
PHYSICAL REVIEW B 15 JANUARY 1999-IIVOLUME 59, NUMBER 4
Reflection by defects in a tight-binding model of nanotubes

T. Kostyrko
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6030

and Institute of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznan´, Poland

M. Bartkowiak
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6030;

Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996-1200;
and Institute of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznan´, Poland

G. D. Mahan
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6030

and Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996-1200
~Received 8 June 1998; revised manuscript received 3 August 1998!

We use a transfer-matrix method to study defects in a tight-binding model of carbon nanotubes. We calculate
the reflection coefficientR for a simple barrier created by a pointlike defect of strengthE in armchair (Na ,Na)
and zigzag (Na,0) nanotubes for the whole range of energyv and arbitrary number of conducting channels.
We find thatR scales at the Fermi level~i.e.,v50) asR5s(E/t)2/Na

2 (t being the hopping parameter!, where
s'1/6 ~for the armchair nanotubes! ands'1/2 ~for the zigzag nanotubes!. We also perform a similar calcu-
lation for a ‘‘5-77-5’’ defect and find the results to be like the ones obtained for a strong point defect with
E56t. @S0556-2821~98!05114-5#
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I. INTRODUCTION

An individual single-wall carbon nanotube~SWCNT! rep-
resents a strictly one-dimensional~1D! system with a grea
number of carbon atoms in the unit cell of the 1D Brav
lattice~for a review see Refs. 1 and 2!. In the 1D systems the
electron wave functions are known to be localized in
presence of disorder and transport properties of such a
tem is determined by hopping between the localized lev
With an increase of the tube radius, the system beco
more and more similar to an infinite graphite plane, i.e.,
system. The role of disorder decreases and the states m
treated as extended, at least on the scale length of the re
tic nanotube length. Recent experimental observations
single-electron tunneling through discrete electronic level
an individual SWCNT show the electron states to be
tended over a distance as large as 3mm ~Ref. 3!. On the
other hand, various kinds of defect are known to be pres
in rolled up graphene sheet of the carbon nanotubes,4–6 how-
ever their influence on electronic and transport propertie
these systems is poorly known. The purpose of our pape
to understand how these properties may be related to a
ticular defect type, nanotube radius, and its helicity.

In particular, we study here the reflection from a barr
created by defects that may appear in the SWCNT. We
calculate the changes in the density of states introduced
single defect and show how these changes can be relat
the reflection of an incident electron for arbitrary number
the conducting channels. We analyze the results as a func
of the defect strength and nanotube radius and determ
simple asymptotic formulas for the reflection from the stu
ied defects which should prove useful in estimations of
conductance.
PRB 590163-1829/99/59~4!/3241~9!/$15.00
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Recent theoretical works on the role of defects
SWCNT concerned mainly a defect present at the junction
two nanotubes of different helicity7,9 and were concentrate
on calculations of the local electron density of states clos
the junctions. Chicoet al.,8 using a ‘‘Green-function match
ing method,’’ studied also the conductance for a single
cancy, which they simulated as an extremely strong po
defect with nearby bonds interrupted. They did not disc
their data as a function of the defect strength, however,
did not mention a possible scaling laws of the conducta
as a function of defect strength and nanotube radius. A
lated work was performed by Tamura and Tsukada10 who
studied the transmission through a barrier created at m
junctions. They determined the scaling law for the cond
tance at the Fermi energy in terms of the ratio of the radi
the nanotubes at the junctions and the junctions’ lengths.
approach is also more general than that in Ref. 10 in tha
allows one to study the conductance for the whole ene
range, including an arbitrary number of conducting chann

II. GENERAL FORMULATION

We assume that the standard model for the energy ba
of graphite can be applied to nanotubes. The principal c
duction and valence bands are composed ofpz orbitals.
Band-structure calculation11 show that the nearest-neighbo
tight-binding model gives an adequate description. So far
physical measurements on nanotubes indicate they are F
liquids rather than Luttinger liquids. Thus, we adopt t
model that the electrons are ordinary quasiparticles descr
by a tight-binding model, which occasionally scatter fro
impurities,
3241 ©1999 The American Physical Society
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H5(
j

@aj 11
† t jbj1bj

†t j
†aj 111aj

†H j
aaj

1bj
†H j

bbj1aj
†Wjbj1bj

†Wj
†aj # ~1!

whereaj ,bj denotenb-component electron operators for th
a andb orbitals ofjth cell ~see Fig. 1!. The first two terms in
Eq. ~1! describe electron hopping between neighboring ce
and t j is a matrix of the corresponding hopping paramete
The next two terms, including Hermitian matricesH j

a,b , de-
scribe intracell hopping processes as well as interaction w
on site impurities. The last two terms describe intracell h
ping betweena andb orbitals. In zigzag nanotubes, in add
tion to a andb orbitals one can have orbitals not connect
directly to either of the neighboring cells. They can be elim
nated at a later stage of the theory at the cost of modify
the intracell hopping matrixWj .

The standard method to study effects of disorder in a o
band 1D system is a transfer-matrix method~for a review see
Ref. 12!. From the transfer matrix one can calculate dens
of states, transmission coefficients, and~using the latter!
electrical conductivity of the finite 1D system atT50 K.13,14

Application of this method to a many band system was d
cussed recently by Molinari,15 and we follow the formalism
presented there~see also Ref. 16 for a review!.

For a given energyv, using the Schro¨dinger equation
with the Hamiltonian~1! and the wave function

C5e2 ivt(
j

~a jaj
†1b jbj

†!u0& ~2!

leads to a system of recurrence equations for the coeffic
vectorsa andb:

Aja j1t j 21b j 211Wjb j50, Aj5H j
a2vI , ~3!

Bjb j1t j
†a j 111Wj

†a j50, Bj5H j
b2vI , ~4!

whereI denotes the unit matrix. They can be written in t
form

S a j 11

b j
D 5Tj S a j

b j 21
D ,

FIG. 1. The schematic picture of~2,2! armchair and~4,0! zigzag
nanotubes, showing division into unit cells. In the~2,2! nanotube a
5-77-5 defect is shown with heavy lines.
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Tj5S t j
21†BjWj

21Aj2t j
21†Wj

† t j
21†BjWj

21t j 21

2Wj
21Aj 2Wj

21t j 21
D , ~5!

where a transfer matrixTj was introduced. The current in
this state takes a form

iJ j5a j 11
† t jb j2b j

†t j
†a j 11 ~6!

and, as follows from the fact thatAj andBj are Hermitian, is
independent of the site indexj .

It is convenient to introduce the diagonal representation
the transfer matrixT for a perfect lattice site:

TD5S L 0

0 L̃
D 5ST

21TST , LL̃5I , ~7!

whereST defines the similarity transformation diagonalizin
T. Using ST , the current conservation law for a perfect la
tice site can be written as

TD
† ST

†S 0 t

2t† 0DSTTD5ST
†S 0 t

2t† 0DST5S V 2g

g† Ṽ
D ,

~8!

where in the last equation we introduced a ‘‘velocity matrix
V, after Ref. 15.

Here we are concerned with a problem of scattering of
electron by a barrier in the system, which is otherwise p
fectly periodic~by ‘‘barrier’’ we mean a finite sequence o
unit cells including defects!. The particle incident at the bar
rier splits into two parts. The amplitude of the reflected p
is determined by the reflection matrixR. The transmitted
part, the amplitude of which is determined by the transm
sion matrixT, cannot include an exponentially growing co
tributions as well as those that correspond to the wave r
ning towards the barrier. These contributions have to
eliminated. Comparing the current, Eq.~6!, on the two sides
of the barrier and using Eq.~8! leads then to the relation

T †VT1R †~2Ṽ!R5V2R †g†1gR, ~9!

R5Q22
21Q21, ~10!

T5Q112Q12Q22
21Q21, ~11!

wherenb3nb matrix Q is related to the transfer matrixTbarr
of the M11-cell barrier beginning at siteL:

Q5ST
21 Tbarr ST5S Q11 Q12

Q21 Q22
D ,

where Tbarr5TL1M•••TL11TL . ~12!

From now on we restrict ourselves to realT matrices~mag-
netic field is zero!. In this caseṼ52V ~Ref. 15!.

Besides the propagating waves, which correspond to c
plex eigenvalues ofT with unit moduli, Eq.~9! includes the
solutions decaying exponentially with distance from the b
rier. Far from the barrier, the decaying solutions are not
portant. We reduce matricesT, R, andV, by removing rows
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and columns corresponding to indices related to the deca
solutions. From Eq.~9! we obtain then the equation for th
reduced matricesTr ,Rr ,Vr :

T r
†VrTr1R r

†VrRr5Vr . ~13!

Equation~13! can be rewritten in the convenient form

t†t1r†r5I , t5vT rv
21, r5vR rv

21 ~14!

andv is defined by the relationv†v5Vr .17 Equation~14! is
a multichannel reflection law. In our calculation of the r
flection matrix we use Eq.~14! as a test of the accuracy o
the numerical computations. In order to obtain the expl
form of the reflection and transmission matrices we have
solve the eigenproblem for the transfer matrix for a spec
model Hamiltonian—this is done in the next subsections

A. Armchair nanotube

In an (Na ,Na) armchair nanotube, a unit cell can b
formed with 2Na hexagons going round the tube. Carb
atoms in each cell belong to either of two planes perpend
lar to the nanotube axis,a andb ~see Fig. 1!. In our nearest-
neighbor ~NN! hopping model the following hopping pro
cesses, all described by the same hopping parametert;3.1
eV ~from now on treated as our energy unit!, are possible:~a!
(a,m,2n21)↔(a,m,2n), ~b! (b,m,2n)↔(b,m,2n11), ~c!
(a,m,n)↔(b,m,n), ~d! (a,m,n)↔(b,m21,n), where m
denotes the unit-cell index andn numbers consecutively th
atoms we meet going round thea or b plane~the spin index
will be omitted here!. Also the proper periodic boundar
conditions forn are implied.

In the case of the diagonal disorder, to which we rest
ourselves in this subsection, the transfer matrix is given
Eq. ~5! with Wj5t j5I and

Am5L a2Iv1Dm
a , ~Dm

a !mn5dmn Emn
a , ~15!

Bm5L b2Iv1Dm
b , ~Dm

b !mn5dmn Emn
b , ~16!

whereEmn
a,b represent the site energy for the correspond

atoms, and matricesL are:

L mn
a 5H dm,n11 if m even

dm,n21 if m odd
~1<m<nb/2!, ~17!

L mn
b 5H dm,n11 if m odd

dm,n21 if m even
~1,m,nb/2!,

L m ~1/2!nb

b 5L ~1/2!nbm
b 5dm1 ~1<m<nb/2!, ~18!

wherenb54Na is a total number of all atoms in the unit ce
The eigenequation for the transfer matrix of the perfect
tice siteT

S BA2I B

2A 2I D S x

yD 5lS x

yD , ~19!

wherex,y are nb/2-dimensional vectors, can be reduced
the eigenvalue problem for the vectorx
ng

it
o
c

u-

t
y

g

t-

BAx5Vx, V5
~l11!2

l
, y52

1

11l
Ax. ~20!

From Eqs.~15! and ~16! we obtain the system of equation
for the components ofx

@12~21!n#

2
xn222v xn212~V2v2! xn2v xn11

1
@11~21!n#

2
xn1250, ~21!

which has to be solved with respect to a boundary conditi
xn5xn1nb/2 determiningq. The solution is given by

xn5H a

2
@12~21!n#1

b

2
@11~21!n#J exp~ inq!, ~22!

V5v21cos~2q!6Acos2~2q!14v2 cos2 q21 . ~23!

The matrix diagonalizingT with a similarity transformation
is

ST5S S S

2AS~11L!21
2AS~11L̃ !21D , ~24!

whereS is built of eigenvectors ofBA and L denotes the
diagonal matrix of the eigenvaluesl.

From the relation betweenV and l @Eq. ~20!# and the
requirement thatl be a complex number of a modulus
(l5eik, wherek is real! the band energy can be calculated

vk
66856A312 cos~k!684 cosq cos~k/2! ~25!

@q5 (p/nb) m,m50,1, . . . ,nb/2# which agrees with the re
sults obtained in an earlier work.18

B. Zigzag nanotube

In the case of zigzag-type nanotube (Na,0) the unit cell of
1D lattice can be defined as a belt ofNa complete octahedra
touching side by side and going round the tube. In suc
choice of the unit cell~see Fig. 1!, some atoms (a and b
type! connect atoms from neighboring cells while othersz
andh) are connected to the atoms from the same cell on

By elimination of ‘‘internal’’ components, we arrive a
system of equations relatinga and b only at the cost of
appearance of thev-dependent intracell hoppingWm . In this
casetm5I , nb52Na , and

Am5L T~12ZmHm!21HmL2Iv1Dm
a , ~26!

Bm5L T~12ZmHm!21ZmL2Iv1Dm
b , ~27!

whereZm,mn5dmn(Emn
z 2v), Hm,mn5dmn(Emn

h 2v),

Lmn5H dmn1dmn21 for m,nb/2

dn 11dn nb/2 for m5nb/2. ~28!

The effective intracell hopping operatorWm reads

Wm52L T~12ZmHm!21L. ~29!
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The eigenequation forT can be solved in similar way as for the case of the armchair nanotube, if we note that the op
A, B, and W now commute and can be simultaneously diagonalized. The similarity transformation that diagonalizeT is
represented by the matrix

ST5S S S

2AS1W2A21S1WA21SL 2AS1W2A21S1WA21SL̃
D , Smn5

eimqn

Anb/2
. ~30!
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Here we note that the present formulation requires the
versibility of the effective transfer matrixW. However,W is
not reversible for the nanotubes (Na,0) with Na even. The
problem can be traced back to the existence of a dispers
less bands atv561 for these tubes. It can be easily rem
edied by first applying the similarity transformation defin
by the matrixS to the recurrence relations, Eqs.~3! and ~4!.
Then a (Na/2)th row andNa/2 column of the transformed
matricesS†WmS will be composed of zeros only. As a resu
two coupled equations for the (Na/2)th components of the
vectorsS†am ,S†bm21

~Em,Na/2
a 2v!~S†am!Na/21~S†bm21!Na/250, ~31!

~Em21,Na/2
b 2v!~S†bm21!Na/21~S†am!Na/250 ~32!

will have nonzero solutions only ifv561. We can thus
apply the formalism presented above for a reduced syste
variables with reversible reduced matricesS†AmS, S†BmS,
andS†WmS obtained from the original ones by removing th
(Na/2)th columns and rows.

The eigenvalues ofT are

ln
65

1

2S An
2

Wn
2

1

Wn
2WnD

6AF1

2S An
2

Wn
2

1

Wn
2WnD G2

21 S nÞ
Na

2 D ,

~33!

whereAn andWn are eigenvalues ofA andW, respectively,

Wn52
4 cos2~qn/2!

12v2
, An5v~Wn21! ~34!

and qn54(p/nb)n,n51, . . . ,nb/2. The band energy is ob
tained from the equation

1

2S An
2

Wn
2

1

Wn
2WnD 5cos~k! ~35!

solution of which is

vk
66856A114 cos2~qn/2!684 cos~qn/2!cos~k/2!.

~36!

This result again agrees with that of earlier works.18

III. RESULTS AND DISCUSSION

The first part of our computations concerned a sim
pointlike defect and these results provide a reference poin
e-

n-

of

e
to

discuss more complex and more realistic defects in SWC
The pointlike defect is defined by setting site energy equa
E at one of the sites of the unit cell, with all the other sit
having site energy zero. We have computed a reflection
efficient R defined as

R5Tr~r†r!/nc ,

where nc is the number of conducting channels. This h
been done for both armchair and zigzag nanotubes var
nanotubes’ radii and the strength of the point defectE. The
reflection coefficient can be simply related to
conductance:14

G5
e2

2p\
Tr~t†t!

by a sum rule following from Eq.~14!: the value of 12R can
be interpreted as a conductance~in units of e2/2p\) per
conducting channel.

In Fig. 2, we present evolution of thev-dependence of
the reflection coefficientR with a strength of defectE for the
armchair ~2,2! nanotube. For small value ofE, E!1 ~we
recall thatt53.1 eV is our energy unit here! the reflectionR
shows a behavior closely resembling the one of the den
of states~DOS! for the same nanotube~Fig. 3!. This is simi-
lar to what we find in the single-band tight-binding mode
where reflection from a single defect is given by

R15
~E/2t !2

~E/2t !2112~v/2t !2
.

With increase of the defect strength the reflection grows
tially as E2 and the peaks inv dependence become mo
smooth. At the same time, the overall picture becomes m
asymmetric with respect tov50. The latter, unlike in a
single-band case, may have important consequences als
other transport properties of the system, such as the ther
electric power~TEP!. The Seebeck coefficient, as calculat
from a Boltzmann kinetic theory with a relaxation time sym
metric in v would identically vanish for the half-filled band
case for the symmetric band structure that we have
SWCNT in the nearest-neighbor hopping model. On
other hand, the measured values of TEP gives quite a siz
linear-in-temperature dependence,19 suggesting some mecha
nism that breaks the electron hole symmetry.

For large enoughE, E.1, we find that the peak which fo
smallE is located atv521 smoothes and moves towards
higher values ofv as E increases. This behavior ofR sug-
gests appearance of a resonance state.

We examined how the changes ofR(v) with E are com-
pared with the spectral density. We calculated the chang
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DOS,Dr, due to the introduction of the defect~see the Ap-
pendix!. A typical behavior ofDr is shown in Fig. 4 forE
52 and~2,2! nanotube. A small resonance peak is obser
in the region ofA5,v,3 for 0.5,E,3, corresponding to
the highest nondegenerate band. ForE→3 the peak shifts to
the highest band edge and appears to hybridyze with an
damped localized state existing forv.3. The localized state
then departs from the band system and travels fast away
it with a further increase ofE. The resonance peak may b
interpreted as a quasilocalized state of the system. It oc
in the frequency region where the density of states~and

FIG. 2. Change of a reflection from a point defect in an armch
~2,2! nanotube with defect strengths:E50.1,2,5,1000. The sharp
peaks seen forE50.1 can be matched to the ones in a density
states for the same nanotube. The broad maximum, which begi
emerge forE.2 and is centered close tov50 for strongE and
suggests appearance of a resonant state.

FIG. 3. The density of states of~2,2! nanotube.
d

n-

m

rs

hence the damping! is relatively small. The same peak
seen inR in Fig. 2, where forE52, R51 at its maximum.
The maximum observed inR for 21,v,1 is not seen
directly in behavior ofDr for Na52 due to a relatively large
unperturbed DOS. It is however observed forNa>3, since
the DOS nearv50 decreases with increase ofNa .

The condition for the appearance of the resonant or lo
ized solutions are given by zeros of the real part of deno
nator ofDr, 12E ReF(v) @see Eq.~A7!#. In this case, the
zero matches the position of the maximum inR ~whereR
51/2) in the range21,v,1 ~Fig. 4!. The position of the
zero approachesv50 for a very strongE. One might then
interpret the round maximum ofR nearv50 in Fig. 2 for
largeE as related to strongly overdamped resonance in
case originating entirely from the middle bands with«k

56A114 cos2 k/2. Contributions for ReF(v) from the re-
maining bands exactly cancel out in the21,v,1 region.
An analogous relation between zeros of 12E ReF(v) and
position of maximum ofR is observed for 1,v,A5 with
R51/3 in its maximum.

The value of the reflection coefficient at the points
resonance can be understood as follows. Supposev0 is the
exact eigenvalue of the HamiltonianH and satisfies 1
2E ReF(v0)50. Furthermore, assume that«05«k1,15•••

5«kg ,g5v01O(1/N), where «0 is the eigenvalue of the

Hamiltonian with no defectH0 with degeneracyg ~we con-
sider running waves only!, n is the band index, andN is the
number of unit cells in the system. Then one can findg21
independent linear combinations of the eigenstates ofH0,
fkn ,n ,n51, . . . ,g, of the form cm5(n51, . . . ,gamnfkn ,n ,

with a property that:Hcm5«0cm andH1cm50 @H1 is a
Hamiltonian of the point defect, see Eqs.~A1! and ~A2!#.
These states will not scatter from the defect and contri
tions from them to Tr(r†r) will vanish. A wave correspond-
ing to a resonant~or quasilocalized! solution, orthogonal to
statescm , will be perfectly reflected and contribute 1 t
Tr(r†r). As a result the reflection coefficient at the energy
a resonance will be equal to 1/nc and have a local maximum

ir

f
to

FIG. 4. Change of DOS,pDr due to a point defect in the~2,2!
nanotube forE52 ~a! and a real part of the denominator ofpDr,
Re@12E F(v)# ~b!. Zeros of 12E ReF(v) determine energy of
resonance solutions~the one most clearly seen here is forv'2.6)
and a localized solution outside the band system atv'3.30 @its
d-like peak in~a! was not shown here#.
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3246 PRB 59T. KOSTYRKO, M. BARTKOWIAK, AND G. D. MAHAN
at this point. This property seems to hold to a good appro
mation also for any defect of extension much smaller th
the nanotube radius as can be exemplified by the 5-7
defect for large enoughNa ~see below and Fig. 9!.

The evolution of thev dependence of the reflection wit
the diameter forE51 is presented for armchair and zigza
nanotubes in Figs. 5 and 6, respectively. One can see a d
ening of the transmission window aroundv50 with in-
crease ofNa and a relatively slow decrease ofR in the rest of
v range.

In order to make a more general conclusion concern
dependence of the reflection coefficient onNa and E, we
plotted the reflection coefficient calculated forv50 as a
function ofNa for several values ofE in the log-log scale in
the Fig. 7. The curves obtained for weakE values show that
R scales like

R;s
E2

Na
2

~37!

with s'1/6 ands'1/2 for the armchair and zigzag nan
tubes, respectively. This scaling holds in the case of lar
defect strength as well, but then one has to go to lar
values ofNa to see it.

Besides the value of the reflection atv50, it is of interest
to see the asymmetry in thev dependence around this poin
As follows from Fig. 8, the relative asymmetry increas
with increase of the nanotube radius.

Many features of the behavior of reflectance can be
derstood using an analogy with the simpler case describe
Ref. 15 where we have orbitals of only one kind in the u
cell. For the case of diagonal disorder only (tn5I ), the simi-
larity transformation, which diagonalizes the transfer mat
T can be obtained as

FIG. 5. Reflection from a point defect of strengthE51 for
several armchair (Na ,Na) nanotubes,Na52,5,12. Note deepening
of the transmission window present aroundv50 with increase of
the nanotube radius.
i-
n
-5

ep-

g

er
er

-
in
t

x

ST5S S S

SL SL̃
D , ~38!

whereS is made of eigenvectors of the matrixH. Then, the
velocity matrixV5L2L̃. One can write the explicit expres
sion for the reflection matrixR

R52~ I 2x!21x, x5V21S†~T2Tbarr!S ~39!

For a small defect strength, the denominator in Eq.~39! may
be neglected. In this case, rapid changes ofR near the van
Hove singularities in DOS are due to the prefactorV21,
which is the inverse of the group velocity for relevant ban

FIG. 6. The same as in Fig. 5 for several zigzag (Na,0) nano-
tubes,Na53,6,9.

FIG. 7. Scaling of the reflection atv50 with the parameterNa

of the armchair (Na ,Na) nanotube for several values of the poi
defect strength:E50.1,2,5,10. The sets of data for variousE were
scaled so that to have a common point for~24,24! nanotube. The
bigger is the defect strength, the later the scaling behavior is s
Crosses showR vs Na dependence for the 5-77-5 defect: note
close similarity to a point defect withE55. The heavy line gives
1/Na

2 dependence.
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It diverges at the band edges@of coursex in the denominator
of Eq. ~39! becomes also important very close to this poin#.
In this way we can explain the qualitative similarity of Fig
3 and 2~a!. The 1/Na

2 scaling is related to normalizatio
1/ANa prefactors present in eigenfunctions ofH0 @compare
this toS in Eq. ~30!#. Note however that this scaling behavi
will be seen nearv50 as long as we can neglect rap
changes in the denominator ofR in the vicinity of band
edges.

The scaling behavior can be understood by conside
low-electron excitations nearv50 ~i.e., half-filled band!.
Independent on the nanotube radius, there are only
bands which intersect the Fermi surface. It is therefore p
sible to disregard~‘‘project out’’ 20! the other bands, provide
that the defect strength is small enough (E!1). In this case,
the initial Hamiltonian can be reduced to a two-band mo
with distance dependent hopping and an on-site point de
of an effective strengthẼ5E/4Na ~see the Appendix for
details!. With a change of the nanotube radius, only the
fective defect strength changes, while the hopping integ
do not depend onNa . For small enoughẼ the reflectivity
will go like square of a defect strength, becauseR

5Tr(r†r)/nc ~with r;T2Tbarr;Ẽ) while nc52 for any
Na . This gives rise to the 1/Na

2 dependence ofR.
As the defect strength becomes larger,x increases and the

effects of the band structure inR are less pronounced~see
Fig. 2 for E51000), because the numerator and the deno
nator in Eq.~39! are comparable. In this region ofE, we
obtained a very good quantitative agreement with the res
of Ref. 8, showing a relatively smooth and symmetric w
respect tov50 dependence of the conductance for~4,4!
nanotube with a vacancy.

The point defect discussed so far can be considered
very simplified model of more realistic defects present in
graphene sheet. The systematic study of various possible
fects in the SWCNT~see, e.g., Refs. 4 and 6! is beyond the
scope of the present paper. Instead we restrict ourselves
called 5-77-5 defect in an armchair nanotube. This defect
be obtained by rotating one of the C-C bonds byp/2 result-
ing in the transformation of four of nearby hexagons into

FIG. 8. Scaled according to the 1/Na
2 dependence reflection from

a single-point defect as a function ofv in vicinity of v50 for
several (Na ,Na) armchair (Na56,9,12)~a! and zigzag (Na,0) (Na

512,18,24)~b! nanotubes, for the same defect strengthE51. The
reflection becomes more asymmetric with increase ofNa .
g
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pair of heptagons having a common side and separating
pentagons~see Fig. 1!. It can be modeled by considering th
hopping matrices in the form shown below for the~2,2!
nanotube

tL5S 1 0 0 0

0 y 12y 0

0 0 1 0

0 0 0 1

D , WL5S 1 0 0 0

0 1 0 0

0 12y y 0

0 0 0 1

D .

~40!

In this case the barrier matrix is made of a product of the t
consecutive transfer matrices:Tbarr5TL11TL @see Eq.~5!#.
The parametery that appears in Eq.~40! allows us to study
the defect systematically starting from a perfect lattice
y51, and approaching 5-77-5 defect fory50. Note that for
y50 the matricestL andWL are not reversible~this would
not be the case if we went beyond the nearest-neighb
hopping in our model!. We solve this problem by approach
ing y50 by interpolation made from several values ofy
close to zero. This can be easily done, asR(y) is a quite
smooth function ofy @the accuracy of computations in th
approach is checked using Eq.~14!#.

The details of thev dependence of the reflection coeffi
cient for the 5-77-5 defect show some similarities with tho
for point defects with a very high value ofE. In fact, we
found the same scaling (R;6/Na

2) with Na as in the case of
the point defect with energyE'6. This latter value is equa
to a total bandwidth and can be qualitatively understood
follows. In the presence of 5-77-5 defect, as shown in
Fig. 1, the number of links between two consecutive u
cells is reduced by one. The same effect can be achieve
placing a strong defect~comparable to a bandwidth! in one
lattice site, and effectively blocking the link joining this sit

The value of the reflection atv50 for the 5-77-5 defect
for the ~10,10! armchair nanotube is rather sizable:R

FIG. 9. The reflection from the 5-77-5 defect shown as a fu
tion of v for armchair nanotubes (2,2),(5,5),(12,12). This is to be
compared to Fig. 5, where the corresponding data for a single p
defect are shown.
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'0.056. Knowing this value one can roughly estimate
upper limit for a concentration of these defects from a c
ductance measurements. Assuming thatR is small enough
that we can neglect backscattering the total transmission
chain havingp defects of this type may be estimated asTp
5(12R)p. For instance, for a transmissionTp51/60, as in
Ref. 3~note however that the last estimate included unkno
contribution from a contact resistance!, and the nanotube
length 3 mm, one finds that the average distance betw
these defects is not less than'40 nm.

In conclusion, we present a formalism suitable to be
plied for the calculations of the influence of defects on
residual conductivity of carbon nanotubes, and used it
calculate reflection of simple defects. The calculations w
based on the tight-binding model, with no electron-elect
interactions, since we concentrated our attention on the
fects of the one-electron band structure. The disregard of
electron correlations may be seen as an important restric
of the validity of the present calculation in the light of th
results obtained for the one channel case using the Luttin
model.21 Although theory suggests nanotubes are Luttin
liquids, experiments indicate they are Fermi liquids.

It would be interesting to see what are the effects of
teractions onR in the present multichannel case. A perturb
tive renorm-group calculation22 for the two-band case show
that the dominating correlations for the half-filled band ca
may be either spin-density wave or change-density wave
the former case possibly invalidating the predictions ba
on the Luttinger model. Other conclusions, based on the
act calculation of the Kubo conductivity atT50 K were
obtained for a model of interacting electrons with disorder
a small 2D cylinder. These results suggest that the cond
tivity may be weakly dependent on the interaction in t
weak interaction limit.24 One cannot tell for sure yet to wha
extent this weak interaction limit is relevant for SWCNT.

On the experimental side, there are few indications of a
drastic effect of correlations on the transport properties
magnetoresistance measurement suggests the localizati
electronic states rather than electron correlations are res
sible for the increase of resistivity forT→0 K ~Ref. 23! in
multiwalled nanotubes. It would be of interest to extend
above calculations for a finite concentration of defects to
what influence they may have on density of states clos
the Fermi level as well as on the localization of electro
wave functions.
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APPENDIX A: CHANGE IN DOS DUE TO A POINT
DEFECT

In this appendix we calculate a change in density of sta
in an armchair nanotube (Na ,Na), due to introduction of a
single-point defect. The Hamiltonian of the system includi
a single defect in a positionL of otherwise perfect lattice can
be written ink-space representation as

H5H01H15(
k

~ak
† ,bk

†!S Ha te2 ik1W

teik1W Hb D S ak

bk
D

1
1

N (
k,k8

~ak
† ,bk

†!S Da 0

0 DbD S ak8

bk8
D ei ~k82k!L,

~A1!

whereDa,Db define potential of the impurity,N is the num-
ber of unit cells,Ha5L a, Hb5L b. Introducing a represen
tation diagonalizingH0, Eq. ~A1! can be rewritten as

H5(
km

«kmckm
† ckm

1
E

N (
kk8mn

ei ~k82k!L f * ~k!dm f ~k8!dnckm
† ck8n , ~A2!

wherem,n are band indices,

«kn5A@cos~pn/Na!12 cos~k/2!#21sin2~pn/Na!

for n51, . . . ,2Na and «kn52«kn22Na
for n.2Na .d

51, . . . ,4Na refers to a position of a defect of a strengthE
in theLth unit cell, andck is a 4Na-dimensional annihilation
operator. Coefficientf (k)nm is an element of a matrix of a
unitary transformation, which reducesH0 to a diagonal
form:

f ~k!5S S S

Seik/2 2Seik/2D S I 0

0 S 0 I

I 0D D
3S a~k1 ! a~k2 !

b~k1 ! b~k2 !
D , Smn5

1

A4Na

eipmn/Na,

~A3!
where elements of the diagonal 2Na32Na matricesa,b
read

b~ks!nn52 ia~ks!nn

S su«knu2cos
pn

Na
22 cos

k

2D
sin

pn

Na

,

ua~ks!nnu21ub~ks!nnu251,

a~k1 !nNa
5b~k2 !nNa

5dnNa
,

a~k2 !nNa
5b~k1 !nNa

50. ~A4!
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For small-enough defect strength (E!1), and as long as
low-energy excitations are concerned, one can skip all ba
in Eq. ~A1!, except the ones with indicesn5Na,3Na that
intersect the Fermi surface. In this case,

f ~k!d,n* f ~k8!d,n51/4Na , f ~k!d,Na
* f ~k8!d,3Na

561/4Na ,«k Na

5122 cos~k/2!,

«k 3Na
52112 cos~k/2!

.

The Hamiltonian, when transformed back to the real spa
takes the form of a two-band model with on site point def
of the effective strengthE/4Na and a hopping that depend
on distance:

H5 (
m, j ; m5Na,3Na

t j , j 1m
~m! ~cj m

† cj 1m,m1H.c.!

1
E

4Na
(

mn5Na,3Na

cLm
† cLn , ~A5!

where
, L

h

.

s.

lid

tt.

,

ds

e,
t

t j , j 1m
~Na!

5dm,01
~21!m

N

sinS p

ND
sinFpNS m1

1

2D GsinFpNS m2
1

2D G
;dm,01

~21!m

p~m221/4!
~A6!

and t j , j 1m
(3Na)

52t j , j 1m
(Na) . Note that the prefactor 1/Na in the

effective defect strength comes entirely from the normali
tion of the electronic wave functions ofH0 and measures the
proportion of electron density in the considered state resid
on the defect site.

One can easily calculate the change of density of sta
due to the point defect using the Green’s function meth
~see, e.g., Ref. 25!. The result is

pDr~v!5E Im

dF~v!

dv

12EF~v!
,

F~v!5
1

N(
kn

u f ~k!dnu2

v1 i012«kn

~A7!

where one notes, using Eqs.~A3! and ~A4!, that u f (k)dnu2
51/4Na .
e-

hys.

,

H.
de,
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