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Integrable models of strongly correlated particles with correlated hopping
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The exact solution is obtained for the eigenvalues and eigenvectors for two models of strongly correlated
particles with single-particle correlated and uncorrelated pair hoppings. The asymptotic behavior of correlation
functions are analyzed in different regions, where the models exhibit different physical behavior.
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Integrable strongly correlated electron systems~see, e.g.,
Ref. 1! have been an important subject of research activity
recent years since they are believed to play a promising
in unraveling the mystery of high-Tc superconductivity. Sev-
eral integrable correlated fermion systems that manifest
perconducting properties so far have appeared in the lit
ture. Most famous are the supersymmetrict-J ~Refs. 2–4!
model and the Hubbard model.5 Other integrable correlate
electron systems of interest include the correlated hopp
model6 and its generalization extensively investigated
Refs. 7 and 8. The models considered in these last pa
describe the dynamics of two type of particles~spin up and
spin down! with kinetic terms given by correlated single
particle hopping and uncorrelated hopping in the case of
motion.

In this paper, we introduce two new integrable quant
chains with correlated single-particle and uncorrelated p
hopping but that have only one type of particle.

We suppose that particles on the chain may be isola
~both nearest-neighbor sites are empty! or part of a two-atom
molecule~one of its nearest-neighbor sites is occupied a
the other one is empty!. This supposition is achieved by im
posing the restriction of no simultaneous occupancies
three nearest-neighbor sites. It means that two particles
the neighbor sites create the two-atom molecule that can
as a whole or disintegrate. The Hamiltonian of such sys
in the most general form can be presented as follows:

H52(
j
P$~s j 11

1 s j
21s j

1s j 11
2 !@~12nj 21!~12nj 12!

1t1nj 21~12nj 12!1t2~12nj 21!nj 121t12nj 21nj 12#

1tp~s j 11
1 s j 21

2 1s j 21
1 s j 11

2 !nj1unjnj 11

1nj 21nj 11@V111V12nj 121V21nj 22
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is the corresponding occupation number. The model cont
correlated single-particle hopping, which is described by
parameterst1 ,t2 ,t12, and uncorrelated pair hopping de
scribed by the parametertp . We have also two-, three-, an
four-particle static interactions between nearest neighb
The operatorP in Eq. ~1! projects out any configuration with
simultaneous occupancies of three nearest-neighbor sites
we assume periodic boundary conditions.

Certainly the Hamiltonian~1! is not integrable for an ar-
bitrary choice of parameters. Therefore our problem is to fi
under what conditions the Hamiltonian~1! can be treated by
the coordinate-space Bethe-ansatz technique.

The obvious way to identify a state of the Hamiltonian~1!
with n particles is to specify their positionsx1 , . . . ,xn or-
dered so that

1<x1<x2< . . . <xn<N. ~2!

We assume the following ansatz for the wave function
we have only particles (xi 11Þxi11, i 51,2, . . . ,n21) we
write

C~x1 , . . . ,xn!5(
P

AP1 . . . Pn

1 . . . 1 expS i (
j 51

n

kPj
xj D , ~3!

where P is the permutation of 1,2, . . . ,n and kP are un-
known quasiparticle momenta. Then superscript 1 in the
amplitude indicates we have only isolated particles. In
case where we have a pair at the positionxl ,xl 11(xl 115xl
11) the ansatz is

C~x1 , . . . ,xl ,xl 11 , . . . ,xn!

5(
P

AP1 . . . Pl Pl 11 . . . Pn

1 . . . 11̄. . . 1 expS i (
j 51

n

kPj
xj D , ~4!

where the bar at thel th and (l 11)th position of the super-
script indicates the pair’s position. The general case w
many isolated particles and pairs follows from Eqs.~3! and
~4!.

It is not difficult to consider the eigenvalue equations
n51,2 or for generaln in the case where we have on
3373 ©1999 The American Physical Society
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isolated particles. These equations give the connections
tween the coefficientsAP1 . . . Pn

1 . . . 1 .

sPj Pj 11
A . . . Pj Pj 11 . . .

. . . 11 . . . 1@Pj↔Pj 11#50,

~5!
NPj Pj 11

~1! A . . . Pj Pj 11 . . .
. . . 11 . . . 2cPj Pj 11

~1! A . . . Pj Pj 11 . . .
. . . 11 . . .

1@Pj↔Pj 11#50,

where

sP1P2
5NP1P2

~1! cP1P2

~2! 2NP1P2

~2! cP1P2

~1! ,

NP1P2

~1! 512eikP2V111ei ~kP1
1kP2

!,

NP1P2

~2! 5t2eikP21t1ei ~kP1
12kP2

!, ~6!

cP1P2

~1! 5t11t2ei ~kP1
1kP2

!,

cP1P2

~2! 52tp1eikP11eikP22Uei ~kP1
1kP2

!

1ei ~2kP1
1kP2

!1ei ~kP1
12kP2

!2tpe2i ~kP1
1kP2

!.

In contrast to theXXZ model,2,9 this is not sufficient to prove
that the Bethe ansatz works. In order to do that we m
consider the eigenvalue equations at the boundary of the
equalities~2! for the casen53 and 4. This gives a compli
cated system of equations for the coupling constants of
Hamiltonian~1!. We have treated this system on a compu
and found the following integrable cases:

t15t252 coshh, t1251, tp52«,
~7!

V115V2250, U52tp , V125V215«~ t1
221!,

and

t15
sinh 2h

cosh 3h
e2h, t252

sinh 2h

cosh 3h
e22h,

t1251, tp5
« coshh

cosh 3h
;

V1152tp cosh 2h, U52tp~114 sinh2 h cosh 2h!,

~8!

V125~e24h22 cosh 2h!tp ,

V215~e4h22 cosh 2h!tp , V2250,

where«561.
The Bethe-ansatz equations are derived following

standard procedure.1,2 Each state of the Hamiltonian is spec
fied by a set of particle rapiditiesl j ( j 51, . . . ,n) related to
the momenta of particleskj . The rapidities have to satisf
the Bethe-ansatz equations. For the model~7! these equa-
tions have the following form:

F« sin~l j1 ih!

sin~l j2 ih! GN2n

5e2 iP)
l 51

n
sin~l j2l l1 ih!

sin~l j2l l2 ih!
, ~9!
e-

st
n-

e
r

e

eik j5«
sin~l j1 ih!

sin~l j2 ih!
, ~10!

and for the model~8! these equations are

F« sin~l j2 ih!

sin~l j1 ih! GN2n

5e2 iP)
l 51

n
cos~l j2l l1 ih!

cos~l j2l l2 ih!

sin~l j2l l22ih!

sin~l j2l l12ih!
,

~11!

eik j5«
sin~l j2 ih!

sin~l j1 ih!
. ~12!

In both cases

P5(
l 51

n

kl ~13!

is the momentum and the energy of the system is given

E522«(
j 51

n Fcosh 2h2
sinh2 2h

cosh 2h2cos 2l j
G . ~14!

It is interesting to observe the similarity of the Bethe-ans
equations ~9! and ~11!, and those of the spin-1
Zamolodchikov-Fateev model10 and Izergin-Korepin
model,11 respectively. Although both models are exactly i
tegrable, let us restrict ourselves to the more physically
teresting model~7! with densityr,1/2. There are different
regions, with distinct physical properties depending on
parameterD52« coshh.

~1! D5,21,«511,h is real. We have a similar situa
tion as in the ferromagnetic noncriticalXXZ chain with fixed
magnetization.2,12 The ground state must contain exactly o
string of maximum length. It means that there is a gap for
arbitrary concentration of particles and the system is in
phase-separated region, where all the particles prefer to
together.

~2! D.1,«521,h is real. We may analyze this case b
considering the limiting caseh→1`. From this analysis it
is clear that the ground state containsn/2 bound pairs char-
acterized by a pair of complex particle rapidities,

la
65

1

2
~la

~2!6 ih!. ~15!

Inserting Eq.~15! into Eqs.~10! and introducing the density
function r(l) for the distribution ofla

(2) in the thermody-
namic limit, we obtain the linear integral equation

2pr~l!1E
2l0

l0
@2F~1!~l2l8;2h!

1F~1!~l2l8;4h!#r~l8!dl8

5S 12
n

ND @F~1!~l,h!1F~1!~l,3h!#, ~16!

where
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F~1!~l,h!5
sinhh

coshh2cosl
. ~17!

The parameterl0 is determined by the subsidiary conditio
for the total densityr5n/N of particles

E
2l0

l0
r~l!dl5

1

2
r. ~18!

Similar calculations gives us the ground-state energy

1

N
E52r cosh 2h22 sinh 2hE

2l0

l0
@F~1!~l,h!

1F~1!~l,3h!#r~l!dl. ~19!

The other two regions are obtained from21,D5
2« coshh,1. Denotingh5 ig,l5 im, instead of Eq.~9!
we have

F« sinh~m j1 ig!

sinh~m j2 ig! GN2n

5e2 iP)
l 51

n
sinh~m j2m l1 ig!

sinh~m j2m l2 ig!
.

~20!

~3! In the case 21,D,0,0,«511,0,g,p/2 we
solved numerically Eq.~20! for N up to 100 and checked tha
the state now contains only strings of minimal length 113

i.e., all particle rapidities$m j% have imaginary partip/2 ~an-
tiparticles!. In the thermodynamic limit we then have th
following integral equations for the distribution function:

2ps~m!2E
2m0

m0
F~2!~m2m8,2g!s~m8!dm8

52S 12
n

NDF~3!~m,2g!, ~21!

E
2m0

m0
s~m8!dm85r, ~22!

where

F~2!~m,g!5
sing

coshm2cosg
,

F~3!~m,g!5
2sing

coshm1cosg
, ~23!

and the ground-state energy is given by

1

N
E522r cos 2g12 sin 2gE

2m0

m0
F~3!~m,2g!s~m!dm.

~24!

~4! In the case 0,D,1,«521,0,g,p/2 our numerical
results of Eq.~20! for lattice sizesN up to 100 indicate tha
the ground state contains only bound pairs, characterize
a pair of complex-particle rapidities14,15 as in region~15!,

ma
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1

2
~ma

26 ig!. ~25!
by

For the density functions (2)(m) we have the following in-
tegral equations:

2ps~2!~m!1E
2m0

~2!

m0
~2!

@2F~2!~m2m8;2g!

1F~2!~m2m8;4g!#s~2!~m8!dm8

5~12r!@F~2!~m,g!1F~2!~m,3g!# ~26!

E
2m0

~2!

m0
~2!

s~2!~m8!dm85
1

2
r, ~27!

and the ground-state energy is given by

1

N
E52r cos 2g22 sin 2gE

2m0
~2!

m0
~2!

@F~2!~m,g!

1F~2!~m,3g!#s~2!~m!dm. ~28!

Solving numerically the corresponding integral equatio
in regions 2, 3, and 4 we show in Fig. 1 the ground-st
energy as a function of density for some values ofD. Except
for region I, in all regions we expect gapless excitation
r,1/2. In order to understand the physical properties of
model under consideration we shall investigate the lo
distance behavior of the correlation functions. For this p
pose we shall use two-dimensional conformal fie
theory16,17 and analytic methods18 to extract finite-size cor-
rections from the Bethe-ansatz equations. The results
these calculations indicate that the critical fluctuations
described by a conformal field theory with the central cha
c51. The long-distance power-law behavior of the densi
density correlation functions is given by the general form

^r~r !r~0!&.r21A1r 221A2r 2a cos~2kFr !;

2kF5pr; ~29!

r~r !5s j
1s j

2 , ~30!

FIG. 1. The ground-state energy as a function of the densitr
for some values ofD52« coshh, in regions~2!, ~3!, and ~4!. a,
D511.5920;b, D52,5092;c, D50.7071;d, D50.1423; e, D
520.9239; f , D520.8090;g, D520.5.
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while the pair-correlation function is given by

Gr~r !5^s j
1s j 11

1 ,s j 1r
2 s j 1r 11

2 &.Br2b. ~31!

The exponentsa and b describing the algebraic decay a
calculated from the dressed charge functionj05j(l0)

b5a215
1

2@j~l0!#2
. ~32!

This function is obtained by the solution of the integral Eq
~16!, ~21!, and~26! with the right-hand side replaced by (
2r). In Fig. 2 we show the exponentb as a function ofr
for several values ofD in regions~2! and~4!. Our numerical
results indicate that asr→1/2 the exponentb tends toward
the value 4g/p andb58(p22g)/p in regions~2! and~4!,
respectively. In the region with dominant density-dens
correlationsb.1 the particles prefer to move individually

FIG. 2. The exponentb describing the pair-pair correlatio
function as a function of the densityr for some values ofD5
2« coshh in regions ~2! and ~4!. a, D511.5919;b,D
51.2039;c, D50.7071;d, D50.3827;e, D50.1423; f , D
50.0383.
f
,

J

tz,

cs
.

instead by pair hopping, but in the region with dominant p
correlationsb,1 they create two-atom molecules. For arb
trary values ofD.1 there exists a curveD5D0(r) separat-
ing both behaviors. An analogous behavior of correlat
functions can be observed in the models7,8 that is translated
as a strong tendency to the superconductivity. In region~3!
we have no pairs. In Fig. 3 we show the exponentb that
describes now the spin-spin correlation function^s j

1s j 1r
2 &.

Our numerical results indicate that asr→1/2 the exponentb
tends toward the valueb54g/p.
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FIG. 3. The exponentb describing the spin-spin correlatio
function as a function of the densityr for some values ofD5
2« coshh in region ~3!. a, D520.5; b, D520.7071;c, D5
20.8090;d, D520.9239;e, D520.9511;f , D50.9980.
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