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Geometric barrier and current string in type-II superconductors obtained
from continuum electrodynamics
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~Received 28 September 1998!

It is shown how the current densityJ„r,t) and magnetic inductionB(r ,t) in a superconductor with arbitrary
shape and material lawsH(B,r ) ~equilibrium field! andE(J,B,r ) ~electric field caused by flux-line motion! can
be calculated within continuum approximation when a magnetic fieldBa(r ,t) and/or current are applied. This
general method is then used to calculate the geometric edge barrier for flux penetration, and Indenbom’s
current string occurring at the flux front, for superconducting strips with rectangular cross section in a perpen-
dicular field. The field of first flux entryBen is given. Both effects could not be obtained by previous theories
which assumeH5B/m0 . @S0163-1829~99!00706-7#
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The irreversibility of penetration and exit of magnetic flu
in type-II superconductors is partly due to a geometric b
rier which depends on the specimen shape and causes a
teresis even in the absence of flux-line pinning. This ed
barrier is particularly pronounced when superconduc
platelets or films of constant thickness are exposed to a
pendicular magnetic field. Similarly as the microscop
Bean-Livingston barrier for the penetration of parallel fl
lines into a superconducting half space,1 the geometric bar-
rier delays the penetration but not the exit of flux lines, lea
ing thus to a characteristic asymmetry of the magnetiza
loops, which is also present in type-I superconductors.2 Such
asymmetric magnetization loops and the profiles of the m
netic inductionB(r ) and current densityJ(r ) have been cal-
culated analytically and numerically for thin superconduc
strips in Refs. 3–5 by assuming an edge barrier of giv
height. The barrier height was recently calculated for t
strips and disks;6,7 Ref. 7 presents a recipe for obtaining th
quasistaticB(r ),J(r ), and magnetization curves for supe
conductors of arbitrary shape. In superconductors with r
angular cross section the edge barrier is caused by the
layed penetration of flux lines at the four corners.3,7,8

Another interesting phenomenon predicted for superc
ductor strips and disks of finite thickness is Indenbom
‘‘current string,’’9 which occurs at the penetrating flux fron
whereH is continuous butB jumps abruptly to zero.

Both the edge barrier and the current string depend on
reversible fieldH(B)5]F/]B which causes an equilibrium
induction B in a type-II superconductor with free-energ
densityF(B). To obtain the barrier and current string, it
essential thatH(B) is not approximated by its high-field
valueH'B/m0 but saturates touH(B)u→Hc1 for B→0. The
lower critical field Hc1 is related to the self-energy of a
isolated flux lineUs5F0Hc1 whereF05h/2e is the quan-
tum of flux.

Recent calculations of the penetration and exit of flux
superconductor bars10 and cylinders11 of finite thickness with
volume pinning assumeB5m0H and thus cannot describ
the edge barrier and current string, applying mainly to ca
where B5uBu@Bc15m0Hc1 is large inside the supercon
ductor. In the continuum description of Refs. 10 and 11,
PRB 590163-1829/99/59~5!/3369~4!/$15.00
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dynamics and statics of the flux lines~i.e., pinning, thermally
activated depinning, creep, and flow! enter via a general law
E(J,B) whereE is the local electric field generated by mo
ing flux lines driven by the current densityJ.

In this paper I present the electrodynamics of superc
ductors with arbitrary shape and arbitrary material la
E(J,B,r ) and H(B,r ) which may be inhomogeneous an
anisotropic~by Hall effect or by material anisotropy!. The
superconductor is exposed to a time dependent magn
field Ba(r ,t)5¹3Aa(r ,t) and/or electric fieldEa(r ,t)5
2¹Fa(r ,t) that may be chosen to drive a prescribed to
current via a feedback algorithm. I consider thecontinuum
approximationin which the flux-line spacinga'(F0 /B)1/2

and the magnetic penetration depthl are smaller than all
relevant lengths. This continuum electrodynamics is th
shown to yield both the edge barrier and the current string
calculating the penetration and exit of perpendicular flux
superconducting strips of rectangular cross section with fi
Hc1 and with various degrees of volume pinning.

To explain this general method I first generalize the si
pler algorithm of Ref. 10, whereB5m0H was assumed, to
arbitrary three-dimensional~3D! geometry, allowing also for
an applied current. Both methods are based on the fact
the current densityJ(r )52¹2AJ(r ) inside and at the surfac
of a conductor is uniquely determined by the vector poten
A(r )5AJ(r )1Aa(r ), or by the local inductionB(r )5¹
3A(r ), inside the specimen volumeV. With the gauge
¹•A50 one has

A~r !52E
V
d3r 8Q~r ,r 8!J~r 8!1Aa~r !, ~1!

J~r !52E
V
d3r 8K~r ,r 8!@A~r 8!2Aa~r 8!#. ~2!

Here the kernelQ(r ,r 8)52m0 /(4pur2r 8u) and its inverse
K(r ,r 8)5Q21(r ,r 8) are scalar; K may be obtained by dis
cretizing r on a grid with positionsr i and weightswi and
inverting the matrixQi j 5Q(r i ,r j )wj .10 The second term in
Eq. ~2! is the surface screening currentJs(r ) that generates a
field 2Ba(r ) inside the volumeV and flows only on a sur-
3369 ©1999 The American Physical Society
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face layer whose thickness is determined by the grid dista
~or by the magnetic penetration depthl if finite l is chosen!.
This surface current ‘‘tells’’ the specimen about the ‘‘outsi
world,’’ i.e., the applied field, since all positionsr andr 8 and
integrals in this paper are restricted to the specimen volu
V and use the same grid. If required for figures, the induct
B(r )5¹3A(r ) may be calculated from Eq.~1! at any posi-
tion r also outsideV.

In the previous method10,11 the condition B5m0H al-
lowed us to use the usual current densityJ5m0

21¹3B
52m0

21¹2A in the material lawE5E(J,B,r ). Inserting

this electric field into the induction lawḂ52¹3E written
in the form Ȧ52Et2Ea @Et is the ‘‘transverse’’ part of
E(J,B,r )5Et1El satisfying¹•Et50 while ¹3El50; Ea
drives the applied current# and taking the time derivative o
Eq. ~2!, one arrives at an equation of motion forJ„r ,t),

J̇~r ,t !5E
V
d3r 8K~r ,r 8!@E~J,B,r 8! t1Ea~r 8,t !1Ȧa~r 8,t !#.

~3!

Equation~3! generalizes Eq.~7! of Ref. 10 to arbitrary ge-
ometry and material lawE(J,B,r ). It is easily time inte-
grated, e.g., by starting withJ(r ,0)50 and puttingJ(r ,t
1dt)5J(r ,t)1 J̇(r ,t)dt with a variable time stepdt chosen
inversely proportional to the maximum value of the resist
ity r5uEu/uJu on the grid at timet.

Next I generalize this method to general dependenceH
5H(B,r ). It turns out that this is achieved by replacing
E(J,B,r ) in Eq. ~3! the J5m0

21¹3B by the current density
JH5¹3H which drives the vortices and thereby genera
the electric fieldE. ThatJH5¹3H(B,r ) enters the Lorentz
force is rigorously proven by Labusch.7 Within the London
theory this important relation may also be concluded fr
the facts that the force on a vortex is determined by thelocal
current density at the vortex center, while the energy den
F of the vortex lattice is determined by the magnetic field
the vortex centers. Thus,JH5¹3(]F/]B) is the average
current density at the vortex centers, which in genera
different from the current densityJ5m0

21¹3B averaged
over several vortex spacings. Therefore, one has to repla
Eq. ~3!

E~J,B,r 8!→E@JH~r 8,t !,B~r 8,t !,r 8#, ~4!

whereJH5¹3H depends on the material lawH5H(B,r )
5]F/]B. The boundary conditionon H„r … is simply that
one hasH5B/m0 at the surface~and in the vacuum outsid
the superconductor, which does not enter our calculati!.
The boundary conditions onH andB are now contained in
the space-dependent material lawH5H(B,r ) and in the re-
lation B5¹3A, which guarantees that¹–B50 in all space.
The specimen shape thus enters in two places: via the
gral kernelK(r ,r 8) and via the material lawH5H(B,r ).
The kernel Q(r ,r 8) and its derivative L (r ,r 8)
52¹rQ(r ,r 8) do not depend on the specimen shape. T
kernelL (r ,r 8) enters the Biot-Savart law

B~r !5E
V
d3r 8L ~r ,r 8!3J~r 8!1Ba~r !, ~5!
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which should be used to compute theB(r ) enteringH(B,r ).
The accuracy of the method then depends mainly on
algorithm used to compute the derivativeJH5¹3H. A use-
ful trick is to computeJH asJH5J1¹3(H2B/m0) where
H2B/m0 is typically small and vanishes at the surface,
beit with a jump. The magnetic moment of the superco
ductor is

m5
1

2EV
r3J~r !d3r . ~6!

Equations ~1!–~6! are still general. For the following
computations I shall use simple models for an isotropic
mogeneous type-II superconductor without Hall effect,
which H(B)5H(B)B/B (B5uBu) andE(J,B)5r(J,B)J. I
chose the models~Fig. 1!

H~B!5@Hc1
a 1~B/m0!a#1/a ~7!

with a53 ~better magnetization curves may be taken fro
the Ginzburg-Landau solution of Ref. 12! and

r~J,B!5r0B
~J/Jc!

s

11~J/Jc!
s , ~8!

which has the correct limitsr}Js (J!Jc , flux creep! and
r5r0B (J@Jc , flux flow, r05 const). In general the criti-
cal current densityJc5Jc(B) and the creep exponents(B)
>0 may depend onB.

FIG. 1. Top: The modelsH(B), Eq. ~6!, andE(J,B), Eq. ~7!,

with s520. Bottom: Magnetization loopsM5mŷ ~per unit length
in units a2Hc1) of a strip withb/a50.5 and finiteHc1 versus the
cycled applied fieldBa for various volume pinning strengthsJc

50, 0.5, and 1~in units Hc1 /a).
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I now apply this method to long superconductor strips
rectangular cross section (uxu<a,uyu<b) in a perpendicular
field Ba5Ba(t) ŷ with no applied current. In this geometr
J5J(x,y) ẑ, E5E(x,y) ẑ, and A5A(x,y) ẑ have only one
component and B5Bx(x,y) x̂1By(x,y) ŷ and H(B)
5BH(B)/B have two. The required 2D integral kern
Q(x,y;x8,y8)5(m0/2p)lnur2r 8u is obtained by integrating
the 3D kernelQ(r ,r 8)5m0 /(4pur2r 8u) alongz8. Account-
ing for the symmetryJ(x,y)52J(2x,y)5J(x,2y) one ar-
rives at the kernelQsym(x,y;x8,y8), Eq. ~8! of Ref. 10. We
may thus use the same numerical method as in Refs. 10
11, where also the extension to short cylinders in an a
field is described, and insert some new steps which com
from J the requiredJH5@¹3H(B)#• ẑ.

Here I present some selected results obtained with c
stantJc ands520. The four input parameters are nowb/a
~aspect ratio!, Hc1 ~lower critical field!, Jc ~volume pinning!,
and s ~creep exponent!. In units a5m051 with ramp rate
uḂau51, I choser0540 in Eq. ~8! if JcÞ0 but r05200
~large flux flow rate! if Jc50 to ensure complete relaxatio

FIG. 2. Magnetic field lines of a pin-free (Jc50,Bc1.0) super-
conductor long strip with side ratiob/a50.5 in increasing and then
decreasing perpendicular fieldBa(t)/Bc150→1→21 ~from top to
bottom, see text!. First flux jumps to the center atuBau/Bc150.4.
The dashed lines are the contours of the current densityJ(x,y).
f

nd
al
te

n-

to the pin-free static solution. The program allows us
monitor the flux motion in real time, but high accuracy
still difficult to achieve.

Figure 1 shows three magnetization loopsM (Ba) of strips
with b/a50.5 and finiteBc15m0Hc1 for Jc50, 0.5, and 1 in
units of Hc1 /a. Note the asymmetric hysteresis in the a
sence of volume pinning (Jc50), which reflects thegeomet-
ric barrier. Finite Jc broadens this hysteresis nearly sym
metrically about the pin-free curve atuBau.Bc1 . For Jc50
the maximum magnetic momentuM u occurs at almost the
same fieldBen where the first flux lines enter and jump to th
center of the strip. Forb/a50.2 ~0.3, 0.5, 0.7, 1, 1.4, 2, 3, 4
5, 7, 10! this entry field isBen5Bc130.247 ~0.304, 0.396,
0.465, 0.541, 0.611, 0.682, 0.745, 0.796, 0.834, 0.8
0.910!. In the thin-strip limit b!a, I find Ben/Bc1

50.56Ab/a. A good fit for all aspect ratios 0,b/a,` is

Ben'Bc1 tanhA0.36b/a. ~9!

This computed entry field for rectangular strips has the c
rect limit Ben}Ab/a for b!a, but it is smaller than previous
thin-strip estimatesBen/Bc15(0.95•••1)Ab/a.3,6 It is still
much larger than the entry field of strips with elliptical cro
section, Ben/Bc15b/(a1b)→b/a for b!a.13 For disks
with radiusa the constant 0.36 in Eq.~9! is replaced by 0.67.

The magnetic field in the pure Meissner caseJc50 is
shown in Fig. 2 for a thick strip withb/a50.5 in cycled field

FIG. 3. Magnetic field lines of a superconductor strip wi
b/a50.3 and strong pinning after increasing and then decrea
the field Ba /(m0Jca)50→0.44→20.08 for Hc150 ~top! and
Hc15aJc/5 ~middle!. Bottom: Current densityJ(x,y) in a strip
with b/a50.5,Jc.0, and Hc15aJc/4 in increasing field Ba

50.35m0Jca51.4Bc1 .



is

in
x
os

th
in-
at
of
r

he

e

ux

ted
e-

.

nt

ity

d
us
n
est-
e

i-

3372 PRB 59BRIEF REPORTS
Ba(t)/Bc150→1→21→1, etc. The strip cross section
shown as a rectangle 2a32b, or its half 2a3b to save
space. Inside the superconductor the magnetic field l
~contour lines ofA) may be interpreted as Abrikosov flu
lines, which enter and leave the strip and rapidly jump acr
flux free zones.

One can see that the magnetic flux penetrates from
rectangular corners in form of nearly straight flux lines
clined at'45°. When the flux lines join at the equator
Ben50.4Bc1 , flux jumps to the center and piles up in form
almost straight and equidistant flux lineswhich means nea
zero current densityJ in the volume (JH exactly vanishes!.
During the entire cycle the current flows mainly near t
short edgesx56a. With decreasingBa(t) the flux exits
delayed but has completely left atBa50 ~if r0 /uḂau is
large!, i.e, there is no remanent static flux. With further d
crease ofBa the picture exactly repeats but withJ andB of
opposite sign. Weak volume pinning~not shown! delays this
penetration and exit of flux and splits the central pile of fl
,

i,
,

M.
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s

e
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into two piles with steep slope on the inner side as predic
by Zeldov et al.3 Our computation thus confirms the edg
barrier scenario suggested in Refs. 3–8.

Evidence for the ‘‘current string’’9 can be seen in Fig. 3
The depicted magnetic field lines in a strip withb/a50.3
and strong volume pinning, in decreasing fieldBa /(m0Jca)
50→0.44→20.08 indicate a much stronger local curre
density if Hc15Jca/5 is finite ~middle of Fig. 3! than if
Hc150 ~top!. The bottom of Fig. 3 shows the current dens
J(x,y) of a strip with b/a50.5 andHc150.25Jca in in-
creasing fieldBa /Bc150→1.4. Note the ridge of enhance
J(x,y) at the penetrating flux front where the three platea
J52Jc , 0, 1Jc ~left to right! border each other. Also see
is the weak Meissner current at the surfaces. As an inter
ing feature, four sharp peaks ofJ(x,y) are seen close to th
poles of the strip~near the linesx50,y56b). All these
enhancements ofJ(x,y) are absent in the previous approx
mationB5m0H, whereJ(x,y) exhibits only the plateaus 0
and6Jc .
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