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Quasiharmonic free energy and derivatives for three-body interactions
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Quasiharmonic lattice dynamics applied to crystals of atoms interacting via general rotationally and trans-
lationally invariant short-ranged three-body forces is considered. Expressions for the static energy and its first
and second derivatives, and the free energy and its first derivatives, are presented, where the differentiation is
with respect to internal~atomic positions! and external~macroscopic deformation! strains. Some results of
applying the theory toa quartz are given. The paper extends the work of Tayloret al. @M. B. Taylor et al.,
Phys. Rev. B56, 14 380~1997!# in which more careful consideration of the basic theory has been given, and
detailed expressions for pairwise short-ranged and Coulombic interactions were presented.
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I. INTRODUCTION

In principle, lattice dynamics is an attractive route for t
theoretical calculation of the thermodynamic properties
crystals with periodic symmetry.1 Quantum effects are
readily taken into account and the method does not rely
long runs for high precision. Unstable vibrational modes p
vide a sensitive test for interionic potentials and interpre
tion of the normal modes is straightforward, revealing,
example, the mechanisms of phase transitions or therma
pansion. Given the optimized geometry of a crystal, calcu
tions of the free energy, heat capacity, thermal expans
and other equilibrium thermodynamic properties is rapid a
accurate.2 The kinetic barriers and critical slowing-down e
fects suffered by Monte Carlo~MC! and molecular dynamics
~MD! techniques are avoided. Not only does lattice dynam
allow the calculation of equilibrium structures of crystals
a function of temperature and pressure, but it is also a v
efficient route to the free energy of particular configuratio
of disorderedsolids. This is the basis of a recently propos
methodology3 for obtaining the free energy of disordere
solids, which is quite different from standard approaches7,8

Not only can the new methodology prove much less exp
sive than classical MC and MD simulations, but it can a
be used below the Debye temperature where these fail du
their neglect of quantum effects.

With lattice dynamics the bulk of the computational effo
is generally expended in the optimization problem of findi
the equilibrium geometry of the crystal9 at a given tempera
ture and pressure. For efficient optimization it is necessar
use the derivatives of the appropriate thermodynamic po
tial with respect to the geometrical coordinates~or strains!.
Until very recently the small number of existing genera
available lattice dynamics codes4–6 either neglected vibra
tional contributions to these derivatives or generated th
numerically, which is prohibitively expensive for large un
cells with many internal coordinates. In Ref. 1 we develop
the general theory, using lattice statics and lattice dynam
PRB 590163-1829/99/59~1!/353~11!/$15.00
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within the quasiharmonic approximation, for theanalytic
calculation of the free energy and its first derivatives w
respect to parameters of the crystal geometry. Careful c
sideration was also given to the problem of the best use
these quantities to perform the full structure optimization
systems with large unit cells containing hundreds of io
Detailed expressions were presented1 for all the lattice sums
required for particles assumed to interact via long-rang
Coulomb forces and arbitrary short-ranged spherically sy
metric pair potentials. These expressions have formed
basis for a new code10 developed at Bristol designed for th
efficient study of periodic structures with many intern
strains. Applications to ionic solids have included phase tr
sitions in MgF2 ,11 defect free energies,12 surface energies,13

and the thermal expansion of complex oxides.13

Although most simulations in solid-state physics ha
used pairwise interatomic potentials, it is clear that thr
body forces play an important role in the dynamics and s
bility of many systems. Three-body interactions are very i
portant for instance for compounds containing polyatom
ions such as silicates14 and sulphates15 and are an essentia
part of the force fields for organic systems.16 In this paper we
present the additional expressions required for general sh
ranged three-body potentials, and give an example of
application of the theory to a silicate material.

We do not repeat here the details of the discussions g
in Ref. 1, but in the next section we summarize the essen
points of the general theory of quasiharmonic free-ene
minimization needed for our present purposes. In Sec. III
expressions required for calculating the free energy and
derivatives, assuming a general three-body potential, are
sented and the final expressions for an example pote
form are given. Since derivation of these formulas is tim
consuming and error prone, we have taken care to pre
here, in a form that requires a minimum of additional alg
braic work, all the expressions required for efficient imp
mentation of the theory in a computer program. Finally, S
IV presents the results of applying the theory toa quartz.
353 ©1999 The American Physical Society
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II. THEORETICAL BACKGROUND

A. Crystal geometry

Geometrical optimization of a crystal structure involv
finding the most stable state given a set of thermodyna
constraints, and hence the minimization of the appropr
thermodynamic potential. At finite temperatureT and fixed
volumeV the appropriate potential is the Helmholtz free e
ergy F. At temperatureT under an applied hydrostatic pre
sureP0 the appropriate potential is an availabilityG̃, defined

G̃5F1P0V5Fstat1Fvib1P0V, ~1!

whereF has static and vibrational partsFstat and Fvib , re-
spectively. In order to proceed further,F must be expresse
as a function of the geometrical parameters, or coordinate
a configuration space, of the structure, with respect to wh
it can be minimized. These coordinates may be classi
into two types:externalones that describe macroscopic d
formation of the crystal, andinternal ones that describe th
positions of the atoms within the crystal lattice.

The positions of all the particles~which in a shell model17

may be massive ‘‘cores’’ or massless ‘‘shells’’! in a macro-
scopically strained crystal may be given by Cartesian co
dinates

r ix
a 5(

g
~dag1eag!~xg1r i

g!, ~2!

where Greek superscripts are Cartesian indices 1, . . . ,3 ~as
throughout this paper!, x is a lattice vector of the unstraine
crystal labeling a unit cell,i 51, . . . ,n is an index that labels
a specific particle within a unit cell, anddab is the Kronecker
delta. Components of the tensoreab are then a set of externa
strains that determine both the orientation and the ma
scopic state of strain of the crystal.18 The vector component
r i

a are internal coordinates determining the positions of p
ticles within a unit cell.

It can be convenient, if a symmetrical structure is be
considered, to define the coordinatesri in terms of a set of
offsets of magnitudewm in directionshm,i from base posi-

tions r° i :

r i
a5r° i

a1(
m

wmhm,i
a ~3!

or, equivalently, expressing the directions as vectorsgm,i in
unit cell space,

r i
a5r° i

a1(
m

wm~gm,i
1 a1

a1gm,i
2 a2

a1gm,i
3 a3

a!, ~4!

wherea1 ,a2 ,a3 are the unit-cell vectors. In this way it ma
be possible to parametrize the state of internal strain of
crystal using considerably fewer than the 3n23 coordinates
that would otherwise be required. An example of such
rameterization is given in Sec. IV.

If the vector of derivatives of the free energy with respe
to all the strains of interest can be generated then var
methods may be used to iterate towards a free-energy m
mum. The function can of course be differentiated nume
cally, but this is prohibitively slow for large unit cells. I
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Secs. II B and III we show how the free-energy derivativ
can be generated analytically. The method we have foun
be most efficient is a variant of the quasi-Newton metho19

that uses the static-energy Hessian as an approximatio
the free-energy Hessian, and we therefore give express
below for the static second derivatives as well as the st
and dynamic first derivatives. Parametrization of the crys
structure, and the optimization algorithms, are discusse
more detail in Refs. 1 and 10.

B. Lattice dynamics

The static energyC of an entire crystal as defined in Se
II A is assumed to be a function of the positionsr ix of the
particles comprising the crystal. Each particlei will be either
a core of massmi.0 or a shell of massmi50. Information
about the restoring forces acting on each ion is given by
matrix B(q), defined as the Fourier transform of the seco
derivatives of the energy with respect to particle positio
Assuming translational invariance of the crystal,B(q) can be
written

Bi j
ab~q!5(

x
eiq•x

]2C

]r i0
a ]r j x

b
. ~5!

In this section we use Greeksubscripts to refer to Cartesian
components of particle positions, i.e., each represents a
of indices such asi

a such that the coordinates ranged over a
those of certain types of particle:x , x8 , . . . are cores
only, s , s8 , . . . are shells only, andt , t8 , . . . are both
cores and shells. Additionally,mx is the mass of the particle
corresponding to the coordinatex. Equation~5! can there-
fore be expressed instead as

Bxx8~q!5(
x

eiq•x
]2C

]r x0]r x8x

. ~6!

We consider first the situation~rigid ion! in which there are
only cores and no shells. In this case@here and subsequentl
the (q) dependence is implicit# thedynamical matrix Dmay
be constructed20,21 from B:

Dxx85mx
21/2Bxx8mx8

21/2. ~7!

Then solving the characteristic equation

(
x8

Dxx8 f x8,x95vx9
2 f x,x9 ~8!

gives the set of 3n vibrational frequenciesvx9 allowed in the
crystal for each wave vectorq, and their associated eigen
vectorsfx9 . First order perturbation theory can then be a
plied to yield the derivatives of the eigenvalues:

@vx
2#85(

tt8
bt,x* Btt8

8 bt8,x ~9!

where a primed quantity~other than an index! indicates the
derivative of that quantity with respect to a general stra
and wherebt,x8 is the mass-adjusted eigenvector

bt,x85bx,x85 f x,x8mx
21/2. ~10!
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From the frequenciesvx(q) and their strain derivatives it is
then straightforward to obtain the vibrational parts of the f
energy at a wave vectorq and its strain derivatives. Integra
ing numerically over the Brillouin zone then gives the qua
tities required for geometrical optimization.1

This theory may be extended to the shell-model case,17 in
which some of the particles have zero mass, by making
changes to these expressions: the frequencies are obt
from Eq. ~8! if Eq. ~7! is generalized to

Dxx85mx
21/2FBxx82(

ss8
BxsBss8

21 Bs8x8Gmx8
21/2 ~11!

and the frequency derivatives are obtained from Eq.~9! if
Eq. ~10! is generalized by defining also elements for the sh
coordinates:

bt,x85S bx,x8

bs,x8
D 5S f x,x8mx

21/2

2 (
s8x9

Bss8
21 Bs8x9 f x9,x8mx9

21/2D .

~12!

This discussion, although less thorough, is equivalen
the one given in Ref. 1; expressions~9! and~12! however are
somewhat more elegant than Eqs.~32! and ~34! from that
paper.

III. THREE-BODY INTERACTIONS

A. Theory for general interaction form

The theory developed in Ref. 1 and applied there to p
wise interactions can also be used to treat three-body in
actions. The static energy per unit cell of a translationa
invariant crystal of infinite extent may be written in terms
two- and three-body translationally invariant potentialsf̂

and ẑ, respectively, as

Fstat5F21F35(
x

(
i j

f̂ i j ~r i0 ,r j x!

1(
xy

(
i jk

ẑ i jk~r i0 ,r j x ,r ky!. ~13!

The pairwise part ofFstat, F2 , is treated in Ref. 1; for the
rest of this paper we concern ourselves only with the thr
body partF3 . Assuming additionally rotational invarianc
of the interactions,F3 may be expressed without loss
generality:

F35(
xy

(
i jk

z i jk S r 1F0 x y

i j k G ,r 2F0 x y

i j k G ,
cosuF0 x y

i j k G D
[(

xy
(
i jk

zF0 x y

i j k G , ~14!

where
e

-

o
ned

ll

o

r-
r-

y

-

r1F0 x y

i j k G5r j x2r i0 , ~15!

r2F0 x y

i j k G5r ky2r i0 , ~16!

cosuF0 x y

i j k G5

r1F0 x y

i j k G•r2F0 x y

i j k G
r 1F0 x y

i j k G r 2F0 x y

i j k G . ~17!

It is helpful to label the arguments of the functionz as the
elements of a vectorz:

S z1

z2

z3

D [S r 1

r 2

cosu
D . ~18!

Here and subsequently, where the bracketed sextuples
been omitted for clarity they are assumed to be

F0 x y

i j k G .
Then if we define the partial derivatives ofz using the nota-
tion

Z5z, Za5
]z

]za
, Zab5

]2z

]za]zb
, . . . , ~19!

first and second derivatives of the potential with respec
arbitrary strainsEA are given by

]z

]EA
5(

a
Za

]za

]EA
, ~20!

]2z

]EA]EB
5(

a
Za

]2za

]EA]EB
1(

ab
Zab

]za

]EA

]zb

]EB
. ~21!

In this way different forms of interaction can be imple
mented by the relatively straightforward use of Eq.~19! to
generate different geometric derivatives ofz. The general
part of the derivative expressions (]nz/]E n) on the other
hand need be derived only once regardless of the form
~translationally and rotationally invariant! three-body inter-
action.

The derivatives ofz with respect to internal strains con
tain many Kronecker delta functions, since

zF0 x y

i j k G
will depend onru

a only in the case thatu is equal to one ofi,
j, or k. It is convenient to define a set of quantities by fa
torizing out the delta functions where they occur in some
the required expressions. These quantities (B,G, . . . ), ex-
pressions for which are given later@Eqs.~51!–~58!#, are de-
fined as follows:
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S ]2cosu

]ru
a]rv

bD
0

5(
LM

DuLDvMBLM
ab , ~22!

S ]z

]ru
aD

0

5(
L

DuLGL
a , ~23!

S ]z

]emnD
0

5Pmn, ~24!

S ]2z

]ru
a]emnD

0

5(
L

DuLHL
amn , ~25!

S ]2z

]emn]estD
0

5Qmnst, ~26!

S ]2z

]ru
a]rv

bD
0

5(
LM

DuLDvMDLM
ab , ~27!

S ]DLM
ab

]r t
g D

0

5(
N

D tNELMN
abg , ~28!

S ]DLM
ab

]emn D
0

5FLM
abmn , ~29!

where subscripts

F0 x y

i j k G
as usual are implicit on everything except the differentiat
variables and the summation variables, and the symbol0
indicates that derivatives are taken at zero external st
(emn50). In the above each of the summation variab
takes the values 1 and 2, andD is defined in terms of Kro-
necker deltas:

DuL[DuLF0 x y

i j k G5H du j2dui , L51

duk2dui , L52.
~30!

In the final quantities of interest many of the delta functio
are eliminated by thei , j ,k summations required forF3 and
its derivatives. This also eliminates some of the summati
so that the resulting expressions can be calculated more
ficiently. For example, using Eqs.~14! and ~23! the deriva-
tive of the static energy with respect to internal strains is

S ]F3

]ru
a D

0

5(
xy

(
i jk

S Du1F0 x y

i j k GG1
aF0 x y

i j k G
1Du2F0 x y

i j k GG2
aF0 x y

i j k G D . ~31!

Because of the delta signs~30! the computation is reduce
from a triple to a double summation over particles in the u
cell:
n
)
in
s

s

s
ef-

it

S ]F3

]ru
a D

0

5(
xy

S (
ik

G1
aF0 x y

i u kG2(
jk

G1
aF 0 x y

u j kG
1(

i j
G2

aF0 x y

i j u G2(
jk

G2
aF 0 x y

u j kG D
~32!

5(
xy

(
i j

S G1
aF0 x y

i u j G1G2
aF0 x y

i j u G
2G

*
a F 0 x y

u i j G D , ~33!

where we have introduced a notation in which a subscrip
* indicates a summation of the terms formed by replacing
by a 1 and a 2, so that for instance,

G
*
a F0 x y

i j k G[G1
aF0 x y

i j k G1G2
aF0 x y

i j k G , ~34!

E
* 2*
abg F0 x y

i j k G[E121
abgF0 x y

i j k G1E122
abgF0 x y

i j k G
1E221

abgF0 x y

i j k G1E222
abgF0 x y

i j k G .
~35!

Similar manipulations may be applied to Eqs.~24!–~27! to
give expressions for the other static energy derivatives
follows:

S ]F3

]emnD
0

5(
xy

(
i jk

PmnF0 x y

i j k G , ~36!

S ]2F3

]emn]estD
0

5(
xy

(
i jk

QmnstF0 x y

i j k G , ~37!

S ]2F3

]ru
a]emnD

0

5(
xy

(
i j

S H1
amnF0 x y

i u j G1H2
amnF0 x y

i j u G
2H

*
amnF 0 x y

u i j G D , ~38!

S ]2F3

]ru
arv

bD
0

5duv(
xy

(
i j

S D11
abF0 x y

i u j G1D22
abF0 x y

i j u G
1D

**
ab F 0 x y

u i j G D 1(
xy

(
i

S D12
abF0 x y

i u vG
1D21

abF0 x y

i v uG2D1*
abF 0 x y

v u i G
2D2*

abF 0 x y

v i uG2D
* 1
abF 0 x y

u v i G
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2D
* 2
abF 0 x y

u i vG D . ~39!

Derivatives with respect to the symmetric internal strainswm
can be derived from those with respect to the basis inte
strainsru

a using Eq.~3!.
Using Eqs.~6!, ~14!, and~27! and an extension of theD

notation of Eq.~30!,

DvM
z Fw x y

i j k G5H dv jdzx2dv idzw , M51

dvkdzy2dv idzw , M52
~40!

~where the Kroneckerd has been extended in an obvio
way to apply to vectors!, the massless partB of the dynami-
cal matrix can be written

Buv
ab~q!5(

z
eiq.z(

wxy
(
i jk

(
LM

DuL
0 Fw x y

i j k G
3DvM

z Fw x y

i j k GDLM
ab Fw x y

i j k G , ~41!

and applying the same manipulations that led to Eq.~39!
then gives
al

Buv
ab~q!5duv(

xy
(
i j

S D11
abFx 0 y

i u j G1D22
abFx y 0

i j u G
1D

**
ab F 0 x y

u i j G D 1(
xy

(
i

eiq•xS D12
abFy 0 x

i u vG
1D21

abFy x 0

i v uG2D1*
abF x 0 y

v u i G
2D2*

abF x y 0

v i uG2D
* 1
abF 0 x y

u v i G
2D

* 2
abF 0 y x

u i vG D . ~42!

For an efficient computational implementation it is conv
nient to express this equation in a form that gathers toge
contributions from the same unit-cell triples. This can
done by exchanging variables and shifting the origins of
xy summations to give
Buv
ab~q!5duv(

xy
(
i j

S D11
abF0 x y

i u j G1D22
abF0 x y

i j u G1D
**
ab F 0 x y

u i j G D 1(
xy

(
i

S eiq•~y2x!D12
abF0 x y

i u vG
1eiq•~x2y!D21

abF0 x y

i v uG2eiq•~2x!D1*
abF 0 x y

v u i G2eiq•~2y!D2*
abF 0 x y

v i uG2eiq•xD
* 1
abF 0 x y

u v i G
2eiq•yD

* 2
abF 0 x y

u i vG D . ~43!

The dynamical matrix derivatives can then be expressed in terms ofE andF @Eqs.~27!–~29!# as follows:

S ]Buv
ab~q!

]emn D
0

5duv(
xy

(
i j

S F11
abmnF0 x y

i u j G1F22
abmnF0 x y

i j u G1F
**
abmnF 0 x y

u i j G D 1(
xy

(
i

S eiq•~y2x!F12
abmnF0 x y

i u vG
1eiq•~x2y!F21

abmnF0 x y

i v uG2eiq•~2x!F1*
abmnF 0 x y

v u i G2eiq•~2y!F2*
abmnF 0 x y

v i uG2eiq•xF
* 1
abmnF 0 x y

u v i G
2eiq•yF

* 2
abmnF 0 x y

u i vG D , ~44!

S ]Buv
ab~q!

]r t
g D

0

5d tud tv(
xy

(
i j

S E111
abgF0 x y

i u j G1E222
abgF0 x y

i j u G2E
***
abg F 0 x y

u i j G D 1duv(
xy

(
i

S 2E11*
abgF0 x y

t u i G
2E22*

abgF0 x y

t i uG1E
** 2
abg F 0 x y

u i t G1E
** 1
abg F 0 x y

u t i G1E112
abgF0 x y

i u t G1E221
abgF0 x y

i t uG D
1d tv(

xy
(

i
S 2eiq•xE

* 11
abgF 0 x y

u v i G2eiq•yE
* 22
abgF 0 x y

u i vG1eiq•~2x!E1**
abg F 0 x y

v u i G
1eiq•~2y!E2**

abg F 0 x y

v i uG1eiq•~y2x!E122
abgF0 x y

i u vG1eiq•~x2y!E211
abgF0 x y

i v uG D
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1d tu(
xy

(
i

S 2eiq•~2x!E1* 1
abgF 0 x y

v u i G2eiq•~2y!E2* 2
abgF 0 x y

v i uG1eiq•xE
* 1*
abg F 0 x y

u v i G
1eiq•yE

* 2*
abg F 0 x y

u i vG1eiq•~y2x!E121
abgF0 x y

i u vG1eiq•~x2y!E212
abgF0 x y

i v uG D
1(

xy
S 2eiq•~y2x!E12*

abgF0 x y

t u vG2eiq•~x2y!E21*
abgF0 x y

t v uG2eiq•~2x!E1* 2
abgF 0 x y

v u t G
2eiq•~2y!E2* 1

abgF 0 x y

v t uG2eiq•xE
* 12
abgF 0 x y

u v t G2eiq•yE
* 21
abgF 0 x y

u t vG D . ~45!

Making use of the further definitions

sL
a5r L

21r L
a , ~46!

AL
a5r L

21~sL̄
a
2sL

acosu!, ~47!

CL
ab5r L

21~dab2sL
asL

b!, ~48!

SL
amn5CL

amsL
n , ~49!

Kmn5~s1
mr 1A1

n1s2
mr 2A2

n!, ~50!

the terms defined in Eqs.~22!–~29! can be shown using the general formulas~20! and ~21! to be

BLM
ab 5r L

21r M
21~dLM@~3sL

asL
b2dab!cosu2sL

asL̄
b
2sL̄

a
sL

b#1dLM̄@sL
asM

b cosu2sL
asL

b2sM
a sM

b 1dab#!, ~51!

GL
a5ZLsL

a1Z3AL
a , ~52!

Pmn5Z1r 1s1
ms1

n1Z2r 2s2
ms2

n1Z3Kmn, ~53!

HL
amn5ZL@damsL

n1dansL
m2sL

asL
msL

n #1Z3@r LAL
mCL

an1r LAL
nCL

am2AL
a~sL

msL
n1sL̄

m
sL̄

n
!#1sL

a@ZL1r 1s1
ms1

n1ZL2r 2s2
ms2

n1ZL3Kmn#

1AL
a@Z31r 1s1

ms1
n1Z32r 2s2

ms2
n1Z33Kmn#, ~54!

Qmnst5Z1r 1
2s1

ns1
tC1

ms1Z2r 2
2s2

ns2
tC2

ms1Z3~@s1
ms1

n~3s1
ss1

t1s2
ss2

t !1s2
ms2

n~3s2
ss2

t1s1
ss1

t !#cosu2@~s1
ms1

n1s2
ms2

n!~s1
ss2

t1s2
ss1

t !

1~s1
ms2

n1s2
ms1

n!~s1
ss1

t1s2
ss2

t !#1dmsKnt!1Z11r 1s1
ms1

nr 1s1
ss1

t1Z12r 1s1
ms1

nr 2s2
ss2

t1Z21r 2s2
ms2

nr 1s1
ss1

t1Z22r 2s2
ms2

nr 2s2
ss2

t

1Kmn@Z31r 1s1
ss1

t1Z32r 2s2
ss2

t #1Kst@Z13r 1s1
ms1

n1Z23r 2s2
ms2

n#1KmnKstZ33, ~55!

DLM
ab 5dLMZLCL

ab1Z3BLM
ab 1ZLMsL

asM
b 1ZL3sL

aAM
b 1Z3MAL

asM
b 1Z33AL

aAM
b , ~56!

ELMN
abg 5dLMdLN$r L

22Z3@CN
ag~3sM

b cosu2sM̄
b

!1CN
bg~3sL

acosu2sL̄
a
!#2r N

21ZN@sL
aCN

bg1sM
b CN

ag1sN
gCN

ab#%2dLMdLN̄r L
22Z3@sL

aCN
bg

1sM
b CN

ag#1dLM@r L
22Z3AN

g ~3sL
asM

b 2dab!1ZLNsN
gCL

ab1ZL3AN
gCL

ab#1dLM̄r L
21r M

21Z3@sL
asM

b AN
g 2dLN~r MAM

b CN
ag

1CN
bgsL

a!2dMN~CN
agsM

b 1r LAL
aCN

bg!#1dLN@CN
ag~ZLMsM

b 1ZL3AM
b !2r N

21~sL
aAN

g 1sN
gAL

a1CN
agcosu!~Z3MsM

b 1Z33AM
b !

2r N
21sN

g Z3BLM
ab #1dMN@CN

bg~ZLMsL
a1Z3MAL

a!2r N
21~sM

b AN
g 1sN

gAM
b 1CN

bgcosu!~ZL3sL
a1Z33AL

a!2r N
21sN

g Z3BLM
ab #

1dLN̄r L
21@CN

ag2sL
aAN

g #@Z3MsM
b 1Z33AM

b #1dMN̄r M
21@CN

bg2sM
b AN

g #@ZL3sL
a1Z33AL

a#1sN
g @Z3NBLM

ab 1ZLMNsL
asM

b

1ZL3NsL
aAM

b 1Z3MNAL
asM

b 1Z33NAL
aAM

b #1AN
g @Z33BLM

ab 1ZLM3sL
asM

b 1ZL33sL
aAM

b 1Z3M3AL
asM

b 1Z333AL
aAM

b #, ~57!

FLM
abmn5dLM~2ZL@SL

amnsL
b1sL

aSL
bmn1sL

msL
nCL

ab#1CL
ab@ZL1s1

ms1
nr 11ZL2s2

ms2
nr 21ZL3Kmn#1Z3r L

22@Kmn~3sL
asL

b2dab!

1r LSL
amn~3sL

bcosu2sL̄
b
!1r LSL

bmn~3sL
acosu2sL̄

a
!2r L̄SL̄

bmn
sL

a2r L̄SL̄
amn

sL
b#!1dLM̄Z3@r L

21r M
21KmnsL

asM
b 2AL

aSM
bmn

2SL
amnAM

b 2r M
21sL

aSM
bmn2r L

21SM
amnsM

b #2Z3BLM
ab @sL

msL
n1sM

m sM
n #1r LSL

amn@ZLMsM
b 1ZL3AM

b #1r MSM
bmn@ZLMsL

a1Z3MAL
a#

1r L
21@r L̄SL̄

amn
2r LSL

amncosu2sL
aKmn2r LsL

msL
nAL

a#@Z3MsM
b 1Z33AM

b #1r M
21@r M̄SM̄

bmn
2r MSM

bmncosu2sM
b Kmn
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2r MsM
m sM

n AM
b #@ZL3sL

a1Z33AL
a#1r 1s1

ms1
n@Z31BLM

ab 1ZLM1sL
asM

b 1ZL31sL
aAM

b 1Z3M1AL
asM

b 1Z331AL
aAM

b #

1r 2s2
ms2

n@Z32BLM
ab 1ZLM2sL

asM
b 1ZL32sL

aAM
b 1Z3M2AL

asM
b 1Z332AL

aAM
b #1Kmn@Z33BLM

ab 1ZLM3sL
asM

b 1ZL33sL
aAM

b

1Z3M3AL
asM

b 1Z333AL
aAM

b #. ~58!

TABLE I. Arrangement of atomic cores in the unit cell ofa quartz, defined using the notation in Eq.~4!,
with (w1 ,w2 ,w3 ,w4)[(u,x,y,z). The unlistedgm,i vectors are zero.

i Type 1u g1,i 1x g2,i 1y g3,i 1z g4,i

1 Si (0 0 0) 1u (21 21 0)
2 Si (0 0 1/3) 1u (1 0 0)
3 Si (0 0 2/3) 1u (0 1 0)
4 O (0 0 0) 1x (1 0 0) 1y (0 1 0) 1z (0 0 1)
5 O (0 0 1/3) 1x (0 1 0) 1y (21 21 0) 1z (0 0 1)
6 O (0 0 2/3) 1x (21 21 0) 1y (1 0 0) 1z (0 0 1)
7 O (0 0 0) 1x (0 1 0) 1y (1 0 0) 1z (0 0 21)
8 O (0 0 1/3) 1x (21 21 0) 1y (0 1 0) 1z (0 0 21)
9 O (0 0 2/3) 1x (1 0 0) 1y (21 21 0) 1z (0 0 21)
ti
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B. Application to harmonic exponential potentials

Given the above framework, the contributions to the sta
and dynamical parts of the free energy and its derivatives
be calculated for a general translationally and rotationa
invariant three-body potential, as long as theZ functions de-
fined in Eq. ~19! can be calculated. This is usually fairl
straightforward; in this section we give an example of a p
tential that combines a harmonic dependence on angle an
exponential decay with distance:

z~r 1 ,r 2 ,cosu!5ke2r 1 /R1e2r 2 /R2~u2u0!2. ~59!

This leads to the derivative functions

Z5ke2r 1 /R1e2r 2 /R2~u2u0!2, ~60!

Z3522cscu ke2r 1 /R1e2r 2 /R2~u2u0!, ~61!

Z335csc2u~2ke2r 1 /R1e2r 2 /R21cosuZ3!, ~62!
c
n

y

-
an

Z3335csc2u~Z313cosuZ33!. ~63!

The others are formed by multiplying a factor of21/RL to
introduce a superscript ofL51 or 2, for instance,

Z125
1

R1R2
Z, Z33152

1

R1
Z33, . . . . ~64!

Assuming a well-behaved potentialz it is clear from Eq.~19!
that the order of the superscripts is immaterial.

Note that for the case of the potential~59! most of theZ
functions diverge for cosu561. This is not an indication of
unphysical behavior but simply an undesirable conseque
of using cosu as an intermediate differentiation variable. T
treat three-body interactions between particles that may
collinear therefore, a different form of potentialz must be
used, e.g., one harmonic in (cosu2cosu0). Alternatively a set
of expressions for the free energy and its derivatives wh
avoids the use of cosu may be derived.
ote
t 1 and set
FIG. 1. Calculated variation ofa and c with temperature fora quartz using the potential sets listed in Table II. Full lines den
calculations using the three-body O-Si-O angle term. Dashed and dot-dashed lines show values obtained using strut potentials se
2, respectively. Filled squares show experimental values~Ref. 22!.
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TABLE II. The shell-model parameter set fora quartz. The parametersA, r 0 , andC are the coefficients for Buckingham potentials
the formAexp(2r/r0)2Cr26. Kcs is a core-shell spring constant.ku andu0 are the parameters for the three-body O-Si-O potential define
Eq. ~65!. ks and r s are the parameters for the strut potential~66!, which, as described in the text, replaced the three-body term in s
calculations. Two sets of strut potentials are listed~see the text!. In all cases the atomic charges are14.0 for Si, considered as a rigid ion
10.86902 for the O core (Oc), and22.86902 for the O shell (Os). The cutoff used for the Buckingham potentials is 12.0 Å while that
the struts is 2.8 Å.

Interaction

A

~eV!

r 0

~Å!

C

~eV Å6!

Kcs

~eV Å-2!

ku

~eV rad-2!

u0

~deg!

ks

~eV Å-2!

r s

~Å!

Si-Os 1316.374 0.3205 10.66
Os-Os 22764.00 0.1490 27.879
Oc-Os 74.92
Os-Si-Os ~three-body! 2.09724 109.47
Os-Si-Os ~strut: set 1! 1.23277 2.65359
Os-Si-Os ~strut: set 2! 2.38277 2.65359
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IV. EXAMPLE APPLICATION TO a QUARTZ

We end with a brief example, our treatment here be
illustrative rather than comprehensive. The thermal exp
sion of a quartz has received considerable experiment22

and theoretical23–26attention, and so it serves as an excelle
example of our methodology. Quartz is optically active, t
laevo- and dextro-rotatory form ofa quartz belonging to the
space groupsP3121 andP3221, respectively. The structur
consists of approximately regular SiO4 tetrahedra sharing
oxygen atoms at each vertex. The unit cell is hexagonal w
nine atoms in the primitive cell. There are six structural p
rameters: the lattice parametersa and c, and four internal
coordinatesu, x, y, andz that parametrize the internal stra
state of the atoms, according to Eq.~3!, except we have
renamed thewm asu, x, y, z. The position vectors in unit-cel
space of each atom can therefore be written as in Table I
846 K a quartz undergoes a phase transition tob quartz,
which is a special case of thea structure, with hexagona
symmetry and retaining only one internal degree of freedo

We start with a set of shell-model potential paramet
due to Gale25 listed in Table II, which includes two-body
interactions and a standard three-body harmonic-angle
tential, of the form

z5
1

2
ku~u2u0!2, ~65!

whereu is the O-Si-O angle,u05109.47° and both oxygen
atoms are bonded to the same silicon.

A. Thermal expansion

Figure 1 ~full lines! shows values ofa and c over the
temperature range 0–400 K, calculated as outlined in
previous sections of this paper, together with experime
values for comparison.22 Inclusion of the vibrational terms
expands the lattice~estimated dilations atT50 are da
50.25 % anddc50.18 %). At temperatures above 400
the full free-energy minimization fails, due to the appearan
of imaginary modes that appear to be associated with l
frequency modes associated with the rotation of the S4
g
n-

t

th
-

At

.
s

o-

e
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e
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tetrahedra. The same occurs with all the three-body po
tials we have tested, including the two sets of potentials ta
lated in Ref. 26.

B. Comparison with strut potentials

For comparison, we also present calculations employin
commonly used alternative to the three-body term involv
the Si-O-Si angle. Instead, a harmonic strut is placed
tween the O atoms that are part of the same SiO4 tetrahe-
dron, i.e., Eq.~65! is replaced with the two-body potential

f5
1

2
ks~r O-O2r s!

2, ~66!

wherer O-O is the oxygen-oxygen distance andr s a constant.
Strut potentials of this form have recently been used for s
cates with success by Gale.26 Equations~65! and ~66! are
clearly inequivalent since the bond angle is a function of
two Si-O bond lengths and the O-O distance. Nevertheles
is possible to expand Eq.~66! as a Taylor series inr O-O, in
which the first term is of the same form as the right-ha
side of Eq.~65!, and

FIG. 2. Calculated variation of Gru¨neiseng function for a
quartz using the potential sets listed in Table II. Full lines den
calculations using the three-body O-Si-O angle term. Dashed
dot-dashed lines show values obtained using strut potentials s
and set 2, respectively.
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FIG. 3. A comparison of full free-energy minimization and ZSISA results fora, c, u, andx. Full lines denote full free-energy minimi
zations of all external and internal variables. Dashed lines show values obtained using ZSISA. All calculations used the three-body
set listed in Table II.
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2 ~11cosu0!

. ~67!

To assess the importance of higher-order terms in Eq.~65!,
we used Eq.~67! to determine the value ofks corresponding
to the value of ku used in Eq. ~65! ~putting r Si-O
51.625 Å). The resulting values ofks and r s are listed as
set 1 in Table II. The calculation of the thermal expansion
a quartz was then repeated replacing the harmonic-a
term with a strut. The dashed lines in Fig. 1 show the res
ing values of the lattice parameters as a function of temp
ture. It is clear that higher-order terms are not negligible w
differences in the calculated lattice parameters, for exam
of the order of 0.01 Å. From Fig. 1 it is clear that the diffe
ences between quantities calculated using three-body po
tials and those using struts can be of the same order as
total change in the quantities between 0 and 400 K. As w
the three-body potentials the full free-energy minimizatio
fail at 400 K. Figure 2 shows calculated values of the dim
sionless Gru¨neisen functiong (5bV/xTCV , whereb is the
coefficient of volumetric thermal expansion andxT the iso-
thermal compressibility! determined using both the three
body and strut potentials. Whereas the differences in the
culated lattice constants differ by less than 1%,
Grüneisen functions differ in the two models at low and hi
temperatures by more than 10%, showing the effect o
proper consideration of three-body forces.
f
le
t-
a-
h
e,

n-
the
h
s
-

l-
e

a

An alternative procedure for the strut potential paramet
is to fix r s and obtainks by requiring that the new potentia
set reproduces the same static energy as the potential se
includes the three-body term. We used a value of 2.65
Å for r s, which is the value corresponding tor Si-O
51.625 Å andu05109.47°, and the resulting paramete
are collected together in Table II as set 2. The correspond
calculated thermal expansion is shown by dot-dashed line
Fig. 1. Again, these do not quite reproduce the three-b
potential results. Compared with strut potential set 1,
values ofa are closer and the values ofx further from the
three-body results.

Comparison between experiment and theory shows
there is considerable scope for improvement of the pot
tials. Potential parameters for a given solid have often b
obtained by fitting to observed properties of the solid such
the lattice parameters and elastic constants. However,
calculations have been largely restricted to the static lim
Our new methodology makes it straightforward to fit t
parameters using calculations at finite temperature, an
particular at the same temperature as the experimental m
surements, including thermal effects explicitly.

C. ZSISA

Finally we comment on previous approaches to the m
eling of thermal effects4 that have used the zero static inte
nal stress approximation~ZSISA!; in this approximation only



an
e
e

on

e
ef

pa
d
th
a
u

is
od
ni
in

at
0
he
n

o-
m-
ion

ral
c-
a

uit-
m,
.
the
y
e-
-
h
iffer

R/
es
al
ort
to
el

n
s-

362 PRB 59TAYLOR, ALLAN, BRUNO, AND BARRERA
the external strains (E l
ext) are relaxed using fully dynamic

free-energy derivatives, while the internal strains (E k
int) are

relaxed using static energy derivatives.27 This approach is
popular since static energy derivatives can be calculated
lytically, and rapidly, while only a small number of fre
energy derivatives is required, which are readily obtain
numerically. The ZSISA optimization condition is

S ]G̃

]E l
extD

E ext8,t int

50, tk
int[S ]G̃stat

]E k
int D

E ext,E int8

50. ~68!

It is worthwhile emphasizing the variables that are kept c
stant in Eq.~68!. ZSISA involves the minimization ofG̃ with
respect to the external strains at constant internalstresst int

and not at constant internalstrain28 E int. For a quartz the
difference is crucial, as has been pointed out by Gale:26 for
example, keeping the internal strain constant predicts an
roneous large negative volumetric thermal expansion co
cient for a quartz.

Figure 3 also shows results for the crystallographic
rametersa, c, u, andx of a quartz obtained using ZSISA an
the set of potential parameters used earlier including
O-Si-O three-body term. For comparison, the full minimiz
tion results are also included in these figures. A previo
study11 showed that for MgF2 the results obtained using th
approximation with two-body potentials are in very go
agreement with those obtained by carrying out a full mi
mization. In contrast, for our present example, values us
ZSISA agree with those from the full minimization only
very low temperatures. At temperatures higher than 40
indeed the ZSISA results fail to show the instability of t
a-quartz structure as predicted by the full minimizatio
d
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Very similar conclusions are obtained using any of the p
tentials in Ref. 25. These results call into question the co
monly used assumption that ZSISA is a good approximat
to full free-energy minimization fora quartz and related
silicates.

V. CONCLUSIONS

We have extended the theory of Ref. 1 to apply to gene
rotationally and translationally invariant three-body intera
tions, enabling fully dynamic geometrical optimization of
wider range of crystals. Detailed expressions, in a form s
able for efficient incorporation into a computer progra
have been given, and such a program has been written10,29

By way of example, we present the results of applying
theory toa quartz, comparing the fully dynamic three-bod
potential optimizations both with dynamic pseudo-thre
body ~‘‘strut’’ ! potential optimizations and with semidy
namic ~ZSISA! three-body potential optimizations; in bot
cases the predictions of the approximate treatments d
significantly from the exact one.

ACKNOWLEDGMENTS

This work was supported by EPSRC Grants No. G
K05979 and No. GR/L31340. Additional computer resourc
were made available by the UK Facility for Computation
Chemistry. G.D.B. gratefully acknowledges financial supp
from la Universidad de Buenos Aires. His contribution
this work was made possible by means of a grant from
Consejo Nacional de Investigaciones Cientı´ficas y Técnicas
de la Repu´blica Argentina. We would like to thank Julia
Gale, Hugh Barron, and Bill Mackrodt for useful discu
sions.
.

.

.

it,

.

.

III,

n-
*Electronic address: n.l.allan@bristol.ac.uk
†Permanent address: Universidad de Buenos Aires, Faculta
Ciencias Exactas y Naturales, Departamento de Quı´mica Inor-
gánica, Analı́tica y Quı́mica Fı́sica, Pabello´n 2, Ciudad Universi-
taria, 1428 Buenos Aires, Argentina.
1M. B. Taylor, G. D. Barrera, N. L. Allan, and T. H. K. Barron

Phys. Rev. B56, 14 380~1997!.
2D. C. Wallace,Thermodynamics of Crystals~Wiley, New York,

1972!.
3J. A. Purton, J. D. Blundy, M. B. Taylor, G. D. Barrera, and N.

Allan, Chem. Commun.~Cambridge! 1998, 627.
4G. W. Watson, P. Tschaufeser, A. Wall, R. A. Jackson, and S

Parker, Computer Modelling in Inorganic Crystallograph
~Academic Press, San Diego, 1997!.

5J. D. Gale, J. Chem. Soc., Faraday Trans.93, 629 ~1997!.
6CERIUS2, MSI, San Diego, 1993.
7A. R. Leach,Molecular Modelling: Principles and Applications

~Longman, Harlow, 1996!.
8M. P. Allen and D. J. Tildesley,Computer Simulation of Liquids

~Clarendon, Oxford, 1987!.
9At very low temperatures summation over large numbers of w

vectors in the Brillouin zone is required, and this can become
most computationally expensive part of the calculation.

10M. B. Taylor, G. D. Barrera, N. L. Allan, and T. H. K. Barron
de

.

e
e

Comput. Phys. Commun.109, 135 ~1998!.
11G. D. Barrera, M. B. Taylor, N. L. Allan, T. H. K. Barron, L. N

Kantorovich, and W. C. Mackrodt, J. Chem. Phys.107, 4337
~1997!.

12M. B. Taylor, G. D. Barrera, N. L. Allan, T. H. K. Barron, and W
C. Mackrodt, Faraday Discuss.106, 377 ~1997!.

13N. L. Allan, G. D. Barrera, W. C. Mackrodt, C. E. Sims, and M
B. Taylor, J. Chem. Soc. Faraday Trans.~to be published!.

14For calculations of the properties of silicates in the static lim
see e.g., G. V. Lewis and C. R. A. Catlow, J. Phys. C18, 1149
~1985!; C. R. A. Catlow and G. D. Price, Nature~London! 347,
243 ~1990!; J. A. Purton, N. L. Allan, and J. D. Blundy, J
Mater. Chem.7, 1947~1997!, and references therein.

15For example, N. L. Allan, A. L. Rohl, D. H. Gay, C. R. A
Catlow, R. J. Davey, and W. C. Mackrodt, Faraday Discuss.95,
273 ~1993!.

16For example, N. Karasawa, S. Dasgupta, and W. A. Goddard
J. Phys. Chem.95, 2260~1991!, and references therein.

17B. G. Dick and A. W. Overhauser, Phys. Rev.112, 90 ~1958!.
18J. F. Nye,Physical Properties of Crystals, 2nd ed.~Clarendon

Press, Oxford, 1985!.
19W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Fla

nery,Numerical Recipes: The Art of Scientific Computing~Cam-
bridge University Press, Cambridge, 1989!.



a,
on

a

s.

in
d in

rical

ps;
tact

://

PRB 59 363QUASIHARMONIC FREE ENERGY AND DERIVATIVES . . .
20A. A. Maradudin, E. W. Montroll, G. H. Weiss, and I. P. Ipatov
Theory of Lattice Dynamics in the Harmonic Approximati
~Academic Press, New York, 1971!.

21G. Venkataraman, L. A. Feldkamp, and V. C. Sahni,Dynamics of
Perfect Crystals~MIT Press, Cambridge, MA, 1975!.

22K. Kihara, Eur. J. Mineral.2, 63 ~1990!.
23T. H. K. Barron, C. C. Huang, and A. Pasternak, J. Phys. C15,

4311 ~1982!; T. H. K. Barron and A. Pasternak,ibid. 20, 215
~1987!.

24K. de Boer, A. P. J. Jansen, R. A. van Santen, G. W. Watson,
S. C. Parker, Phys. Rev. B54, 826 ~1996!.

25J. D. Gale~unpublished!.
nd

26J. D. Gale, J. Phys. Chem. B102, 5423~1998!.
27N. L. Allan, T. H. K. Barron, and J. A. O. Bruno, J. Chem. Phy

105, 8300~1996!.
28In our earlier work~Refs. 1 and 11! we were not sufficiently

careful in making this distinction, which, though pointed out
Ref. 27, was not made in Refs. 1 and 11. The systems studie
these earlier papers were of high symmetry and the nume
errors arising were negligible.

29The code is intended to be available for use by other grou
academic users interested in obtaining a copy should con
N. L. Allan. Further information may also be found at http
dougal.chm.bris.ac.uk/programs/shell/


