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Quasiharmonic free energy and derivatives for three-body interactions
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Quasiharmonic lattice dynamics applied to crystals of atoms interacting via general rotationally and trans-
lationally invariant short-ranged three-body forces is considered. Expressions for the static energy and its first
and second derivatives, and the free energy and its first derivatives, are presented, where the differentiation is
with respect to internalatomic positions and externalmacroscopic deformatigrstrains. Some results of
applying the theory tax quartz are given. The paper extends the work of Tagloal. [M. B. Taylor et al,

Phys. Rev. B56, 14 380(1997] in which more careful consideration of the basic theory has been given, and
detailed expressions for pairwise short-ranged and Coulombic interactions were presented.
[S0163-182€09)00101-0

I. INTRODUCTION within the quasiharmonic approximation, for ttamalytic
calculation of the free energy and its first derivatives with

In principle, lattice dynamics is an attractive route for therespect to parameters of the crystal geometry. Careful con-
theoretical calculation of the thermodynamic properties ofsideration was also given to the problem of the best use of
crystals with periodic symmetry. Quantum effects are these quantities to perform the full structure optimization of
readily taken into account and the method does not rely osystems with large unit cells containing hundreds of ions.
long runs for high precision. Unstable vibrational modes pro-Detailed expressions were presentéat all the lattice sums
vide a sensitive test for interionic potentials and interpretatequired for particles assumed to interact via long-ranged
tion of the normal modes is straightforward, revealing, forCoulomb forces and arbitrary short-ranged spherically sym-
example, the mechanisms of phase transitions or thermal exaetric pair potentials. These expressions have formed the
pansion. Given the optimized geometry of a crystal, calculabasis for a new cod®developed at Bristol designed for the
tions of the free energy, heat capacity, thermal expansiorgfficient study of periodic structures with many internal
and other equilibrium thermodynamic properties is rapid andstrains. Applications to ionic solids have included phase tran-
accuraté The kinetic barriers and critical slowing-down ef- sitions in MgF,** defect free energi€$,surface energie$,
fects suffered by Monte CarlC) and molecular dynamics and the thermal expansion of complex oxid@s.
(MD) techniques are avoided. Not only does lattice dynamics Although most simulations in solid-state physics have
allow the calculation of equilibrium structures of crystals asused pairwise interatomic potentials, it is clear that three-
a function of temperature and pressure, but it is also a verpody forces play an important role in the dynamics and sta-
efficient route to the free energy of particular configurationsbility of many systems. Three-body interactions are very im-
of disorderedsolids. This is the basis of a recently proposedportant for instance for compounds containing polyatomic
methodology for obtaining the free energy of disordered ions such as silicatésand sulphates and are an essential
solids, which is quite different from standard approaches. part of the force fields for organic systefidn this paper we
Not only can the new methodology prove much less expenpresent the additional expressions required for general short-
sive than classical MC and MD simulations, but it can alsoranged three-body potentials, and give an example of the
be used below the Debye temperature where these fail due &pplication of the theory to a silicate material.
their neglect of quantum effects. We do not repeat here the details of the discussions given

With lattice dynamics the bulk of the computational effort in Ref. 1, but in the next section we summarize the essential
is generally expended in the optimization problem of findingpoints of the general theory of quasiharmonic free-energy
the equilibrium geometry of the crystat a given tempera- minimization needed for our present purposes. In Sec. Il the
ture and pressure. For efficient optimization it is necessary texpressions required for calculating the free energy and its
use the derivatives of the appropriate thermodynamic poterderivatives, assuming a general three-body potential, are pre-
tial with respect to the geometrical coordinates strains. sented and the final expressions for an example potential
Until very recently the small number of existing generally form are given. Since derivation of these formulas is time
available lattice dynamics code$ either neglected vibra- consuming and error prone, we have taken care to present
tional contributions to these derivatives or generated therhere, in a form that requires a minimum of additional alge-
numerically which is prohibitively expensive for large unit braic work, all the expressions required for efficient imple-
cells with many internal coordinates. In Ref. 1 we developednentation of the theory in a computer program. Finally, Sec.
the general theory, using lattice statics and lattice dynamicB/ presents the results of applying the theorydauartz.
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Il. THEORETICAL BACKGROUND Secs. II B and Il we show how the free-energy derivatives
can be generated analytically. The method we have found to
be most efficient is a variant of the quasi-Newton metfiod

Geometrical optimization of a crystal structure involvesthat uses the static-energy Hessian as an approximation to
finding the most stable state given a set of thermodynamighe free-energy Hessian, and we therefore give expressions
constraints, and hence the minimization of the appropriatgelow for the static second derivatives as well as the static
thermodynamic potential. At finite temperatufeand fixed  and dynamic first derivatives. Parametrization of the crystal
volumeV the appropriate potential is the Helmholtz free en-structure, and the optimization algorithms, are discussed in
ergy F. At temperaturel under an applied hydrostatic pres- more detail in Refs. 1 and 10.

sureP, the appropriate potential is an availabil®; defined

A. Crystal geometry

_ B. Lattice dynamics
=F+ = +Fo+ . . ) .
G=F+PoV=0gpart Fuipt PoV, @ The static energy of an entire crystal as defined in Sec.

whereF has static and vibrational partgg, andF,,, re- 1l A is assumed to be a function of the positiong of the
spectively. In order to proceed furthdr,must be expressed particles comprising the crystal. Each particlgill be either

as a function of the geometrical parameters, or coordinates ia core of massn;>0 or a shell of mass;=0. Information

a configuration space, of the structure, with respect to whiclabout the restoring forces acting on each ion is given by the
it can be minimized. These coordinates may be classifiethatrix B(q), defined as the Fourier transform of the second
into two types:externalones that describe macroscopic de-derivatives of the energy with respect to particle position.
formation of the crystal, anthternal ones that describe the Assuming translational invariance of the crysi&{g) can be

positions of the atoms within the crystal lattice. written
The positions of all the particlgsvhich in a shell modél
may be massive “cores” or massless “sheljst a macro- B iqx P>
scopically strained crystal may be given by Cartesian coor- Bij (CI)=E € PR ®)
- X ar o'
dinates 107 ix

In this section we use Greedulscripts to refer to Cartesian

f&ZE (8ayt e (X7 +p7), 2) comppnents of particle positions, i.e.,_ each represents a pair
Y of indices such a8 such that the coordinates ranged over are

those of certain types of particle;, ,/, are cores
only, ,, o, ... areshellsonly,and, .., ... areboth
cores and shells. Additionallyn, is the mass of the particle
corresponding to the coordinage Equation(5) can there-
fore be expressed instead as

where Greek superscripts are Cartesian indices 1,3 (as
throughout this papgrx is a lattice vector of the unstrained
crystal labeling a unit celi,=1, . .. nis an index that labels
a specific particle within a unit cell, ang},; is the Kronecker
delta. Components of the tengst® are then a set of external
strains that determine both the orientation and the macro- 5

. . . v
scopic state of strain of the cryst&iThe vector components B, ()=, ed*—. (6)
pi* are internal coordinates determining the positions of par- X X AN 00" y1x

ticles within a unit cell. : ' TP . .
It can be convenient, if a symmetrical structure is beingwe consider first the S|tuat|o(rn|_g|d ion) in which there are
only cores and no shells. In this cd$mere and subsequently

considered, to define the coordinaggsin terms of a set of the (g) dependence is implidithe dynamical matrix Dma
offsets of magnitudev,, in directionsh,,; from base posi- q P 21 .p y y
’ be constructed?! from B:

tions ;)i :
—m-12 -12
. Dyy=m, BXX,mX, . 7
a__ o a
Pi =P +% Wi, (3 Then solving the characteristic equation
or, equivalently, expressing the directions as vectygin 2 D .f _ Wt 8
unit cell space, < Do b= bt ®

0 gives the set of B vibrational frequencies,» allowed in the
Piazpfu‘% Win(Gm @5 + 0,25+ g5 a5). (4 crystal for each wave vectar, and their associated eigen-

vectorsf, . First order perturbation theory can then be ap-

wherea, ,a,,3; are the unit-cell vectors. In this way it may plied to yield the derivatives of the eigenvalues:

be possible to parametrize the state of internal strain of the

crystal using considerably fewer than the-33 coordinates 2o, * o

that would otherwise be required. An example of such pa- [@)] :2 b7 B ©

rameterization is given in Sec. IV. ”

If the vector of derivatives of the free energy with respectwhere a primed quantityother than an indexindicates the

to all the strains of interest can be generated then variouderivative of that quantity with respect to a general strain,

methods may be used to iterate towards a free-energy min&nd whereb, ,, is the mass-adjusted eigenvector

mum. The function can of course be differentiated numeri- 1

cally, but this is prohibitively slow for large unit cells. In D, =0y = m (10)
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From the frequencie® (q) and their strain derivatives it is 0 x vy

then straightforward to obtain the vibrational parts of the free rq . . K= x—rios (15

energy at a wave vectar and its strain derivatives. Integrat- bl

ing numerically over the Brillouin zone then gives the quan-

tities required for geometrical optimizatidn. ; 0 xy et 16

This theory may be extended to the shell-model ¢ase, 2y ) k| v o

which some of the particles have zero mass, by making two

changes to these expressions: the frequencies are obtained 0 x vy 0 x vy

from Eq. (8) if Eq. (7) is generalized to . 0 x vy r Lk “ry i K )

~172 -1 —172 i ik 0 x y| |0 x y|’ 17

Dy =my BXX'_E, ByoBooBory M, (11) M1 ; ik M2 ; ik

and the frequency derivatives are obtained from €X.if It is helpful to label the arguments of the functignas the
Eg.(10) is generalized by defining also elements for the shelelements of a vectar.
coordinates:

Z; M
-1/2
b, Frxrmy Z; |=| f2 |. (18
XX
bT’Xr:(b )= ~S B LB, .f m-Y2 |- Z3 coy
0_va ~ oo’ O.!XH XHlX! X"
7 (12) Here and subsequently, where the bracketed sextuples have

been omitted for clarity they are assumed to be
This discussion, although less thorough, is equivalent to

the one given in Ref. 1; expressiof® and(12) however are 0 x vy
somewhat more elegant than E@82) and (34) from that i j k|
paper.
Then if we define the partial derivatives dfusing the nota-
IIl. THREE-BODY INTERACTIONS tion
A. Theory for general interaction form J 92
, _ , Z=¢, za:—g, zab=—§, . (19
The theory developed in Ref. 1 and applied there to pair- 0z, 02,07y,

wise interactions can also be used to treat three-body inte];_- d d derivati f th ial with
actions. The static energy per unit cell of a translationally!''St and second derivatives of the potential with respect to

invariant crystal of infinite extent may be written in terms of &roitrary strainst, are given by

two- and three-body translationally invariant potentigis oL 97
~ a
and{, respectively, as T af, (20
A a A
q)statzq)2+q)3=§x: %: bij(ig.Fix) 7L . %2 ab 9Za 9Zp o1
ﬂEAﬁEB B a ﬁgAagB ab 35A (953 ) ( )
+2 2 Gik(TiosTjolky)- (13 In this way different forms of interaction can be imple-

K mented by the relatively straightforward use of Ef9) to

The pairwise part ofbg,, -, is treated in Ref. 1; for the generate different geometric derivatives &f The general
rest of this paper we concern ourselves only with the threepart of the derivative expressiong"@/d&") on the other
body part®;. Assuming additionally rotational invariance hand need be derived only once regardless of the form of
of the interactions®; may be expressed without loss of (translationally and rotationally invarignthree-body inter-

generality: action.
The derivatives of with respect to internal strains con-

0 x vy 0 x vy tain many Kronecker delta functions, since
Py=2, Ek §ijk(r1 ik 1 ikl
Xy ij 0 x y
4
0 x vy i j ok
cod|. . ) ) )
[ will depend onp;; only in the case that is equal to one of,
j, or k. It is convenient to define a set of quantities by fac-
_ 0 x vy torizing out the delta functions where they occur in some of
z% %:4 i k| 149 the required expressions. These quantitiBsG( ...), ex-

pressions for which are given latgEqgs.(51)—(58)], are de-
where fined as follows:
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9%cosd FLON 0 x vy 0 x vy
=> Ay AuB, (22) —) => |2 r“[ -> ¢y
(&pj&pf)o G TuLTvMELM apg o N UK i u k 3 Hu j k
0 x vy 0 x vy
ﬁf ~a + e« _ o
— | =3 aubf, (23 PR I M k)
&pu 0 L
(32
( (9§ ) :JPMV (24) O X y 0 X y
Jer? ' = GY |+Cs] .
0 P ( ou gl g
9L 0 x vy
( . ) =2 Ay HE, (25 ~Gyl ) (33
dpyoer”| T u 1]
5 where we have introduced a notation in which a subscripted
L _ guvor (26) * indicates a summation of the terms formed by replacing it
gerroe””| ' by a 1 and a 2, so that for instance,
Xy 0 x vy 0 x vy
P 62 =0 +63 4
( : ﬁ): A8 @1 EE IS I TR A TRV
Ipydpy ), ™
0 x vy 0 x vy 0 x vy
e BT BN P b
| =3 A (28) LTk bk Lk
N
Pt 1o 0 y 0 x vy
+ESRY +E38Y :
o 221 i k 222 | J k
oaneg —_—
Jeh? 0— LM (29) (35
where subscripts S.Iml|al’ manlpulat|ons may be appllgd to Ecﬁ2.4)—(_27) to
give expressions for the other static energy derivatives as
0 x y follows:
] ok I . 0 y
as usual are implicit on everything except the differentiation o] & % P | Kl (36)
variables and the summation variables, and the symbpl () 0
indicates that derivatives are taken at zero external strain
(e*”=0). In the above each of the summation variables PPy v Xy
takes the values 1 and 2, aAdis defined in terms of Kro- B 2 Q Kkl (37)
i Jet’oe xy ijk )
necker deltas: 0
0 x vy [%—5{“, L=1 7D y 0 x vy
Ap=Ayl. . |= (30) ] = (H“‘” . |+ g
WU k|| S buis L=2. apgoer”| XEy % o il 2 i jou
In the final quantities of interest many of the delta functions
are eliminated by thé,j,k summations required fob5; and _rrepv Xy (39)
its derivatives. This also eliminates some of the summations *lu i )
so that the resulting expressions can be calculated more ef-
ficiently. For example, using Eq$14) and (23) the deriva- 22D 0 x y y
tive of the static energy with respect to internal strains is 3 = 5UU2 E (]fo _ +]D§§
el S bou u
aq>3) ( 0 x y] [Oo x vy
— | =2 > (Al |6 0 x vy 0 x vy
Jp% Xy 1]k i j ok i j k + DB + Des
Pulo Sl gl L
0 x vy 0 x vy
+Awl. . |GS. ) (3D w0 X Y] 60 XY
+ —
bk bk Dat i v u D1 v ou i
Because of the delta sigri80) the computation is reduced 0 0
from a triple to a double summation over particles in the unit _mnaB XY s Xy
cell: Dz v i u Dty o




PRB 59 QUASIHARMONIC FREE ENERGY AND DERIVATIVES ... 357

Xy x 0 vy xy O
-Dbl B(q)= 5 Dghl +Dg8
By i (39  Bif(Q) wx2y§<nl o iITPE
Derivatives with respect to the symmetric internal strains 0 y . y 0 x
can be derived from those with respect to the basis internal +DgP ]+ > € X( Dyf
strainsp? using Eq.(3). u ] Xy o v
Using Egs.(6), (14), and(27) and an extension of th& 'y x 0] X 0y
notation of Eq.(30), +Dgf) " —D§8 }
LI v U] v u |
W X 8,i Oz 6,iOpn, M=1 i .
Alz)M . . y :[ vj“zx viYzw (40) s Xy 0 s Xy
) k 5vk52y_ 5vi Oy M=2 _Dz* v i u _D* 1 v i
(where the Kroneckeb has been extended in an obvious ) :
way to apply to vectons the massless pai of the dynami- B 0y x
cal matrix can be written — Dy u i v (42)
_ w Xy
s@-3 @S S 3 st
z wxy ijk LM [ k
W y WXy For an efficient computational implementation it is conve-
XAZyl . ;_Iﬁ o , (41) nient to express this equation in a form that gathers together
! K ok contributions from the same unit-cell triples. This can be

and applying the same manipulations that led to B3§) done by exchanging variables and shifting the origins of the
then gives Xy summations to give

0 x vy 0 x vy 0 y . 0 y
Bif(a)=0u,2 2 | DIf|. R P RNV R DI L {
Xy i | u J | J u | j Xy i | u 1))
. 0 yl . 0 Y iaivirasl © Y| o Xy
+eldx y>]sz i y —ela( X)]leL i —ela y)sz . —eld X]D*‘i uoo i
. y
—eldypeal : 43
*2lu i v ) (43)
The dynamical matrix derivatives can then be expressed in teriisaofi I' [Egs. (27)—(29)] as follows:
B (q) 0 y 0 y 0 y : 0 y
w9 =5, > (]F‘ff"” . +FgEH N Dosaid I B S Y SN - E i nY o
Jer? 0 Xy i I u | | [ Xy i I U v
+ @l (X=y)peBuy 0 y —@ld (= peBuy y —@ld- (=y)aBur y — gld-xpeBur y
21 H 1% v u i 2% *1 u v i
ig-ypraBuv y
— glaypabe L ) (44)
dBif(q) y 0 x vy Xy y
- Suwdw 2 | Bty | HESSD) oy w2 | B .
ap{ 0 Xy i J [ u 1| Xy i t u 1
By, 0 Y| | ey Y| | pasy By Y| | papy y
—Ezo, t i u +EZS t TEe ¢ + Eq15 i ¢ + Eo50 it
. 0 y| . 0 y , y
0 o [T D R M PR M
Xy i u | u u 1
0 x vy y

y| 0
+ela -V g2y

0
+ela Iy | y
v

I u v

+eiq-(*y)]ngg !
v
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D B I TR M P72
+eiq'ij§gZ y y +ei°"(y’x)]E‘1"§17 (I) y +eiq-(xfy)E§fzv (I) ) L): )
+X2y —eld Y0 pasy (t) y — @l -Yasy (t) y — el (=0paBy 0 ﬁ
~onenmgy X Yoy XY e ) Y| 9
Making use of the further definitions
st=r e, (46)
Af=r}(si—sfcos), (47)
CEP=r Y (Sup—ssD), (48)
S =CEtst (49)
KM= (s AV +shr,AL), (50
the terms defined in Eq$22)—(29) can be shown using the general formwa8) and(21) to be
BEE=ry iy (SLml (3s(SE— 8,5 cO0— 5{'sE— 58P+ 6, il S{sf, co00— 5{'SP — Sy SE + ), (51)
Cr=Z s +Z3A7, (52)
PHr=Z1r kst + Z%r ,shsy + Z3KHY, (53

HE# =7 8,0, SU+ S80St —STSESU 1+ Z3r LALCE + 1 AV CEF — Af(SE's! +sts) ]+ S{[ 2 r sy + Z12r psh sy + Z-3K A ]
+ AN Z3% stsy+ 232 ,shsh+ 733K ], (54)
QHvo7=Z r28YSTCMT + Z2r 355 Ch 7+ Z3([ stsh(3sYs] + s555) + Shsy(3s555+ S7ST) Jcosd— [ (Sks) + sb'sh) (STs5+S5ST)
+(shsh+shsy)(s7s]+5957) ]+ 8,,K') +Z r 1SSt 7S]+ 21 1 S'sir 5855+ 27 5SSt 1 STST + 27 5Sh'Shr 5955
+ K# 23 1 87sT+ 2% 589551+ KO 2% (sksh + 223 ,sh'sh ]+ K#PKo7Z33, (55)
DB = 6, yZ-CrP+ Z3BE + Z " Msish + 7135 AR + Z3MArSP + Z33AAB (56)
B = LmOLNIT L 223G (3sf cosh—sE) + CRY(3sicosf— s5) ] — 1y 1ZN[S{CRY + Sf TR+ SHCRPTY — Sum ST L 2Z3[s(CEY
+SPCRYT+ Sl T 2Z3AY(3S{SE — 8ap) + ZENSUCEP+ ZALCHP T+ S [t 2RSS AL — Sn(TmARCRY
+CEYSY) — Sun(CRYsiy+ T LATCEN) 1+ SN[ CRY(ZIMsE + 253 M%) — r g H(SEAL + SYAT+ CYcosd) (Z3Msh + 2330
— 1 ISUZBBE T+ Sun[ CEY(ZW Vst + ZBMA®) — 1 (H(SB AL+ SYAB + CBYcos) (2135 + Z33A1) — 1 1y Z3BlE
+ ST TCRY = SEARIZ3M sy + Z33AR T+ St w TCR7 — SmAKIZ sy + ZB3A ]+ Y Z3NBEf + 2-MNssy)
+ZENSIAR + Z3MNA SR + Z3NATAL T+ AL Z33BEf, + ZM3s{'shy + 25337 AR + Z3M3Asp + Z333A AR ], (57)
FEger= S m(—ZH[ S sf + spsfrr + s CEP 1+ CHPL 2V sk sty + 23Sl sar o+ 253K A 1+ Z3r L2 KH(3SSP — 8,p)
+r .50 (3sfoos— sP) +r SPH(3sicost— s — 1S sy — St UsP]) + S Z3r g KATSEsE — ArSERT
— SEE AR — T SIS = IS Sk 1= ZBBER LSt st + spasm 1+ 1 ST Z MM sy + ZR3AR T4+ TSR T Z M + Z3M AL

r IS - r S cos — STKAY — 1 sts AT Z3M S + Z3AL 141 [rmSEE T — 1y SE cos— s K-
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TABLE I. Arrangement of atomic cores in the unit cell @fquartz, defined using the notation in Ed),
with (wy,W,,W3,W4)=(U,X,y,2). The unlistedg,; vectors are zero.

i Type +u Gu +x % +y Gs +z Qi

1 Si  (000) +u (-1-10)

2 Si (001/3) +u  (100)

3 Si (00253 +u  (010)

4 O (000) +x  (100) +y (010) +z (001)
5 O (001/3) +x  (010) +y (-1-10) +z (001)
6 O (0023) +x (-1-10) +y (100) +z (001)
7 O (000) +x  (010) +y (100) +z (00-1)
8 O (001/3) +x (-1-10) +y (010) +z (00-1)
9 O (0023 +x  (100) +y (-1-10) +z (00-1)

— Sk SyAR [ Z 35+ ZBAX + 1 i s Z3BRE + Z M st s + 7SI AL + Z3MIA Pef + Z3BIA AL
+ 1,855 Z32B + ZEM250 s + ZU32T AR + Z3MZ A2 + Z3BAC AR 1+ KA Z33B1f + Z M 3sfsh, + 2133 AR,

+Z3M3A s 4 733NN BT, (58)

B. Application to harmonic exponential potentials Z3%8=cs@0(Z3+ 3co9Z%). (63

Given the above framework, the contributions to the static o

and dynamical parts of the free energy and its derivatives cafin® others are formed by multiplying a factor efl/R, to

be calculated for a general translationally and rotationallyntroduce a superscript df=1 or 2, for instance,

invariant three-body potential, as long as th&unctions de-

fined in Eq.(19) can be calculated. This is usually fairly le:Lz Z331=—i233 64)

straightforward; in this section we give an example of a po- RiR,™ R, ™ "

tential that combines a harmonic dependence on angle and an

exponential decay with distance: Assuming a well-behaved potentialt is clear from Eq(19)

that the order of the superscripts is immaterial.

L(rq,ry,co8)=ke "1/Rie2/Re(g—g)2. (59 Note that for the case of the potenti&9) most of theZ

functions diverge for cag==*1. This is not an indication of

unphysical behavior but simply an undesirable consequence

of using co® as an intermediate differentiation variable. To

This leads to the derivative functions

_ —r1/Rip—ro/R _ 2 . . .
Z=ke "11e 27726 0o)°, (60) treat three-body interactions between particles that may be
. = " collinear therefore, a different form of potenti&almust be
Z°=—2cswke "tMie"2"R2(9— 6,), (61)  used, e.g., one harmonic in (a&Bscosd,). Alternatively a set
of expressions for the free energy and its derivatives which
Z8=csdh(2ke "1/Rie "2/Re4 coxhZ8), (62)  avoids the use of c#smay be derived.
4.95 T T T T T T T 5.46 T T T T T T T
X
5.45 %
< e e - B o= ¥ %".'.‘.‘:;'}:_‘:‘_:':_':;:-:_-:x:»_—_-:;—_-——'ﬂ“"’*.
< < 544 PTF 14
© (5]
5 493 & 543} M
£ £
42 | .
S 42 % 5
Q
@ o 541 F i
R} £ .
E 4.91 — Three-body < 54 nm — Three-body |
———mmm strut - set 1 —==X--- strut - set 1
4.9 |m —— strut - set 2 || 539 — % strut - set 2 |
: L] Expt. u Expt.
1 1 1 I I I I 538 1 1 1 I I I I
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
Temperature T (K) Temperature T (K)

FIG. 1. Calculated variation od and c with temperature fore quartz using the potential sets listed in Table II. Full lines denote
calculations using the three-body O-Si-O angle term. Dashed and dot-dashed lines show values obtained using strut potentials set 1 and sef
2, respectively. Filled squares show experimental va(iRes. 22.
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TABLE II. The shell-model parameter set far quartz. The parametess ry, andC are the coefficients for Buckingham potentials of
the formAexp(—r/ro)—Cr 8. K is a core-shell spring constaiki, and 6, are the parameters for the three-body O-Si-O potential defined in
Eq. (65). ks andrg are the parameters for the strut potent®®), which, as described in the text, replaced the three-body term in some
calculations. Two sets of strut potentials are listeele the text In all cases the atomic charges ard.0 for Si, considered as a rigid ion,
+0.86902 for the O core (@, and—2.86902 for the O shell (§. The cutoff used for the Buckingham potentials is 12.0 A while that for

the struts is 2.8 A.

A To C Kes Ky 0o Ks Is
Interaction (eV) (A (eV A% (eVA? (eVrad? (deg (eVA? (R)
Si-Og 1316.374 0.3205 10.66
(OXIOX 22764.00 0.1490 27.879
O-Og 74.92
O-Si-O; (three-body 2.09724 109.47
O¢Si-O; (strut: set 1 1.23277 2.65359
O¢-Si-O; (strut: set 2 2.38277 2.65359
IV. EXAMPLE APPLICATION TO  a QUARTZ tetrahedra. The same occurs with all the three-body poten-

We end with a brief example, our treatment here beinq[;ifd\/\ilﬁ gae\;e;eésted, including the two sets of potentials tabu-

illustrative rather than comprehensive. The thermal expan-
sion of @ quartz has received considerable experiméhtal _ _ _
and theoretic&P~?®attention, and so it serves as an excellent B. Comparison with strut potentials

example of our methodology. Quartz is optically active, the  For comparison, we also present calculations employing a
laevo- and dextro-rotatory form af quartz belonging to the  commonly used alternative to the three-body term involving
space group®3,21 andP3,21, respectively. The structure the Si-O-Si angle. Instead, a harmonic strut is placed be-
consists of approximately regular SjQetrahedra sharing tween the O atoms that are part of the same,Sirahe-

oxygen atoms at each vertex. The unit cell is hexagonal withyron, i.e., Eq(65) is replaced with the two-body potential
nine atoms in the primitive cell. There are six structural pa-

rameters: the lattice parameteasand ¢, and four internal 1
coordinatesy, x, y, andz that parametrize the internal strain b= Eks(ro_o—rs)z, (66)
state of the atoms, according to E@), except we have

renamed thev,, asu, X, y, z. The position vectors i_n unit-cell wherer oo is the oxygen-oxygen distance anga constant.

space of each atom can therefore be written as in Table I. Agyyt potentials of this form have recently been used for sili-

846 K a quartz undergoes a phase transitiond@uartz,  cates with success by GafeEquations(65) and (66) are

which is a special case of the structure, with hexagonal ¢learly inequivalent since the bond angle is a function of the

symmetry and retaining only one internal degree of freedomyyg Sj-O bond lengths and the 0-O distance. Nevertheless it
We start with a set of shell-model potential parametergg possible to expand E@66) as a Taylor series ing.g, in

due to Gal® listed in Table II, which includes two-body \hich the first term is of the same form as the right-hand
interactions and a standard three-body harmonic-angle pajge of Eq.(65), and

tential, of the form

1.1 .
1 1k
£=5ky(6—60)?, 65
s 09
g
where 6 is the O-Si-O angledy,=109.47° and both oxygen 2 08 -
atoms are bonded to the same silicon. é 07 k
2
_ 5 06
A. Thermal expansion 0s | e i — Three-body | |
Figure 1 (full lines) shows values of and ¢ over the ' 4 el e
temperature range 0-400 K, calculated as outlined in the 0.4 : : ! : : ! :
0 50 100 150 200 250 300 350 400

previous sections of this paper, together with experimental
values for comparisoff. Inclusion of the vibrational terms
expands the latticeestimated dilations af=0 are da FIG. 2. Calculated variation of Gneiseny function for
=0.25% andsc=0.18%). At temperatures above 400 K quartz using the potential sets listed in Table II. Full lines denote
the full free-energy minimization fails, due to the appearanceailculations using the three-body O-Si-O angle term. Dashed and
of imaginary modes that appear to be associated with lowedot-dashed lines show values obtained using strut potentials set 1
frequency modes associated with the rotation of the,SiOand set 2, respectively.

Temperature T (K)



PRB 59 QUASIHARMONIC FREE ENERGY AND DERIVATIVES ... 361

495 T T T T 5.45 T T T T
X
< 404t X - <
g s ; 544 | T
2 P ,g /x,
§ 493 . s X
[} ©
o Q.
3 8 543 .
= =
« 4.92 = kS
full minimization — full minimization
ZSISA i ZSISA
4.91 ' 5.42 L . i I
800 1000 0 200 400 600 800 1000
Temperature T (K) Temperature T (K)
0.471 T T T T 0.413 T
0.47 ]
=} >
8 X L 0412 ]
@ - i 2 -X
£ 0469 X £ x
& e @ %
o - [+ % -
< 0.468 E ©
5 S 0411 4
£ £
0.467 E
full minimization — full minimization
ZSISA -—x--= ZSISA
0.466 I 0.41 1 I I I
0 200 400 600 800 1000 0 200 400 600 800 1000
Temperature T (K) Temperature T (K)

FIG. 3. A comparison of full free-energy minimization and ZSISA resultsaoe, u, andx. Full lines denote full free-energy minimi-
zations of all external and internal variables. Dashed lines show values obtained using ZSISA. All calculations used the three-body potential
set listed in Table II.

2 An alternative procedure for the strut potential parameters
ssKg5———. (67) is to fix rg and obtainkg by requiring that the new potential
r'si.o(1+costy) set reproduces the same static energy as the potential set that

includes the three-body term. We used a value of 2.65359
A for rg, which is the value corresponding tog.q
=1.625 A andg,=109.47°, and the resulting parameters
are collected together in Table Il as set 2. The corresponding

set 1 in Table II. The calculation of the thermal expansion ofc@lculated thermal expansion is shown by dot-dashed lines in

« quartz was then repeated replacing the harmonic-anglE'd: 1. Again, these do not quite reproduce the three-body
term with a strut. The dashed lines in Fig. 1 show the resultPotential results. Compared with strut potential set 1, the

ing values of the lattice parameters as a function of tempera/alues ofa are closer and the values ffurther from the

ture. It is clear that higher-order terms are not negligible withth"€€-Pody results. , o N N
differences in the calculated lattice parameters, for example Cor_nparlso_n between experiment and theory shows that
of the order of 0.01 A. From Fig. 1 it is clear that the differ- tere is considerable scope for improvement of the poten-

ences between quantities calculated using three-body poteHaIS: POte”“"?" parameters for a given_ solid have qften been
tials and those using struts can be of the same order as ﬂg)@talned by fitting to observed properties of the solid such as

total change in the quantities between 0 and 400 K. As witfhe lattice parameters and elastic constants. However, the

the three-body potentials the full free-energy minimizationsc@lculations have been largely restricted to the static limit.

fail at 400 K. Figure 2 shows calculated values of the dimenOUr néw methodology makes it straightforward to fit the

sionless Gineisen functiony (= 8V/x7Cy, whereg is the parameters using calculations at finite temperature, and in
coefficient of volumetric thermal expansion age the iso- particular at the same temperature as th‘? gxperlmental mea-
thermal compressibility determined using both the three- Suréments, including thermal effects explicitly.

body and strut potentials. Whereas the differences in the cal-

culated lattice constants differ by less than 1%, the C. ZSISA

Gruneisen functions differ in the two models at low and high  Finally we comment on previous approaches to the mod-
temperatures by more than 10%, showing the effect of aling of thermal effectsthat have used the zero static inter-
proper consideration of three-body forces. nal stress approximatidiZSISA); in this approximation only

To assess the importance of higher-order terms in(&5),
we used Eq(67) to determine the value & corresponding
to the value of ky used in Eqg. (65 (putting rgi.o
=1.625 A). The resulting values ¢, andr are listed as
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the external strains&(™) are relaxed using fully dynamic Very similar conclusions are obtained using any of the po-
free-energy derivatives, while the internal strair&{"{) are tentials in Ref. 25. These results caI.I into question th.e com-
relaxed using static energy derivativésThis approach is monly used assumption that .ZSISA is a good approximation
popular since static energy derivatives can be calculated an&?.fu" free-energy minimization forx quartz and related
lytically, and rapidly, while only a small number of free silicates.
energy derivatives is required_, vv_hich are _readily obtained V. CONCLUSIONS
numerically. The ZSISA optimization condition is
We have extended the theory of Ref. 1 to apply to general
rotationally and translationally invariant three-body interac-
tions, enabling fully dynamic geometrical optimization of a
wider range of crystals. Detailed expressions, in a form suit-
It is worthwhile emphasizing the variables that are kept conable for efficient incorporation into a computer program,

stant in Eq(68). ZSISA involves the minimization d& with ~ Nave been given, and such a program has been wtten.
respect to the external strains at constant intestraiss ™ By way of example, we present the results O,f applying the
and not at constant internatrair®® £™. For « quartz the theory toa quartz, comparing the fully dynamic three-body
difference is crucial, as has been pointed out by Ghfer ~ Potential optimizations both with dynamic pseudo-three-
example, keeping the internal strain constant predicts an e0dy (“strut”) potential optimizations and with semidy-
roneous large negative volumetric thermal expansion coeffinamic (ZSISA t_hrge-body potential optimizations; in bOt_h
cient for « quartz. cases the predictions of the approximate treatments differ
Figure 3 also shows results for the crystallographic paSignificantly from the exact one.
rameters, ¢, U, andx of & quartz obtained using ZSISA and
the set of potential parameters used earlier including the
O-Si-0O three-body term. For comparison, the full minimiza- This work was supported by EPSRC Grants No. GR/
tion results are also included in these figures. A previouk05979 and No. GR/L31340. Additional computer resources
study'! showed that for Mgk the results obtained using this were made available by the UK Facility for Computational
approximation with two-body potentials are in very good Chemistry. G.D.B. gratefully acknowledges financial support
agreement with those obtained by carrying out a full mini-from la Universidad de Buenos Aires. His contribution to
mization. In contrast, for our present example, values usinghis work was made possible by means of a grant from el
ZSISA agree with those from the full minimization only at Consejo Nacional de Investigaciones Cifioéis y Tenicas
very low temperatures. At temperatures higher than 400 Kie la Repblica Argentina. We would like to thank Julian
indeed the ZSISA results fail to show the instability of the Gale, Hugh Barron, and Bill Mackrodt for useful discus-
a-quartz structure as predicted by the full minimization. sions.
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