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Exact results are presented for the surface diffusion of small two-dimensional clusters, the constituent atoms
of which are commensurate with a square lattice of adsorption sites. Cluster motion is due to the hopping of
atoms along the cluster perimeter with various rates. We apply the formalism of Titulaer and [Je@blem.

Phys.77, 472(1982], which describes evolution in reciprocal space via a linear master equation with dimen-
sion equal to the number of cluster configurations. We focus on the regime of rapid hopping of atoms along
straight close-packed edges, where certain subsets of configurations cycle rapidly between each other. Each
such subset is treated as a single quasiconfiguration, thereby reducing the dimension of the evolution equation,
simplifying the analysis, and elucidating limiting behavior. We also discuss the influence of concerted atom
motions on the diffusion of tetramers and larger clustg$6163-182@09)05704-3

I. INTRODUCTION In this paper we analyze the surface diffusion of small
two-dimensional adatom clusters, where cluster motion is
There has long been interest in the diffusion of small two-mediated by the hopping of atoms around the cluster perim-
dimensional (2D) metal adatom clusters on single crystakter. We restrict our attention to the case of clusters com-
metal surface$,as this phenomenon has potential impor-mensurately adsorbed on surfaces characterized by a square
tance for both film growth and equilibration proces$égi- lattice of adsorption sitege.g., unreconstructed f¢@ 00 or
rect field ion microscopy observations of small clusterbcc(100 metal surfacels We determine the cluster diffusiv-
diffusiont were used to assess diffusion coefficies ity D in terms of the rates for various perimeter hopping
This work also prompted some exact analyses of lattice-gagrocesses. Our focus is on the limiting regime of rapid dif-
models for diffusion of very small clustefs, as well as fusion along straight close-packed edges, a scenario that
the application of semiempirical methods to estimate enershould exist for most metgll00) systems. In this regime,
getic barriers for both conventional and different diffusion certain subsets of cluster configurations cycle rapidly be-
pathway$’ Recent scanning tunneling microscopy tween each other and our analysis treats each such subset as
studie§*° have revealed significant diffusion of large 2D a single quasiconfiguration. This both simplifies the analysis
clusters, with hundreds to thousands of atoms, on metal sugnd helps to elucidate the limiting behavior. In Sec. Il we
faces. The dependence Dfon cluster sizeN (i.e., the num-  describe our model for cluster diffusion and then present a
ber of atom¥was assessed and cluster diffusion and coalegnaster-equation formalism in Sec. Ill, which allows an exact
cence was shown to dominate adlayer coarsening in metanalysis of the model. Explicit results for diffusion of mono-
(100 homoepitaxial systems under certain conditibfs. mers, dimers, trimers, tetramers, and pentamers are presented
Kinetic Monte Carlo simulations of large cluster diffusion in Sec. IV for our basic model where only single atom hops
have also been utilized to examine the dependenéea@iN  are allowed. Refined models including concerted atom
for various mass transport pathwéysand to examine cor- moves are discussed in Sec. V. A brief discussion of corre-
relations in the cluster's wallé However, a comprehensive lations in the walk of the cluster is presented in Sec. VI and
understanding of large cluster diffusion is still lacking. we provide some concluding remarks in Sec. VII.
The latter assessment motivates our return to the consid-
eration of exact anz_alytic treatments for the diffusion of small |, | ATTICE-GAS MODELS EOR CLUSTER DIFEUSION
clusters. Such studies can provide a fundamental understand-
ing of the dependence of cluster diffusivity on kinetic path- We first describe the type of models considered in this
ways (noting that diffusivity does not just depend on ener-paper. Clusters are defined as groups of adatoonsiected
getics or equilibrium propertigsof correlations in cluster by nearest-neighbdiNN) bonds on a 2D lattice. We associ-
motion, etc. A key limitation, however, is that the size or ate an energy with each cluster configurationEst — MJ,
complexity of these calculations increases in proportion tavhereM denotes the number of NN bonds afd 0 gives
the number of possible configurations of the -clusterthe magnitude of an attractive pair-bond energy. Clusters can
C=C(N), which in turn increases exponentially with sixe  transform between such connected configurations as a result
Since this restricts such analyses to very small sizes, wef various types of hops of perimeter atoms to adjacent or
naturally also explore ways to extend this approach at leastiagonally adjacent empty sites. The key observation here is
to somewhat larger sizes. that hops of the individual perimeter atoms lead to a shift of
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latter process is so named because it facilitates the breakup
the “rectangular core” of a large cluster, which is necessary

I_ he hk 1(d)], which also involves a net breaking of one bond. This
for true long-range diffusion of such clustérs.

(2) (b) Detailed balance requires thai=exp(-BJ)h, and h,
=exp(—BJI)h,. For metal(100) systems, one typically ex-
i he pects tha&t® h.<h,~h,<h,, so the rates are not simply
’W a related to either the initial number or the net change in the
hr | number of bonds for the atomic hop. For larger clusters, it is

necessary to also consider the very slow “edge breakout”
process of an atom from a straight edge, which involves a net
() (d) breaking of two bonds. If the reverse corner rounding pro-
cess is allowed, edge breakout must be included with a rate
FIG. 1. Schematic of the key perimeter diffusion proces&®s: h,=exp(—2BJ)h, in order to avoid violating detailed bal-
“straight edge hopping,”(b) “kink escape,” (c) “corner round-  ance. However, for the small clusters considered here, the
ing,” and (d) “core breakup.” The squares in this and subsequentedge breakout process is not relevéntd, in practice, it may
figures represent the individual atoms arranged on a square lattiGgot be that important even for diffusion of larger clusters
of adsorption sites. Various other modifications to this basic model might be
appropriate for a more realistic description of actual metal
the center of mass of the whole cluster and thus to its diffu{100 systems. Most involve the introduction of concerted
sion. The feature that the atomic hop rates satisfy detailefnoves of more than one perimeter adatom. “Dimer shear-
balance implies that the equilibrium distribution of configu- 9" in square tetramers, wherein a pair of atoms on one side
rations is given by the Gibbs measure proportional tof @ square tetramer shears relative to the other pair, has been
exp(— BE), restrictedto the accessible subset of connectedrecently identified as playing an important role in tetramer

configurations. Here we s@=1/kgT, whereT denotes the diffusion. Other possibilities include “dimer edge hopping”
substrate temperature. and “trimer edge hopping” along straight edges and “dimer

At least for larger clusters, it is natural to divide the abovekink escape,” some of which can also be important. See Ref.
types of models into two basic categories, depending of and Sec. V. Another possibility is “efficient” corner
whether or not the kinetic rules allow vacancies to diffuse’ounding via a concerted exchange process. This is perhaps
through the interior of the clust&F2! If they do, we are More likely at kink sites along otherwise straight edgés-
implicitly regarding the four atoms adjacent to the interior €@ corners’) than at “global” corners or extremities of
vacancy as “perimeter” atoms and the kinetic rules wouldlarge rectangular clusters.
allow one of them to exchange with the vacancy, thus facili-
tating its diffusion. Such models are traditionally placed in  Ill. ANALYTIC MASTER-EQUATION FORMALISM
the so-called terrace diffusidiiD) class. If vacancies cannot
diffuse through the cluster interior and thus only external
perimeter atoms can move, then the model is traditionally We review and refine the formalism of Titulaer and
placed in the so-called perimeter diffusi@®D) class. Tradi- Deutscht, which provides an analytic treatment of cluster
tional simplistic mean-field-type analyses of the dependencdiffusion in the types of PD or TD models discussed in Sec.
of cluster diffusion coefficienD on sizeN (for large N)  |l. Here the number of particlé¥ in the cluster is fixed, as is
suggest different behavior for the TD and PD cladsés. the numberC of accessible cluster configuratiofifferent
However, it is clear that the actual behavior will dependshapes and orientationsVe label these configurations by
strongly on the magnitude of the rate controlling bulk va-s.t,v,... with energie€q,E; ,E, ,..., respectively. Perimeter
cancy transportrelative to other ratgsand on the size of the hopping of atoms produces transitions between certain pairs
cluster. In our current studies, the clusters are sufficientlyof configurations, say, frors to t with a rateh,s and a cor-
small that bulk vacancies cannot form, so cluster diffusion igesponding displacement of the center of mass of the cluster
unambiguously associated with the PD class. by p. The ratesh, satisfy detailed-balance conditions

In the basic model that we shall utilize to study small hsexp(—BE)=hgexp(—BE). The probability Py(r,7) of
cluster diffusion, it is instructive to distinguish between thefinding the cluster in configuratiog) with the center of mass
following specific types of adatom hopsfi) “straight edge  at positionr (measured in units of the lattice spacingt
hopping” of singly bonded atoms along straight close-time 7, satisfies the master equation
packed edges at a ralg [Fig. 1(a)], which involves no net
change in bonding or energgij) “corner rounding” at rate d
h, [Fig. 1(b)], which also involves no net change in bonding d—TPS(r,T)=§ [NsPi(r—ps 7) —hePs(r, )] (D)
or energylin metal (100 epitaxial systems, such moves ac- ’
tually occur in two distinct steps: a first hop to a diagonal orWe caution that if thes configuration atr can be obtained
next NN site, followed by a more rapid return to the NN site; from severalt configurations with distinct locationgor,
thus our model simplifies this two step process to a singlequivalently, if thes configuration ar can transform to sev-
step (and preserves NN connectivily (iii) “escape from eralt configurations with distinct locatiohsthent will ap-
kink sites” at rateh, [Fig. 1(c)], which involves a net break- pear a corresponding number of times in the sum with the
ing of one bond; andiv) “core breakup” at rateh. [Fig. = appropriatep;s. It should be noted that the possible locations

A. Basic formalism
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r of the cluster center of mass lie on a discrete lattice that is hr
“finer” than the original lattice of adsorption sites.

Fourier transformationPy(k,7)=3, exp(-ik-r)Py(r,7)
naturally deconvolutes the spatial coupling in Ef) and hr
reduces the master equations to a sim@etimensional lin-

ear evolution equation. Note thﬁg(kzo,r) gives thetotal

population Ry(7) of clu§ters with configuratiors a:[ time 7. Thus D can be obtained directly from an analysis of the
In terms of the vectoP(k,7) with componentdP(k,7)]s  acoustic eigenvalue d#l (k).

=P,(k,7), one obtains

FIG. 2. Configurations and transition rates for dimer diffusion.

B. Quasiconfigurations for rapid edge diffusion

d. .
d_TP(k’T): M(k)-P(k,7), (2 As noted in Sec. | of this paper, we are particularly inter-
ested in the limiting behavior in the regime of rapid straight

where[M (k) ]s;=hstexp(=ik- ps) for s#t and —=,.sh,s  edge hopping, i.e., large.. This regime is often of most
for s=t, with appropriate modifications where multiple tran- physical relevance for metél00) systems. Our strategy here
sitions betweers andt or v’ are possible. All the eigenval- will be to replace several isoenergetic configurations of the
ues\;(k) (with 0O<i<C—1) of M(k) are real and negative cluster, which rapidly interconvert via straight edge hopping
for k=|k|>0. There is a single “acoustic branch=0, say, processes, by a single quasiconfiguration. Specific examples
for which Ao(k)~Ak? vanishes ak—0° Let ®; and 9]  are given in Sec. IV. Within the above formalism, this not
denote the biorthonormal right and léth eigenvectors of Only reduces the dimension of configuration space and thus
M(k), respectively, so that{}iT-(Dj: 8 ;. Then Q;(k) the C(_)mplexny of th_e a_naly_5|s, byt also_prowdes greater in-
;(I’iﬂiT denotes the projector onto thieh eigensp_ace of Ssightinto the behavior in this regime. It is only necessary to

M (k) and the solution to Eq2) has the form make the following minor refinements in applying the above
= formalism: (i) the center of mass for each quasiconfiguration
B(k T)=eX|c[M(k)r]-l5(k 0) is determined from a simple average of the center-of-mass

locations of the constituent configurations and kg are
. calculated accordingly andi) the rate of transition from a
:g‘o exm‘i(k)T]gi(k)'P(kvo)- ©) quasiconfiguration to some other configuration equals the
product of the rate for the appropriate atomic hop facilitating
Some minor modification to this formulation is required for this transition and the probability that the quasiconfiguration
monomers since atomic hops lead to transitions to the sanig in the appropriate initial configuration. For the latter, one
configuration, in contrast to clusters wikh> 1. simply recognizes that the quasiconfiguration has an equal
We shall see below that the behaviorl%(k,r) for small  probability of being in any of its isoenergetic constituent
k is of primary interest in the context of diffusion. Since only configurations. Again, specific examples will be given in the
Ao(k)—0 ask—0, it follows from Eq.(3) that forsmall k ~ following section.
one has
R . IV. RESULTS FOR CLUSTER DIFFUSION VIA PD
P(k,7)~exd \o(k)7]1Qo(k) - P(k,0), as 7—x. (4) WITH SINGLE-ATOM HOPS

From the properties dfl and the detailed-balance condition ~ The formalism of Sec. Ill is now applied to calculate dif-

on h,, it follows that 9 —ET=(1,1,1 ...) and®,—P®  fusion coefficientD for clusters of siz&dl=1-5 on a square

as k—0, where [P*,=exp(—BE)/Z, with Z=3_ exp lattice. In the discussion and figures below, specified rates

(—BEy. Thus the projector onto the “acoustic” eigenspacerefer to transitions from a specificonfiguration to a spe-

satisfiesQy(k) — P*E" ask—0.13 cific t configuration with specific relative displacement
Finally, we determine the cluster diffusion coefficiedt (rather than the total rate for transitions to all posstiten-

defined in terms of the motion of the cluster center of nrass figurationg. Further details of the calculations, including

via the standard formulér-r)~4D 7 asT—. By symme- center-of-mass displacements, are given in the Appendix.

try, thex andy components of the center of mass thus satisfy

(x2)~(y?)~2D7 as r—». If k=(ky,ky) so thatk?=k2 A. Monomer diffusion

2 " . .
+ky, then these quantities can be readily obtained as Diffusion of a monomer(which has a single configura-

tion, soC=1) constitutes the classic example of a “pure”
<X2>=(92/(7(ikx)22 Pk, 7)|k—o random walk in a discrete lattice r.nodeI.Hgl is the rate for
s the monomer to hop to each adjacent site, then it can be
(5)  readily shown that{x?)=(y?)=2hqr for all 7, soD=h.

2y=%d(iky)?>, Ps(k,7)|ko-
(y%) (iky) ES s(K,7)lk=o B. Dimer diffusion

Now, using Eq.(4) and the other results for smadlbehav- Here there are two configuratiorforizontal and verti-
ior, one has thaf cal), soC=2. The only operative hopping process is corner

rounding, which leads to transitions between horizontal and
D=30%3(ik)*\g(K)|x=0- (6) vertical configurationgsee Fig. 2. Since for each step in the
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dimer's motion there are four possible equally likely dis- I:I:I:l
placements of its center of mass by 3,+3), the dimer's h'r él‘“

motion is also a pure random walk.In comparison with TV Ty

monomer diffusion, it readily follows thaix?)=(y?)=h,r bri 1 _i hr
for all 7, soD=h,/2. " 5 e | =
C. Trimer diffusion e $ $he

Here there are six configuratior(wvo linear and four

ben), soC=6. These configurations are indicated in Fig. 3, l e I

as well as possible transitions between them and the associ- LI <1

ated transition rates. Both straight edge diffusion and corner hr L B hr

rounding are operative, where the latter is expected to be rate j --------- :

limiting. Clearly, the six configurations occur with equal hr I:D:l hr

probability asr— . Analysis of the master equations shows

that FIG. 3. Configurations and transition rates for trimer diffusion.

D=3h:he/(h;+he) for the square configuration, which is more highly populated
or, equivalently, by a factor of exp@J). Straight edge diffusion, corner round-
ing, and core breakup are all operative. The latter is expected
1/D=3(1/h,+1/h,). (7)  to be rate limiting and since typically.<h,, one expects

) tetramer diffusion to be much slower than trimer diffusion
InterpretingD as a ‘“conductance” and thus/as a “re- (in our basic moda!

sistance,” the latter is analogous to a series resistance for- gacause of the large number of configurations for the tet-
mula. This result is consistent with the feature that both h°p'ramer, we consider only the regime of larige, where there
ping processes are necessary for long-range trimer diffusiony rapid cycling between fout, two Z, and twoT configu-
If h, =0 buth.>0, the trimer just cycles between the four (5ions. Wherh,—, these eight configurations are replaced
configurations shown in the center of Fig. 3. In the artificial by a single quasiconfiguration, as indicated in Figtdp).
case wherdle=0 buth,>0, the trimer can only rearrange Thjs |eaves one square, two linear, and two quasiconfigura-
and rotate about a pinned central atom. _ tions, so nowC=5. Possible interconversions between these
In the regime of largé,, there is a rapid cycling between 4, associated rates are indicated in Fihdtom. The rate
four distinct bent configurations in the ce;nter of F|g. 3. Thus,hr/8 applies for the conversion of the quasiconfiguration to a
ashe—c, we can replace these by a single quasiconfiguranear configuration by corner rounding because the former is
tion, as |n_d|cate_d in Fig. 4top). T_hus there remain two i the requiredL configuration onlyz of the time. The rate
linear configurations and one quasi-configuration, so @W /4 applies for conversion of the quasiconfiguration to a
=3. Possible interconversions between these and associatggyare configuration by corner rounding since the quasicon-
rates are indicated in Fig. ébottom. The rateh,/4 is asso-  figyration is in one of two requiretl configurations: of the
ciated with the conversion of the quasi-configuration to &jme. Conversion of a square configuration to either quasi-
linear configuration by corner rounding because the former igonfiguration occurs at a raté2because there are two path-
in the required bent configuration oriyof the time. The rate ways involving core breakup. Quasiconfigurations intercon-
h, describes the reverse process. Analysis of the mastgjt by corner rounding at a rath38 since they are in the

equations yield© =h,/3, consistent with Eq(7). required configurationg of the time. Analysis of the master
Finally, we mention another way to directly visualize be- gquations yields

havior in the limith,—. We note that the centers of mass

of both horizontal and vertical linear configurations lie on the D=6h,h./(h,+18n,)
same square grid with lattice constant uriés for the grid

of atomic adsorption sit¢sThe centers of mass of the qua- or, equivalently,

siconfigurations lie on a second square grid with lattice con-

stant unity, which interpenetrates the first. The center of :==1="1 ]
mass can hop from the first grid to the second, randomly |--e--1 = * * I——H + HJ
choosing any of four displacemerits 3,+3), each with rate R |

h,, and from the second to the first with the same displace-
ments, each with rath,/2. (Thus, asr—«, the second grid

appropriately has twice the population of the firgtnalysis L

of this biased random walk process again produfes -1 1o

—h,/3. e HEE
hr te-t--t hr

D. Tetramer diffusion . ' . . )
FIG. 4. Quasiconfiguration for bent trimeft®p) and configura-

Here there are 19 ponfiguratio(xsne square, two linear, tons and transition rates for the reduced description of trimer dif-
four T, four Z, and eightL shapel so C=19. All these fusion whenh,— (bottom. The dot in this and several subse-
configurations occur with equal probability as-c, except quent figures provides a fixed reference point.



3228 J. R. SANCHEZ AND J. W. EVANS PRB 59

s....g....g...-. B —T v pr— — S
I "1 | " O bk l‘L
I ||
| + |
] L |
b e b
+ I J + 1 l + l—' I

FIG. 6. Easy pathway for pentamer diffusi(see Ref. &

tually mediated by either corner rounding or kink escape,
depending on which is less efficiefnather than by slow core
breakup.
To simplify the analysis, we assume tlatandh, remain
finite and consider the limiting regime whelg— o, which
in turn requires thah,— 0 by virtue of detailed balance. We
also neglect “unfolding” of theC-shaped configuration in
Fig. 6 by corner roundingimmediately following kink es-
FIG. 5. Quasiconfiguration for tetrameftp) and configura- cape to obtainL-shaped and linear configurations. This is
tions and transition rates for the reduced description of tetramejustified since straight edge diffusion is much more likely to

...........

3hr/8

diffusion whenhy— (bottom). follow kink escape(as shown in Fig. 6 Then there are just
four quasiconfigurations of the pentamerGe 4. Each con-
1D =3[1/hc+18M,], (8)  sists of a square tetramer core, with an additional atom con-

. ) ) fined to one side, as shown in Fig(tép). Possible intercon-
where the latter is analogous o a series resistance formulge sions between these and associated rates are indicated in
This result shows that both core breakup and corner roundlngig_ 7 (bottom). The rateh, /2 applies for the conversion via
are necessary for tetramer diffusion. In practice, one expecis,ner rounding between one quasiconfiguration and another
thath,/h, =exp(-pJ)<1, soD~6h;. , rotated by 90°, noting that the former is in the required con-

There is a consistency issue to be considered here. Wy ration only 1 of the time. The ratd/2 applies for the
have assumed that /h, is negligibly small(or thathe/h, is — girect conversion mediated by kink escape between one
very large in applying the quasiconfiguration approach, butyas;.configuration and another rotated by 1808 first two
Eq. (8) retains corrections toD~6h; of order he/hy  gteps in Fig. & Here there is a probability df that after the
=Ny /he=exp(=pJ). This is reasonable fonh,. HOw-  first kink escape steps, the pentamer returns to its original

ever, ifhy~h; soh, /h, is comparable td/h,, then there  configuration rather than making the desired transition.
may be comparable additional correctionsDe=6h. that  Analysis of the master equations yields

must be determined from a full analysis with=19 configu-
rations.

Finally, we note that while Eqg7) and(8) appear to be
analogous series resistance formulas, there are basic diffe(g—r equivalentl
ences between trimer and tetramer diffusion. For trimer dif~ " ©9 Y
fusion, both straight edge hopping and corner rounding are

necessary for the cluster to move an arbitrary distance. In + P + | . +

D=gh:he/(h;+hy)

contrast, tetramers can diffuse arbitrarily far through a se-
guence of nonsquare configurations, so core breakup is never
invoked. However, tetramer diffusion is still controlled by
core breakup since the noncompact cluster is guaranteed to

“fall into” the square configuration, from which escape is S
mediated by core breakup. i _bi2
E. Pentamer diffusion o
A pentamer can assume the configuration of a square tet- hef2 hm><m hi/2

ramer with an additional edge atom. One might therefore
expect that true cluster diffusion would require disruption of
the square core and thus be mediated by “slow” core :
breakup (the standard scenario for diffusion of large : : hel2 1L
cluster3.®® However, an “easy” diffusion pathway exists =%

for pentamers that avoids the necessity for direct core FIG. 7. Quasiconfiguration for pentameftsp) and configura-
breakup, as was noted by VofeiThis pathway, which is tions and transition rates for the reduced description of pentamer
shown in Fig. 6, demonstrates that pentamer diffusion is acdiffusion whenh,— (bottom).




PRB 59 DIFFUSION OF SMALL CLUSTERS ON METAL(100 . .. 3229

] | _ L e

hk he I

— —T

+ 1 ’
I + 1 -
hk | he
—_— —_—
¢ ® |
| hk hk he
— — e —
FIG. 8. First part of the easy pathway for septamer diffusion.

|

Subsequent movement of the atom on the bottom edge to the center

of the top edge recovers the origirdlut shifted configuration. —

FIG. 9. First part of a pathway for decamer diffusion. Subse-
1/D=8(1/+1/hy), (9 quent movement of the atom on the bottom edge to the center of the

where the latter is analogous to a series resistance formulipP €dge recovers the originéut shifted configuration. Due to

This result is consistent with the feature evident from Fig gSuccessive kink escape processes, the effective rate is comparable to
. . " cthat for core breakup.

that both corner rounding and kink escape are necessary for

entamer diffusion. . . . .
P raust Motion of the additional atom around the periphery, medi-

ated by corner rounding, cannot produce nonlocal cluster
motion. However, nonlocal motion is possible through the

For sexamer diffusionclearly core breakup is required to sequence of moves not requiring core breakup, some of
disrupt the rectangular23 configuration and will thus me- which are shown in Fig. 9. Despite this fact, the effective rate
diate diffusion(as it does tetramer diffusipnWe note that for the first two kink escape steps equalghy, wherepg,
edge breakout is possible for thex3 sextamer configura- =~exp(—8J) gives the probability of finding the second con-
tion, unlike for smaller clusters. In general, this process musfiguration relative to the first(From a kinetic perspective,
be incorporated in the modeling to ensure detailed balancafter the first kink escape step, the atom is most likely to
(as is the case for larger clustgrslowever, in the limiting  return to the kink via rapid edge hopping-his effective rate
regimeh,<h.<h,~h,<h,, one can effectively ignore this is actually comparable th.. Note also that the decamer
edge breakout process sinbg<h.. The reverse corner must eventually fall into a 8 2 configurationwhich has the
rounding process is correspondingly rare since the requiresame configuration energy, and thus probability of occur-
initial five-bonded configuration has such a low populationrence, as the 8 3+ 1 configuration and from which escape
(even compared to the “transient” six-bonded configura-is mediated by core breakup.
tions, which are accessed during diffusion by core breakup
from the typical seven-bondedx23 configuratiof.

For septamer diffusiorthe typical cluster configuration is
a 2Xx 3 rectangle with an additional edge atom. One might
therefore expect that true cluster diffusion would require dis- A. Tetramer diffusion via “dimer shearing”

ruption of the rectangular core and thus be mediated by slow oo e modify the basic model of tetramer diffusion in
core breakup. In fact, an easy diffusion pathway exists, akitsee v/, We now incorporate an additional concerted dimer
to that for pentamers, which just requires kink escape an hearing process proposed by ®hial,” wherein a pair at-
corner roundingas well as straight edge hoppingee Fig. 55 on one side of a square tetramer shears at ahgate

8. e . relative to the other pair to producezashaped configura-
For the diffusion of larger clustersihat hgve typically i5n For consistency, one must also incorporate the reverse

near-square or near-rectangular configurations, breakup Q earing process with much larger rdi¢ satisfying the

the rectangular core at a raig appears necessary and would detailed-balance condition’ = exp(@J)h,. See Fig. 10.

thus mediate true long-range diffusibf This is clearly the W | thi del onlv in th ) hdre i
case for diffusion of octamers, nonamers, and decamers € analyze this model only in the regime wherg 1S

which can be trapped in 24, 3x3, and 2x5 configura- much Iarger than all o’ther rates. This is motivated by the
tions, respectively. We note that it is often possible to moveSXpectation thathe> h5,>h'%hk> hs>hc'. ThL,JS’ as h_e
clusters arbitrarily far with a sequence of atomic hops not~> We can treat the eigltt, Z, andT configurations in Fig.
explicitly including core breakup. However, such motion in-
variably includes successive kink escape processes or kink
escape and corner rounding processes, for which the effec-
tive rate is always comparable to or lower than that for core # # =
breakup(see below.

It is instructive to discuss the specific example of the evo-
lution of a decamerstarting from a X 3 square configura- FIG. 10. “Dimer shearing” and “reverse shearing” of tetram-
tion with an additional edge atofa 3X 3+ 1 configuration.  ers. # indicates the transition state.

F. Diffusion of larger clusters

V. RESULTS FOR CLUSTER DIFFUSION
WITH CONCERTED MOTION OF ATOMS

hs —

h’'s
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5 (top) as a single quasiconfiguration and thus reduce théhe square configuration to a specific quasiconfiguration via
system to the same square, two linear, and two quasiconfigalimer shearing since there are two possible pathways. The
rations shown in Fig. §bottom), soC=5. The only differ-  rateh//4 applies for the reverse process since the cluster is in

ence from the previous treatment of tetramer diffusion is thehe required configuratio of the time. Detailed analysis
additional pathways for conversion between the square angyeals that

quasiconfigurations. The raten2 applies for conversion of

1+13(h, /h}) + (he/hg) +42(h, /hl) +13(h, /h)(he/hg) +42(h, Ih])?(h./hg)

D/hg= .
* 1+8(h,/h)+18(hs/h)+7(h, /h.)2+ 126(h, /h})(hs/hl)+ 18(h./hg) (hs/hLl) +126(h,/h.) (he/hg) (hg/hY)
(10)
Imposing detailed-balance constraints on the rates in the above expression andusettinh,=h./hs, one obtains
1+ 14u+55u2+42u®
D/h = o Ao (11)

1+8u+ 18 exgg— BI) + 7u+ 144u exp( — BI) +126u exp(— BI)

Thus, in the regime where exp3J)<<u<1, one hasD dimer kink escape can mediate evolution from thisx 3
~hg. +1 configuration. Another possibility is trimer edge hopping
As in the treatment of tetramer diffusion in Sec. IV, therealong straight edges at a rdig, [see Fig. 1{b)], which can
is a consistency issue to be considered. We have assumatso replace the first three steps in Fig. 9 and could also
thath//h, is negligibly small(or thath./h, is very large in ~ mediate this evolution since it is likely that.<h,.
applying the quasiconfiguration approach, but ELD) re- It should again be emphasized that eventually the decamer
tains corrections td~hg of order u=h,/h.=h./hg and  will fall into the 5X2 configuration(which should have
also much smaller corrections. This is exactjf and h,  Similar configurational energy to thex33+1 configuration
diverge relative to the other rates, buthif~h,, there may and from which escape is presumably mediated by dimer
be comparable additional correctionsDe~ hy. shearing. Thus dimer shearing should also mediate overall
decamer diffusiorfunless dimer kink escape and trimer edge
diffusion are slower. In this case, one would expect an ac-
B. Diffusion of larger clusters tivation barrier for decamer diffusion very close to that for
Here we briefly reconsider the diffusion of pentamers,0ctamers or sexamers, each of which is mediated by similar
sexamers, etc., accounting for possible concerted moves @fmer shearing. However, experimental data for the
more than one perimeter atom. It was already recognized bithh/Rh(100) systeni reveals a substantially lower activation
Shi et al.” that a dimer shearing process with a rate-h, _

(see Sec. V Awould likely control the diffusion of sexamers hdk
and octamers, as well as the diffusion of tetramers. In ana- he
lyzing the diffusion of other larger clusters, we are motivated # —
to consider the possible role of concerted dimer edge hop-
ping along straight edges at rétg., particularly given the ® i;" l ¢ é
expectation that hy>h, based on semiempirical
calculations. Indeed, this rapid process with rakg, can
replace the first two step&ink escape followed by straight _
edge hopping, with a much lower effective ratelgf2) in
the easy pathway for pentamer diffusitffig. 6) and in that E
for septamer diffusior(Fig. 8). As a result, it is clear that # =
pentamer and septamer diffusion via these easy pathway:
will be limited not by kink escape or dimer edge hopping, | ®
but rather by corner rounding at a rdte (cf. Ref. 7). -
Next we consider again the evolution oflacamerfrom a hte _T
3X3+1 configuration, augmenting the discussion in Sec.
IVF. We have already noted that with only single atom # # =
moves, nonlocal motion is controlled by an effective rate
comparable to that for core breakup. However, dimer kink d ? d ®

escape at a ratey,, followed by straight edge hoppirigee
Fig. 11(a)], can replace the first three steps in Fig. 9. From F|G. 11. Pathways for decamer evolution from the 3+ 1
detailed balance one hdmg,=exp(—BJ)hg. and since one configuration, which involvega) dimer kink escape antb) trimer
might expect thah.>hy>h~h,>hg>h,, it follows that  edge hopping. # indicates the transition states.
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barrier for decamer diffusion than for sexamer and octamer 040 y T T
diffusion. This suggests that the<® decamer configuration
was not accessed in the experimental observation time, a
speculation that has been confirmed by further analysis of the |
original experimental dat&.
ge™
0 .
0.00 ﬁ:ét 0.16 ?,Q\).\\m(\\m\ |

D(t)/hy

VI. CORRELATIONS IN THE MOTION OR WALK
OF CLUSTERS

<r*(t)>
(=)
8

. . . . e
Diffusion of monomers and dimers, according to the e

model presented above, is described by a “pure” random
walk, i.e., the mean-square displacement increases exactly
linearly for all times, i.e.{r?)=4Dr for all 7. However, for
trimers and larger clusters, we shall see that the mean-squart . . .
displacement typically increases “more rapidly” initially, %% 0o 0.04 0.08 0.12 0.16
before achieving a slower asymptotic linear increase satisfy- rT

ing (r)~4Dr. The rapid initial increase is generally in-
duced by the faster perimeter hopping processes. The Ion%h
range motion is mediated by a slower rate controllingtio
process. Thus the “time-dependent diffusion coefficient”
D(7)=(r?(7))/4r exhibits adecreasefrom an initial high

FIG. 12. Simulation study of trimer diffusion with,/h, =100
owing(r2(r)) versush, r for initially bent and linear configura-
ns and for the equilibrium average initial configuration. The inset
shows the behavior dd(7)/h,— 100/303 as, 7— = for the latter.

value (controlled by the faster hop rajeto its lower VIl. CONCLUSIONS
asymptotic value oD. Such a decrease is the signature of a _ o
backward correlation in the cluster's watk? Exact analytic An exact analytic treatment of cluster diffusion of the

determination of this behavior is possible using the formaltype presented above in principle provides the most complete
ism of Sec. Ill, but for convenience below we utilize kinetic understanding of this phenomenon. Such studies quantify the
Monte Carlo simulation techniques. role of competing kinetic pathways to diffusiqoften ex-

In the case of trimer diffusion with,>h, , if one starts ploiting series resistance or electrical network analdgies
from abentconfiguration, the center of mass will jump rap- and facilitate analysis of limiting regimes. We have shown
idly at a rateh, between four locations, as the trimer cycles that concerted adatom moves, which can sometimes control
between four bent configurationgonstituting the single cluster diffusion(cf. Ref. 7, can also be incorporated. A
quasiconfiguration discussed in Sec).M simple calcula- fundamental problem remains in that the size or dimension
tion shows thatr?) increases rapidly to aroungon a time of the analytic calculation is given by the number of cluster
scale of the order of b/ . Thereafter, the increase {n?) is  configurations, which increases exponentially with size. The
slower on a time scale of orderhl/, being mediated by introduction of quasiconfigurations in this work serves to
corner rounding, so the overall behavior reflects a backwaréeduce this dimension. Another strategy that we plan to con-
correlation(cf above. Starting from alinear configuration, ~ Sider in future work is to restrict the number of configura-
one finds a roughly linear increase(ir?) for all imes(ona  tions of large clusters by limiting “excitations” about a
time scale of order h}). Here this increase for very short Near-square or near-rectangular shape.
times is already controlled by corner rounding and is actually
slower than the asymptotic increase. Performing an equilib- ACKNOWLEDGMENTS
rium average over all initial configurations again yields
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tion, the center of mass will jump rapidly at a rdig be-
tween that of eight configurations constituting a single qua-
siconfiguration discussed in Sec. IV. Th{g®) increases
rapidly on a time scale of orderfi/ to arounds;, &, ands; To determine the acoustic eigenvalue\d(k) it is suffi-
for initial L, T, andZ configurations, respectively. The-‘;n2> cient to analyze the determinant =

will increase more slowly on a time scale of orden 14s the

tetramer makes transitions to linear and.toT, andZ con-

figurations not included in the initial quasiconfiguration, be- de{M(k)—)\L]E(K%C Cn(k)A"

fore eventually becoming “trapped” in a square configura- o

tion. Thereafter, the increase ifr?) is slower, being since\g(k)~Cy(k)/C1(k) ask—0. One can actually show
mediated by core breakup. Distinct behavior is found startinghaf  Co(k)=(—1)“Agk?*+0O(k*) and that C,(k)
with linear or square configurations. =(—1)A;+0(k?), so D=A,/A,. Determination ofC,

APPENDIX: ACOUSTIC EIGENVALUE ANALYSIS
FOR M (K)
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and C; and their Taylor expansions i can be easily per- 3. Trimer diffusion
formed usinguATHEMATICA . Again, here we set the surface  Consider first the full analysis with four bent and two
lattice constant to unity. linear configurations, s€=6. See Fig. 3. Possible center-
of-mass displacements for transitions between bent configu-
1. Monomer diffusion rations in the center of Fig. 3 age=(+ 3,0) and(0,+3) and

between bent and linear configurations gre (+3,+3).
Transition rates are also indicated in Fig. 3. We do not
present the full & 6 matrix M(k), but just give the results

M (k) = 2ho[ cog k) + cogk,) — 2] =Xo(K), ;)r:‘at{we determinant analysis in termslof hg/h, . One finds

Here possible center-of-mass displacements are
=(=%=1,0) or(0,%£1), occurring with a ratdy, and one has

soAy=hg, A;=1, andD=h,.
oo T 0 Ao=(h,)[64T + 1922+ 1287'2],

2. Dimer diffusion Al:(hr)5[192+ 76&—‘4'96(1—‘24' 34&"3]'
Here possible center-of-mass displacements for transgoD:(h 3)T/(1+T)
tions between horizontal and vertical configurations are ' '

4 . We now turn to the simpler analysis fbg— <o, where the
=(*3%,*3), occurring with a ratén, , and one has P y I

four bent configurations are treated as a single quasiconfigu-

-1 cogk,/2)cog k,/2) ration, so with the two linear configurations one now Kas
M (k) =4h, cogk/2)cogk,/2) X 1 Y, =3. See Fig. 4. Possible center-of-mass displacements be-
X y tween the linear and quasiconfigurations pre(*3,+3).
soAy,=4(h,)?, A;=8h,, andD=h,/2. Transition rates are indicated in Fig. 4. One has
-4 0 cogk,/2)cogk,/2)
M(k)=h, 0 -4 cogk,/2)cogk,/2)
4 cogk,/2)cogk,/2) 4 cosk,/2)cogk,/2) -2
|
where the top two components correspond to the linear con- Ao=(h,) (40T + 520V +4P2Y
figurations and the bottom one to the quasiconfiguration.
Thus one finds that\,=8(h,)® and A;=24(h,)?, so D +168¥ + 520 ¥+ 1689],
=h,/3, consistent with the above general result in the 4 A2
— o0 limit. Alz(hr) [4(13 +32b+720VY +28
+504¥ + 720 9+ 50491,

4. Tetramer diffusion . . .
consistent with the above expressions for the standard model

Here we consider only the simplified analysis fog  (upon settingb =¥ =0). These results yield the expression
—o, with one square, two linear, and two quasiconfigurafor D reported in the text.
tions, soC=5. See Fig. 5. Possible center-of-mass displace-

ments for transitions between the square and quasiconfigura- 6. Pentamer diffusion
tions arep=(=3%,0) and (0,=3) and between linear and , o ,
quasiconfigurations arp=(*+%,+3). Transition rates are Here we consider only the simplified analysis foF—

also indicated in Fig. 5. Here, we do not present the full 58ndhc— < with four quasiconfigurations, s6=4. See Fig.
X 5 matrix M (k), but just give the results of the determinant 7. Possible center-of-mass displacements for transitions be-

analysis in terms of =h, /h,=exp(8J). One finds that tween the 180° rotated quasiconfiguratio_ns p_Pe(i%_,O)
and (0,~2) and between 90° rotated quasiconfigurations are
3% e o i
Ao=168h)%A% A, =(h.)*A3(28A +504), p= (=15, % 75). Transition rates are also indicated in Fig. 7.
o=168h.) 1= (he)"AX 9 We do not present the full 44 matrix M (k), but just give
soD=6h.A/(A+18). the results of the determinant analysis in terms (@f

=hy/h,. One finds that

5. Tetramer diffusion via dimer shearing Ao=(h)*Q(1+Q)/4, A;=2(h)3(1+Q)?
Here a_gain we consider_ only_the simplified analysis forsoD=§th/(Q+1).

h.—, with the same configurations as for the above stan-
dard model of tetramer diffusion, s6=5. Thus we just
include an additional pathway from square and quasiconfigu-
rations via dimer shearing and for the reverse process via It is appropriate to note that further simplification is pos-
reverse shearing. We sé&=h,'/h,, ¥=hs/h,, and 9  sible in some of the above analyses. Special features of the
=h./h,. Then a detailed analysis reveals that master equations can endow symmetries on the acoustic

7. General comments
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eigenspace dl (k) for arbitraryk, thus leading dimensional =4h,[cosk/2)cosk/2)—1]. For the full trimer problem,
reduction and simpler determination ofy(k). For the as well as for the simpler analysis incorporating a quasicon-
dimer problem, both components of the acoustic eigenvectdiguration whenh,— o0, both components for linear trimers
are equal, which immediately implies thaty(k) are equal.
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