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Integrable models of strongly correlated particles with correlated hopping
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The exact solution is obtained for the eigenvalues and eigenvectors for two models of strongly correlated
particles with single-particle correlated and uncorrelated pair hoppings. The asymptotic behavior of correlation
functions are analyzed in different regions, where the models exhibit different physical behavior.
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Integrable strongly correlated electron systeisese, e.g., is the corresponding occupation number. The model contains
Ref. 1) have been an important subject of research activity ircorrelated single-particle hopping, which is described by the
recent years since they are believed to play a promising rolparameterst,,t,,t;», and uncorrelated pair hopping de-
in unraveling the mystery of higiiz superconductivity. Sev- scribed by the parametgs. We have also two-, three-, and
eral integrable correlated fermion systems that manifest sufour-particle static interactions between nearest neighbors.
perconducting properties so far have appeared in the literaFhe operatof in Eg. (1) projects out any configuration with
ture. Most famous are the supersymmetrd (Refs. 2—4  simultaneous occupancies of three nearest-neighbor sites and
model and the Hubbard modeDther integrable correlated we assume periodic boundary conditions.
electron systems of interest include the correlated hopping Certainly the Hamiltoniar{l) is not integrable for an ar-
modef and its generalization extensively investigated inbitrary choice of parameters. Therefore our problem is to find
Refs. 7 and 8. The models considered in these last papetder what conditions the Hamiltonidh) can be treated by
describe the dynamics of two type of particispin up and the coordinate-space Bethe-ansatz technique.
spin down with kinetic terms given by correlated single-  The obvious way to identify a state of the Hamiltonidn

particle hopping and uncorrelated hopping in the case of pawith n particles is to specify their positions, . .. X, or-
motion. dered so that

In this paper, we introduce two new integrable quantum
chains with correlated single-particle and uncorrelated pair Isx;<x,<...=Xx,=<N. 2

hopping but that have only one type of particle.

We suppose that particles on the chain may be isolated We assume the following ansatz for the wave function. If
(both nearest-neighbor sites are ematypart of a two-atom we have only particlesx, ;#x;+1, i=1,2,... n—1) we
molecule(one of its nearest-neighbor sites is occupied andwrite
the other one is emplty This supposition is achieved by im-
posing the restriction of no simultaneous occupancies of n
three nearest-neighbor sites. It means that two particles on (X1, . .. Xn) =2, Aél'l'..lpn eXP(iE Ke, Xj), ()
the neighbor sites create the two-atom molecule that can hop P =1
as a whole or disintegrate. The Hamiltonian of such systenjynere p is the permutation of 1,2..,n and ke are un-
in the most general form can be presented as follows: known quasiparticle momenta. The superscript 1 in the

amplitude indicates we have only isolated particles. In the
case where we have a pair at the positQrx,, 1(Xj+1=X,

H:—Ej: Pl(o 0 +of o )[(1=n_1)(1-nj.p) +1) the ansatz is
TN 1(1=Nnj0) F (1N 1)Nj o+ Ny 1Ny o] W(X1, oo XXk, - Xn)
+t (o 0 1o o0 )N +unn; — "
plO+10) 1T OO+ )M; iNj+1 -
:; A,lgl___lélplil___,:nex 'Zl kPij (4
+Nj-1nj 4 1[Virt Vi 2+ Voinj =
+ Voo oM+ 1P, (1)  where the bar at thith and (+ 1)th position of the super-

script indicates the pair's position. The general case with
many isolated particles and pairs follows from E¢®. and

4.

. It is not difficult to consider the eigenvalue equations if
Nj=oj o, n=1,2 or for generaln in the case where we have only

Whereoj*(oj_) creategannihilate$ a particle at sitg and
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isolated particles. These equations give the connections be- , sin(\j+in)
tween the coefficientdb " 15 Mi=g (10)
Py sin(\j—in)
SP,PJ+1A'ﬁIrl:jlﬁj';l...+[Pj‘—>Pj+1]:01 and for the mode(8) these equations are
. . N_
N 11, NN 11, ®) esin\j—in) |~ "
PiPj+1 PPJ+1 PiPj+1 PPJ+1 sin(\j+in)
TP Py1]=0, o oS\~ N+ ) sinh— A\~ 2i )
where B i=1 CONj— N\ —i7) sin(\j— N +2i7)’
2 2 1
Sp.p,= NP ch( ) N( ) Cg: )Pz 1y
. . : sin(\;—in)
(1) _1q_ Ak i(kp. +kp.) iki J
Np p,=1—€"PVy +etP 7 r, e J_S—sin()\jJrin) . (12
NEp =toel Pt ty el (ke 2e)), (6) In both cases
. n
Sk 3
I=1

2 __ ik ikp. _ 1| ai(kp. +kp.) . o
Cp,p,= ~lpt e it e —UeltrTir, is the momentum and the energy of the system is given by

i(2kp. +kp.) 1 ai(kp. +2Kp ) _ 1 2i(kp +kp.) _
+e 1 2+e 1 2 tpe 1 2. SlnhZZ??

cosh2np—Ccos 2\’

n
E= —282 cosh 2p— (14
i=1

In contrast to th&(X Z model?° this is not sufficient to prove
that the Bethe ansatz works. In order to do that we must
consider the eigenvalue equations at the boundary of the it is interesting to observe the similarity of the Bethe-ansatz
equalities(2) for the casen=3 and 4. This gives a compli- €quations (9) and (11), and those of the spin-1
cated system of equations for the coupling constants of théamolodchikov-Fateev modél and Izergin-Korepin
Hamiltonian(1). We have treated this system on a computermodel;* respectively. Although both models are exactly in-
and found the following integrable cases: tegrable, let us restrict ourselves to the more physically in-
teresting mode(7) with densityp<<1/2. There are different

ty=t,=2coshy, t;,=1, t,=—¢, regions, with distinct physical properties depending on the
7) parameter\ = — & cosh.
V11=V%=0, U=2t,, V= V21=e(t§— 1), (1) A=<-1eg=+1,7is real. We have a similar situa-
tion as in the ferromagnetic noncriticdlX Z chain with fixed
and magnetizatiorf:'2 The ground state must contain exactly one
i string of maximum length. It means that there is a gap for the
t,= sinh 27 €27 t,=— sinh 27 e27 arbitrary concentration of particles and the system is in a
cosh 3y 377 S cosh 3y ' phase-separated region, where all the particles prefer to stay
together.
€ coshy (2) A>1e=—1,7is real. We may analyze this case by
ti=1, tp:m; considering the limiting cas@— +. From this analysis it
is clear that the ground state contam® bound pairs char-
V=2t cosh2y, U=2t,(1+4 sinlf 7 cosh2p), acterized by a pair of complex particle rapidities,
()

1
Ne=5 (N *in). (15

Vi,=(e *7—2 cosh2)t,,
Inserting Eq.(15) into Egs.(10) and introducing the density
function p(\) for the distribution ofx(?) in the thermody-
wheree==*1. namic limit, we obtain the linear integral equation

The Bethe-ansatz equations are derived following the
standard procedure? Each state of the Hamiltonian is speci-
fied by a set of particle rapidities;(j=1, . .. n) related to
the momenta of particlek;. The rapidities have to satisfy
the Bethe-ansatz equations. For the mo@delthese equa-
tions have the following form:

Vy=(e*7=2 cosh2))t,, V=0,

Ao
27Tp()\)+f [20D(N—\":27)
7}\0

+®D(N=N";49)]p(N")dN’

n
_(1— _)[¢<1>(>\,77)+q>(1)(>\,377)], (16)
2 SinA 1) N

sin(x;—17)

N=n Tsin(\j— N +ig)

:eiiplljl sin(\j—Nj—in)’ ©®

where
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sinhn

(1) = '
(N 7) coshnp—cos\

17
The parametek, is determined by the subsidiary condition
for the total densityp=n/N of particles

Ao 1
J' p()x)d)\zzp. (18

Similar calculations gives us the ground-state energy

A
~E=2p cosh 22 sinh 277f * DD\, )

+®M(N\,37)]p(N)d\, (19
The other two regions are obtained froml<A=
—¢g coshn<1. Denoting n=ivy,A=ipu, instead of EQ.(9)
we have
an_ _ip i sinh(pj—p+iy)
i=1 sinh(pj—w—iy)’
(20)

g sinh(u;+ivy)
sinh(uj—iy)

(3) In the case —1<A<0,0<e=+1,0y<w/2 we
solved numerically Eq.20) for N up to 100 and checked that
the state now contains only strings of minimal lengtf®1,
i.e., all particle rapiditiegu;} have imaginary paiitrr/2 (an-
tiparticles. In the thermodynamic limit we then have the
following integral equations for the distribution function:

Ho (2) ’ ’ '
2mo(p)— O(u—pu', 2y)o(u")du
~uo
"o
=17/ (w2y), (21)
MO ! !
[ otwhdu =0, (22
— Mo
where
siny
) S A—
O m,) coshu—cosy’
—siny
3 - 7
P 1) = st cosy” (23

and the ground-state energy is given by

1 ) o
NE= ~2pcos2y+2sin 27[ O3 (u,2y)o(p)dp.
— Mo
(24

(4) Inthe case 8:A<1,e=—1,0<y<a/2 our numerical
results of Eq.(20) for lattice sizesN up to 100 indicate that

the ground state contains only bound pairs, characterized by

a pair of complex-particle rapiditi&s® as in region(15),

T
o =5 (Hetiy). (25

BRIEF REPORTS

3375

0.0

0.5

E/N

-1.5

0.0 0.5

p

FIG. 1. The ground-state energy as a function of the depsity
for some values oA = — ¢ coshz, in regions(2), (3), and(4). a,
A=11.5920;b, A=2,5092;c, A=0.7071;d, A=0.1423; e, A
—0.9239;f, A=-0.8090;g, A=—0.5.

For the density functiom(®(x) we have the following in-
tegral equations:

(2)
2w (p)+ fﬂo(z)[z‘b(z)(M_M';Z)’)

— g

+ @D (p—p'i4y)]0? (u)du’

=(1-p[®P(u, )+ PP (u,3y)]  (26)
(2) 1
f_”“z(z)ae)(u’)dﬂ’ =5p (27)
0
and the ground-state energy is given by
1 _ u?
—E=2pcos2y—2sin 27J O [DD(u,y)
N -uQ
+ P (1,3y)]0? (n)di. (28)

Solving numerically the corresponding integral equations
in regions 2, 3, and 4 we show in Fig. 1 the ground-state
energy as a function of density for some valuedofExcept
for region I, in all regions we expect gapless excitation for
p<1/2. In order to understand the physical properties of the
model under consideration we shall investigate the long-
distance behavior of the correlation functions. For this pur-
pose we shall use two-dimensional conformal field
theory*®1” and analytic method8 to extract finite-size cor-
rections from the Bethe-ansatz equations. The results of
these calculations indicate that the critical fluctuations are
described by a conformal field theory with the central charge
c=1. The long-distance power-law behavior of the density-
density correlation functions is given by the general form

(p(r)p(0))=p2+Asr 2+ A,r ~*cog 2Ker);
2kp=mp; (29)

p(r)=0'j+(rj_ , (30
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FIG. 2. The exponenpB describing the pair-pair correlation
function as a function of the densify for some values ofA =
—gcoshy in regions (2) and (4. a A=11.5919b,A

=1.2039;c, A=0.7071;d, A=0.3827;e, A=0.1423; f, A

=0.0383.

while the pair-correlation function is given by
G,(N=(0] 0{\1.0,,07,11)=Br % (3D

The exponentsx and 8 describing the algebraic decay are
calculated from the dressed charge functigrs £(\ )

L1
2[E(No)]?

This function is obtained by the solution of the integral Eqs.
(16), (21), and(26) with the right-hand side replaced by (1
—p). In Fig. 2 we show the exponet as a function ofp

for several values ah in regions(2) and(4). Our numerical
results indicate that gs— 1/2 the exponengB tends toward
the value 4y/7 and83=8(7—2vy)/ in regions(2) and(4),

B (32
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FIG. 3. The exponenp describing the spin-spin correlation
function as a function of the density for some values ofA=
—eg coshy in region (3). a, A=-0.5;b, A=—0.7071;c, A=
—0.8090;d, A=—0.9239;e, A=-0.9511;f, A=0.9980.

instead by pair hopping, but in the region with dominant pair
correlationsB<1 they create two-atom molecules. For arbi-
trary values ofA>1 there exists a curvA=A(p) separat-
ing both behaviors. An analogous behavior of correlation
functions can be observed in the modé&lghat is translated
as a strong tendency to the superconductivity. In reg®n
we have no pairs. In Fig. 3 we show the expongnthat
describes now the spin-spin correlation functien o ).
Our numerical results indicate that as> 1/2 the exponensg
tends toward the valug=4y/ .
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