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Electronic origin of magnetic and orbital ordering in insulating LaMnO 5
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We derive a spin-orbital model for insulating LaMg@hich fulfills the SU2) symmetry ofS=2 spins at
Mn3" ions. It includes the complet®, andt,, superexchange which follows from a realistic Mnmultiplet
structure in cubic site symmetry, and the Jahn-Teller-induced orbital interactions. We show that the magnetic
ordering observed in LaMnQis stabilized by a purely electronic mechanism due toeheuperexchange
alone, and provides a unique and quantitatively correct explanation of the observed transition temperature and
the anisotropic exchange interactionS0163-182@99)14901-4

The fascinating properties of doped manganitesserved in KCulg. Here we show that a similar state follows
R;_xAxMnO;, whereR is a rare-earth element, ardis a  from a realistic S=2 spin-orbital modelfor the d* ions in
divalent element, were discovered almost half a century aMnO;. We include also thé,, superexchange and the JT
ago? but the various phase transitions occurring under dopinteraction and show that these, while unessential qualita-
ing and in particular the phenomenon of “colossal magne+ively, are important for a quantitative understanding.
toresistance” (CMR) are still not fully understood. The The superexchange between total spins=35 at the
phase diagrams of La,(Ca,SryMnO; (Ref. 2 show a d* Mn®" ions originates in the large-regime from virtual
complex interplay between magnetic, charge, and structurgle; or t,,) excitations,dfdfﬁdfd? A simplified approach
order, so that all these ordering phenomena may affect CMiBroposed recently by Ishihaet al** emphasizes the role of
at least indirectly. It is therefore important to obtain first of orbitals but violates the SI@) spin symmetry, and involves a
all a full understanding of the mechani@nstabilizing the  Kondo coupling betweer, andt,y spins, which by itself is
observed order in thendopedinsulating parent compound not a faithful approximation to the multiplet structure. The
LaMnGO;. This will be an essential element in putting to- |atter objection applies also to the model proposed by Shiina
gether a satisfactory description of the more complicate@t all* In contrast, the spin-orbital model presented below
doped compounds, and recognizing which mechai®m follows from the full multiplet structure of the Mn ions in
other than or in addition to double exchafgeight be re-  ctahedral symmetry, both in tid (t348¢) configuration of

: )
sponsible for CMR. _ the Mr®™ ground state and in the?® anddg‘5 virtually excited
In this paper we therefore reconsider the problem of theiates.

microscopic origin of the experimentally observed type of g4 we consider a spin-orbital model for the manganites,
antiferromagneti¢AF) order in LaMnQ ,% which consists of
ferromagnetic(FM) planes ordered antiferromagnetically in H=H,+H+Hy+H,, )
the third direction(A-AF phase. As the magnetic order in o
LaMnO; couples to orbital ordetone possible explanation Which includes superexchange terms dueefo(He) and
might be the occurrence of a cooperative Jahn-Teld@  tzg (Hy) excitations, JT interactionHyr), and a low-
effect’ which induces a particular order of the singly occu- Symmetry crystal fieldi,). Our starting point is that each
pied e, orbitals® However, while the JT effect plays a cru- Mn®* (d*) ion is in the strong-field 5 e) Hund's rule
cial role in charge transpottwe show here that a purely ground state, i.e., the high-spii$€2) orbital doublet’E.
electronic mechanismirives orbital and magnetic ordering in First, we analyze the strongest channel of superexchange,
the manganites near the Mott-Hubbard transiffdn. which originates in the hopping of a& electron from site
The local Coulomb interactiod is the dominating energy to its neighborj. When we consider a bond oriented along
scale in late transition-metal oxides. If partly filled orbitals the cubicc axis, only a &*—r? electron can hop and foa®
are degenerate, as in KCyBr in LaMnO;, this leads to an  States may be reached: the high-spiy state §=5/2), and
effective low-energy Hamiltonian, wherepin and orbital  the lower-spin §=3/2) “A;,%E, and “A, states(Fig. 1).
degrees of freedom are interrelafeld.In the simplest case The dd=d?(t3;)d>(t3,e]) excitation energies require for
of d® ions in KCuR, such a model describes spi@s 1/2 of  their description in principleall three Racah parameterg,
e, holes coupled to the discrete orbital variables. FiniteB, and C:** £(°A;)=A—8B, &(*A;)=A+2B+5C, £(*E)
Hund's rule exchangd, removes the classical degeneracy =A+6B+5C,® £(*A,)=A+14B+7C. In view of the re-
of magnetically ordered phas&¥ and stabilizes the A-AF alistic values oB=0.107 andC=0.477 eV for Mf* (d®)
phase in conjunction with the particular orbital order ob-ions!’ one may use an approximate relati®+4B, and
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where thes’s are Pauli matrices acting on the orbital pseu-

(a) 4E9 — U+ %JH dospins|x)=(3), |2)=(9), and the orbitals transform as
. — U |x)ocx2—y? and|z)=(322—r?)/ /3.
1 The spin operator§; in Eq. (2) are S=2 spins, but oth-
erwiseH , resembles the spin-orbital model @t ions in the
6/_\1 — U-5J cuprates? Both models contain superexchangelike cou-
H plings between spin and orbital degrees of freedom. The or-

7 % — t, t,, — 5 bita! sector carries a discrete_ cubic symmet_ry, anidiésti-

> —rEz T cal in both cases, while thepin problem fulfills theSU(2)

X — % hE - % X symmetryand different representations apply for the manga-
nites (S=2) and for the cupratesSE 1/2). We emphasize
that the Hamiltoniam . is not equivalento that of Ref. 13 in

(b) 4A — U+19y any nontrivial limit. A common feature is that FM interac-
2 3“H tions are enhanced due to the lowest excitéd state, but
4E — U+ EJ the dependence of the magnetic interactionslgns quite
€ 3°H different, and it gives a different answer concerning the sta-
t _ t bility of the A-AF phase. The balance between AF and FM
z zz 1 ZZ[ z interactions is also different from that in Ref. 14 due to the
— — = _ - multiplet structure of MA*.
A similar derivation gives the,, superexchang®
4 4 3 5 4 4
d; d j di d j d; d 1
H=732> (S-§-4), 5)
(i)

FIG. 1. Virtuald'd{—d7d} excitations which generate effective B
interactions for a bondi{)|c axis: (a) for one|x) and one|z) where J;=(J11+ oot J1o+ Jo1) /4. The exchange elements,

electron, andb) for two |z) electrons. Jmn=t21e(*Tp,*T), wheret,=t/3 is the hopping between
the t, orbitals, result from locatld;'=dP(t3,e,) d¥(t5,e4)

write the excitation energies in terms of Coulomb=A  €Xcitations within a(ij) bond, with energiese("T,,

+2B+5C, and Hund's exchangd,=2B+C, parameters: T1)=U+8J4/3, £(*T1,*To)=U+234/3, e(*T,,*T)=U

e(®A)=U—-5J,, £(*A)=U, e(*E)=U+2J,, (*A) +4dy, e(*T,,%T,)=U+2J,, where*T,, (*T,) stands for

—U+%J,,. Using the spin algebréClebsch-Gordon coef- the symmetry ofd? (d?) excited configurations, respec-

ficients and the reduction of product representations in cubidively.

site symmetr}® for the intermediate states, and making a The manganite mode(ll) is completed by the JT term

rotation of the terms derived for a bord )| c with respect which leads to static distortions and mixegsorbitals,7

to the cubic axes, one finds a compact expression

, Hor= "<Z> (P = 2P, + P, 6)
1 8 t 1
- - — S . S 49
He 1673 I 5 £(°A,) (S SJ+6)P<|J> with Pfﬁ>=2Pi§Pj§, and by the tetragonal crystal field,
2 3 t2 | . . c
+ + = .S —4)pe HT=—EZ . (7)
o) Bottap) 0 VT T
t2 t2 . The strength o&y andt, superexchange can be estimated

"lece) Ay

, (2)  fairly accurately from the basic electronic parameters for the
Mn ion as determined from spectroscdpy’ with an esti-

. . ) B mated accuracy of-10%. We thus usdJ=7.3 eV and
wheret is the hopping element along teaxis, andPijy are  3.,—0.69 eV, and taking into account that the Mn-Mn hop-

(5-§-4Pf,

projection operators for each boxi ), ping occurs via the bridging oxyget=0.41 eV as follows
from t=t§d/A with Mn-O hoppingt,4=1.5 eV and charge-
P =PiPietPisPi,  P5,=2Pi P, (3) transfer energy A=5.5 eV?® This yields J=t?/U

=23 meV and);=2.1 meV. The accuracy of these param-
projecting on the orbital states, being either parallel to thesters may be appreciated from the resulting prediction for the
bond direction on one siteP{,= 3 — 7{*) and perpendicular Neéel temperature of CaMn{) where a similar derivation
on the other Pj,=3+ "), or parallel on both sites. They gives H,~2J,(4S-S,—1) in terms of Mi* spins S=3/2
are represented by the orbital operatefsassociated with 5443, ~ J,(1+J,,/U). With our present estimates we obtain

the three cubic axesa{=a, b, or ¢), J,=2.3 meV and thugy=124 K, in excellent agreement
with the experimental valugy=110 K.
When considering the manganité*j model (1), it is in-

1 1
ab) _— (_ 52+ X c__ 52
Ti 4( gi= \/go' )T 271" @ structive to treatly andE, as freely variable parameters in
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FIG. 2. Classical phase diagram of the manganite m@del(a)
no JT effect ¢=0), J;=0 (full lines), and J,=0.092) (dashed
lines), with the AFxx and AFzz phases separated by a MOAAA
phasejb) including the JT effect4=0.5J), J;=0 (dashed lines
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FIG. 3. Magnetic transition temperaturés (J=23 meV, E,
=0, J;=0.092, x=0.8]) for: MOAAA (dashed ling MOFFF
(long-dashed ling and MOFFA(full line) phases, and for the
structural(MO) phase transition at=0 (squares The dotted line
indicates realistid,, /U=0.095.

orbital order as such, the actual magnéfeAF) and orbital
(cos 2+0) order areentirely dueto the e;-superexchange
interactions(2).

Finite-temperature behavior was investigated in MF ap-
proximation, with(c), (S), and(aS) constituting indepen-
dent order parametefé.As the largest interaction is in the

pure orbital 6) channel, one may estimate the JT coupling
. _ x from the temperature of the structural transitioFt*®
order to appreciate the physical consequences of Hund's rule 750 K. The electronic interactions contribute440 K

(Fig. 3, and the rest, 6=760 K, comes from the JT

model exhibits symmetry breaking into classical states witherm?® Thus k=11 meV, and we have adopted the repre-

simultaneous spin and orbital ord&l? and similar behavior

sentative valuex/J=0.5. We then calculated the tempera-

is expected herg: We have considered classical phases WwithturesT, for the possible magnetic transitioffig. 3), taking

two and four sublattices, and mixed orbitdlO), |i wo)
=cos#|ixo)+singlizo). The mean-field(MF) phase dia-
gram of thee, part of model(1), H=H¢+H,, atT=0 is
similar to that of the cuprate spin-orbital modélat large
positive (negative E,, one finds AF phases with either
[x) (AFxx) or |z) (AFzz) orbitals occupied, while MO

into account that orbital order with cog20 already exists
below T, and calculating self-consistently the correspond-
ing order paramete{&) at finite T. The spin order sets in
simultaneously with a modification of orbital ordering to-
wards cos 2+0. We find that the preexisting structural tran-
sition plays an important role at finit€ and reduces the

phases with orbitals alternating between the sublattiédgs ( magnetic transition temperature, being otherwige=J.4

==+ 6, with cos 2<0) are favored by increasing},. If E,
<0 the spin order is FMAF) in the (a,b) planes(along the

c axig) in the MOFFA phase, while aE,>0 two similar
phases, MOAFF and MOFAF, are degenerate. For the pa-
rameters appropriate for LaMrO(Jy /U=0.095) one finds

a MOFFA/MOAFF ground state, i.e., A-Afagnetic order
while a FM (MOFFF phase is found only al,;/U>0.12.
The region of stability of the A-AF phase is modified ty
superexchangéFig. 2(a)], but this change is small a%
<J. Thus, the observed A-AF magnetic order in LaMn®
caused by theorbital dependencef the e; superexchange
and not by competition between F&} and AFt,; superex-
change as proposed in Ref. ¢@here an unrealistically large
J; was usey] supporting the qualitative results of Ref. 14.

Although the MF phase diagrams are modified signifi-

cantly by JT couplindFig. 2(b)], the A-AF phase survives
aroundJ, /U=0.095. In fact, the JT interactiai®) by itself

enforces alternating orbitals with co8=20, which favors AF
spin order, thus stabilizing at small;/U the MOAAA
phase, promoted further by finitg . But at largerJy /U,
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even though the JT interaction sets the stage by inducin¢ull lines). The inset shows cos2

The results are consistent with the phase diagranmis=dd

FIG. 4. Exchange interactiorly, andJ. in the ground state for
increasingly /U, for J=23 meV andJ,;=0, «=0 (dashed lines
J;=0.092), k=0 (long-dashed lings and J;=0.092), x=0.5]
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(Fig. 2), as the magnetic transition corresponds to the sam&ined for LaMnQ@, which is even quantitatively
order as found al =0. For the A-AF(MOFFA) phase we satisfactory?’ It includes simultaneously the fulkg andt,g)
find T,~106 K?®in reasonable agreement with the experi-superexchange and the JT effect, and shows that the orbital
mental value of 136 K dependence of the; superexchange, aurely electronic
The magnetic interactions in the A-ARMOFFA) phase  mechanismis responsible for the observed A-AF order. We
may be found using averagé@é’iﬁ) of the orbital projection  emphasize that no fitting of parameters was needed, and the
operators(3) at E,=0. They are FM in the &,b) planes used values ofl,;, U, andt, known with an accuracy of
(J(apy), and AF in thec direction Jc) (Fig. 4). Both large  ~10%, allowed to deduce the value of the JT coupling
Jy/U and k=0.5] play a decisive role in determining the gng gavel;, Jap), andJ. within 30% from the experimen-
actual composition of the orbitals, and we finHap)  tal values. We thus believe that Hamiltoniéh) provides a
=—1.15 andJ.=0.88 meV, somewhat higher than the ex- regjistic starting point for understanding how the delicate
perimental —0.83 and 0.58 me¥® However, their ratio, pajance of magnetic and orbital interactions in LaMn€

Jc/|‘](a,b)|20-77?2‘\_3”995 very well with the experimental yftected by doping, leading to a change of magnetic order
value of 0.7-0.7Z; in contrast, it would amount to 1.04 for and to the possible onset of an orbital liquid s&te.

k=0, and to 2.25 if in addition the orbitals were chosen to

satisfy cos 2=—0.5, as in the Kugel-Khomskii versibrof We thank P. Horsch, J. Zaanen, D. |. Khomskii, H. J. F.
thed® model, which results in a much weaker dependence oknops, and H. Shiba for valuable discussions, and acknowl-
Hund'’s exchangdy . edge the support by the Committee of Scientific Research

Summarizing, a coherent overall picture has been ob¢KBN) of Poland, Project No. 2 PO3B 175 14.
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