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Soliton dynamics in two coupled-ring Josephson junctions
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The interaction of nonrelativistic~anti-! fluxons in two coupled-ring Josephson junctions under the action of
external currents is considered by using adiabatic perturbation theory. The asymptotic static and dynamic states
and conditions for their coexistence are found from qualitative analysis of the system in the phase space. These
states correspond to separate stable branches in the current-voltage characteristics, so that hysteresis occurs in
a system. Comparison with numerical calculations shows a qualitative agreement with analytical predictions.
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I. INTRODUCTION

The dynamics of magnetic flux~fluxons! in a system of
coupled long Josephson junctions~LJJ’s! is the object of
intensive analytical and experimental investigations~see Ref.
1 and referencs therein!. Various interesting phenomen
such as phase locking between fluxon modes, flux-flow
cillators, and hyperradiance2–8 were investigated for the sys
tem of coupled LJJ’s.

The problem of the dynamics of fluxons in coupled LJ
was posed in the work of Mineevet al.9 In Refs. 2 and 3, it
was shown that, for positive coupling coefficient@e.0, see
Eq. ~2.1!#, slow fluxons with different polarity in differen
junctions interact attractively and can create a bound s
~fluxon-antifluxon pair!, while unipolar fluxons interact re
pulsively. Later it was shown numerically,5 experimentally,10

and analytically,4 that unipolar fluxons in different junction
with velocity larger than some threshold~relativistic effect!
can be synchronized and can create a bound~phase-locking,
bunched! state.

In the present work the nonrelativistic dynamics of flu
ons in two coupled ring LJJ’s is considered. We should n
that the dynamics in the ring geometry differs essentia
from the dynamics in infinite LJJ’s~Refs. 2–4! and in finite
LJJ’s in the ‘‘flux-flow’’ regime.1,7 For example, a new
bound state of unipolar fluxons, which corresponds to fl
ons in diametrically opposite positions, exists in ring LJ
~in the absence of external currents!. In Sec. II the genera
statement of the problem, described by the set of coup
Sine-Gordon equations with periodic boundary conditions
presented. The main idea for qualitative analysis consist
a transformation of the phase space for the infinite system
the phase space of a periodic system. By using this appro
the dynamics of fluxons under the action of a const
‘‘field’’ ~see below! is studied. We show that for relativel
small velocities~or for small values of direct current! the
system has two stationary states. The coexistence of t
states leads to hysteretic behavior in the current-volt
(I -V) characteristics. The dependence of the lower thresh
current for hysteresis on the ring length and the system
PRB 590163-1829/99/59~5!/3337~4!/$15.00
s-

te

e
y

-

d
is
of
to
ch,
t

se
e
ld
a-

rameters is found. Comparison of numerical calculations
the ordinary differential equations~ODE’s! and for the full
Sine-Gordon equations shows qualitative agreement w
analysis on the phase space. In Sec. III we summarize
results obtained.

II. THE MODEL AND RESULTS

The system of coupled long Josephson junctions is
scribed by the set of coupled sine-Gordon equations:9,2,3,5

wn,tt2wn,xx1sin~wn!52awn,t2gn1ewm,xx , ~2.1!

wherewn are the phase differences of wave functions acr
the junctions,a is the dissipation coefficient,gn is the bias
current,e is the inductive coupling parameter,n,m51,2; n
Þm. The variablex, normalized to the Josephson penet
tion depthlJ , is the distance around the mean circumferen
of the ring. The timet is normalized to the inverse plasm
frequencyvp

21 . We consider the parametersa, gn , e to be
small (!1), which corresponds to real LJJ samples.11 Qua-
siperiodic boundary conditions should be considered:

wn~x1L,t !5wn~x,t !12pkn , ~2.2!

where xP@2L/2,L/2#, L is the ring perimeter, andkn is
integer. We deal with onlykn561 case.

Because the further analysis is based on dynamics for
infinite system we present some results obtained from per
bation theory. The unperturbed (a5gn5e50) ~anti-! kink
solution for Eq.~2.1! are known to be

wn54 tan21$exp@sn~x2Xn!/A12vn
2#%. ~2.3!

Here sn561 for fluxons and antifluxons, respectively;Xn
andvn are the fluxon center and velocity correspondingly

When two such fluxons are affected by the perturbat
and coupling terms, equations for the adiabatic dynamic
the nonrelativistic case (vn

2!1) have the form3
3337 ©1999 The American Physical Society
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FIG. 1. Three types of cylindrical phase space,K-A case.~a! Stable pointF̃ only; ~b! stable pointF̃ and limit cycle LC;~c! LC only. The
phase space for theK-K case is similar, with a shift alongX axis.
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dt
52avn1

snpgn

4
1

2es1s2

sinh~Zn! S 12
Zn

tanh~Zn! D ,

~2.4!
dXn

dt
5vn , Zn5Xm2Xn .

Then as follows from Eq.~2.4! with gn constant~dc current!,
the velocity of the pair center tends to the asymptotic val

~v11v2!/2→p
~s1g11s2g2!

8a
. ~2.5!

Introducing the new variableX5X22X1 , the distance be-
tween fluxons, one can obtain from the set~2.4! the
equation3

d2X

dt2
1

a

sinh~X! S 12
X

tanh~X! D52a
dX

dt
1G, ~2.6!

where a52es1s2 and G5(p/4)(s2g22s1g1). This is
Newton’s equation for motion of classical particle under
external constant ‘‘field.’’ The total energyE(X,v) and the
potential energyU(X) of ‘‘the particle’’ are

E~X,v !5
v2

2
1U~X!, U~X!5

aX

sinh~X!
2GX. ~2.7!

Since Eq.~2.6! is symmetric with respect to the transfo
mation G→2G, X→2X, one can assumeG.0 without
loss of generality. We consider both the case of ident
polarity of the fluxons with one fluxon~kink! in each junc-
tion ~K-K case! and the case of opposite polarity~K-A case!.
Two stationary points, the saddleS and the focusF, can
exist on the phase space of Eq.~2.6! with G50. The coordi-
nates XS and XF of these points, found from equatio
dU(X)/dX50, are, forG.0, both negative~positive! for the
K-K (K-A) case. The pointsS andF exist, only if

uGu<G0.
16

3p2)
uau.0.31uau. ~2.8!

Thus, for small current (uGu,G0) fluxons in infinite LJJ’s
stand or move either with constant separation~bound state!
or with increasing separation~unbound state!, depending on
initial conditions. For large current (uGu.G0) the distance
between fluxons will always increase.

Now let us consider the finite ring geometry. Strictly o
should consider the interaction of two periodic waves, e
:

l

h

described by Jacobi elliptic functions. However, a good
distinctly simple treatment uses results based on Eq.~2.6!,
the only difference being that the variableX is finite and
restricted to@2d,d#, whered5 1

2 L. Additionally, it is nec-
essary to change the phase space~PS! of the system as fol-
lows: cut the plane phase space for the infinite system al
the lines X56d and ‘‘glue’’ it along these lines in order to
obtain a cylindrical phase space. We use tilde to denote
points and curves in the cylindrical PS. Ifd
,max(uXSu,uXFu), equilibrium points onX5d should be con-
sidered, so that the coordinate of the new saddle pointS̃ is
defined byuXS̃u5min(uXSu,d). The separatrix branchesS̃1,S̃2

coincide with the branchesS1,S2 in the plane PS, ifXS̃
,d, and differ from them otherwise.

For G50, there are stable and unstable static states b
for K-K and forK-A pairs. The stable state for theK-K case
is the state, when fluxons are in diametrically opposite po
tions. The existence of such a state is special to ring LJ
For smallG (uGu,Gc1) phase space contains only one sta
state—the fixed pointF̃ @Fig. 1~a!#, so fluxons will move
with constant separation,v[v22v150. We call this station-
ary statestatic. For Gc1,uGu,Gc2 the phase space has tw
stable states—the pointF̃ and the limit cycle~LC! @Fig.
1~b!#. For this region ofG the fluxon dynamics depends o
the way in which the ‘‘field’’ G changes. For increasingG
the corresponding state will be the pointF̃, while for de-
creasingG the asymptotic state is thedynamic stationary
state LC. The last case means that fluxons are unbound
they move with the time-averaged relative velocity havi
the constant value

^v&5^v22v1&5G/a. ~2.9!

Since ^vn& is proportional to voltage across thenth
junction,11 two stablebranches, which correspond to boun
and unbound fluxons, in theI -V characteristics may exist, s
giving hysteresis phenomena. We should note that hyster
occurs due to the coexistence of two stable asymptotic st
in the fluxon dynamics. SuchI -V dependence was also ob
served in Ref. 7, numerically modeling the ‘‘flux-flow’’ re
gime in finite linear LJJ’s. To simplify the analysis of th
linear LJJ they used periodic boundary conditions~2.2! and
single-mode approximation, which is valid for small jun
tions, while our consideration is valid for sufficiently lon
junctions. ForuGu.Gc2 the only stable state is a LC@Fig.
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FIG. 2. I -V characteristicsV(ugnu) for different sizes of system.~a! K-K case;~b! K-A case.
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1~c!#, so that for any initial conditions unbound fluxons w
move asymptotically with constant^v&.

Let us find the threshold valuesGc1 and Gc2 . First note
that the conditionuGu.Gc1 corresponds to the existence co
dition for the LC. By using the existence theorem and Be
dixson criterion for cylindrical PS,12 one can show that the
only possible stationary states for the system areF̃,S̃, and
LC. The limit cycle exists, if

d.d̃0 , otherwise, ~2.10!

v~d,S̃2!>v~2d,S̃1!. ~2.11!

The value d̃0 is determined from the relationU(2d̃0)
2Ediss(2d̃0 ,XS̃ ,S̃1)5U(XS̃), where Ediss(a,b,C) is the
loss of energy due to dissipation as the particle moves a
the trajectoryC from x5a to x5b, so thatEdiss(a,b,C)
5a*a

bv(x,C)dx, wherev(x,C) is the velocity on the trajec
tory C.

The relationd,d̃0 means that the separatrixS̃1 does not
intersect theX axis, so that no pointR̃ @see Fig. 1~b!# exists.
In this case, velocities on the separatrix branches mus
compared and Eq.~2.11! can be written by using Eq.~2.7! as

uGu>Gc15UEdiss~2d,XS̃ ,S̃1!1Ediss~XS̃ ,d,S̃2!

2d
U.
~2.12!

EstimatingEdiss using the dependencev(X,S6) for G5a
50, Eq. ~2.12! can be approximated as

uGu>Gc15
aJ~d!

2d
, ~2.13!

whereJ(d)5*2d
d $2a@12X/sinh(X)#%1/2dX for theK-K case

andJ(d)5*2d
d $2a@d/sinh(d)2X/sinh(X)#%1/2dX for theK-A

case.
Therefore, an unbound state of fluxons may coexist wit

bound state either if the size of the ring exceeds the cha
teristic lengthd̃0 , or if the ‘‘field’’ is sufficiently large@Eqs.
~2.11! or ~2.13!#, yet uGu,Gc2 . For estimation of the thresh
old Gc2 , above which only the unbound state is possible, o
can use the valueG0 from Eq. ~2.8!.

In order to check the results, we have integrated b
Eqs. ~2.6! and ~2.1! numerically with e50.1, a50.05,
s1g15s2g2 . In Fig. 2 the I -V characteristics of coupled
LJJ’s for both theK-K andK-A cases are shown. The hor
zontal axis is the absolute value of the currentgn through
either junction. The signs were chosen such that the
-

g

be

a
c-
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center was stationary@see Eq.~2.5!#. The vertical axis is the
time-averaged absolute value of

V5E
2d

d

~s2w2,t2s1w1,t!dx.22p~v22v1!. ~2.14!

It represents thedifferenceof voltages at the junctions, tak
ing into account the fluxon polarities. As can be seen fr
Fig. 2, if the currentugnu increases from 0, then the voltageV

initially vanishes, corresponding to the pointF̃ in phase
space. This situation lasts up tougnu;0.0320.04 @see Eq.
~2.8!#, when switching from pointF̃ to LC happens. For
decreasing current, the voltageV is nonzero until ugnu
;0.01 @see Eqs.~2.10!, and ~2.11!#. The value ofV in the
LC state is defined by Eqs.~2.9! and ~2.14! and is almost
independent of the system sized. In Fig. 2 one can see als
some resonances, which can be explained by the interac
of fluxon with linear modes.

The results for variousd are summarized in Fig. 3. Th
horizontal axis corresponds to the size of the systemd, while
the vertical axis is the threshold amplitude:ugn* u52Gc1 /p.
The points, dashed and solid lines denote the results of
merical simulations of partial differential equations~PDE’s!
~2.1!, the ODE ~2.6! and calculations using the formul
~2.13!, respectively. For theK-K case, the results agree we
For theK-A case, Eq.~2.13! provides at least a qualitativel
correct result, showing the existence of a maximum in
dependencegn* on d. As the above analysis shows, th

saddle pointS̃ and the separatrix play an important role. F
the K-K case, the saddle point is within the interva
@2d,d# for almost all values ofG anda, while for theK-A

FIG. 3. The dependence of threshold dc currentgn* . Points
correspond to numerical calculations of Eq.~2.1!. Solid lines are the
approximation~2.13!. Dashed lines are the threshold from nume
cal calculations of Eq.~2.6!.



ca

ap

wo
re
f t
em
w
ffe

on;
c-
on
ive

-
ety/
p-
ics,

3340 PRB 59BRIEF REPORTS
case the position of the saddle point varies between1` and
;1. This is a reason for some mismatch in Fig. 3. One
see that our approach is satisfactory down tod;324. For
smaller ring size, the excitation in the LJJ’s cannot be
proximated by a solitary flux, but should be treated as
periodic traveling wave.

III. CONCLUSIONS

In the present paper, the dynamics of fluxons in t
coupled ring Josephson junctions under the action of di
and alternating currents was studied, using an analysis o
periodic system based on the dynamics of an infinite syst
By using the glued cylindrical phase space we have sho
that, depending on the problem parameters, only three di
-

.
,

n

-
a

ct
he

.
n,
r-

ent types of fluxon behavior occur. These types include~a!
motion of fluxons around the ring, with constant separati
~b! motion of fluxons with constant averaged relative velo
ity; ~c! coexistence of the two possible motions. Comparis
with numerical simulations demonstrates good qualitat
agreement with analytical predictions.
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