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Reflection by defects in a tight-binding model of nanotubes

T. Kostyrko
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6030
and Institute of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Po2akamd

M. Bartkowiak
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6030;
Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996-1200;
and Institute of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Po2akmd

G. D. Mahan
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6030
and Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996-1200
(Received 8 June 1998; revised manuscript received 3 Augus 1998

We use a transfer-matrix method to study defects in a tight-binding model of carbon nanotubes. We calculate
the reflection coefficien® for a simple barrier created by a pointlike defect of streri§th armchair N, ,N,)
and zigzag K,,0) nanotubes for the whole range of energyand arbitrary number of conducting channels.
We find thatR scales at the Fermi levéle., w=0) asts(E/t)Z/Ng1 (t being the hopping paramejewhere
s~1/6 (for the armchair nanotubgand s~ 1/2 (for the zigzag nanotubgsWe also perform a similar calcu-
lation for a “5-77-5" defect and find the results to be like the ones obtained for a strong point defect with
E=6t. [S0556-282(98)05114-3

[. INTRODUCTION Recent theoretical works on the role of defects in
SWCNT concerned mainly a defect present at the junction of
An individual single-wall carbon nanotud8WCNT) rep-  two nanotubes of different helicity and were concentrated
resents a strictly one-dimensiondlD) system with a great on calculations of the local electron density of states close to
number of carbon atoms in the unit cell of the 1D Bravaisthe junctions. Chicet al.? using a “Green-function match-
lattice (for a review see Refs. 1 and.2n the 1D systems the ing method,” studied also the conductance for a single va-
electron wave functions are known to be localized in thecancy, which they simulated as an extremely strong point
presence of disorder and transport properties of such a sydefect with nearby bonds interrupted. They did not discuss
tem is determined by hopping between the localized levelgtheir data as a function of the defect strength, however, and
With an increase of the tube radius, the system becomegid not mention a possible scaling laws of the conductance
more and more similar to an infinite graphite plane, i.e., 2Das a function of defect strength and nanotube radius. A re-
system. The role of disorder decreases and the states may Rged work was performed by Tamura and Tsukddaho
treated as extended, at least on the scale length of the realigtydied the transmission through a barrier created at model
tic nanotube Iength Recent eXperimental observations of ﬁljnctions_ They determined the Sca“ng law for the conduc-
Single'electron tunneling through discrete electronic levels iﬂance at the Fermi energy in terms Of the ratio Of the radii Of
an individual SWCNT show the electron states to be exthe nanotubes at the junctions and the junctions’ lengths. Our
tended over a distance as large ag® (Ref. 3. On the  approach is also more general than that in Ref. 10 in that it
other hand, various kinds of defect are known to be preserijiows one to study the conductance for the whole energy

in rolled up graphene sheet of the carbon nanotdb®sow-  range, including an arbitrary number of conducting channels.
ever their influence on electronic and transport properties of

these systems is poorly known. The purpose of our paper is
to understand how these properties may be related to a par-
ticular defect type, nanotube radius, and its helicity.

In particular, we study here the reflection from a barrier We assume that the standard model for the energy bands
created by defects that may appear in the SWCNT. We alsof graphite can be applied to nanotubes. The principal con-
calculate the changes in the density of states introduced byduction and valence bands are composedpgoforbitals.
single defect and show how these changes can be related Band-structure calculatidhshow that the nearest-neighbors
the reflection of an incident electron for arbitrary number oftight-binding model gives an adequate description. So far all
the conducting channels. We analyze the results as a functigrhysical measurements on nanotubes indicate they are Fermi
of the defect strength and nanotube radius and determinguids rather than Luttinger liquids. Thus, we adopt the
simple asymptotic formulas for the reflection from the stud-model that the electrons are ordinary quasiparticles described
ied defects which should prove useful in estimations of theby a tight-binding model, which occasionally scatter from
conductance. impurities,

II. GENERAL FORMULATION
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®a where a transfer matri¥; was introduced. The current in
o b this state takes a form
*z i3j=af 1t;8j— Bltf ey 4 (6)
o
o h and, as follows from the fact tha&; andB; are Hermitian, is
independent of the site indgx
It is convenient to introduce the diagonal representation of
the transfer matrixI’ for a perfect lattice site:
A Aoy
Tp= ~ =S TS, AA=I, 7
FIG. 1. The schematic picture (,2) armchair and4,0) zigzag P 0 A StoTS @)

nanotubes, showing division into unit cells. In %2 nanotube a . o ) . o
5-77-5 defect is shown with heavy lines. whereS; defines the similarity transformation diagonalizing

T. Using Sy, the current conservation law for a perfect lat-
: - : tice site can be written as

t ot 0 t " 0 t vV -y
+bIHJbbJ+aJTWJbJ+b}.W}LaJ] (1) TDST _tT 0 STTD:ST _tT 0 ST: ,yT ’\"/ ’

wherea; ,b; denoten,-component electron operators for the (8)

aandb orbitals ofjth cell (see Fig. 1. The first two terms in  where in the last equation we introduced a “velocity matrix”
Eq. (1) describe electron hopping between neighboring cellsy after Ref. 15.
andt; is a matrix of the corresponding hopping parameters. Here we are concerned with a problem of scattering of the
The next two terms, including Hermitian matricei$™®, de-  electron by a barrier in the system, which is otherwise per-
scribe intracell hopping processes as well as interaction withectly periodic(by “barrier” we mean a finite sequence of
on site impurities. The last two terms describe intracell hop-unit cells including defecjs The particle incident at the bar-
ping betweera andb orbitals. In zigzag nanotubes, in addi- rier splits into two parts. The amplitude of the reflected part
tion to a andb orbitals one can have orbitals not connectedis determined by the reflection matri®. The transmitted
directly to either of the neighboring cells. They can be elimi-part, the amplitude of which is determined by the transmis-
nated at a later stage of the theory at the cost of modifyingion matrix7, cannot include an exponentially growing con-
the intracell hopping matrixV; . tributions as well as those that correspond to the wave run-
The standard method to study effects of disorder in a onening towards the barrier. These contributions have to be
band 1D system is a transfer-matrix mettitat a review see eliminated. Comparing the current, E&), on the two sides

Ref. 12. From the transfer matrix one can calculate densityof the barrier and using E@8) leads then to the relation
of states, transmission coefficients, afubing the latter

. .. .. 13,14 <
electrical conductivity of the finite 1D system®&&0 K. _ TVT+RT(-V)R=V-R Ty + yR, (9)
Application of this method to a many band system was dis-
cussed recently by Molinatt, and we follow the formalism R=0310 (10)
presented therésee also Ref. 16 for a review 22 <2l
For a given energyw, using the Schminger equation _ 4
with the Hamiltonian(1) and the wave function 7=Qu~ Q12Q2; Qa1 (11
. wheren, X n, matrix Q is related to the transfer matri, 5,
\I’ze"“’t; (ajajT-f-,Bj b;r)|0) (2)  of the M + 1-cell barrier beginning at site:
leads to a system of recurrence equations for the coefficient Q=5 Tpar Sr= Qu Qu
vectorsa and B: barr Q, Q'
Ajaj 1B+ WiB=0, Aj=Hf-wl, (3 where Tpar=TLom  TLaaTL. (12)
Bjﬁ,—+tfa,-+1+WJTaj=0, Bj= H].b—w|, (4) From now on we restrict ourselves to rdamatrices(mag-

netic field is zerd In this caséV=—V (Ref. 15.
Besides the propagating waves, which correspond to com-
plex eigenvalues of with unit moduli, Eq.(9) includes the
o o solutions decaying exponentially with distance from the bar-
( '+1) = ( J ) rier. Far from the barrier, the decaying solutions are not im-
Bj "N B2 portant. We reduce matricés R, andV, by removing rows

wherel denotes the unit matrix. They can be written in the
form
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and columns corresponding to indices related to the decaying (A+1)2
solutions. From Eq(9) we obtain then the equation for the BAx=Qx, Q=
reduced matrice§; , R, ,V,:

1
x , Y=— mAX (20)

From Egs.(15 and(16) we obtain the system of equations

TV T +RIV\ R, =V,. (13)  for the components af
Equation(13) can be rewritten in the convenient form [1-(—-1)"]
o X2m X, 1= (2= 0 X, m 0 X,
r+ptp=1, r=vTw Y p=vRop ' (19
andy i - Cot oy 17 : : [1+(—-1)"]
v is defined by the relation'v =V, .*" Equation(14) is +——""X,,,=0, (21)

a multichannel reflection law. In our calculation of the re- 2

flection matrix we use Eq(14) as a test of the accuracy of hich has to be solved with respect to a boundary condition:
the numerical computations. In order to obtain the explicit, _ + 1 determiningg. The solution is given by
form of the reflection and transmission matrices we have to” =~ """

solve the eigenproblem for the transfer matrix for a specific

A L i ; a b _
model Hamiltonian—this is done in the next subsections. X,= E[1—(—1)”]+ §[1+(_1)V] expivg), (22

A. Armchair nanotube
_ . Q= w?+cog2q) = Veo2(2q) + 4wl cofq—1. (23)
In an (N5,N,) armchair nanotube, a unit cell can be

formed with 2N, hexagons going round the tube. CarbonThe matrix diagonalizing” with a similarity transformation
atoms in each cell belong to either of two planes perpendicuS

lar to the nanotube axis andb (see Fig. L In our nearest-

neighbor (NN) hopping model the following hopping pro- _ S S
cesses, all described by the same hoppi_ng parametﬁrl St —~AS(1+A)7L —AS(1+A)t
eV (from now on treated as our energy yndre possible(a)

(a,m,2v—1)~(a,m,2v), (b) (b,m,2v)«(b,m,2v+1), (c) where S is built of eigenvectors oBA and A denotes the
(a,m,v)(b,m,»), (d) (a,m,v)«—(b,m—1,v), wherem diagonal matrix of the eigenvaluas

denotes the unit-cell index andnumbers consecutively the ~ From the relation betweefd and \ [Eg. (20)] and the
atoms we meet going round tlaeor b plane(the spin index requirement that be a complex number of a modulus 1
will be omitted herg Also the proper periodic boundary (=e', wherekis rea) the band energy can be calculated as
conditions forv are implied.

) . (29

In the case of the diagonal disorder, to which we restrict wk::': +3+2cogk)+'4 cosq cogk/2) (25
ourselves in this subsection, the transfer matrix is given b)f ] )
Eq. (5) with W,=t;=1 and q= (w/np) m,mzo,l, .- ny/2] which agrees with the re-
sults obtained in an earlier worR.
An=L~lo+A%, (A}, =6, EN. (15
B. Zigzag nanotube
Bu=LP—lo+AD, (AN, =8, En,, (16 In the case of zigzag-type nanotuldé,(0) the unit cell of
ab ) . 1D lattice can be defined as a belthdf complete octahedra
whereE;;, represent the site energy for the correspondinggching side by side and going round the tube. In such a
atoms, and matrices are: choice of the unit cellsee Fig. 1, some atomsd andb
s i type) connect atoms from neighboring cells while othezs (
N if weven
£, wov+l _ (l=p=ny/2), (17 andh) a.re_con.nected“.to the a}’toms from the same cgll only.
6, ,-1 if wodd By elimination of “internal” components, we arrive at
system of equations relating and 8 only at the cost of
5 8,41 if wodd appearance of the-dependent intracell hoppingy,,. In this
= ' <u< = =
L, [5,”—1 if 1 even (1<u<ny/2), caset,=I, n,=2N,, and
5 5 An=LT(1-Z Hp) HoL—lo+AR, (26)
Bn=LT(1-ZyHm) Znl—lw+AD, (27)

wheren,=4N, is a total number of all atoms in the unit cell.
The eigenequation for the transfer matrix of the perfect latwhereZ,, ,,=4,,(E},,— ), Hy .= W(Eﬂw— w),
tice siteT

Ouvt -1 for u<ing/2

— L,,= 28
(BAI B)(x):)\(x)’ 19 “ | Gvat Bunge for uw=ny/2. @8

-A  —l/)\y y
The effective intracell hopping operat@v,, reads
wherex,y are ny/2-dimensional vectors, can be reduced to
the eigenvalue problem for the vector Wo=—LT(1-ZHm L. (29
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The eigenequation foF can be solved in similar way as for the case of the armchair nanotube, if we note that the operators
A, B, and W now commute and can be simultaneously diagonalized. The similarity transformation that diagohatzes
represented by the matrix

S S eiﬂqy
ST=| AstW2A-1s+ WA 1SA —AS+W?A"IS+WA 1SA )’ S‘”:\/nb/z' 30

Here we note that the present formulation requires the rediscuss more complex and more realistic defects in SWCNT.
versibility of the effective transfer matriw/. However,Wis  The pointlike defect is defined by setting site energy equal to
not reversible for the nanotubesl(,0) with N, even. The E at one of the sites of the unit cell, with all the other sites

problem can be traced back to the existence of a dispersioitraving site energy zero. We have computed a reflection co-
less bands ab»=*1 for these tubes. It can be easily rem- efficientR defined as

edied by first applying the similarity transformation defined

by the matrixSto the recurrence relations, Ed8) and (4). R=Tr(p"p)/ne,

Then a (N,/2)th row andN,/2 column of the transformed
matricesS'W,,,S will be composed of zeros only. As a result
two coupled equations for theN¢/2)th components of the
vectorsS'a,,,S" B 1

where n. is the number of conducting channels. This has
' been done for both armchair and zigzag nanotubes varying

nanotubes’ radii and the strength of the point detecfThe

reflection coefficient can be simply related to a

4
(Efnz— @) (S amn o+ (S'Bm 1 o=0, (31  conductance!
2
e
(Ef-in 2= @) (S"Bm-Dn, ot (STamn, =0 (32 =5 —Tr(s'7)

will have nonzero solutions only ilb==*=1. We can thus
apply the formalism presented above for a reduced system
variables with reversible reduced matric8,,S, S'B,,S,
andS'W,,S obtained from the original ones by removing the
(N4/2)th columns and rows.

The eigenvalues of are

by a sum rule following from Eq.14): the value of - R can
e interpreted as a conductan@e units of e%/274) per
conducting channel.

In Fig. 2, we present evolution of the-dependence of
the reflection coefficienR with a strength of defedt for the
armchair(2,2) nanotube. For small value &, E<1 (we
recall thatt=3.1 eV is our energy unit her¢he reflectionrR

2
)\fzé(ﬁ_ i—WV) shows a behavior closely resembling the one of the density

W, W, of stateg(DOS) for the same nanotub@ig. 3). This is simi-
A2 5 lar to what we find in the single-band tight-binding model,
-+ \/ E vo_ i_ _ va where reflection from a single defect is given by
+ W 1 VF
2\W, W, v 2/
33 (E/2t)?

1= 2. 1_ 2"
whereA, andW, are eigenvalues oA andW, respectively, (B2)"+ 1~ (w/2t)

With increase of the defect strength the reflection grows ini-

W 4 c0$(q,/2) A = olW.—1 (34) tially as E? and the peaks i dependence become more
v 1—w? y=o(W,—1) smooth. At the same time, the overall picture becomes more
asymmetric with respect te=0. The latter, unlike in a
andq,=4(w/n,)v,v=1,... np/2. The band energy is ob- single-band case, may have important consequences also for
tained from the equation other transport properties of the system, such as the thermo-
5 electric powerTEP). The Seebeck coefficient, as calculated
1A i—W — cosk 35  from aBoltzmann kinetic theory with a relaxation time sym-
o\, w, W) =cosk) (35 metric inw would identically vanish for the half-filled band

case for the symmetric band structure that we have in
SWCNT in the nearest-neighbor hopping model. On the
other hand, the measured values of TEP gives quite a sizable

solution of which is

w© =*1+4cos(q,/2)+ 4 cogq,/2)cogki2). linear-in-temperature dependeri@suggesting some mecha-
(36) nism that breaks the electron hole symmetry.
This result again agrees with that of earlier wotks. For large enougk, E>1, we find that the peak which for

smallE is located atw= — 1 smoothes and moves towards to
higher values ofw asE increases. This behavior & sug-
gests appearance of a resonance state.

The first part of our computations concerned a simple We examined how the changes®fw) with E are com-
pointlike defect and these results provide a reference point tpared with the spectral density. We calculated the change in

Ill. RESULTS AND DISCUSSION
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FIG. 4. Change of DOSzAp due to a point defect in the,2)
R 05 | nanotube folE=2 (a) and a real part of the denominator s p,

’ Rg1—-E F(w)] (b). Zeros of 1-E ReF(w) determine energy of
resonance solutionghe one most clearly seen here is for=2.6)
0.0 | ‘ ‘ ‘ ‘ and a localized solution outside the band systenmat3.30 [its
' . w w w w S-like peak in(a) was not shown hete

hence the dampingis relatively small. The same peak is
seen inRin Fig. 2, where forE=2, R=1 at its maximum.
The maximum observed iR for —1<w<1 is not seen
directly in behavior ofA p for N,=2 due to a relatively large
00 0 20 10 oo 10 20 30 unperturbed DOS. It is however observed féy=3, since
® the DOS neaw=0 decreases with increase Nf.
The condition for the appearance of the resonant or local-
FIG. 2. Change of a reflection from a point defect in an armchairized solutions are given by zeros of the real part of denomi-
(2,2) nanotube with defect strength&=0.1,2,5,1000. The sharp nator ofAp, 1—E ReF(w) [see Eq(A7)]. In this case, the
peaks seen foE=0.1 can be matched to the ones in a density of ;o matches the position of the maximumRn(where R
states for the same nanotube. The broad maximum, which begins to 1/2) in the range- 1< w<1 (Fig. 4). The position of the
emerge forE>2 and is centered close =0 for strongE and zero approaches=0 for a very stronge. One might then
suggests appearance of a resonant state. interpret the round maximum d® nearo=0 in Fig. 2 for
) ] large E as related to strongly overdamped resonance in this
DOS, Ap, due to the introduction of the defe@tee the Ap-  case originating entirely from the middle bands with
pendiX. A typical behavior ofAp is shown in Fig. 4 forE =+ 1+ 4 co2K/2. Contributions for RE(w) from the re-
=2 and(2,2) nanotube. A small resonance peak is observeqinaining bands exactly cancel out in thel<w<1 region.
in the region of5<w<3 for 0.5<E<3, corresponding to  an analogous relation between zeros of E ReF(w) and
the highest nondegenerate band. Ees 3 the peak shifts to position of maximum ofR is observed for ¥ w<+/5 with
the highest band edge and appears to hybridyze with an Uy — 13 in its maximum.
damped localized state existing for>3. The localized state The value of the reflection coefficient at the points of
then departs from the band system and travels fast away fro@sonance can be understood as follows. Suppgsis the
it with a further increase oE. The resonance peak may be gyt eigenvalue of the Hamiltoniaf( and satisfies 1
interpreted as a quasilocalized state of the system. It occurs g ReF (wg)=0. Furthermore, assume tha§=
in the frequency region where the density of statesd

0.5

Bk 1=
=8kg’g=w0+ O(1/N), wheregq is the eigenvalue of the
Hamiltonian with no defect{, with degeneracy (we con-
3.0 sider running waves only v is the band index, anM is the
number of unit cells in the system. Then one can finel

D(w)

independent linear combinations of the eigenstate${gf
2.0 | 1 qskyvv,v:l, ... g, of the form ¢,=%,_, gawqbkwy,
with a property thatHy,=eo¢, and H,4,=0 [H; is a
| Hamiltonian of the point defect, see Eq#1) and (A2)].
u These states will not scatter from the defect and contribu-
0.0 ‘ ‘ ‘ ‘ ing to a resonanfor quasilocalizedsolution, orthogonal to
-0 =20 10 %’ 10 20 3.0 statesy,,, will be perfectly reflected and contribute 1 to
Tr(p'p). As a result the reflection coefficient at the energy of

1.0 |
\ Uk ) / tions from them to Trf'p) will vanish. A wave correspond-
FIG. 3. The density of states ¢2,2) nanotube. a resonance will be equal torl/and have a local maximum
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FIG. 5. Reflection from a point defect of strengih=1 for FIG. 6. The same as in Fig. 5 for several zigz&g,,0) nano-
several armchairN,,N,) nanotubesN,=2,5,12. Note deepening tubes,N,=3,6,9.
of the transmission window present arouae: 0 with increase of
the nanotube radius.

s s
ST:(SA 57\)' 39

at this point. This property seems to hold to a good approxi-

mation also for any defect of extension much smaller than

the nanotube radius as can be exemplified by the 5_77_g/here_18|s mgde of e|g~envect0rs of the matkk Then, the
defect for large enougN, (see below and Fig.)9 velocity matrixV=A — A. One can write the explicit expres-

The evolution of thew dependence of the reflection with Sion for the reflection matrik
the diameter folE=1 is presented for armchair and zigzag . 1 Cy—1at
nanotubes in Figs. 5 and 6, respectively. One can see a deep- R=—=(1=x)7%, x=V'S(T-Tp)S (39
ening of the transmission window around=0 with in-  For a small defect strength, the denominator in B§) may
crease o, and a relatively slow decreaseRin the rest of  pe neglected. In this case, rapid changeRafear the van
w range. Hove singularities in DOS are due to the prefactor?,

In order to make a more general conclusion concerningyhich is the inverse of the group velocity for relevant bands.
dependence of the reflection coefficient Ny and E, we

plotted the reflection coefficient calculated far=0 as a ' '
function of N, for several values oE in the log-log scale in a5 L
the Fig. 7. The curves obtained for weBk/alues show that
R scales like

E? i
RNSW (37 o 1
a o
with s~ 1/6 ands=~1/2 for the armchair and zigzag nano-
tubes, respectively. This scaling holds in the case of larger
55 b

defect strength as well, but then one has to go to larger
values ofN, to see it. . ‘ .

Besides the value of the reflectionat= 0, it is of interest 0.5 1.0 1.5
to see the asymmetry in the dependence around this point.

As follows from Fig. 8, the relative asymmetry increases g5 7. Scaling of the reflection ai=0 with the parameteN,,

with increase of the nanotube radius. of the armchair Kl,,N,) nanotube for several values of the point
Many fea_tures of the behf'iV'OV of_reflectance can b_e UNgefect strengthE=0.1,2,5,10. The sets of data for varioEsvere

derstood using an analogy with the simpler case described igcaled so that to have a common point (84,24 nanotube. The

Ref. 15 where we have orbitals of only one kind in the unitpigger is the defect strength, the later the scaling behavior is seen.

cell. For the case of diagonal disorder onty<1), the simi-  Crosses showR vs N, dependence for the 5-77-5 defect: note a

larity transformation, which diagonalizes the transfer matrixclose similarity to a point defect witE=5. The heavy line gives

T can be obtained as 1/N3 dependence.
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< R 04 ]
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02t _
0.0 I} 1 L L
2.0 (b) S 1 06 | N.=5 ]
- ——-N,=18
© 15 =2 — N,=24 1 R 04 1
and ~~~\\‘t~\.:§
1.0 - b . 1 0.2 .
05 L L L L |- 00 Il 1y ] 1 1
0.2 0.1 0 0.1 0.2 *
0.6 .
(] N, =12
FIG. 8. Scaled according to thel\li dependence reflection from R 04 iy
a single-point defect as a function af in vicinity of =0 for 02 |
several (N,,N,) armchair N,=6,9,12)a) and zigzag K,,0) (N, |
=12,18,24}b) nanotubes, for the same defect strength1l. The 0.0 )

3.0 2.0 1.0 0.0 1.0 2.0 3.0

reflection becomes more asymmetric with increasél of o

FIG. 9. The reflection from the 5-77-5 defect shown as a func-
tion of w for armchair nanotubes (2,45,5),(12,12). This is to be
compared to Fig. 5, where the corresponding data for a single point
defect are shown.

It diverges at the band edgpesf coursex in the denominator

of Eq. (39) becomes also important very close to this ppint
In this way we can explain the qualitative similarity of Figs.
3 and Za). The 1N§1 scaling is related to normalization

1/_\/N_a p_refactors present in eigenfunctiqnshﬁ_[compare pair of heptagons having a common side and separating two
this toSin Eq. (30)]. Note however that this scaling behavior pentagongsee Fig. 1 It can be modeled by considering the

will be seen neaw=0 as long as we can neglect rapid hopping matrices in the form shown below for tk2,2)
changes in the denominator & in the vicinity of band  nanotube

edges.

The scaling behavior can be understood by considering 1
low-electron excitations neaw=0 (i.e., half-filled band.
Independent on the nanotube radius, there are only two ¢ =
bands which intersect the Fermi surface. It is therefore pos- 1-y
sible to disregard“project out” 2 the other bands, provided 0 0
that the defect strength is small enoudgh<1). In this case, (40)

the initial Hamiltonian can be reduced to a two-band model this case the barrier matrix is made of a product of the two
with distance dependent hopping and an on-site point defe 3 P

) ~ _ consecutive transfer matrice®;, =T, 1T, [see Eq.(5)].
of an effective strengtiE=E/4N, (see the Appendix for The parametey that appears in E40) allows us to study

details. With a change of the nanotube radius, only the efyhe gefect systematically starting from a perfect lattice for
fective defect strength changes, while the hopping |ntegral§,:1 and approaching 5-77-5 defect fpr0. Note that for

do not depend oM, . For small enougtE the reflectivity y=0 the matrices;, andW, are not reversibléthis would
will go like square of a defect strength, becauBe not be the case if we went beyond the nearest-neighbors
=Tr(p'p)/n, (With p~T—Ty.r~E) While n;=2 for any  hopping in our modél We solve this problem by approach-
N,. This gives rise to the N2 dependence oR. ing y=0 by interpolation made from several values yof
As the defect strength becomes largeincreases and the close to zero. This can be easily done,R{y) is a quite
effects of the band structure iR are less pronounce@ee smooth function ofy [the accuracy of computations in this
Fig. 2 for E=1000), because the numerator and the denomiapproach is checked using Ed4)].
nator in Eq.(39) are comparable. In this region &, we The details of thaw dependence of the reflection coeffi-
obtained a very good quantitative agreement with the resultgient for the 5-77-5 defect show some similarities with those
of Ref. 8, showing a relatively smooth and symmetric withfor point defects with a very high value &. In fact, we
respect tow=0 dependence of the conductance fdr4)  found the same scalindR~6/N3) with N, as in the case of
nanotube with a vacancy. the point defect with energié~6. This latter value is equal
The point defect discussed so far can be considered asta a total bandwidth and can be qualitatively understood as
very simplified model of more realistic defects present in thefollows. In the presence of 5-77-5 defect, as shown in the
graphene sheet. The systematic study of various possible dBig. 1, the number of links between two consecutive unit
fects in the SWCNT(see, e.g., Refs. 4 and & beyond the cells is reduced by one. The same effect can be achieved by
scope of the present paper. Instead we restrict ourselves to ptacing a strong defedcomparable to a bandwidtliin one
called 5-77-5 defect in an armchair nanotube. This defect calattice site, and effectively blocking the link joining this site.
be obtained by rotating one of the C-C bonds#2 result- The value of the reflection ab=0 for the 5-77-5 defect
ing in the transformation of four of nearby hexagons into afor the (10,10 armchair nanotube is rather sizabl&
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~0.056. Knowing this value one can roughly estimate the APPENDIX A: CHANGE IN DOS DUE TO A POINT

upper limit for a concentration of these defects from a con- DEFECT

ductance measurements. Assuming tRais small enough . . . .

that we can neglect backscattering the total transmission of a In this app(_and|x we calculate a chang(_e n dens_|ty of states

chain havingp defects of this type may be estimatedTgs In-an a”“_Cha'r nanotubd\l(a,l\_la), _due to mtroductlo_n of a

—(1—R)P. For instance, for a transmissidi= 1/60, as in smgle-pomt def_ect. The_ Hamlltonlan pf the system !ncludlng

Ref. 3(note however that the last estimate included unknow smg_le defect in a position of otherW|se perfect lattice can

contribution from a contact resistanceand the nanotube e written ink-space representation as

length 3 um, one finds that the average distance between

these defects is not less tham0 nm. H=Ho+H,1=>, (a},b})
In conclusion, we present a formalism suitable to be ap- k by

plied for the calculations of the influence of defects on the

residual conductivity of carbon nanotubes, and used it to 1 $ot

calculate reflection of simple defects. The calculations were + N E (A, by)

H*  te ™k +w
tek+w  HP

Ak

a

A el (K' k)L
tion of si . s 0 AP/lb ’
based on the tight-binding model, with no electron-electron ’ (A1)

interactions, since we concentrated our attention on the ef- a Ab ) ) ) o
fects of the one-electron band structure. The disregard of thwhereA®, A” define potenU%I of the impurity\ is the num-
electron correlations may be seen as an important restrictioR€! Of unit cells H#= £, H°=L#. Introducing a represen-
of the validity of the present calculation in the light of the tation diagonalizingo, Eq. (A1) can be rewritten as
results obtained for the one channel case using the Luttinger
model?! Although theory suggests nanotubes are Luttinger H:E SkMCE,LCk,L
liquids, experiments indicate they are Fermi liquids. K

It would be interesting to see what are the effects of in- E
teractions orR in the present multichannel case. A perturba- +—= > C L (k)5 F(K) sCh Chrys (A2)
tive renorm-group calculatiéf for the two-band case show Nkk',w # ”
that the dominating correlations for the half-filled band casg,
may be either spin-density wave or change-density wave, in
the former_case possibly invalidating _the predictions based 1, = V[cod mvIN,) + 2 cogki2) ]2+ sirf(mvIN,)
on the Luttinger model. Other conclusions, based on the ex-
act calculation of the Kubo conductivity &t=0 K were for v=1,... . N, and &y, =—&y,-on, for v>2N,.6
obtained for a model of interacting electrons with disorderon=1, , . . 4N, refers to a position of a defect of a strendth
a small 2D cylinder. These results suggest that the condugn the Lth unit cell, andc, is a 4N,-dimensional annihilation
tivity may be weakly dependent on the interaction in theoperator. Coefficient(k),, is an element of a matrix of a
weak interaction limi€* One cannot tell for sure yet to what unitary transformation, which reduceHO to a diagona|
extent this weak interaction limit is relevant for SWCNT.  form:

On the experimental side, there are few indications of any
drastic effect of correlations on the transport properties. A I 0
magnetoresistance measurement suggests the localization of ( )_( S ) 0 1
electronic states rather than electron correlations are respon- ~|sdk2 —gdk2]| o ( )
sible for the increase of resistivity far—0 K (Ref. 23 in I 0
multiwalled nanotubes. It would be of interest to extend the

g

herew,v are band indices,

a(k+) a(k—) S

B(k+) B(k—))' ™ I

above calculations for a finite concentration of defects to see
what influence they may have on density of states close to
the Fermi level as well as on the localization of electronic

wave functions. (A3)
where elements of the diagonaN2x 2N, matrices «, 8
read
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For small-enough defect strengtle€1), and as long as N
low-energy excitations are concerned, one can skip all bands (—1)™ sin
in Eq. (A1), except the ones with indices=N,,3N, that t]f’\]_‘i)m: ot
intersect the Fermi surface. In this case, ’ N sin m m- E sin ™ m— E
N 2 N 2

F(k)S,F(K') 5= 1/ANG F(K) S F(K') 5oy, = = 14N 5, (—1)™

~ ot —— (6)

=1-2 cogk/2), (m°—1/4)

and tﬁ'iar)nz—tﬂfm. Note that the prefactor M in the
effective defect'strength comes entirely from the normaliza-
tion of the electronic wave functions &f, and measures the
proportion of electron density in the considered state residing
o on the defect site.

The Hamiltonian, when transformed back to the real space, QOne can eas”y calculate the Change of density of states
takes the form of a two-band model with on site point defecidue to the point defect using the Green’s function method
of the effective strengttiE/4N, and a hopping that depends (see, e.g., Ref. 35The result is

on distance:

ekan, = —1+2 cogk/2)

dF(w)
Ap(w)=E| »
H:m i ,MZN aN tJ(ﬁ)er(ciJrMCi+m,;L+ H.c) map(w)= ml_ EF(w)’
E 1 [T(K)syl?
b S o (A5) PN oo o, (A7

4Na MV:Na’3Na
where one notes, using Eq@3) and (A4), that |f(Kk) s,/

where

=1/4N,.
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