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Molecular-dynamics simulation of directional growth of binary mixtures

P. Z. Coura
Departamento de Fı´sica, Instituto de Cieˆncias Exatas, Universidade Federal de Juiz de Fora, Juiz de Fora, MG,

CEP 36036-330, Brazil

O. N. Mesquita and B. V. Costa
Departamento de Fı´sica, ICEx, UFMG, Belo Horizonte, MG, CP 702, 30123-970, Brazil

~Received 17 July 1998!

We use molecular dynamics to simulate the directional growth of binary mixtures. Our results compare very
well with analytical and experimental results. This opens up the possibility to probe growth situations which
are difficult to reach experimentally, being an important tool for further experimental and theoretical develop-
ments in the area of crystal growth.@S0163-1829~99!02405-4#
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I. INTRODUCTION

The main aim of this work is to show the feasibility o
using molecular-dynamic computer simulations to study
rectional growth of binary mixtures at atomic level. In com
puter simulations, we can easily vary parameters of this p
cess and investigate regions of parameter space which
difficult to access experimentally. It is then possible to ma
predictions that might be useful for basic science or tech
logical purposes.

The rapid expansion of the use of high quality crystalli
materials in optical and electronic devices during the p
decades has strongly stimulated research, both theore
and experimental, on dynamics of crystallization. A bet
understanding about solidification of metals and eutectic
bers are of unquestionable technological interest. Comp
simulations have played an important role in the devel
ment and understanding of models of crystal growth.1,2

During growth, the crystal-fluid interface is not at therm
dynamic equilibrium. The moving interface is a dynamic
system, which can display a variety of dynamical instabilit
and pattern formation. It has become a very important mo
system for studying complex spatiotemporal dynamics.3

A crystal can grow from the adjacent fluid~melt, vapor, or
solution! by different mechanisms, depending on the str
ture of the interface~rough or smooth!, material purity,
growth rates, temperature gradients, and related factors.
a crystal to grow: ~i! atoms or molecules must be tran
ported from the fluid phase towards the interface where
phase transformation is taking place;~ii ! transported atoms
or molecules must have a nonzero probability of sticking
the crystal surface;~iii ! the latent heat generated during cry
tal growth as well as the excess solute components se
gated must be carried away from the interface.

These requirements can be met in a controlled way
experiments of directional growth, where a sample in an
propriate furnace is submitted to a temperature gradient
pulled with a fixed speed towards the colder region of
furnace. For practical crystal growth, the sample can be
into a quartz tube with chosen diameter and length. This
three-dimension Bridgman growth arrangement. Howev
detailed studies about dynamics of crystal growth have b
PRB 590163-1829/99/59~5!/3408~6!/$15.00
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conducted in very thin transparent samples~sandwiched be-
tween glass slides!, such that the crystal-fluid interface ca
be visualized and recorded with the use of videomicrosc
techniques.4,5 Results of such experiments have been co
pared with results of two-dimensional models of crys
growth. Our computer simulations are also carried out in t
dimensions.

As far as we know this is the first attempt to simula
directional growth of a binary mixture utilizing molecula
dynamics~MD! simulation techniques. Some earlier resu
of MD were reported by Nijemeijer and Landau on las
heated pedestal growth of fibers.6 Previous simulations con
sisted of numerical solutions of differential equations f
transport of heat and mass, and Monte Carlo technique
simulate attachment kinetics.1,2

With the use of molecular-dynamics techniques we sim
late the solidification of a two-component system consist
of solvent ~atomsa! and solute~atomsb! interacting via a
modified Lennard-Jones~LJ! potential. Particles interact via
three different potentials:Fa,a , Fb,b , and Fa,b5Fb,a
which we will describe in detail in Sec. III. By tuning th
parameters of the LJ potential, we can choose the structu
the interface~rough or smooth! and the segregation coeffi
cient.

In this paper, we simulate a binary system with a rou
crystal-fluid interface~like in metals! and with a segregation
coefficient of the order of 0.1. The results of these simu
tions are then compared with well-known models of seg
gation during directional growth, where diffusion is the on
transport mechanism present. This work is organized as
lows. In Sec. II we develop the theoretical background
crystal growth of binary mixtures. In Sec. III we discuss t
simulation method we have used. In Sec. IV we show
results and discussion, and in Sec. V we present our con
sions.

II. DIRECTIONAL GROWTH OF BINARY MIXTURES

Most models of directional growth are two-dimension
models.7 Therefore, for comparison with these models,
great deal of experimental observations have been don
thin samples of transparent materials, where presumably
3408 ©1999 The American Physical Society
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PRB 59 3409MOLECULAR-DYNAMICS SIMULATION OF . . .
third dimension is not important, and the crystal-fluid inte
face can be followed in time, by using videomicroscopy w
digital image analysis.4,5 The usual experimental setup
shown in Fig. 1. The furnace consists of two metal blocks
controlled temperatures: one block with temperature ab
the sample melting temperature and the other below. A
sample of the material to be studied is sandwiched betw
glass slides with spacers, whose thickness is in general
few micra, to keep the system as close as possible to ad
geometry, and guarantee that the transport of mass is ma
diffusive with no convection in the fluid phase. The samp
is then put on top of the metal blocks, with good therm
contact. A temperature gradient appears along the sam
cell. The sample is then pulled towards the colder block i
very precise and controlled way by a pulling system a
starts to solidify. After an initial transient the syste
achieves a steady state where the interface position beco
fixed in the laboratory frame, the growth speed is the sa
but opposite to, the pulling speed, and the solute concen
tion profile becomes steady in the laboratory frame.

An example of solute segregation during directional
lidification of binary mixture composed by the crystal capr
lactane as solvent and methyl-blue as solute8 is observed
with videomicroscopy~Fig. 2!. In the top part of Fig. 2 we
show an image of the crystal~left side! and melt~right side!,
with maximum concentration of methyl-blue at the melt si
of the interface. From the gray level of the image we obt
the methyl-blue concentration profile across the sam
which, in the melt, decays exponentially as a function of
distance from the interface~bottom part of Fig. 2!. We will
see that molecular-dynamics simulations can reproduce
well this type of result.

Morphological instabilities of the planar interface are i
hibited during directional growth of pure materials. How
ever, for binary systems, depending on concentration of
ute, temperature gradient, and growth speed, morpholog
instabilities can occur, the planar interface becoming cellu
and eventually dendritic. This is the Mullins-Seker
instability.9 In our simulations we are able to observe bo
regimes: planar and cellular interfaces. In this work we w
focus our attention on the evolution of a planar interfa
where we clearly see segregation and transport of solut
the interface. From the data analysis we obtain the so
concentration profile, the segregation coefficient for this

FIG. 1. Basic experimental setup for directional growth~as de-
scribed in the text!. The interface motion can be visualized using
optical microscope.Tm is the melting temperature of the mixture
-
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nary system, and the diffusion coefficient of the solute in
solvent.

A. Binary phase diagram

An added second component~solute! in a crystal-fluid
system ~solvent! is, in general, more soluble in the flui
phase than in the solid phase, since the mismatch in size
shape between solvent and solute atoms may cause a
mechanical~geometrical! stress in the crystalline lattice o
the solid phase. In this case the segregation coefficienK
which is the ratio between the solute concentration in
solid (cS) and the solute concentration in the liquid (cL),
satisfiesK5cS /cL,1. In our simulations we observed tha
the value of the segregation coefficient is very sensitive
thesab parameter of the LJ potential, that controls the effe
tive size difference between solvent and solute atoms,
less sensitive to changes in the depth of the potentials.
stress in the crystalline lattice increases with increasingsab
and consequently a largesab reducesK.

For diluted binary systems a sketch of a phase diagram
K,1 is shown in Fig. 3. The melting temperature of t
mixture decreases with increasing solute concentration.

FIG. 2. Directional solidification of the binary mixture caprola
tane~solvent! and methyl-blue~solute!. Liquid is at the right side
and solid to the left side. Methyl-blue concentration is proportio
to the gray level of the image. The lower plot shows the meth
blue concentration as a function of position.

FIG. 3. Schematic drawing of part of binary system phase d
gram, the solute hasK,1.
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3410 PRB 59P. Z. COURA, O. N. MESQUITA, AND B. V. COSTA
liquidus and solidus lines define the temperature as a fu
tion of solute concentration where the first solid is form
and where the sample is completely solidified, respectiv
If we name the slopes of the liquidus and solidus lines bym
andm8, respectively, the segregation coefficientK can also
be written asK5m/m8.2

In Fig. 4 we show the solute concentration profile for
equilibrium crystal-fluid interface where the solute conce
tration in the liquid isc0 and consequently the solute co
centration in the solid iscS5Kc0 . Usually, this is the initial
condition for most directional growth experiments. Since
the present work we will be more interested in the stea
state situation~Fig. 5!, the initial condition is not important

B. Solute transport

Since our system is two-dimensional, if we conside
planar interface alongx and growth direction alongz, for
large systems and far from the edges of the sample cell,
solute concentration profile will be a function of only th
time variablet and the space variablez. It is convenient to
write the transport equations in the system of reference of
moving interface, since in this frame of reference it is po
sible to have a steady-state situation, where the solid gro
velocity (Vs) is equal and opposite to the pulling veloci
(Vp) and the solute concentration profile is constant in tim
The steady-state situation is achieved when the segreg
solute-flux at the interface is equal to the solute-flux aw

FIG. 4. Solute concentration profile near an equilibrium sol
liquid interface, for a solute concentration in the melt equal toc0

andK,1.

FIG. 5. Solute concentration profile near a steady-state adv
ing solid-liquid interface forK,1.
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from the interface, in the fluid phase. In general, for sol
liquid interfaces the difference in density between the so
and liquid phases is negligible. Due to mass conservat
the average growth velocity of the solid phase (Vs) is equal
to the average velocity of decrease of the fluid phase (Vf).
However, if the fluid phase is less dense than the solid ph
again for mass conservation,Js5rs3Vs andJf5r f3Vf and
sinceJs5Jf , thenVf5Vs3rs /r f , whereJs ,rs and Jf ,r f
are the mass flux and density in the solid and fluid phas
respectively. At steady stateVs5Vp so that

Vf5Vp3rs /r f . ~1!

Since the solute diffusion coefficient in the solid phase
orders of magnitude smaller than the one in the fluid pha
the transport of solute in the solid phase can be neglec
Therefore, we will consider only the solute transport in t
fluid phase. In the moving crystal-surface reference fra
~system of reference moving with velocityVs! the diffusion
equation for the solute concentration in the fluid phase (cf)
can be written as:7

]cf

]t
5D

]2cf

]z2 1Vf

]cf

]z
, ~2!

where D is the solute diffusion coefficient in the fluid
phase andVs andVf where defined above. Equation~2! must
be supplemented with boundary conditions:~a! cf5c0 at z
5 infinity, ~b! (12K)Vfcf52Ddcf /dz at z50. The condi-
tion ~b! is just the solute mass conservation at the interfa

At steady stateVs andVf are constant andVs5Vp . The
solution of the above equation is:

cL~z!5c0F12S 12K

K DexpS 2
Vfz

D D G
5c0F12S 12K

K DexpS 2
Vprsz

r fD
D G , ~3!

where in the last equality we used Eq.~1!. At steady state,
the solute concentration in the solid is constant and equa
c0 . In Fig. 5 we show the theoretical prediction for the solu
concentration profile during steady-state directional grow
This is the experimentally observed behavior as shown
Fig. 2. Our molecular-dynamics results for solute segrega
during directional growth display the same type of behav
as will be shown in Sec. IV. An important length scale f
this problem is the diffusive lengthl D5Dr f /Vprs . The sys-
tem can be considered large for boundary condition (a)
apply, if the length of the fluid phase alongz is much larger
than l D .

III. SIMULATION

Our simulation is carried out using molecular-dynam
approach with all particles interacting through a modified
potential.

-

c-
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F i , j~r i , j !5H f i , j~r i , j !2f i , j~r c!2S df i , j~r i , j !

dri , j
D

r i , j 5r c

~r i , j2r c! r i , j,r c

0 r i , j.r c ,
.
ns
ts
he
-
T
rm

on
2
in

m

. I
la
ic
e
e
e
ke
i

e

-
le
7

-
m
ent
n
st

qui-

.
t
-

wo

s,

ber
of
ing

of

-

ieve
ere-

an
file

the

y
he
wheref i , j (r i , j ) is the LJ~12-6! potential:

f i , j~r i , j !5e i , jF S s i , j

r i , j
D 12

2S s i , j

r i , j
D 6G . ~4!

The indexesi and j stand for particles in the positionsr i and
r j , respectively, and 0< i , j <N, whereN is the total number
of particles andr i , j5ur i2r j u. A cutoff r c52.5saa is intro-
duced in the potential in order to accelerate the simulation
the force on a particle is found by summing contributio
from all particles acting upon it, then this truncation limi
the computational effort to an amount proportional to t
total number of particlesN. Of course this truncation intro
duces discontinuities both in the potential and force.
smooth this discontinuity we introduce the constant te
f(r c). Another term (df/dr) r 5r c

(r 2r c) is introduced to
remove the force discontinuity. Particles in our simulati
move according to Newton’s law, that generate a set ofN
coupled equations of motion which are solved by increas
forward in time the physical state of the system in small ti
steps of sizeDt50.02saa(ma /eaa)

1/2. The resulting equa-
tions are solved by using Beeman’s method of integration
order to improve the method we use a Verlet and a cellu
table.10 The Verlet table consists of an address vector wh
contains the number and position of each particle insid
circle of radius r v53saa . After some steps in time, th
neighborhood of each particle changes, so that we hav
refresh the Verlet table. This refreshment process can ta
long time. In order to make it shorter we divide the system
cells of sizecx3cz5(3.5saa)

2, such that in recalculating th
Verlet table we have to search only in neighbor cells.

Initially we distributeN5nx3nz5273270 particles over
the two-dimensional surfaceLx3Łz527321/63451saa

2 .
We assume periodic boundary conditions in thex direction.
In the z direction we divide the system in two distinct re
gions, a solid and a fluid one. In the solid region partic
stand initially in their equilibrium position in a total of 2
330 particles. On the fluid region the density is initiallyr

FIG. 6. Plot of total energy as function of temperature for t
pure material.
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50.5saa
22 , giving a total of 273240 particles, randomly dis

tributed in a triangular lattice and slightly dislocated fro
their equilibrium position. We impose a temperature gradi
along the z direction using a velocity renormalizatio
approach.10 We divide the system in two regions: The fir
one defined by2210saa<z<2231saa , where temperature
is fixed to T050, the other one defined by 80saa<z
<220saa , where the temperature is fixed toTh , higher than
the melting temperatureTm of the pure material. We let the
system evolve for 1.23105 steps in time of sizeDt, which
seems to be enough to equilibrate the system. Once the e
librium is reached we start pulling the system in the2z
direction, at a pulling velocityvp5431023(eaa /maa)

1/2.
Particles which reachzmin are frozen, working as a sink
Once a bunch of particles are frozen atzmin the same amoun
is introduced atzmax with the same solute initial concentra
tion.

In order to obtain an estimate forTm we did an indepen-
dent simulation with 1.53103 particles in a box of fixed
dimensions and initial density 0.5saa

22 , below the solid den-
sity. The result is shown in Fig. 6. We can see thatTm
50.403eaa /kB .

A. Units

In our simulation we consider a system consisting of t
different types of particles: the solvent~a particles! and the
solute ~b particles!. We define three types of interaction
solute-solute (b-b), solvent-solvent (a-a), and solute-
solvent (b-a). The initial solute concentration isc055%.
This concentration is defined as the ratio between the num
of particles of the solute and the total number of particles
the solvent. To calculate the density along the crystal be
grown we use strips of sizeDz520saa ~so that we can easily
map the impurity concentration along the crystal!. As a mat-
ter of simplicity, from now on we measure energy in units
eaa , distance in units ofsaa and mass in units ofma , and
we chose the LJ parameters aseab50.5, ebb50.1, sab
5sbb5saa51, and mb5ma51. Also, we measure tem
perature and time in units ofeaa /kB and (masaa

2 /eaa)
1/2,

respectively.

IV. RESULTS

We observed a decrease in computation time to ach
steady state as the density of the fluid was decreased. Th
fore we worked with a fluid density 5.7 times smaller th
the solid density, as can be seen from the density pro
shown in Fig. 7. For a given pulling speedVp the time for
the system to achieve steady state, and consequently
simulation time, is of the order of;D/Vf

25D/Vp
2(rs /r f)

2.
SinceD in the fluid phase increases with decreasingr f /rs ,
but not as fast as (r f /rs)

2, by decreasing the fluid densit
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the computation timedt also decreases.
For r f 150.7 ~liquid! andr f 250.15 ~vapor! we obtained,

respectively, D1'0.1 and D2'1.2. Therefore dt2 /dt1
;D2(r f 2)2/D1(r f 1)2;0.55, sincers andVp are constants
the computation time decreased by almost a factor of 2 as
fluid density decreased by almost a factor of 6. As far
diffusive transport is assured the large density difference
tween the two phases will not change, either qualitatively
quantitatively, the conclusions drawn from Sec. II B. Co
puter efficiency can be improved by increasing the mass
tio. We, however, did not make systematic simulations w
different mass ratios, since we had already a large numbe
parameters to vary.

We checked the velocity profile of the fluid phase a
determined that the solute transport is mainly diffusive
our simulations. Therefore the solute concentration pro
should follow the behavior predicted by Eq.~3!.

A. Interface structure for pure material

It is the structure of the interface at atomic level th
determines if a particular crystal will display faceted~smooth
interface! or nonfaceted~rough interface! morphology. Fluid
particles will attach preferably on kink sites on the interfa
On smooth interfaces, kink sites are created by tw
dimensional nucleation or by screw dislocations throu
growth steps. Lateral growth~layer-by-layer! occurs by at-
tachment of fluid particles at growth steps. On the ot
hand, on rough interfaces, thermodynamic fluctuations
create many kink sites. The fluid particles then attach
those sites and growth proceeds normally to the interfa
because no lateral displacement of growth steps is requ

A criterion to determine if a particular solid-fluid interfac
will be smooth or rough at atomic level was introduced
K. A. Jackson.2 Modeling the solid-fluid interface as an Isin

FIG. 8. Typical result for the crystal growth simulation using t
parameters set described in the text. Larger circles represent s
and smaller represent solvent. A higher solute concentratio
clearly observed near the fluid side of the interface.

FIG. 7. Density profile in our simulation. The solid phase de
sity was 5.7 times larger than the fluid phase density.
he
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system, he introduced thea factor defined asa5jL/kbTm ,
whereL is the latent heat of the transformation per partic
Tm is the temperature of the transformation,kB the
Boltzmann constant, andj is the ratio between the number o
nearest neighbors at the interface and the number of ne
neighbors in the bulk. Ifa.2 the interface is smooth, ifa
,2 the interface is rough. Even though this is a semiqu
titative criterion it works very well for solid-liquid transfor
mations. Metals growing from the melt usually havea,1
and do not present facets. With this criterion transparent
terials which solidify like metals were discovered. They a
the so-called plastic crystals witha factors smaller than 1
From the data of energy as a function of temperature for
pure system displayed in Fig. 6 one can obtain the latent h
of the transformationL50.59 and the melting temperatur
Tm50.40. For a two-dimensional triangular lattice and dire
tion of growth ~0,1!, j52/3. Since we are usingkB51 we
obtaina50.98, a typical value for metals. Indeed, the inte
face displays a morphology of rough interface and no e
dence of faceting was found.

B. Solute concentration profile

Our simulations of directional growth were done with so
ute concentration in the fluid ofc055%, for fixed pulling
velocity of Vp50.004. An example of solute segregation
the crystal-fluid interface during growth is shown in Fig. 8

After averaging over many runs to improve statistics o
obtains the steady-state solute concentration profile re
sented as data points with error bars in Fig. 9~compare this
with Fig. 2!.

A fit of the concentration profile in the liquid using Eq
~3! is displayed as a dashed curve. From this fit one obta
K50.09460.005 and an effective diffusion lengthl D560
65. Using Eq.~3!, with rs /r f55.7 andVp50.004, we ob-
tain an effective diffusion constantD51.460.1. To measure
D independently we use the relation^r 2&54Dt, wherer is
the displacement ofb particles andt is time. We obtain an
effective diffusion constantD51.360.1. By calculatingD
from the velocity-velocity correlation function we obtain e
sentially the same result. Therefore, quantitative results
be obtained from molecular-dynamics simulation of dire
tional growth of binary mixtures.

ute
is

- FIG. 9. Plot of the fraction of solute along the crystal. Th
interface is atz'0. Solute segregation at the interface is clea
seen.
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C. Thermal length and cellular instability

The temperature profile inside the material is shown
Fig. 10. We see that the first solid formed is at temperat
of ;0.35. The melting temperature of the pure materia
0.40. ThereforemC0;0.4020.3550.05. Since the therma
length l T5mc0(12K)/KG,7 K'0.1, andG'0.005 we ob-
tain the valuel T;20. Becausel D@ l T we are in the stable
region for a cellular instability, i.e., the interface remai
planar. By decreasingK and increasingVp we can makel T
. l D and observe a cellular instability as seen in Fig. 11
detailed study of cellular instabilities using molecula
dynamics simulations is under way and will be the subjec
a future publication.

V. CONCLUSIONS

By using molecular dynamics we simulated the dire
tional growth of binary mixtures in a LJ system. Our sim

FIG. 10. Temperature profile across the sample. Atz,2220 the
temperature is fixed atT50 and between 80<z<220 is fixed at
T50.70.
N.
n
e
s

f

-

lations are able to generate segregation profiles similar to
ones observed experimentally. Comparison with analyt
results from literature shows that our simulations give qu
good quantitative results. The great advantage of simulat
is that we can access a wide region of interesting parame
by simply tuning the LJ potential. It is then possible to eas
investigate regions that are difficult to access experimenta
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