agre
with this finding provided extrapolation to infinite size
made in a conservative fashion suggested by the result
the previous section.

FIG. 8. Full widthGQ at half maximum of the Lorentzian fits to
the transverse structure factors. The solid line corresponds to
formula GQ50.21 meV(QA/2p)2.

FIG. 9. Sum-rule fulfillment, Eq.~5! ~right-hand version! from
the lowest 200 normal modes, shown as filled circles, and areasAQ

under the fitted Lorentzians~left-hand version!, shown as filled
squares~4096-atom model! and diamonds~1000-atom model!. The
curve corresponds to the formula 120.0054(QA/2p)4.
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3556 PRB 59FELDMAN, ALLEN, AND BICKHAM
The most conservative extrapolation is to argue that th
are normal propagating modes at low frequencies wh
spectrum, as in a crystal, is determined by the Debye t
perature. Using the calculated elastic properties31 vL57640
m/s andvT53670 m/s, we get a theoreticalQD for our
model of 450 K. This is lower than the measured value 5
K of Mertig, presumably because of errors of the Stillinge
Weber interatomic forces. Using this extrapolation, the t
oretical specific heat is compared with experiment in Fig.
The disagreement simply correlates with the discrepanc
Debye temperatures.

A less conservative extrapolation is to use not just
central frequency but also the width of the spectral functio
calculated from the eigenvalues and eigenvectors in Sec
The simplest formula is

D~v!>(
QW

@2ST~QW ,v!1SL~QW ,v!#

;S L

2p D 3E
0

QD
4pQ2dQ@2LQ~v!1 longitudinal part#,

~6!

whereLQ(v) is given in Eq.~4!. The first version would be
rigorous if the Fourier states formed an orthonormal ba
This is not true in a glass, as explained in Appendix B. T
second version enables a smooth extrapolation at the co
additional error. To implement Eq.~6! one must know the
correctQ dependence ofGQ . As shown in Fig. 8, the fitted
values scatter too much to guide the extrapolation well.
principle, at very smallQ one should get a formGQ5CQ4

which corresponds to Rayleigh scattering of sound wa
from the structural disorder. The data of Fig. 8 do not fi
Q4 law; theQ2 curve shown in the figure is a better fit. Tw
experiments13,15 ~but not a third35! and one calculation18 on
a-SiO2 have also givenG}Q2. We do not know a theory
which can give this law in a harmonic model. UsingG
}Q2, we recalculatedC(T)/T3 by the extrapolation of Eq
~6!. This enhances the density of states and the conseq
specific heat by about 20% above the Debye value, incr

FIG. 10. Circles are measured values ofC(T) taken from Ref.
32. Calculations shown as the bold solid line use harmonic the
and the calculated density of states of Fig. 1 forv.6.35 meV
~4096-atom model! andQD5450 K ~Ref. 31! for v,6.35 meV.
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ing the discrepancy with experiment seen in Fig. 10 by 20
Thus we think that the most conservative extrapolation
also the most reliable.

Sokolovet al.24 have shown that the density of states o
tained from the extrapolation of Eq.~6! can exhibit a bump,
that is, excess modes, if the widthGQ varies rapidly enough
with Q. We have verified this and find it a plausible route
obtain the excess modes seen in many glasses. Howeve
values ofGQ shown in Fig. 8 do not vary rapidly enough t
produce such an effect, consistent with the experime
finding of no excess modes ina-Si.

Schirmacheret al.25 proposed that excess modes res
from a generic harmonic softening associated with for
constant disorder. Our model of amorphous silicon has s
a softening, with the TA phonon peak inD(v) shifted from
;25 meV in crystalline~see Fig. 4 of Liet al.36! to ;20
meV in amorphous Si. However, this does not yield exc
modes as seen in specific heat, so we think that generic
ening, although real, is not the explanation.

Yet another way to obtain a density of states was used
Guillot and Guisani17 to find excess modes ina-SiO2 . They
did classical molecular-dynamics simulations and mad
Fourier transform of the velocity-velocity correlation fun
tion. Since their conclusions differ from those o
Dell’Anna18 while their model should be similar, we hav
checked this method ona-Si. Our results are shown in Fig
11. Our simulations were run at 30 K where atomic diffusi
was negligible. The densities of states for both the 216-a
model and the 4096-atom model were essentially identica
those of Fig. 1 obtained by exact diagonalization of the sa
models. This indicates that anharmonic effects were sm
enough not to show up, yet large enough to permit vibratio
to reach thermal equilibrium. The main point of Fig. 11
that the 216-atom model shows a bump near 10 meV wh
is a size effect not appearing in the calculation of the 40
atom model. This bump is pretty much the same as the
ture seen in Ref. 17 near 50 cm21 on a sample containing
216 SiO2 molecules. Therefore, we believe that their exce
modes~‘‘boson peak’’! is a finite-size artifact. Since exces
modes are known experimentally ina-SiO2 ~although it is

ry

FIG. 11. Vibrational density of states by molecular dynam
~jagged lines! compared with exact diagonalization~smooth lines!
for the smallest and largest models. A ratio ofD(v) to v2 is shown
in order to compare with a Debye model. The 216-atom mo
gives the false impression of excess modes near 10 meV ene
The vertical scale is arbitrary and has been shifted to separate
curves; logs are base 10 andv is in meV.
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not known if they are harmonic! our point is not that existing
models fail to show excess modes, but rather that extrapo
ing low-frequency information from finite-size models r
quires care. The correct prescription for extrapolation of h
monic information is not known, although we think that w
have found the right one for models ofa-Si.

VII. THERMAL CONDUCTIVITY

In an insulator, heat is carried by thermal vibrations. T
standard Peierls-Boltzmann theory~phonon-gas model! ap-
plies in a glass only at lowT where the thermally excited
vibrations are propagons. In a crystal at lowT the mean-free
path is as big as the sample and the thermal conduct
k(T) varies asT3, following the specific heat. In a glass37

the power law is closer toT2 and requires a special scatterin
mechanism which can give a mean free path of the typl
}1/T. This caused Phillips38 and Andersonet al.39 to intro-
duce the idea of ‘‘two-level systems’’ or ‘‘tunneling sys
tems’’ which resonantly absorb sound waves at a rate p
portional to the imbalance of population of the lower a
upper levels, scaling as 1/T. In a glass at higherT, vibrations
are excited which no longer propagate ballistically, and
phonon-gas model no longer applies. Experimentally ther
a ‘‘plateau’’ in the range 4 to 20 K, followed by an increa
of k(T) which approximately follows the specific heat, sat
rating at higher temperature. Zaitlin and Anderson40 showed
that they could diminishk(T) at the plateau by introducing
dense array of small holes in the sample.

It is often stated that one needs an extremely str
mechanism to scatter propagons in a glass, in order to
k(T) and to enable the plateau to develop. Therefore,
now check whether the Lorentzian broadening seen in
calculations is sufficiently strong to do this. The answer
yes.

The formula for heat conductivity is

k~T!5
1

V (
i

DiC~\v i /2kBT!, ~7!

whereDi is the diffusivity of thei th normal mode of vibra-
tion andC(x) is the specific heat of a harmonic oscillato
C(x)5kB„x/sinh(x)…2. This model works both in the
phonon-gas model whereDQW l5vQW l

2
tQW l/3 ~statesi labeled

by wave vectors!, and in a purely harmonic model whereDi
is given by the vibrational analog of the Kubo-Greenwo
formula derived by Allen and Feldman.1 This latter formula
can be computed using eigenvectors and eigenvalues
finite-size model for those modes whose mean-free pat
smaller than the size of the model. Figure 12 shows the
sults of this calculation~as reported in Ref. 1! for the diffu-
sivity of the normal modes of the 1000-atom model. Al
shown as a solid curve is the phonon gas model, where
fitted formula 1/tQ52G i}Qi

2 is used for transverse
propagons, and it is assumed that transverse and longitu
propagons have the same diffusivity. Notice that the g
model result fits perfectly onto the higher frequency diffus
result, indicating mutual consistency of the two differe
transport theories in the region of overlap 10 meV,v,20
meV.
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Figure 13 showsk(T) calculated by inserting the diffu
sivity from Fig. 12 into Eq.~7!. The theory lies below the
data, as should be the case, since the harmonic decay at
Q andv has been overestimated by usingG}Q2. If we had
used the correct RayleighQ4 law, omitting the effect of
sample boundaries, the low-frequency contribution wo
have diverged. Then introducing anharmonic scattering fr
two-level systems, a finite answer, larger than our resul
Fig. 13 would result. As shown in Ref. 1 a satisfactory fit to
the data can be produced by making appropriate amendm
of this type.

The conclusion is that intrinsic harmonic glassy disord
contained in our finite calculation kills off the heat-carryin
ability of propagons rapidly enough without invoking an
exotic mechanism. Ourk(T) curve is reminiscent of the ex
periments of Zaitlin and Anderson after holes are introduc
to enhance the elastic damping of long-wavelength mod
The plateau disappears from their data in much the same
that it disappears from our theory due to extra damping
small-Q propagons. We should also mention that our pictu

FIG. 12. Diffusivity Di of normal modesversusfrequency for
the 1000-atom model as calculated in Ref. 1, shown as solid d
Note thatDi goes to zero at 72 meV, the mobility edge, below t
top of the spectrum at 82 meV. The low-frequency phonon-
theory result is shown as a solid line and is the diffusivity of lon
wavelength modes,v2t/3, using 1/t52G and takingG from the
smooth curve in Fig. 8.

FIG. 13. The thin solid curve which saturates at lowerT is the
contribution tok from propagons, using the solid curve from Fi
12 for v,6.35 meV. The thin solid curve which saturates at high
T is the contribution tok from diffusons, using the points from Fig
12 for v.6.35 meV. The bold solid curve is the sum. Data at low
T are from Pompe and Hegenbarth~Ref. 41! and at higherT are
from Cahill et al. ~Ref. 42!.
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for the plateau, arising from the crossover between propa
heat currents and diffuson heat currents, is consistent
phenomenological models of Zaitlin and Anderson40 and
Graebneret al.43.

VIII. CONCLUDING REMARKS

The results shown here supplement our earlier work
higher energy properties and provide a comprehensive tr
ment of harmonic vibrations ina-Si. No excess modes ar
seen, and no low-energy localized or resonant modes sur
in the large system limit. Of course, glasses contain lo
energy anharmonic events like two-level system tunneli
which would not be accessible in any of our calculatio
except the molecular-dynamics simulations of Fig. 11. B
experiment and Fig. 11 suggest that such events are
important ina-Si than in other glasses. Our results are
markably similar to a recent harmonic study of low-ener
vibrations ina-SiO2 by Dell’Anna et al.,18 showing that our
conclusions may be fairly general.
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APPENDIX A: DIFFUSONS

In Sec. III we define our terminology which attempts
solve some problems of nomenclature in glasses. We de3

a ‘‘diffuson’’ as a delocalized eigenstate which does n
propagate ballistically over any significant distance, but
stead has an intrinsic diffusivity. The term ‘‘diffuson’’ i
also used in the physics of weakly disordered elect
systems,44 where it denotes the particle-hole propagator,

N~e!D~rW,rW8,t !5E dv

2p
e2 ivt^GA~rW,rW8;e!GR~rW8,rW;e1v!&

~A1!

with N(e) the density of states andGA,R advanced and re
tarded Green’s functions. Over distances shorter than
elastic mean free pathl and times shorter than the invers
elastic scattering ratet,D has ballistic behavior

4pD~rW,rW8,t !'~1/vFt !2d~ urW2rW8u2vFt !u~ t !, ~A2!

while on longer length and time scales it goes to the diffus
form

4pD~rW,rW8,t !'~1/Dt !3/2exp~2urW2rW8u2/4Dt !u~ t !.
~A3!

Here the diffusion constantD5vFl /3 is the Fermi-surface
average of the single-particle diffusivityDk5vk

2tk/3. It de-
termines the conductivity through the Einstein relation
on
th

n
at-

ve
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s
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s5~e2/V!(
k

Dkd~eF2ek!5e2N~eF!D, ~A4!

whereV is the volume. The particle called a ‘‘diffuson’’ in
the present paper can also be called a ‘‘single-particle di
son’’ to distinguish it from the ‘‘particle-hole diffuson.’’ The
two kinds of diffuson bear some relationship. However, o
diffusons haveno ballistic behavior and thus lack any analo
to Eq.~A2!. We believe that a monoenergetic wave packe
our ‘‘single-particle diffusons,’’ initially located near pointrW
at time t50, behaves like Eq.~A3! at later timest and posi-
tions rW8. The diffusivity Di cannot be meaningfully repre
sented asv i

2t i /3 since v i and t i cannot be independentl
defined. Numerically we find thatDi for diffusons is of order
vDa/3 wherea is the interparticle spacing. Also,Di is inde-
pendent of the particular statei, depending only on the en
ergy as seen in Fig. 12. Our Eq.~7! for the heat conductivity
is a close analog of Eq.~A4!.

APPENDIX B: FOURIER REPRESENTATION OF
GLASSY EIGENVECTORS

The vibrations of a system ofN atoms are 3N vectors
uu(t)& whose components are the Cartesian compon
uW n(t)•â of the displacement of thenth atom. The obvious
basis for this vector space is the set of unit vectorsuna&
which ‘‘point’’ in the direction of theath component of the
displacement of thenth atom. That is, they are column vec
tors with a single nonzero entry. Thereforeuna(t)
5^nauu(t)&. On a simple cubic lattice of volumeV5L3

5Na3, there is a unitary transformation to a new orthono
mal basisuQW l& where

^nauQW l&5
1

AN
p̂l~QW !•â exp~ iQW •RW n!. ~B1!

Here p̂l (l51,2,3) is a triad of orthogonal unit polarizatio
vectors which can be chosen at will, andQW lies in the first
Brillouin zone and has componentsQW 5(2p/L)(h,k,l )
which makes the displacements periodic with periodL in
each primitive direction. When the vectorsRW n are chosen to
be the positions of the atoms in the model glass, the tra
formation is no longer unitary because the vectorsuQW l& are
no longer orthonormal. However, the vectors are still in ge
eral complete, so one can define left~L! and right~R! vectors
of a biorthogonal set,

^QW lLuQW l8R&5dQW QW 8dll8 ,

(
QW l

uQW lR&^QW lLu5uQW lL&^QW lRu51, ~B2!
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where the right vector is defined in Eq.~B1! and the left
vector is constructed by inversion of the matrix^nauQW lR&.
Therefore the vibrational eigenstatesu i & can be represente
as

u i &5(
QW l

uQW lL.^QW lRu i &. ~B3!

The quantityu^QW lRu i &u2 can be regarded as the fraction
the normal modei which belongs to wave vectorQW and
s

y

on

.

e

U.

v.

k-

st

n,
polarizationl. The Fourier weights defined in Sec. IV, E
~2! can be rewritten in formal notation as

CT~QW , i![
1

2NQW
(
T,R

u^RQW ,T,Ru i &u2. ~B4!

These are what are plotted in Fig. 4. An alternative solut
to the problem of nonorthogonality of the Fourier amplitud
has been proposed by Schulz and Handrich.45
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