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Soliton dynamics in two coupled-ring Josephson junctions
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The interaction of nonrelativisti@nti-) fluxons in two coupled-ring Josephson junctions under the action of
external currents is considered by using adiabatic perturbation theory. The asymptotic static and dynamic states
and conditions for their coexistence are found from qualitative analysis of the system in the phase space. These
states correspond to separate stable branches in the current-voltage characteristics, so that hysteresis occurs in
a system. Comparison with numerical calculations shows a qualitative agreement with analytical predictions.
[S0163-182609)01001-3

I. INTRODUCTION rameters is found. Comparison of numerical calculations for
the ordinary differential equation®©DE’s) and for the full
The dynamics of magnetic fluluxons in a system of Sine-Gordon equations shows qualitative agreement with
coupled long Josephson junctiofis]J’s) is the object of analysis on the phase space. In Sec. lll we summarize the
intensive analytical and experimental investigatitsee Ref. ~ results obtained.
1 and referencs thereinVarious interesting phenomena,

such as phase locking between fluxon modes, flux-flow os- Il. THE MODEL AND RESULTS
cillators, and hyperradiante were investigated for the sys-
tem of coupled LJJ's. The system of coupled long Josephson junctions is de-

The problem of the dynamics of fluxons in coupled LJJ'sscribed by the set of coupled sine-Gordon equatiors?
was posed in the work of Mineest al® In Refs. 2 and 3, it
was shown that, for positive coupling coefficidet>0, see Onit— Pnxxt SIN(@n)=—a@ni— ¥nt €omxx, (2.1
Eqg. (2.1], slow fluxons with different polarity in different
junctions interact attractively and can create a bound stat@here ¢, are the phase differences of wave functions across
(fluxon-antifluxon paiy, while unipolar fluxons interact re- the junctions,« is the dissipation coefficienty, is the bias
pulsively. Later it was shown numericafyexperimentally,®  current, e is the inductive coupling parameter,m=1,2; n
and analytically* that unipolar fluxons in different junctions #m. The variablex, normalized to the Josephson penetra-
with velocity larger than some thresho{celativistic effeck  tion depthi ;, is the distance around the mean circumference
can be synchronized and can create a baphdse-locking,  of the ring. The timet is normalized to the inverse plasma
bunched state. frequencyw, *. We consider the parametess y, , e to be

In the present work the nonrelativistic dynamics of flux- gmal (<1), which corresponds to real LJJ sampteQua-

ons in two coupled ring LIJ's is considered. We should not&iperiodic boundary conditions should be considered:
that the dynamics in the ring geometry differs essentially

from the dynamics in infinite LJJ'&Refs. 2—4 and in finite
LJJ's in the “flux-flow” regimel’ For example, a new
boun_d s'gate of.umpolar ﬂu_xons, V.V.h'Ch cor_resppnd; to ﬂu,x'whereXE[—L/Z,LIZ], L is the ring perimeter, and, is
ons in diametrically opposite positions, exists in ring LJJ Sinteger. We deal with onlg,= +1 case
(in the absence of external currentt Sec. Il the general ger. no- :

statement of the problem, described by the set of coupled _B_ecause the further analysis is based on_dynamlcs for the
Sine-Gordon equations with periodic boundary conditions, i [hfinite system we present some results obtained from pertur-
' “hation theory. The unperturbedr & v,= e=0) (anti-) kink

presented. The main idea for qualitative analysis consists o ;

a transformation of the phase space for the infinite system tSOIUt'On for Eq.(2.1) are known to be

the phase space of a periodic system. By using this approach,

the dynamics of fluxons under the action of a constant on="4 tan Yexy o(x—Xn)/V1-vi]}. (2.3
“field” (see belowis studied. We show that for relatively

small velocities(or for small values of direct currenthe  Hereo,= =1 for fluxons and antifluxons, respectivel;,
system has two stationary states. The coexistence of thes@dv, are the fluxon center and velocity correspondingly.
states leads to hysteretic behavior in the current-voltage When two such fluxons are affected by the perturbation
(1-V) characteristics. The dependence of the lower thresholdnd coupling terms, equations for the adiabatic dynamics in
current for hysteresis on the ring length and the system pahe nonrelativistic caseu€< 1) have the form

en(X+L,t)=pu(x,t)+27k,, (2.2
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FIG. 1. Three types of cylindrical phase spa€eA case(a) Stable poinf only; (b) stable poinf and limit cycle LC;(c) LC only. The
phase space for th€-K case is similar, with a shift alony axis.

dv, OnTYn  2€01,0 Z, described by Jacobi elliptic functions. However, a good but
TR —av,t 4 + sinh(Z )(1— tanh(Z )), distinctly simple treatment uses results based on (Ed),
. n (2.4 the only difference being that the variabkeis finite and
dx, ' restricted td —d,d], whered=3L. Additionally, it is nec-
qr ~Un Zo=Xm— X, - essary to change the phase spée® of the system as fol-

lows: cut the plane phase space for the infinite system along
Then as follows from Eq.2.4) with vy, constan{dc current, the lines X= =d and “glue” it along these lines in order to
the velocity of the pair center tends to the asymptotic valuepbtain a cylindrical phase spacéVe use tilde to denote
points and curves in the cylindrical PS. Ifd
(01711 0272) <max(Xd,|[Xg]), equilibrium points orX=d should be con-

2. ~
8a @9 sidered, so that the coordinate of the new saddle pEiist

Introducing the new variablX=X,—X,, the distance be- defined byiXg/=min(Xd,d). The separatrix branch& S~
tween fluxons, one can obtain from the s@4) the coincide with the brancheS®,S™ in the plane PS, i3
equatiori <d, and differ from them otherwise.

For I'=0, there are stable and unstable static states both

(v1tvy)2—

d2X a [ X |\ dX [ (0g forK-KandforK-A pairs. The stable state for theK case
e’ sinhX) | = tanh(X)] TR (28 s the state, when fluxons are in diametrically opposite posi-

_ B L tions. The existence of such a state is special to ring LJJ’s.
where a=2e0,0, and I'=(w/4)(0yy,=0171). This IS por gmalll (|T'|<T,) phase space contains only one stable
Newton’s equation for motion of classical particle under AN, ote—the fixed pOINE [Fig. 1(a)], so fluxons will move
external constant “field.” The total enerdgy(X,v) and the . poin _g. ' ; .

with constant separation=v,—v,=0. We call this station-

potential energy (X) of “the particle™ are ary statestatic ForI'.;<|I'|<T, the phase space has two

v? aX stable states—the poiff and the limit cycle(LC) [Fig.
E(X,v)= ?+U(X), U(X)= W—I‘X. (2.7) 1(b)]. For this region ofl" the fluxon dynamics depends on
the way in which the “field” I" changes. For increasirlg
Since Eq.(2.6) is symmetric with respect to the transfor- the corresponding state will be the poit while for de-
mation I'— —I", X——X, one can assum&>0 without creasingl’ the asymptotic state is thdynamic stationary
loss of generality. We consider both the case of identicaktate LC. The last case means that fluxons are unbound, but
polarity of the fluxons with one fluxofkink) in each junc-  they move with the time-averaged relative velocity having
tion (K-K casg and the case of opposite polaritg-A case¢.  the constant value
Two stationary points, the saddi& and the focus-, can
exist on the phase space of Ef.6) with I'=0. The coordi-
nates Xg and Xg of these points, found from equation
dU(X)/dX=0, are, forl’ >0, both negativépositive for the
K-K (K-A) case. The point§$ andF exist, only if Since (v,) is proportional to voltage across theth
junction!! two stablebranches, which correspond to bound
and unbound fluxons, in tHeV characteristics may exist, so
|a|=0.31a]. (2.9 giving hysteresis phenomena. We should note that hysteresis
occurs due to the coexistence of two stable asymptotic states
Thus, for small current|(|<T'y) fluxons in infinite LJJ’s in the fluxon dynamics. SuchV dependence was also ob-
stand or move either with constant separatibaund state  served in Ref. 7, numerically modeling the “flux-flow” re-
or with increasing separatiofunbound stafe depending on  gime in finite linear LJJ's. To simplify the analysis of the
initial conditions. For large currenI{|>T";) the distance linear LJJ they used periodic boundary conditig®<) and
between fluxons will always increase. single-mode approximation, which is valid for small junc-
Now let us consider the finite ring geometry. Strictly onetions, while our consideration is valid for sufficiently long
should consider the interaction of two periodic waves, eaclunctions. For|l'|>T., the only stable state is a L{Fig.

(v)y=(vo—vy)=Ta. (2.9

|F|$F0:
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FIG. 2. 1-V characteristicy/(| y,|) for different sizes of systen{a) K-K case;(b) K-A case.

1(c)], so that for any initial conditions unbound fluxons will center was stationafgee Eq(2.5)]. The vertical axis is the
move asymptotically with constagiv). time-averaged absolute value of

Let us find the threshold valud$;; andT';,. First note
that the conditionI’|>T'; corresponds to the existence con-
dition for the LC. By using the existence theorem and Ben-
dixson criterion for cylindrical P$? one can show that the

only possible stationary states for the system &8, and
LC. The limit cycle exists, if

d
V= f_d(0'2<P2,t_01(,01,t)dX= —2m(vy—vq). (2.19

It represents théifferenceof voltages at the junctions, tak-
ing into account the fluxon polarities. As can be seen from
Fig. 2, if the currenty,| increases from 0, then the voltage

d>d,, otherwise, (2.10  initially vanishes, corresponding to the poikt in phase

_ ~ space. This situation lasts up f¢,|~0.03—-0.04[see Eq.
v(d,S7)=v(-d,S"). (2.1)  (2.9], when switching from poinf to LC happens. For

~ . . o~ decreasing current, the voltagé is nonzero until |v,|

The value dy is determined from the relatiotJ(—dg) ~0.01[see Egs(2.10, and(2.1D]. The value ofV/ in the

—Eqis —do,X5,S")=U(X3), whereEqs(a,b,C) is the | ¢ state is defined by Eq€2.9) and (2.14 and is almost

loss of_energy due to dissipation as the particle moves alonﬁhdependent of the system side In Fig. 2 one can see also

the trajectoryC from x=a to x=b, s0 thatEqis{a,b,C)  some resonances, which can be explained by the interaction

=afv(x,C)dx, wherev(x,C) is the velocity on the trajec- of fluxon with linear modes.

tory C. 5 ~ The results for variousl are summarized in Fig. 3. The
The relationd<d, means that the separat® does not horizontal axis corresponds to the size of the sysiemvhile

intersect thex axis, so that no poirR [see Fig. 1b)] exists. ~ the vertical axis is the threshold amplitudej;|=2Ic; /7.

In this case, velocities on the separatrix branches must b€he points, dashed and solid lines denote the results of nu-

compared and Eq2.11) can be written by using Eq2.7) as  merical simulations of partial differential equatio(BDE’s)
(2.1), the ODE (2.6) and calculations using the formula

Egiss —d,X3,5") + Egisd X3 ,d,~S’)‘ (2.13), respectively. For th&-K case, the results agree well.
2d | For theK-A case, Eq(2.13 provides at least a qualitatively

(2.1  correct result, showing the existence of a maximum in the
dependencey; on d. As the above analysis shows, the

saddle poin and the separatrix play an important role. For
the K-K case, the saddle point is within the interval

|F|>Fc1:

Estimating E ;s USing the dependenag(X,S*) for G=a
=0, Eq.(2.12 can be approximated as

aJ(d) [ —d,d] for almost all values of* and «, while for theK-A
IT|=Ta=—5, (213
2d
0.02
whereJ(d)= ¢ ;{2a[ 1— X/sinh(X)]}*?d X for theK-K case
andJ(d)= [ ,{2a[ d/sinhd)—X/sinh(X)]}**d X for the K-A = 0.015
case. g
Therefore, an unbound state of fluxons may coexist with a g
bound state either if the size of the ring exceeds the charac- 2 0.01 ¢
teristic lengthd,, or if the “field” is sufficiently large[Egs. E K-K (PDEs) - <A
(2.1 or (2.13], yet|I'|<TI',. For estimation of the thresh- 0.005 1 Kk.A (PDEs) -
oldI',, above which only the unbound state is possible, one A ) O?ES o
can use the valuE, from Eq.(2.9). o Lopproximaton ©,
In order to check the results, we have integrated both 2 3 4 5 6 7 8 910

Egs. (2.6) and (2.1) numerically with e=0.1, a=0.05, d

01y1= 02y, In Fig. 2 thel-V characteristics of coupled  FiG. 3. The dependence of threshold dc currefit. Points
LJJ's for both theK-K andK-A cases are shown. The hori- correspond to numerical calculations of E2.1). Solid lines are the
zontal axis is the absolute value of the curreqtthrough  approximation(2.13. Dashed lines are the threshold from numeri-
either junction. The signs were chosen such that the paital calculations of Eq(2.6).
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case the position of the saddle point varies betweenand  ent types of fluxon behavior occur. These types incl(ale
~1. This is a reason for some mismatch in Fig. 3. One camotion of fluxons around the ring, with constant separation;
see that our approach is satisfactory dowrdte3—4. For  (b) motion of fluxons with constant averaged relative veloc-
smaller ring size, the excitation in the LJJ’s cannot be apity; (c) coexistence of the two possible motions. Comparison
proximated by a solitary flux, but should be treated as awith numerical simulations demonstrates good qualitative
periodic traveling wave. agreement with analytical predictions.

IlI. CONCLUSIONS
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