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Geometric barrier and current string in type-Il superconductors obtained
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It is shown how the current densifir,t) and magnetic inductioB(r,t) in a superconductor with arbitrary
shape and material law$(B,r) (equilibrium field andE(J,B,r) (electric field caused by flux-line motipran
be calculated within continuum approximation when a magnetic Bg(d,t) and/or current are applied. This
general method is then used to calculate the geometric edge barrier for flux penetration, and Indenbom’s
current string occurring at the flux front, for superconducting strips with rectangular cross section in a perpen-
dicular field. The field of first flux entrB., is given. Both effects could not be obtained by previous theories
which assuméd =B/ uy. [S0163-182609)00706-1

The irreversibility of penetration and exit of magnetic flux dynamics and statics of the flux lin@se., pinning, thermally
in type-Il superconductors is partly due to a geometric baractivated depinning, creep, and flpenter via a general law
rier which depends on the specimen shape and causes a hy<J,B) wherekE is the local electric field generated by mov-
teresis even in the absence of flux-line pinning. This edgéng flux lines driven by the current densify
barrier is particularly pronounced when superconductor In this paper | present the electrodynamics of supercon-
platelets or films of constant thickness are exposed to a pefluctors with arbitrary shape and arbitrary material laws
pendicular magnetic field. Similarly as the microscopicE(J;B,r) and H(B,r) which may be inhomogeneous and
Bean-Livingston barrier for the penetration of parallel flux @nisotropic(by Hall effect or by material anisotropyThe
lines into a superconducting half spdcthe geometric bar- superconductor is exposed to a time dependent magnetic

rier delays the penetration but not the exit of flux lines, leadfi€ld Ba(r,1)=VXA(r,t) andfor electric fieldE,(r,t)=

ing thus to a characteristic asymmetry of the magnetization ¥ Pa(t) that may be chosen to drive a prescribed total

loops, which is also present in type-1 superconduct@sch current via a feedback algorithm. | consider t@ntinuum

. . . . . . — 1/2
asymmetric magnetization loops and the profiles of the mag2PProximationin which the flux-line spacing~(®o/B)

netic inductionB(r) and current density(r) have been cal- and the magnetic penetration depthare smaller than all

culated analytically and numerically for thin su erconductorrGIeVant lengths. This continuum electrodynamics is then
Y y y P shown to yield both the edge barrier and the current string by

f‘tr!pﬁ n Eef;. 3._5 r?y a;]ssumlng an ngelbalrne; c;f g'\r/]?'?:alculating the penetration and exit of perpendicular flux in
eight. The barrier height was recently calculated for thing,, ;e conducting strips of rectangular cross section with finite
strips and disk§;’ Ref. 7 presents a recipe for obtaining the H., and with various degrees of volume pinning.
quasistaticB(r),J(r), and magnetization curves for super- T4 explain this general method | first generalize the sim-
conductors of arbitrary shape. In superconductors with rectyler algorithm of Ref. 10, wher8= uoH was assumed, to
angular cross section the edge barrier is caused by the dgrpitrary three-dimension&BD) geometry, allowing also for
layed penetration of flux lines at the four cornéfs.  gn applied current. Both methods are based on the fact that
Another interesting _phenom_er_lon p_redlcted_ for superconge current density(r) = — V2A,(r) inside and at the surface
ductor strips ar;d disks of finite thickness is Indenbom’syt 5 conductor is uniquely determined by the vector potential
“current string,” which occurs at the penetrating flux fronts A(r)=A,(r)+ALr), or by the local inductionB(r)=V

whereH is continuous buB jumps abruptly to zero. X A(r), inside the specimen volume/. With the gauge
Both the edge barrier and the current string depend on the . o =0 one has

reversible fieldH(B)=dJF/JB which causes an equilibrium

induction B in a type-ll superconductor with free-energy

densityF(B). To obtain the barrier and current string, it is A(r)= —f A3’ Q(r,r")J(r")+ALr), (1)
essential thatH(B) is not approximated by its high-field v

valueH~ B/ u but saturates ttH(B)|—H; for B—0. The

lower critical field H.; is related to the self-energy of an :_f 3./ / N /
isolated flux lineUg=®yH.; whered®,=h/2e is the quan- ) Vd FRIGEOIAT) = Adr)]- @
tum of flux.

Recent calculations of the penetration and exit of flux inHere the kerneQ(r,r’)=— uq/(47|r—r'|) and its inverse
superconductor baf$and cylinder$! of finite thickness with ~ K(r,r')=Q~(r,r’) arescalar, K may be obtained by dis-
volume pinning assumB= uoH and thus cannot describe cretizingr on a grid with positions; and weightsw; and
the edge barrier and current string, applying mainly to casegverting the matrixQ;; = Q(r; ,r;)w; .1° The second term in
where B=|B|>B.;=ugH; is large inside the supercon- Eg.(2) is the surface screening currelyr) that generates a
ductor. In the continuum description of Refs. 10 and 11, thdield —B,(r) inside the volume/ and flows only on a sur-
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face layer whose thickness is determined by the grid distance
(or by the magnetic penetration depthf finite A is chosen

This surface current “tells” the specimen about the “outside
world,” i.e., the applied field, since all positiomsandr’ and
integrals in this paper are restricted to the specimen volume
V and use the same grid. If required for figures, the induction
B(r)=VXA(r) may be calculated from Eql) at any posi-

tion r also outsidev.

In the previous methdd!! the conditionB=uoH al-
lowed us to use the usual current density ug 'V X B
=—,u51V2A in the material lawE=E(J,B,r). Inserting
this electric field into the induction laB= — VX E written

in the form A=—E,—E, [E, is the “transverse” part of
E(J,B,r)=E;+E, satisfyingV-E;=0 while VXE,=0; E,
drives the applied currehtind taking the time derivative of
Eq. (2), one arrives at an equation of motion fi(r,t),

J(r,t)=fvdg’r’K(r,r’)[E(J,B,r’)tJrEa(r’,t)+Aa(r’,t)].
3)

Equation(3) generalizes Eq(7) of Ref. 10 to arbitrary ge-
ometry and material lavE(J,B,r). It is easily time inte-
grated, e.g., by starting witld(r,0)=0 and puttingJ(r,t
+dt)=J(r,t) + J(r,t)dt with a variable time stegt chosen
inversely proportional to the maximum value of the resistiv-
ity p=|E|/|J] on the grid at time. FIG. 1. Top: The model#i(B), Eq. (6), andE(J,B), Eq. (7),
Next | generalize this method to general dependerice jith »=20. Bottom: Magnetization loops! =my (per unit length
=H(B,r). It turns out that this is achieved by replacing in in units a?H,,) of a strip withb/a=0.5 and finiteH, versus the
E(J,B,r) in Eq.(3) theJ=,u61V><B by the current density cycled applied fieldB, for various volume pinning strengthk
Jy=VXH which drives the vortices and thereby generates=0, 0.5, and Lin unitsH., /a).
the electric fielde. ThatJy=VXH(B,r) enters the Lorentz
force is rigorously proven by Labuséhwithin the London  which should be used to compute tér) enteringH(B,r).
theory this important relation may also be concluded fromThe accuracy of the method then depends mainly on the
the facts that the force on a vortex is determined byltksal ~ algorithm used to compute the derivati#g=VxXH. A use-
current density at the vortex center, while the energy densitful trick is to computedy asJy=J+ VX (H—B/ug) where
F of the vortex lattice is determined by the magnetic field atH— B/ uq is typically small and vanishes at the surface, al-
the vortex centers. Thugy,=V X (dF/dB) is the average beit with a jump. The magnetic moment of the supercon-
current density at the vortex centers, which in general igluctor is
different from the current densityz,u(;leB averaged

: : 1
over several vortex spacings. Therefore, one has to replace in m= _J £ J(r)d?r. ©6)
E(J,B,r")—E[Jy(r',t),B(r",t),r'], (4) Equations (1)—(6) are still general. For the following

computations | shall use simple models for an isotropic ho-
whereJ,;=VXH depends on the material la#=H(B.,r)  mogeneous type-Il superconductor without Hall effect, for
=gJF/9B. The boundary conditionon H(r) is simply that  which H(B)=H(B)B/B (B=|B|) andE(J,B)=p(J,B)J. |
one hasH= B/, at the surfacéand in the vacuum outside chose the model&Fig. 1)
the superconductor, which does not enter our calculation
The boundary conditions oH andB are now contained in H(B)=[H&+ (B/ug)*]Y™ (7)
the space-dependent material l&iw#=H(B,r) and in the re-
lation B=VXA, which guarantees thadt-B=0 in all space.
The specimen shape thus enters in two places: via the int
gral kernelK(r,r") and via the material lawH=H(B,r).

with «=3 (better magnetization curves may be taken from
éhe Ginzburg-Landau solution of Ref. 1and

The kemel Q(r,r') and its derivative L(r,r) p(J,B)=poB Wl o ®
=—V,Q(r,r") do not depend on the specimen shape. The 1+(/3¢)
kernelL(r,r’) enters the Biot-Savart law which has the correct limitpcJ” (J<J,, flux creep and
p=poB (I>J., flux flow, po= const). In general the criti-
B(r):f d3r/L(r,r)XJ(r')+Byr), (5) cal current densityl.=J.(B) and the creep exponent(B)
% =0 may depend oiB.
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/ FIG. 3. Magnetic field lines of a superconductor strip with
b/a=0.3 and strong pinning after increasing and then decreasing
0.2 the field B,/(uoJea)=0—0.44——0.08 for H,;=0 (top) and
/ H.=aJ.J/5 (middle). Bottom: Current densityd(x,y) in a strip
!

with b/a=0.5J.>0, and H.;=aJ./4 in increasing field B,

FIG. 2. Magnetic field lines of a pin-freel{=0,B.;>0) super- =0.3%0):a=14Bcy.
conductor long strip with side ratio/a=0.5 in increasing and then to the pin-free static solution. The program allows us to
decreasing perpendicular fiel}(t)/B.;=0—1——1 (fromtopto  monitor the flux motion in real time, but high accuracy is
bottom, see text First flux jumps to the center aB,|/B.;=0.4.  still difficult to achieve.
The dashed lines are the contours of the current dedéiyy). Figure 1 shows three magnetization lodp$¢B,) of strips

with b/a=0.5 and finiteB; ;= woH¢; for J.=0, 0.5, and 1 in

| now apply this method to long superconductor strips ofunits of He; /a. Note the asymmetric hysteresis in the ab-
rectangular cross sectiofx{<a,|y|<b) in a perpendicular Sence of volume pinningl¢=0), which reflects thgeomet-
field B,=B,(t)y with no applied current. In this geometry ric b_arner. Finite J; b_roadens this hysteresis nearly sym-

- N N metrically about the pin-free curve B,|>B.,. ForJ.=0

J=J(xy)z, E=E(x,y)z, andA=A(x,y)z have only one e mayimum magnetic momefi#| occurs at almost the
component and B=B,(x,y)x+By(x,y)y and H(B)  same fieldB,,where the first flux lines enter and jump to the
=BH(B)/B have two. The required 2D integral kernel center of the strip. Fap/a=0.2(0.3, 0.5, 0.7, 1, 1.4, 2, 3, 4,
Q(X,y;x",y") = (umof2m)In|r—r’| is obtained by integrating 5, 7, 10 this entry field isBg,=B.;x 0.247 (0.304, 0.396,
the 3D kernelQ(r,r') = uo/(4m|r—r’|) alongz’. Account-  0.465, 0.541, 0.611, 0.682, 0.745, 0.796, 0.834, 0.882,
ing for the symmetry)(x,y) = —J(—X,y)=J(X,—y) one ar- ~ 0.910. In the thin-strip limit b<a, | find Bgy /B
rives at the kerneQqyn(X,y;x",y’), Eq.(8) of Ref. 10. We -0 56,b/a. A good fit for all aspect ratios @b/a< is
may thus use the same numerical method as in Refs. 10 and
11, where also the extension to short cylinders in an axial B~ B¢y tanhy0.360/a. 9

field is describgd, and insert some new steps which Computgyis computed entry field for rectangular strips has the cor-
from J the required);=[VXH(B)]-z. _ _ rect limit B« \/b/a for b<a, but it is smaller than previous
Here | present some selected results obtained with COMhin-strip estimateB,,/B.;=(0.95 --1)\b/a.3® It is still

stantJ. ando=20. The four input parameters are n@a  mych larger than the entry field of strips with elliptical cross
(aspect ratiy H; (lower crltlcgl field, J; (volqme pinning,  gection, Bon/Bei=b/(a+b)—b/a for b<a.'® For disks
and o (creep exponeitIn unitsa=uo=1 with ramp rate \jth radiusa the constant 0.36 in Eq9) is replaced by 0.67.
|Ba=1, | chosepy=40 in Eq. (8) if J.#0 but py=200 The magnetic field in the pure Meissner cake=0 is
(large flux flow rate if J.=0 to ensure complete relaxation shown in Fig. 2 for a thick strip with/a= 0.5 in cycled field
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B,(t)/B;1=0—1——1—1, etc. The strip cross section is into two piles with steep slope on the inner side as predicted
shown as a rectangleaX 2b, or its half 2axb to save by Zeldovet al® Our computation thus confirms the edge-
space. Inside the superconductor the magnetic field linesarrier scenario suggested in Refs. 3—8.

(contour lines ofA) may be interpreted as Abrikosov flux Evidence for the “current string” can be seen in Fig. 3.
lines, which enter and leave the strip and rapidly jump acros¥he depicted magnetic field lines in a strip witha=0.3

flux free zones. and strong volume pinning, in decreasing fi@g/(xuqJ.a)

One can see that the magnetic flux penetrates from the-0—0.44— —0.08 indicate a much stronger local current
rectangular corners in form of nearly straight flux lines in-density if H,;=J.a/5 is finite (middle of Fig. 3 than if
clined at~45°. When the flux lines join at the equator at H_, =0 (top). The bottom of Fig. 3 shows the current density
Ben=0.4B;, flux jumps to the center and piles up in form of J(x,y) of a strip with b/a=0.5 andH;=0.25).a in in-
almost straight and equidistant flux lin@ghich means near creasing fieldB,/B.;=0—1.4. Note the ridge of enhanced
zero current density in the volume ( exactly vanishes  J(x,y) at the penetrating flux front where the three plateaus
During the entire cycle the current flows mainly near thej=—J_, 0, +J, (left to right) border each other. Also seen
short edgesx==*a. With decreasingB,(t) the flux exits is the weak Meissner current at the surfaces. As an interest-
delayed but has completely left &,=0 (if p0/||'3a| is  ing feature, four sharp peaks &fx,y) are seen close to the
large), i.e, there is no remanent static flux. With further de-poles of the strip(near the linesx=0y==*b). All these
crease ofB, the picture exactly repeats but withandB of =~ enhancements af(x,y) are absent in the previous approxi-
opposite sign. Weak volume pinnirfgot shown delays this  mation B=uoH, whereJ(x,y) exhibits only the plateaus 0
penetration and exit of flux and splits the central pile of fluxand =J..
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