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Exact numerical vibrational eigenvectors and eigenvalues are studied for atomistic models of amorphous
silicon (a-Si) with 216, 1000, and 4096 atoms in the periodic repeat unit. At the lowest frequencies, eigen-
values are sparse and eigenvectors are fairly plane-wave-like. However, some eigenvectors are “quasilocal-
ized” or “resonant.” They are temporarily trapped in local regions of undercoordination. The present paper
finds the following.(1) The “quasilocalized” modes are to a large extent artifacts of the finite size of the
model systems2) The lower energy modes of realistic models in the harmonic approximation are broadened
versions of the corresponding crystalline acoustic vibrations, with fairly well-defined wave végtdree
intrinsic broadening due to glassy disorder increases rapidly @itintil at intermediate frequencies a mean-
ingful Q can no longer be assigne@) The intrinsic broadening due to disorder is strong enough to suppress
thermal conductivity to the level seen experimentally, with no need for special anharmonic effects or local-
ization, except for the influence of two-level systems on the modes at very low frequedgigbere is no
inconsistency between the broadened propagating-wave description of low-energy modes and the occurrence
of “excess modes” in specific heat or in spectra. However, amorphous silicon seems to have very few such
excess modegb) “Excess modes” and the plateau i(T) are not closely related, since the former is absent
and the latter present in both experiment and in our calculationa-8r Our analysis agrees closely with the
recent study of amorphous Si®y Dell’Anna et al. [S0163-1829)08805-(

I. INTRODUCTION eigenvectors and eigenvalues for a 4096-atom mtdel,

whose lowest eigenvalues correspond to a crystaffnat

The glassy phase of silicon is available only in films. (0.125,0,0) with a lowest energy2 meV. By combining
Therefore there are fewer measurements of vibrations thajformation from all three models we propose and test a
for glassy SiQ. However the structural simplicity of this method to extrapolate to the large system limit.
single-component network glass has enabled realistic theo- Experimentally, glasses have several characteristic low-
retical modeling, and we have now microscopic theories ofrequency anomalies, namely) quasielastic scattering at-
vibrational properties such as mode diffusivity and thermakributed to relaxational motion's, (ii) a plateau in thermal
conductivity;”* vibrational equilibratio’;* and thermal conductivity «(T), (iii) excess specific heat or a bump in
expansiorT. At a theoretical level, the vibrations of amor- C(T)/T3, and (iv) excess vibrational modes, or a bump in
phous silicon(a-Si) are quite well understood. These calcu-the density of statesD(w)/w? seen in various spec-
lations are based on exact diagonalization of the dynamicatoscopies. The recent development of inelastic x-ray scatter-
matrix for the harmonic vibrations. The atomic CoordinateSing tools for |ong Wave|engths and low enerdi?e_§5 gives
were built by the Wooten-Weiner-Weair WWW) information which has reinvigorated the long-standing de-

algorith7r26 and resemble closely the measured structurgate about these low-frequency anomalies, and motivates our
factors:*® We use the interatomic force model of Stillinger ywork.

and Weber. The models used so far had 216 or 1000 silicon
atoms in a periodically repeated cell. When eigenvectors are
given periodic boundary conditions, these models have only
sparse information about low-frequency vibrations. The low- Figure 1 shows eigenfrequency distributidhéw) calcu-

est group of nonzero eigenvalues in these models corrdated from three models of different sizes, using the formula
sponds roughly to crystalline transverse-acoustic vibrations

at Q=(27-r/a)(0.333,0,0) and (0.2,0,0) respectively, and 1 Y

have energies=6 meV and~4 meV (a is approximately Dlw)= N E. (0— )2+ 2’ @)

the lattice constant of crystalline silicon, 5.43.AVe did not ! 4

previously attempt to extract information about low-energywhere the broadening is chosen to be somewhat larger than
vibrations from these models. The present paper includethe average level spacing. Except at very low and very high

II. VIBRATIONAL FREQUENCY DISTRIBUTION
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ties are not present. There are also ambiguous terms such as
“phonon” which is sometimes used as a generic term for all
harmonic eigenstates, and sometimes as a specific term for
states which propagate ballistically over a mean free gath
long enough that a wavelength can be definedA>\).

E Finally there is confusion about the distinction between the

E loffe-Regel (I-R) crossover, where’~\ and wave vectors

3 become poorly defined, and Anderson localization. The latter
term refers to a property of certain harmonic eigenstates that

the eigenvectorg(R,) fall off exponentially in magnitude
exp(—|R,—Ry|/£) on a distance scale of a localization

length ¢ from their centerﬁ0 of vibration. In harmonic ap-

FIG. 1. Density of vibrational states @-Si using the three proximation, such states contribute nothing to the heat con-
models. Individual states are represented as Lorentzian lines wituctivity . A sharp mobility edgev. separates these states
widths y=0.5, 0.2, and 0.1 meYsee Eq(1)] for the 216-, 1000-, from extended states. There is no theorem requiring extended
and 4096-atom model, respectively. All three models have a mobilstategwhich probably exist only in dimensionaliy>2) to
ity edge near 72 meV, as can be seen for the 1000-atom model ihave an approximate wave vector. In=1 or 2, the exis-

Fig. 12. tence of an approximate wave vect@=2mx/\ does not
protect a state from localization wit#=>\, butinD=3 an

frequenCies, there is not much information in the Iarger mOdapproximate wave vectos Sufficient(but not necessaW‘[o

els which is not already contained in the 216-atom modelprevent localization.

The three models are very similar in character, but there are Corresponding to these descriptive ambiguities, both ex-

true differences in detail, as should be eXpeCted for ﬁnite'Sizgeriment and Computer simulation have been given diametri-

pieces of a real glass. There is a close similarity to the speally opposite interpretations by researchers looking at es-

tra measured using neutrons by Kamitakeral '® as shown  sentially equivalent information. On the theoretical side, the

in Fig. 2 of Ref. 2. simulation of Guillot and Guisahi is consistent with the

Figure 2 shows the same curves, blown up in the low,galculations of Dell’Annaet al,'® but “excess modes” are
frequency region. The sparseness of low-energy modes igaimed in the former calculation and not in the latter. On the
evident. The specific location of individual modes is aCCidenexperimental side, the data of Foretall® are consistent
tal, but modes tend to cluster in ways which vary predictablyyith those of Masciovecchiet al,*>"**but Foretet al. claim
as the size of the system changes. The aim of this paper is {&/idence for acoustic localization, whereas Masciovecchio
investigate how predictable these features are, and then & a|. see evidence for ballistic propagation. Since the aver-
Ulse the predICtablllty to eXtrapOlate to the infinite Systemage 0ne_partic|e Green’s function' and thus the dynamic
size. structure factor, cannot distinguish Anderson-localized from

delocalized states, Foret al. cannot prove localization. We
Ill. CONTROVERSIES OF INTERPRETATION reinterpret their language to mean that the I-R crossover has
R been seen. This does not have a compulsory relationship to

Lacking a good wave vectd) to label vibrational states, |ocalization.

a theory of glassy vibrations must include new descriptive There is a clean theoretical distinction between localized
terms. The existing glossary contains terms such as “bosoand delocalized modes. For electrons, localization can be
peak” and “fracton” which are poorly chosen since all har- seen experimentally when the Fermi level lies within the
monic vibrations qualify as bosons and since fractal properband of localized states, because then the zero-temperature
conductivity is zero. Conductivity af >0 shows activated
hopping, but not activated number density or thermopower.
For vibrations, experiments which probe the distinction be-
tween localized and delocalized states are not yet designed.
One of the problems is that heat conduction involves the
whole thermal spectrum of vibrations. At low energisng
wavelengths vibrations are delocalized, so there is no pos-
sibility of an Anderson heat insulator.

We believe that a sharper language can diminish these
ambiguities. The term “excess modes” is used here in place
of “boson peak,” and the term “phonon” will not be used.

g We prefe? “vibron” as a generic term for harmonic normal
0.000 & 4 modes, “propagon” for ballistically propagating modes, and
0 2 4 6 8 10 " M >
® (meV) locon” (rather than fractonfor Anderson-localized modes.
There are open arguments about how many other kinds of

FIG. 2. Same as the previous figure except shown enlarged aibron occur in glasses. In our opinidisupported by de-
low frequencies. The dashed line is the transverse phonon densitiled analysis™>*°~?!of a-Si; other workers, e.g., Ref. 22,
of states extrapolated to infinite system size according to®g.  find similar results for other glasgethe I-R crossover lies
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FIG. 3. Eigenvector profile from Ref. 29 of three selected eigen- .
states for the 1000-atom model afSi. R=0 corresponds to the FIG. 4. For the lowest 65 modes of the 4096-atom model, this

atom where the eigenvector has maximum size.FEei0, averages figure shows eigenfrequencies on the horizontal scale with vertical
over approximately spherical shells of atoms are made. The circled1es indicating transverse Fourier weights, Eg), for the. first

are for a typical diffuson, witlw=57 meV and a participation ratio three groups of wave vectorQ=(27/A)(1,0,0), etc. withA
P=500. The squares show a highly localized stateat77 mev ~ =8a being the size of the cell.

and P=6. The filled line is a resonance at=6.5 meV with P
=75, as a function of distance for some selected modesa-8i.
The distinction between localized and delocalized modes is
. . . _clear. The distinction between resonant modes and other de-
fairly |0V\.I.II’] the spectrum, perhaps around 20 meV, \_Nh'lelocalized modes is less sharp and is a matter of judgement.
the mobility edge lies near the upper end, at 72 meV in our Agreeing with earlier work®2we find definite evidence

models. Therefore the majority of modes are neithek, icoiated resonant modes at low frequencyiiite WWW
“propagons” nor “locons.” These intermediate modes con- 1, 4els fora-Si. In recent work on thermal expansiowe
tribute to heat conductivity by a property of intfinsic yicqqyered that these modashich center on undercoordi-
diffusivity;? we calP them “diffusons.” Further discussion nated Si atomshave anomalously large and usually negative

of terminology is In Appendix A. Cahillet al. .have e Grineisen parameters. In this paper we propose a method of
ported a systematic study of thermal conduction of amor-

h hvd d sil il hich i extrapolation to infinite-size samples. According to this ex-
phous hydrogenated silicon films, which provides Stronganoation, the resonant modes become less prominent as the
support for our ideas.

This | furth oo h i dd.sample size increases. In the infinite-size limit of homoge-
. Is leaves open a further question: are there still a heous(no voidy a-Si, the resonant character of these long-
tional types of vibration at lower frequencies? The sparse

f low-f inf on in fini del K wavelength modes is likely to disappear. The Ilow-
ness of low-irequency information in finite models ma EStemperature thermal expansion is affected by these modes
this question challenging to answer numerically. A view ad-

. . and will thus be hard to determine by a finite-size calcula-
vocated by Sokolowet al,?* which we test here, is that the . y

excess modes at low frequency are contained in the propagon
branch and arise from a strong frequency dependence of
damping. Recently Schirmachet al?® found softening of

the transverse-acoustic peak of the vibrational density of To what extent do the low-lying eigenvibrations of our
states as a “generic” consequence of force-constant disoimodels resemble the plane-wave Bloch states of a crystal?
der. A third view holds that other kinds of modes such asTo answer this, we need to Fourier transform the eigenvec-

“resonant modes” coexist with the propagons or lie in ars ¢ (R.) which give the pattern of the displacement vector
band near the I-R crossover. A fourth view attributes excess . . .
modes to anharmonic vibrations in locally soft regiéhé’ on t_he atoR, in normal modd. The elg?ngectzors are nor-
These views are not necessarily mutually exclusive, nor is ifnalized to one over the whole sampk,|(R,)[“=1. Fou-
necessary that a single “universal” view should be equally'ier wave vectors are chosen consistent with the periodic
correct for all glasses. For example, “floppy mod&are ~ behavior of the eigenvectors in our supercell. We define
expected in underconstrained network glasses, but reSin ~ transverse Fourier weights
which is an overconstrained network glass. Our aim is to

IV. DYNAMICAL STRUCTURE FACTOR

2
answer this question for the WWW model afSi. o1 > HAY. 2B ‘AP
. . . C:(Q,)=— RQ)-€(Ry)expiRQ-Ry)| ,
“Resonant modes,” like resonances in scattering theory Q) 2Ng ;R ; er(RQ)- €i(Ry)EXHIRQ- Ry)
or nuclear physics, are delocalized modes which have a large (2

magnitude in a localized region and smaller magnit(lule -

not exponentially dampeelsewhere. The term “quasilocal- WhereT labels two unit vectorg(Q) which are perpendicu-
ized” is sometimes used. If prepared in an initially localizedlar to Q, and allNg vectorsRQ in the “star” of Q are
state, such a vibration will eventually tunnel ofibh har- averaged. The factor of 1/2 compensates for two transverse
monic approximationand propagate or diffuse away. Figure polarization directions. Appendix B discusses further the
3, taken from the Ph.D. thesis of Fabfrshows the behav- meaning of this formula. Figure 4 shows these Fourier com-
ior of the squared magnitude of the vibrational eigenvectoponents for the lowest normal modes of our biggest model.
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FIG. 5. Transverse structure factors, K8), plotted as a solid FIG. 6. Same as previous figure except for the 4096-atom

lines versus frequency for the 1000-atom model and for the lowestnodel. Lorentzian broadening of 0.1 meV is used. At 4.1 meV a
two groups of wave vectors. The delta functions in E3). were  mode occurs which practically coincides with the lowest mode of
broadened into Lorentzians of width 0.2 meV. The dashed lines arthe 1000-atom model, and is similarly quasilocalized. We now be-
Lorentzians, Eq(4) fitted to the solid curves. The vertical lines lieve that this is an accidental coincidence and that all evidence for
starting on the frequency axis give the inverse participation ratios ofuasilocalization of harmonic modes will disappear in larger mod-
the states, showing the quasilocalized or resonant nature of the lovels as long as surfaces and voids are not present.
est eigenstate at 4.2 meV.

peak, but the calculate®; does not have as much weight as

From this figure we see a striking regularity of behaviorLg in the tail (o — wg|>T4).

of the lowest eigenstates. The lowest group of wave vectors Also shown in Figs. 5 and 6 as vertical lines are the in-
is six of the type (2r/A)(1,0,0). In diamond structure sili- verse participation ratid% 1/p; of each mode. This quantity,
con (c-Si) there are 12 corresponding degenerate mésigs discussed in our earlier paperee Ref. 2, Eq3)], measures
wave vectors and two transverse polarizatjoms a-Si we  the degree of spatial localization of an eigenvector. The
find ten closely spaced eigenfrequencies near 3.4 meMnodes of mixed character which lie outside or in between
which are built almost completely from this group of wave the central groups of pure plane-wave modes are typically
vectors, plus two modes at lower frequenci@2 and 3.0 resonances as indicated by the large values pf. lHow-
meV) and two at higher frequencgboth near 3.7 me) ever, these modes are also reasonably well interpreted as
which have mixed character but contain a lot of this lowesffilling in the appropriate tails of Lorentzian response func-
wave vector. The next lowest group,£€2A)(1,1,0), has 12 tions, modulosmall statistical fluctuations to be expected in
TA; and 12 TA modes inc-Si. In Fig. 4 fora-Si, we see as finite systems.
expected that the two polarization types are not split. Twenty
modes bunched near 4.8 meV are almost completely V. INTERPRETATION: RESONANT STATES
(27/A)(1,1,0) in character, and four more nearby have OR PROPAGONS?
more than half of this character, with the tails out in both
directions, especially to higher frequency. Further groups of The eigenstates below and in between the pure plane-
wave vectors show similar behavior, with bunches of correwave groups are quasilocalized or resonant; this is shown in
sponding glassy modes, but less and less narrow in thelrig. 3 for a resonant mode which appears in Fig. 5 as a large

frequency distribution. 1/p; at 6.5 meV. However, the evidence of Figs. 4, 5, and 6
Motivated by the x-ray structure factor, we define a quanslus further considerations given below lead us to believe
tity that the resonant nature of this and similar states is an artifact

of the finite size and will diminish in importance as the size
R R of the system increases.
SHQ.0)=2 Cr(Q,D)d(w—w). € The Lorentzian fit of Eq.(4) gives three parameters,
' wg, ', and Ag which characterize groups of normal
The corresponding longitudinal quantity is almost exactlymodes. Figures 7, 8, and 9 show these parameters plotted
what is measured by inelasticray or neutron scattering. VersusQ. The evolution withQ is smooth. Especially the

Graphs of these functions for the lowest few groups of wavdr€quencyeq is well behaved, yielding a transverse sound
vectors are shown in Fig. 5 for the 1000-atom model and irvelocity of 3570 m/s. This agrees closely with the value 3670
Fig. 6 for the 4096 atom model. The result is surprisingly™/s calculated independently for the same model by Feld-

smooth and symmetrical. A Lorentzian line manet al3! and cited in Ref. 2. There is a rigorous sum rule
2wl dewST(Q,w)=l=z CH(Q,i), (5
Lo(w)=AgIm ——5—— 4 0 7T
w _w(j_“”FQ

which for smallerQ is well-fulfiled by the lowest 200
has been fitted to each structure function and is shown in thél.6%) of the modes as shown by the filled circles and solid
figures as dashed lines. The fits are reasonably good near thee in Fig. 9. The corresponding Lorentzian line should then
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FIG. 7. Central frequency)o Vversus wave Vectc@ as extracted FIG. 8. Full WldthFQ at half maximum of the Lorentzian fits to

from the transverse structure factors shown in Figél@O0-atom the transverse structure factors. The solid line corresponds to the
model, filled squarésand 6(4096-atom model, filled circldsThe ~ formulaT'o=0.21 meVQA/2m)?.
line corresponds to a transverse sound velocity of 3570 m/s. ]

seem to occur in homogeneous network models of the

WWW t hich model idealized h Si.
haveAq=1 if the sum rule is exhausted by the Lorentzian ype Which modet idealized homogeneaus!

part of the spectral function. There are fluctuations of order
10% in the numerical values &g as shown in Fig. 9. One

can attribute the irregularities dfy and Ag to expected Many glasses show two kinds of anomalies in specific
statistical fluctuations. There is also a systematically largeheat, (i) linear behavioryT at T<1 K, and (ii) excess spe-
spectral weight in the Lorentzian areg than in the com- cific heat appearing as a greater bulge IC@r)/T3 vs T
puted spectral function, because in order to fit the peak, theurve than occurs in a corresponding crystal. The small
Lorentzian is overestimating the size of the tails. sample size and larg®, of a-Si makes measurements dif-
Notice that the resonant mode at 6.5 meV in the 1000ficult. The measurement of Mertigt al3? shows thaty, if
atom modekFig. 5) is not resonant in the 4096-atom model present, is significantly smaller ia-Si than in SiQ. It is
(Fig. 6). This mode is in a gap between the Lorentzian struccustomary to attribute theT behavior to two-level systems.
tures centered at 5.5 and 7.7 meV in Fig. 5, whereas Fig. Bleasurements of internal friction by Liet al** did find a
has Lorentzian structures centered at 5.8 and 6.7 meV, leafdeasureable density of two-level systems in pure amorphous
ing little gap for a state which does not “belong” to one of Silicon, but none in an hydrogenated sample. The measure-
the plane-wave-like Lorentzian groups. Figure 8 shows thafent of Mertiget al. also shows thaC(T)/T® versus Tis
bigger models have widths of Lorentzian groups essentiallpimilar to crystalline Si except with a reducex}, (from 645
as wide as smaller models. Therefore when models becon@ 228 K and with the bulge setting in at lowar (centered

. 21, . at 25 rather than 40 K This indicates no thermally signifi-
bigger and smal|Q|'s become less sparse, Lorentzians of ., ey cess modes. Raman experiniéitsalso fail to find
fixed width will overlap increasingly, and can force out the

! - - ] excess modes ia-Si. Our normal mode calculations agree
resonant states which otherwise would inhabit the gaps. FQjjth this finding provided extrapolation to infinite size is
|Q| of order 1L there will always be gaps, no matter how made in a conservative fashion suggested by the results of
big the systeni (see for instance the region near 4.1 meV inthe previous section.

Fig. 6 where a resonance occyisut these gaps drift toward

|Q|=0 andw=0 asL increases. Therefore the distinction
between special frequencies lying in gaps, and other frequen- .
cies lying in Lorentzian peaks, must disappeak &screases. i
There are two possibilities: either resonant behavior entirely
disappears, or else it remains in a diluted form and is shared
uniformly by all the normal modes. That is, at any given
frequency there may be isolated parts of a large sample
which are particularly sensitive to oscillation at just this fre-
guency and temporarily trap selected traveling waves of this
frequency. If this behavior is found for all normal modes,
then any one normal mode will be freely propagating almost 0.8 \ . \
everywhere, and it becomes a subtle matter of definition or 60 05 10 15 20 25
taste whether they should be called resonances at all. QA2n

Real glasses are less homogeneous than a large WWW giG. 9. Sum-rule fulfillment, Eq(5) (right-hand versionfrom
network model, with internal voids. These will interact with the lowest 200 normal modes’ shown as filled Circ|eS, and axsas
long-wavelength modes in a fashion which we cannot predictinder the fitted Lorentziandleft-hand version shown as filled
from our calculations. Therefore, we cannot argue that resosquareg4096-atom modgland diamond$1000-atom modél The
nances do not occur in real glasses, only that they do naturve corresponds to the formula-D.0054Q A/21)%.

VI. SPECIFIC HEAT AND EXCESS MODES

Spectral Weight

o
©
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FIG. 10. Circles are measured valuesQifT) taken from Ref. FIG. 11. Vibrational density of states by molecular dynamics

32. Calculations shown as the bold solid line use harmonic theorg?agged lines compared with exact diago_nalizaticﬁﬂmggth lines
and the calculated density of states of Fig. 1 for6.35 meV or the smallest and largest models. A ratidffw) to * is shown

(4096-atom modeland ®, =450 K (Ref. 31 for w<6.35 meV. in order to compare with a Debye model. The 216-atom model
gives the false impression of excess modes near 10 meV energy.

) L The vertical scale is arbitrary and has been shifted to separate the
The most conservative extrapolation is to argue that thergyrves; logs are base 10 andis in meV.

are normal propagating modes at low frequencies whose
spectrum, as in a crystal, is determined by the Debye teming the discrepancy with experiment seen in Fig. 10 by 20%.
perature. Using the calculated elastic propetties =7640  Thus we think that the most conservative extrapolation is
m/s andvt=3670 m/s, we get a theoretic@dy for our  also the most reliable.
model of 450 K. This is lower than the measured value 528 Sokolovet al?* have shown that the density of states ob-
K of Mertig, presumably because of errors of the Stillinger-tained from the extrapolation of E¢6) can exhibit a bump,
Weber interatomic forces. Using this extrapolation, the thethat is, excess modes, if the widlh, varies rapidly enough
oretical specific heat is compared with experiment in Fig. 10with Q. We have verified this and find it a plausible route to
The disagreement simply correlates with the discrepancy ibtain the excess modes seen in many glasses. However, our
Debye temperatures. values ofl' shown in Fig. 8 do not vary rapidly enough to
A less conservative extrapolation is to use not just theproduce such an effect, consistent with the experimental
central frequency but also the width of the spectral functionginding of no excess modes @mSi.
calculated from the eigenvalues and eigenvectors in Sec. IV. Schirmacheret al?® proposed that excess modes result
The simplest formula is from a generic harmonic softening associated with force-
constant disorder. Our model of amorphous silicon has such
a softening, with the TA phonon peak T ) shifted from
Diw)= [25:(0,0)+S.(0,0)] ~25 meV in crystalline(see Fig. 4 of Liet al*) to ~20
) meV in amorphous Si. However, this does not yield excess
L\3 (oo modes szhseer;] in s||3§cific he;]at, S0 Ivve think that generic soft-
) 2 TR ening, although real, is not the explanation.
(277) fo 4mQ7dQ[2Lo(w) +longitudinal part, Yet another way to obtain a density of states was used by
Guillot and Guisarti to find excess modes &-SiO,. They
did classical molecular-dynamics simulations and made a
Fourier transform of the velocity-velocity correlation func-
whereL o(w) is given in Eq.(4). The first version would be tion. Since their conclusions differ from those of
rigorous if the Fourier states formed an orthonormal basisDell’Anna'® while their model should be similar, we have
This is not true in a glass, as explained in Appendix B. Thechecked this method oaSi. Our results are shown in Fig.
second version enables a smooth extrapolation at the cost ¢fi.. Our simulations were run at 30 K where atomic diffusion
additional error. To implement Eq6) one must know the was negligible. The densities of states for both the 216-atom
correctQ dependence of 5. As shown in Fig. 8, the fitted model and the 4096-atom model were essentially identical to
values scatter too much to guide the extrapolation well. Irthose of Fig. 1 obtained by exact diagonalization of the same
principle, at very smallQ one should get a forrﬁQ:CQ4 models. This indicates that anharmonic effects were small
which corresponds to Rayleigh scattering of sound wavegnough not to show up, yet large enough to permit vibrations
from the structural disorder. The data of Fig. 8 do not fit ato reach thermal equilibrium. The main point of Fig. 11 is
Q* law; theQ? curve shown in the figure is a better fit. Two that the 216-atom model shows a bump near 10 meV which
experiments>*?® (but not a third®) and one calculatiofi on s a size effect not appearing in the calculation of the 4096-
a-SiO, have also giverd «Q?. We do not know a theory atom model. This bump is pretty much the same as the fea-
which can give this law in a harmonic model. Usidy ture seen in Ref. 17 near 50 chon a sample containing
«Q?, we recalculatedC(T)/T® by the extrapolation of Eq. 216 SiQ molecules. Therefore, we believe that their excess
(6). This enhances the density of states and the consequemipdes(“boson peak’) is a finite-size artifact. Since excess
specific heat by about 20% above the Debye value, increasnodes are known experimentally axSiO, (although it is

(6)
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not known if they are harmoniour point is not that existing 6
models fail to show excess modes, but rather that extrapolat-
ing low-frequency information from finite-size models re-
quires care. The correct prescription for extrapolation of har-
monic information is not known, although we think that we
have found the right one for models afSi.

2

Diffusivity (mm°/s)
'S

N
T

VIl. THERMAL CONDUCTIVITY

In an insulator, heat is carried by thermal vibrations. The
standard Peierls-Boltzmann theofyhonon-gas modglap- s
plies in a glass only at loWw where the thermally excited 0
vibrations are propagons. In a crystal at [dwhe mean-free Energy (meV)
path is as big as the sample and the thermal conductivity
x(T) varies asT?, following the specific heat. In a gla¥s
the power law is closer t®? and requires a special scattering

100

FIG. 12. Diffusivity D; of normal modessersusfrequency for
the 1000-atom model as calculated in Ref. 1, shown as solid dots.

mechanism which can give a mean free path of the #pe Note thatD; goes to zero at 72 meV, the mobility edge, below the
9 P P top of the spectrum at 82 meV. The low-frequency phonon-gas

1T Th|§ caused“Phllllﬁg and Anderforetnal.e‘g to_lntro— theory result is shown as a solid line and is the diffusivity of long-
duce”the .|dea of “two-level systems” or “tunneling sys- wavelength modes;27/3, using 1#=2T" and takingl' from the

tems which respnantly absorb sound_ waves at a raté progyooth curve in Fig. 8.

portional to the imbalance of population of the lower and

upper levels, scaling asTl/ In a glass at high€F, vibrations Figure 13 shows¢(T) calculated by inserting the diffu-

are excited which no longer propagate ballistically, and thesivity from Fig. 12 into Eq.(7). The theory lies below the
phonon-gas model no longer applies. Experimentally there igata, as should be the case, since the harmonic decay at small
a “plateau” in the range 4 to 20 K, followed by an increase Q @ndw has been overestimated by usifig Q. If we had

of x(T) which approximately follows the specific heat, satu-Used the correct RayleigR* law, omitting the effect of

rating at higher temperature. Zaitlin and Andefshowed ~Sample boundaries, the low-frequency contribution would
that they could diminish(T) at the plateau by introducing a Nave diverged. Then introducing anharmonic scattering from
dense array of small holes in the sample two-level systems, a finite answer, larger than our result in

It is often stated that one needs an extremely strond 9 13 would result. As shown in Ref a satisfactory fit to
mechanism to scatter propagons in a glass, in order to fi e data can be produced by making appropriate amendments

f this type.
«(T) and to enable the plateau to develop. Therefore, we The conclusion is that intrinsic harmonic glassy disorder

now chgck whethgr .the Lorentzian broad.ening seen in OUontained in our finite calculation kills off the heat-carrying
calculations is sufficiently strong to do this. The answer 'Sability of propagons rapidly enough without invoking any
ye‘f’l;h f la for h ductivity i exotic mechanism. Ou(T) curve is reminiscent of the ex-
& formula for heat conductivity is periments of Zaitlin and Anderson after holes are introduced
to enhance the elastic damping of long-wavelength modes.
1 The plateau disappears from their data in much the same way
k(M=gy Z DiC(fwil2KgT), D that it disappears from our theory due to extra damping of
small-Q propagons. We should also mention that our picture

whereD; is the diffusivity of theith normal mode of vibra-
tion andC(x) is the specific heat of a harmonic oscillator, 1.0
C(x) =kg(x/sinhk))2. This model works both in the

phonon-gas model Whelﬁ@=vé)\7@\/3 (statesi labeled - 0.8
by wave vectors and in a purely harmonic model wheg E 0.6
is given by the vibrational analog of the Kubo-Greenwood = ’
formula derived by Allen and FeldmadriThis latter formula 2 04
can be computed using eigenvectors and eigenvalues of a

finite-size model for those modes whose mean-free path is 0.2
smaller than the size of the model. Figure 12 shows the re-

sults of this calculatiorfas reported in Ref.)ifor the diffu- 0.0
sivity of the normal modes of the 1000-atom model. Also
shown as a solid curve is the phonon gas model, where the

fitted formula .Mf'szriochz is used for transverse £ 13 The thin solid curve which saturates at loweis the
propagons, and it is assumed that transverse and longitudingyntribution tox from propagons, using the solid curve from Fig.
propagons have the same diffusivity. Notice that the gasi for w<6.35 meV. The thin solid curve which saturates at higher
model result fits perfectly onto the higher frequency diffusonT is the contribution toc from diffusons, using the points from Fig.
result, indicating mutual consistency of the two different12 for »>6.35 meV. The bold solid curve is the sum. Data at lower
transport theories in the region of overlap 10 m&ew<20 T are from Pompe and HegenbariRef. 41 and at highefT are
meV. from Cahill et al. (Ref. 42.

0 100 200 300
Temperature (K)
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for the plateau, arising from the crossover between propagon ) )
heat currents and diffuson heat currents, is consistent with o=(e /Q); Dyd(er—e)=e“Mep)D,  (A4)
phenomenological models of Zaitlin and Ander&band

Graebnert al*. _ _ _ .
where() is the volume. The particle called a “diffuson” in

the present paper can also be called a “single-particle diffu-
son” to distinguish it from the “particle-hole diffuson.” The
The results shown here supplement our earlier work oriwo kinds of diffuson bear some relationship. However, our
higher energy properties and provide a comprehensive treatliffusons haveno ballistic behavior and thus lack any analog
ment of harmonic vibrations ia-Si. No excess modes are to Eq.(A2). We believe that a monoenergetic wave packet of
seen, and no low-energy localized or resonant modes survivsur “single-particle diffusons,” initially located near point
in the large system limit. Of course, glasses contain low-t timet=0, behaves like Eq(A3) at later timeg and posi-
energy anharmonic events like two-level system tunnelingyjons /7, The diffusivity D; cannot be meaningfully repre-
which would not be accessible in any of our calculatlonsSentecl aa;izri/S sincev; and 7, cannot be independently

except the molecular-dynamics simulations of Fig. 11. BOthdefined. Numerically we find thdd; for diffusons is of order

experiment and Fig. 11 suggest that such events are less . , i . g
) . . . a/3 wherea is the interparticle spacing. Als@); is inde-
important ina-Si than in other glasses. Our results are re- D P P 9 Q;

markably similar to a recent harmonic study of Iow-energypendent of the particular statedepending only on the en-
vibrations ina-SiO, by Dell’Anna et al,*® showing that our ergy as seen in Fig. 12. Our Bq) for the heat conductivity

conclusions may be fairly general. is a close analog of EqA4).

VIll. CONCLUDING REMARKS
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APPENDIX A: DIFFUSONS =(nalu(t)). On a simple cubic lattice of volumg=L3

= 3 1 i 1 -
In Sec. Ill we define our terminology which attempts to Na®, there is a unitary transformation to a new orthonor

solve some problems of nomenclature in glasses. We definénal basis|Q\) where
a “diffuson” as a delocalized eigenstate which does not
propagate ballistically over any significant distance, but in-

stead has an intrinsic diffusivity. The term “diffuson” is 1
also used in the physics of weakly disordered electron (na|QN)=—p,(Q)- e exp(iQ-Ry). (B1)
systemg” where it denotes the particle-hole propagator, VN

Me)D(F, I t)= J d_wefiwt<GA(F7r_’r;E)GR(Fr7F;6+w)> Herep, (A=1,2,3) is a triad of orthogonal unit polarization
2m vectors which can be chosen at will, a@lies in the first

Brillouin zone and has component@=(2w/L)(h,k,l)
which makes the displacements periodic with perlodn

with Ae) the density of states an@"® advanced and re- each primitive direction. When the vectdsg are chosen to
tarded Green'’s functions. Over distances shorter than thge the positions of the atoms in the model glass, the trans-
elastic mean free path and times shorter than the inverse
elastic scattering rate,D has ballistic behavior

(A1)

formation is no longer unitary because the vecﬂ@s) are

no longer orthonormal. However, the vectors are still in gen-
eral complete, so one can define Igf} and right(R) vectors

of a biorthogonal set,

while on longer length and time scales it goes to the diffusive
form

A7D(r,r' )~ et)28(Ir—r'|—vet) 6(1), (A2)

r S INLIQN'R)= 866/ Sn ' »
47 D(r,r' ,t)~(1/Dt)¥2exp(—|r—r'|?/4Dt) 6(t). (QNL|QN'RY= 656 6yn

(A3)
Here the diffusion constar®® =v(//3 is the Fermi-surface
average of the single-particle diffusiviy,=v2/3. It de- > |OARY(QNL|=|OALY(OAR|=1, (B2)
termines the conductivity through the Einstein relation Qx
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where the right vector is defined in E@B1) and the left

vector is constructed by inversion of the mat¢ixa|QAR).
Therefore the vibrational eigenstatg$ can be represented
as

liy="2 |QAL>(Q\R]i). (B3)
QM

The quantity|(Q\R]i)|? can be regarded as the fraction of

the normal modd which belongs to wave vecto@ and

NUMERICAL STUDY OF LOW-FREQUENCY VIBRATIONS . ..
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polarization\. The Fourier weights defined in Sec. IV, Eq.
(2) can be rewritten in formal notation as

N (B4)

5 1 - )
Cr(Q.)=——2 [(RQ,T.RI)I.
2Ng TR
These are what are plotted in Fig. 4. An alternative solution
to the problem of nonorthogonality of the Fourier amplitudes
has been proposed by Schulz and Handfttch.
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