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Diffusion of small clusters on metal„100… surfaces: Exact master-equation analysis
for lattice-gas models
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Exact results are presented for the surface diffusion of small two-dimensional clusters, the constituent atoms
of which are commensurate with a square lattice of adsorption sites. Cluster motion is due to the hopping of
atoms along the cluster perimeter with various rates. We apply the formalism of Titulaer and Deutch@J. Chem.
Phys.77, 472 ~1982!#, which describes evolution in reciprocal space via a linear master equation with dimen-
sion equal to the number of cluster configurations. We focus on the regime of rapid hopping of atoms along
straight close-packed edges, where certain subsets of configurations cycle rapidly between each other. Each
such subset is treated as a single quasiconfiguration, thereby reducing the dimension of the evolution equation,
simplifying the analysis, and elucidating limiting behavior. We also discuss the influence of concerted atom
motions on the diffusion of tetramers and larger clusters.@S0163-1829~99!05704-5#
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I. INTRODUCTION

There has long been interest in the diffusion of small tw
dimensional (2D) metal adatom clusters on single cry
metal surfaces,1 as this phenomenon has potential impo
tance for both film growth and equilibration processes.2,3 Di-
rect field ion microscopy observations of small clus
diffusion1 were used to assess diffusion coefficientsD.
This work also prompted some exact analyses of lattice-
models for diffusion of very small clusters,4,5 as well as
the application of semiempirical methods to estimate en
getic barriers for both conventional and different diffusi
pathways.6,7 Recent scanning tunneling microscop
studies8–10 have revealed significant diffusion of large 2
clusters, with hundreds to thousands of atoms, on metal
faces. The dependence ofD on cluster sizeN ~i.e., the num-
ber of atoms! was assessed and cluster diffusion and coa
cence was shown to dominate adlayer coarsening in m
~100! homoepitaxial systems under certain conditions8,9

Kinetic Monte Carlo simulations of large cluster diffusio
have also been utilized to examine the dependence ofD on N
for various mass transport pathways6,11 and to examine cor-
relations in the cluster’s walk.12 However, a comprehensiv
understanding of large cluster diffusion is still lacking.

The latter assessment motivates our return to the con
eration of exact analytic treatments for the diffusion of sm
clusters. Such studies can provide a fundamental underst
ing of the dependence of cluster diffusivity on kinetic pa
ways ~noting that diffusivity does not just depend on ene
getics or equilibrium properties!, of correlations in cluster
motion, etc. A key limitation, however, is that the size
complexity of these calculations increases in proportion
the number of possible configurations of the clus
CvC(N), which in turn increases exponentially with sizeN.
Since this restricts such analyses to very small sizes,
naturally also explore ways to extend this approach at le
to somewhat larger sizes.
PRB 590163-1829/99/59~4!/3224~10!/$15.00
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In this paper we analyze the surface diffusion of sm
two-dimensional adatom clusters, where cluster motion
mediated by the hopping of atoms around the cluster per
eter. We restrict our attention to the case of clusters co
mensurately adsorbed on surfaces characterized by a sq
lattice of adsorption sites@e.g., unreconstructed fcc~100! or
bcc ~100! metal surfaces#. We determine the cluster diffusiv
ity D in terms of the rates for various perimeter hoppi
processes. Our focus is on the limiting regime of rapid d
fusion along straight close-packed edges, a scenario
should exist for most metal~100! systems. In this regime
certain subsets of cluster configurations cycle rapidly
tween each other and our analysis treats each such subs
a single quasiconfiguration. This both simplifies the analy
and helps to elucidate the limiting behavior. In Sec. II w
describe our model for cluster diffusion and then presen
master-equation formalism in Sec. III, which allows an ex
analysis of the model. Explicit results for diffusion of mon
mers, dimers, trimers, tetramers, and pentamers are pres
in Sec. IV for our basic model where only single atom ho
are allowed. Refined models including concerted at
moves are discussed in Sec. V. A brief discussion of co
lations in the walk of the cluster is presented in Sec. VI a
we provide some concluding remarks in Sec. VII.

II. LATTICE-GAS MODELS FOR CLUSTER DIFFUSION

We first describe the type of models considered in t
paper. Clusters are defined as groups of adatomsconnected
by nearest-neighbor~NN! bonds on a 2D lattice. We assoc
ate an energy with each cluster configuration ofE52MJ,
whereM denotes the number of NN bonds andJ.0 gives
the magnitude of an attractive pair-bond energy. Clusters
transform between such connected configurations as a r
of various types of hops of perimeter atoms to adjacen
diagonally adjacent empty sites. The key observation her
that hops of the individual perimeter atoms lead to a shift
3224 ©1999 The American Physical Society
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PRB 59 3225DIFFUSION OF SMALL CLUSTERS ON METAL~100! . . .
the center of mass of the whole cluster and thus to its di
sion. The feature that the atomic hop rates satisfy deta
balance implies that the equilibrium distribution of config
rations is given by the Gibbs measure proportional
exp(2bE), restricted to the accessible subset of connect
configurations. Here we setb51/kBT, whereT denotes the
substrate temperature.

At least for larger clusters, it is natural to divide the abo
types of models into two basic categories, depending
whether or not the kinetic rules allow vacancies to diffu
through the interior of the cluster.8–11 If they do, we are
implicitly regarding the four atoms adjacent to the inter
vacancy as ‘‘perimeter’’ atoms and the kinetic rules wou
allow one of them to exchange with the vacancy, thus fac
tating its diffusion. Such models are traditionally placed
the so-called terrace diffusion~TD! class. If vacancies canno
diffuse through the cluster interior and thus only exter
perimeter atoms can move, then the model is tradition
placed in the so-called perimeter diffusion~PD! class. Tradi-
tional simplistic mean-field-type analyses of the depende
of cluster diffusion coefficientD on size N ~for large N!
suggest different behavior for the TD and PD classes8,11

However, it is clear that the actual behavior will depe
strongly on the magnitude of the rate controlling bulk v
cancy transport~relative to other rates! and on the size of the
cluster. In our current studies, the clusters are sufficie
small that bulk vacancies cannot form, so cluster diffusion
unambiguously associated with the PD class.

In the basic model that we shall utilize to study sm
cluster diffusion, it is instructive to distinguish between t
following specific types of adatom hops:~i! ‘‘straight edge
hopping’’ of singly bonded atoms along straight clos
packed edges at a ratehe @Fig. 1~a!#, which involves no net
change in bonding or energy;~ii ! ‘‘corner rounding’’ at rate
hr @Fig. 1~b!#, which also involves no net change in bondin
or energy@in metal ~100! epitaxial systems, such moves a
tually occur in two distinct steps: a first hop to a diagonal
next NN site, followed by a more rapid return to the NN si
thus our model simplifies this two step process to a sin
step ~and preserves NN connectivity!#; ~iii ! ‘‘escape from
kink sites’’ at ratehk @Fig. 1~c!#, which involves a net break
ing of one bond; and~iv! ‘‘core breakup’’ at ratehc @Fig.

FIG. 1. Schematic of the key perimeter diffusion processes:~a!
‘‘straight edge hopping,’’~b! ‘‘kink escape,’’ ~c! ‘‘corner round-
ing,’’ and ~d! ‘‘core breakup.’’ The squares in this and subsequ
figures represent the individual atoms arranged on a square la
of adsorption sites.
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1~d!#, which also involves a net breaking of one bond. Th
latter process is so named because it facilitates the brea
the ‘‘rectangular core’’ of a large cluster, which is necessa
for true long-range diffusion of such clusters.6,8

Detailed balance requires thathk5exp(2bJ)he and hc
5exp(2bJ)hr . For metal~100! systems, one typically ex
pects that6,8 hc!hk'hr!he , so the rates are not simpl
related to either the initial number or the net change in
number of bonds for the atomic hop. For larger clusters, i
necessary to also consider the very slow ‘‘edge breako
process of an atom from a straight edge, which involves a
breaking of two bonds. If the reverse corner rounding p
cess is allowed, edge breakout must be included with a
hb5exp(22bJ)hr in order to avoid violating detailed bal
ance. However, for the small clusters considered here,
edge breakout process is not relevant~and, in practice, it may
not be that important even for diffusion of larger clusters!.

Various other modifications to this basic model might
appropriate for a more realistic description of actual me
~100! systems. Most involve the introduction of concert
moves of more than one perimeter adatom. ‘‘Dimer she
ing’’ in square tetramers, wherein a pair of atoms on one s
of a square tetramer shears relative to the other pair, has
recently identified as playing an important role in tetram
diffusion. Other possibilities include ‘‘dimer edge hopping
and ‘‘trimer edge hopping’’ along straight edges and ‘‘dim
kink escape,’’ some of which can also be important. See R
7 and Sec. V. Another possibility is ‘‘efficient’’ corne
rounding via a concerted exchange process. This is perh
more likely at kink sites along otherwise straight edges~‘‘lo-
cal corners’’! than at ‘‘global’’ corners or extremities o
large rectangular clusters.

III. ANALYTIC MASTER-EQUATION FORMALISM

A. Basic formalism

We review and refine the formalism of Titulaer an
Deutsch,5 which provides an analytic treatment of clust
diffusion in the types of PD or TD models discussed in S
II. Here the number of particlesN in the cluster is fixed, as is
the numberC of accessible cluster configurations~different
shapes and orientations!. We label these configurations b
s,t,v,... with energiesEs ,Et ,Ev ,..., respectively. Perimete
hopping of atoms produces transitions between certain p
of configurations, say, froms to t with a ratehts and a cor-
responding displacement of the center of mass of the clu
by rts . The rateshts satisfy detailed-balance condition
hts exp(2bEs)5hstexp(2bEt). The probability Ps(r ,t) of
finding the cluster in configurations, with the center of mass
at position r ~measured in units of the lattice spacing!, at
time t, satisfies the master equation

d

dt
Ps~r ,t!5(

t,s
@hstPt~r2rst,t!2htsPs~r ,t!#. ~1!

We caution that if thes configuration atr can be obtained
from several t configurations with distinct locations~or,
equivalently, if thes configuration atr can transform to sev-
eral t configurations with distinct locations!, then t will ap-
pear a corresponding number of times in the sum with
appropriaterts . It should be noted that the possible locatio
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3226 PRB 59J. R. SANCHEZ AND J. W. EVANS
r of the cluster center of mass lie on a discrete lattice tha
‘‘finer’’ than the original lattice of adsorption sites.

Fourier transformationP̂s(k,t)5( r exp(2ik•r )Ps(r ,t)
naturally deconvolutes the spatial coupling in Eq.~1! and
reduces the master equations to a simplerC-dimensional lin-
ear evolution equation. Note thatP̂s(k50,t) gives thetotal
population Ps(t) of clusters with configurations at time t.
In terms of the vectorP̂(k,t) with components@P̂(k,t)#s

5 P̂s(k,t), one obtains

d

dt
P̂~k,t!5M= ~k!•P̂~k,t!, ~2!

where @M= (k)#st5hst exp(2ik•rst) for sÞt and 2(vÞshvs
for s5t, with appropriate modifications where multiple tra
sitions betweens and t or v8 are possible. All the eigenval
uesl i(k) ~with 0< i<C21! of M= (k) are real and negative
for k5uku.0. There is a single ‘‘acoustic branch’’i 50, say,
for which l0(k);Ak2 vanishes ask→0.5 Let Fi and qi

T

denote the biorthonormal right and lefti th eigenvectors of
M= (k), respectively, so thatqi

T
•Fj5d i , j . Then Q= j (k)

5Fiqi
T denotes the projector onto thei th eigenspace o

M= (k) and the solution to Eq.~2! has the form

P̂~k,t!5exp@M= ~k!t#•P̂~k,0!

5(
i>0

exp@l i~k!t#Q
= i~k!•P̂~k,0!. ~3!

Some minor modification to this formulation is required f
monomers since atomic hops lead to transitions to the s
configuration, in contrast to clusters withN.1.

We shall see below that the behavior ofP̂(k,t) for small
k is of primary interest in the context of diffusion. Since on
l0(k)→0 ask→0, it follows from Eq.~3! that for small k
one has

P̂~k,t!;exp@l0~k!t#Q= 0~k!•P̂~k,0!, as t→`. ~4!

From the properties ofM= and the detailed-balance conditio
on hst , it follows that q0

T→ET5(1,1,1, . . . ) andF0→Peq

as k→0, where @Peq#s5exp(2bEs)/Z, with Z5Ss exp
(2bEs). Thus the projector onto the ‘‘acoustic’’ eigenspa
satisfiesQ= 0(k)→PeqET ask→0.13

Finally, we determine the cluster diffusion coefficientD
defined in terms of the motion of the cluster center of masr
via the standard formulâr•r &;4Dt ast→`. By symme-
try, thex andy components of the center of mass thus sati
^x2&;^y2&;2Dt as t→`. If k5(kx ,ky) so that k25kx

2

1ky
2, then these quantities can be readily obtained as

^x2&5]2/]~ ikx!
2(

s
P̂s~k,t!uk50

~5!

^y2&5]2/]~ iky!2(
s

P̂s~k,t!uk50 .

Now, using Eq.~4! and the other results for smallk behav-
ior, one has that14

D5 1
4 ]2/]~ ik!2l0~k!uk50 . ~6!
is

e

y

Thus D can be obtained directly from an analysis of t
acoustic eigenvalue ofM= (k).

B. Quasiconfigurations for rapid edge diffusion

As noted in Sec. I of this paper, we are particularly inte
ested in the limiting behavior in the regime of rapid straig
edge hopping, i.e., largehe . This regime is often of mos
physical relevance for metal~100! systems. Our strategy her
will be to replace several isoenergetic configurations of
cluster, which rapidly interconvert via straight edge hoppi
processes, by a single quasiconfiguration. Specific exam
are given in Sec. IV. Within the above formalism, this n
only reduces the dimension of configuration space and t
the complexity of the analysis, but also provides greater
sight into the behavior in this regime. It is only necessary
make the following minor refinements in applying the abo
formalism:~i! the center of mass for each quasiconfigurat
is determined from a simple average of the center-of-m
locations of the constituent configurations and therts are
calculated accordingly and~ii ! the rate of transition from a
quasiconfiguration to some other configuration equals
product of the rate for the appropriate atomic hop facilitati
this transition and the probability that the quasiconfigurat
is in the appropriate initial configuration. For the latter, o
simply recognizes that the quasiconfiguration has an eq
probability of being in any of its isoenergetic constitue
configurations. Again, specific examples will be given in t
following section.

IV. RESULTS FOR CLUSTER DIFFUSION VIA PD
WITH SINGLE-ATOM HOPS

The formalism of Sec. III is now applied to calculate di
fusion coefficientsD for clusters of sizeN51 – 5 on a square
lattice. In the discussion and figures below, specified ra
refer to transitions from a specifics configuration to a spe-
cific t configuration with specific relative displaceme
~rather than the total rate for transitions to all possiblet con-
figurations!. Further details of the calculations, includin
center-of-mass displacements, are given in the Appendix

A. Monomer diffusion

Diffusion of a monomer~which has a single configura
tion, soC51! constitutes the classic example of a ‘‘pure
random walk in a discrete lattice model. Ifh0 is the rate for
the monomer to hop to each adjacent site, then it can
readily shown that̂x2&5^y2&52h0t for all t, soD5h0 .

B. Dimer diffusion

Here there are two configurations~horizontal and verti-
cal!, soC52. The only operative hopping process is corn
rounding, which leads to transitions between horizontal a
vertical configurations~see Fig. 2!. Since for each step in the

FIG. 2. Configurations and transition rates for dimer diffusio
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PRB 59 3227DIFFUSION OF SMALL CLUSTERS ON METAL~100! . . .
dimer’s motion there are four possible equally likely d
placements of its center of mass by~61

2,6
1
2!, the dimer’s

motion is also a pure random walk.12 In comparison with
monomer diffusion, it readily follows that̂x2&5^y2&5hrt
for all t, soD5hr /2.

C. Trimer diffusion

Here there are six configurations~two linear and four
bent!, soC56. These configurations are indicated in Fig.
as well as possible transitions between them and the as
ated transition rates. Both straight edge diffusion and cor
rounding are operative, where the latter is expected to be
limiting. Clearly, the six configurations occur with equ
probability ast→`. Analysis of the master equations show
that

D5 1
3 hrhe /~hr1he!

or, equivalently,

1/D53~1/hr11/he!. ~7!

InterpretingD as a ‘‘conductance’’ and thus 1/D as a ‘‘re-
sistance,’’ the latter is analogous to a series resistance
mula. This result is consistent with the feature that both h
ping processes are necessary for long-range trimer diffus
If hr50 but he.0, the trimer just cycles between the fo
configurations shown in the center of Fig. 3. In the artific
case wherehe50 but hr.0, the trimer can only rearrang
and rotate about a pinned central atom.

In the regime of largehe , there is a rapid cycling betwee
four distinct bent configurations in the center of Fig. 3. Th
ashe→`, we can replace these by a single quasiconfigu
tion, as indicated in Fig. 4~top!. Thus there remain two
linear configurations and one quasi-configuration, so nowC
53. Possible interconversions between these and assoc
rates are indicated in Fig. 4~bottom!. The ratehr /4 is asso-
ciated with the conversion of the quasi-configuration to
linear configuration by corner rounding because the forme
in the required bent configuration only1

4 of the time. The rate
hr describes the reverse process. Analysis of the ma
equations yieldsD5hr /3, consistent with Eq.~7!.

Finally, we mention another way to directly visualize b
havior in the limithe→`. We note that the centers of ma
of both horizontal and vertical linear configurations lie on t
same square grid with lattice constant unity~as for the grid
of atomic adsorption sites!. The centers of mass of the qu
siconfigurations lie on a second square grid with lattice c
stant unity, which interpenetrates the first. The center
mass can hop from the first grid to the second, rando
choosing any of four displacements~61

2,6
1
2!, each with rate

hr , and from the second to the first with the same displa
ments, each with ratehr /2. ~Thus, ast→`, the second grid
appropriately has twice the population of the first.! Analysis
of this biased random walk process again producesD
5hr /3.

D. Tetramer diffusion

Here there are 19 configurations~one square, two linear
four T, four Z, and eightL shapes!, so C519. All these
configurations occur with equal probability ast→`, except
,
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for the square configuration, which is more highly populat
by a factor of exp(bJ). Straight edge diffusion, corner round
ing, and core breakup are all operative. The latter is expe
to be rate limiting and since typicallyhc!hr , one expects
tetramer diffusion to be much slower than trimer diffusio
~in our basic model!.

Because of the large number of configurations for the
ramer, we consider only the regime of largehe , where there
is rapid cycling between fourL, two Z, and twoT configu-
rations. Whenhe→`, these eight configurations are replac
by a single quasiconfiguration, as indicated in Fig. 5~top!.
This leaves one square, two linear, and two quasiconfig
tions, so nowC55. Possible interconversions between the
and associated rates are indicated in Fig. 5~bottom!. The rate
hr /8 applies for the conversion of the quasiconfiguration t
linear configuration by corner rounding because the forme
in the requiredL configuration only1

8 of the time. The rate
hr /4 applies for conversion of the quasiconfiguration to
square configuration by corner rounding since the quasic
figuration is in one of two requiredL configurations1

4 of the
time. Conversion of a square configuration to either qua
configuration occurs at a rate 2hc because there are two path
ways involving core breakup. Quasiconfigurations interco
vert by corner rounding at a rate 3hr /8 since they are in the
required configurations38 of the time. Analysis of the maste
equations yields

D56hrhc /~hr118hc!

or, equivalently,

FIG. 3. Configurations and transition rates for trimer diffusio

FIG. 4. Quasiconfiguration for bent trimers~top! and configura-
tions and transition rates for the reduced description of trimer
fusion whenhe→` ~bottom!. The dot in this and several subse
quent figures provides a fixed reference point.
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1/D5 1
6 @1/hc118/hr #, ~8!

where the latter is analogous to a series resistance form
This result shows that both core breakup and corner roun
are necessary for tetramer diffusion. In practice, one exp
that hc /hr5exp(2bJ)!1, soD'6hc .

There is a consistency issue to be considered here.
have assumed thathr /he is negligibly small~or thathe /hr is
very large! in applying the quasiconfiguration approach, b
Eq. ~8! retains corrections toD'6hc of order hc /hr
5hk /he5exp(2bJ). This is reasonable forhk@hr . How-
ever, if hk'hr so hr /he is comparable tohc /hr , then there
may be comparable additional corrections toD'6hc that
must be determined from a full analysis withC519 configu-
rations.

Finally, we note that while Eqs.~7! and ~8! appear to be
analogous series resistance formulas, there are basic d
ences between trimer and tetramer diffusion. For trimer
fusion, both straight edge hopping and corner rounding
necessary for the cluster to move an arbitrary distance
contrast, tetramers can diffuse arbitrarily far through a
quence of nonsquare configurations, so core breakup is n
invoked. However, tetramer diffusion is still controlled b
core breakup since the noncompact cluster is guarantee
‘‘fall into’’ the square configuration, from which escape
mediated by core breakup.

E. Pentamer diffusion

A pentamer can assume the configuration of a square
ramer with an additional edge atom. One might theref
expect that true cluster diffusion would require disruption
the square core and thus be mediated by ‘‘slow’’ co
breakup ~the standard scenario for diffusion of larg
clusters!.6,8 However, an ‘‘easy’’ diffusion pathway exist
for pentamers that avoids the necessity for direct c
breakup, as was noted by Voter.6 This pathway, which is
shown in Fig. 6, demonstrates that pentamer diffusion is

FIG. 5. Quasiconfiguration for tetramers~top! and configura-
tions and transition rates for the reduced description of tetra
diffusion whenhe→` ~bottom!.
la.
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tually mediated by either corner rounding or kink esca
depending on which is less efficient~rather than by slow core
breakup!.

To simplify the analysis, we assume thathr andhk remain
finite and consider the limiting regime wherehe→`, which
in turn requires thathc→0 by virtue of detailed balance. W
also neglect ‘‘unfolding’’ of theC-shaped configuration in
Fig. 6 by corner rounding~immediately following kink es-
cape! to obtain L-shaped and linear configurations. This
justified since straight edge diffusion is much more likely
follow kink escape~as shown in Fig. 6!. Then there are jus
four quasiconfigurations of the pentamer, soC54. Each con-
sists of a square tetramer core, with an additional atom c
fined to one side, as shown in Fig. 7~top!. Possible intercon-
versions between these and associated rates are indicat
Fig. 7 ~bottom!. The ratehr /2 applies for the conversion via
corner rounding between one quasiconfiguration and ano
rotated by 90°, noting that the former is in the required co
figuration only 1

2 of the time. The ratehk/2 applies for the
direct conversion mediated by kink escape between
quasi-configuration and another rotated by 180°~the first two
steps in Fig. 6!. Here there is a probability of12 that after the
first kink escape steps, the pentamer returns to its orig
configuration rather than making the desired transiti
Analysis of the master equations yields

D5 1
8 hrhk /~hr1hk!

or, equivalently,

er

FIG. 6. Easy pathway for pentamer diffusion~see Ref. 6!.

FIG. 7. Quasiconfiguration for pentamers~top! and configura-
tions and transition rates for the reduced description of penta
diffusion whenhe→` ~bottom!.
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1/D58~1/hr11/hk!, ~9!

where the latter is analogous to a series resistance form
This result is consistent with the feature evident from Fig
that both corner rounding and kink escape are necessar
pentamer diffusion.

F. Diffusion of larger clusters

For sexamer diffusion, clearly core breakup is required t
disrupt the rectangular 233 configuration and will thus me
diate diffusion~as it does tetramer diffusion!. We note that
edge breakout is possible for the 233 sextamer configura
tion, unlike for smaller clusters. In general, this process m
be incorporated in the modeling to ensure detailed bala
~as is the case for larger clusters!. However, in the limiting
regimehb!hc!hr'hk!he , one can effectively ignore this
edge breakout process sincehb!hc . The reverse corne
rounding process is correspondingly rare since the requ
initial five-bonded configuration has such a low populati
~even compared to the ‘‘transient’’ six-bonded configu
tions, which are accessed during diffusion by core brea
from the typical seven-bonded 233 configuration!.

For septamer diffusion, the typical cluster configuration i
a 233 rectangle with an additional edge atom. One mig
therefore expect that true cluster diffusion would require d
ruption of the rectangular core and thus be mediated by s
core breakup. In fact, an easy diffusion pathway exists, a
to that for pentamers, which just requires kink escape
corner rounding~as well as straight edge hopping!. See Fig.
8.

For the diffusion of larger clustersthat have typically
near-square or near-rectangular configurations, breaku
the rectangular core at a ratehc appears necessary and wou
thus mediate true long-range diffusion.6,8 This is clearly the
case for diffusion of octamers, nonamers, and decam
which can be trapped in 234, 333, and 235 configura-
tions, respectively. We note that it is often possible to mo
clusters arbitrarily far with a sequence of atomic hops
explicitly including core breakup. However, such motion i
variably includes successive kink escape processes or
escape and corner rounding processes, for which the e
tive rate is always comparable to or lower than that for c
breakup~see below!.

It is instructive to discuss the specific example of the e
lution of a decamerstarting from a 333 square configura
tion with an additional edge atom~a 33311 configuration!.

FIG. 8. First part of the easy pathway for septamer diffusi
Subsequent movement of the atom on the bottom edge to the c
of the top edge recovers the original~but shifted! configuration.
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Motion of the additional atom around the periphery, me
ated by corner rounding, cannot produce nonlocal clus
motion. However, nonlocal motion is possible through t
sequence of moves not requiring core breakup, some
which are shown in Fig. 9. Despite this fact, the effective r
for the first two kink escape steps equalsreqhk , wherereq
'exp(2bJ) gives the probability of finding the second co
figuration relative to the first.~From a kinetic perspective
after the first kink escape step, the atom is most likely
return to the kink via rapid edge hopping.! This effective rate
is actually comparable tohc . Note also that the decame
must eventually fall into a 532 configuration~which has the
same configuration energy, and thus probability of occ
rence, as the 33311 configuration! and from which escape
is mediated by core breakup.

V. RESULTS FOR CLUSTER DIFFUSION
WITH CONCERTED MOTION OF ATOMS

A. Tetramer diffusion via ‘‘dimer shearing’’

Here we modify the basic model of tetramer diffusion
Sec. IV. We now incorporate an additional concerted dim
shearing process proposed by Shiet al.,7 wherein a pair at-
oms on one side of a square tetramer shears at a raths
relative to the other pair to produce aZ-shaped configura-
tion. For consistency, one must also incorporate the rev
shearing process with much larger ratehs8 satisfying the
detailed-balance conditionhs85exp(bJ)hs. See Fig. 10.

We analyze this model only in the regime wherehe is
much larger than all other rates. This is motivated by
expectation thathe@hs8@hr'hk@hs@hc . Thus, as he

→`, we can treat the eightL, Z, andT configurations in Fig.

FIG. 10. ‘‘Dimer shearing’’ and ‘‘reverse shearing’’ of tetram
ers. # indicates the transition state.

.
ter

FIG. 9. First part of a pathway for decamer diffusion. Subs
quent movement of the atom on the bottom edge to the center o
top edge recovers the original~but shifted! configuration. Due to
successive kink escape processes, the effective rate is compara
that for core breakup.
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5 ~top! as a single quasiconfiguration and thus reduce
system to the same square, two linear, and two quasicon
rations shown in Fig. 5~bottom!, so C55. The only differ-
ence from the previous treatment of tetramer diffusion is
additional pathways for conversion between the square
quasiconfigurations. The rate 2hs applies for conversion o
re
m

rs
s

s
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e
o

l

t
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m
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m
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the square configuration to a specific quasiconfiguration
dimer shearing since there are two possible pathways.
ratehs8/4 applies for the reverse process since the cluster i
the required configuration28 of the time. Detailed analysis
reveals that
D/hs5
1113~hr /hs8!1~hc /hs!142~hr /hs8!113~hr /hs8!~hc /hs!142~hr /hs8!2~hc /hs!

118~hr /hs8!118~hs /hs8!17~hr /hs8!21126~hr /hs8!~hs /hs8!118~hc /hs!~hs /hs8!1126~hr /hs8!~hc /hs!~hs /hs8!
.

~10!

Imposing detailed-balance constraints on the rates in the above expression and settingm5hr /hs85hc /hs , one obtains

D/hs5
1114m155m2142m3

118m118 exp~2bJ!17m21144m exp~2bJ!1126m2 exp~2bJ!
. ~11!
g

lso

mer

er
rall

ge
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Thus, in the regime where exp(2bJ)!m!1, one hasD
'hs .

As in the treatment of tetramer diffusion in Sec. IV, the
is a consistency issue to be considered. We have assu
thaths8/he is negligibly small~or thathe /hs8 is very large! in
applying the quasiconfiguration approach, but Eq.~10! re-
tains corrections toD'hs of order m5hr /hs85hc /hs and
also much smaller corrections. This is exact ifhk and he
diverge relative to the other rates, but ifhk'hr , there may
be comparable additional corrections toD'hs .

B. Diffusion of larger clusters

Here we briefly reconsider the diffusion of pentame
sexamers, etc., accounting for possible concerted move
more than one perimeter atom. It was already recognized
Shi et al.7 that a dimer shearing process with a ratehs@hc
~see Sec. V A! would likely control the diffusion of sexamer
and octamers, as well as the diffusion of tetramers. In a
lyzing the diffusion of other larger clusters, we are motivat
to consider the possible role of concerted dimer edge h
ping along straight edges at ratehde , particularly given the
expectation that hde@hk based on semiempirica
calculations.7 Indeed, this rapid process with ratehde can
replace the first two steps~kink escape followed by straigh
edge hopping, with a much lower effective rate ofhk/2! in
the easy pathway for pentamer diffusion~Fig. 6! and in that
for septamer diffusion~Fig. 8!. As a result, it is clear tha
pentamer and septamer diffusion via these easy pathw
will be limited not by kink escape or dimer edge hoppin
but rather by corner rounding at a ratehr ~cf. Ref. 7!.

Next we consider again the evolution of adecamerfrom a
33311 configuration, augmenting the discussion in S
IV F. We have already noted that with only single ato
moves, nonlocal motion is controlled by an effective ra
comparable to that for core breakup. However, dimer k
escape at a ratehdk , followed by straight edge hopping@see
Fig. 11~a!#, can replace the first three steps in Fig. 9. Fro
detailed balance one hashdk5exp(2bJ)hde and since one
might expect thathe@hde@hk'hr@hdk@hc , it follows that
ed

,
of

by

a-
d
p-

ys
,

.

k

dimer kink escape can mediate evolution from this 333
11 configuration. Another possibility is trimer edge hoppin
along straight edges at a ratehte @see Fig. 11~b!#, which can
also replace the first three steps in Fig. 9 and could a
mediate this evolution since it is likely thathte!hc .

It should again be emphasized that eventually the deca
will fall into the 532 configuration~which should have
similar configurational energy to the 33311 configuration!
and from which escape is presumably mediated by dim
shearing. Thus dimer shearing should also mediate ove
decamer diffusion~unless dimer kink escape and trimer ed
diffusion are slower!. In this case, one would expect an a
tivation barrier for decamer diffusion very close to that f
octamers or sexamers, each of which is mediated by sim
dimer shearing. However, experimental data for t
Rhn /Rh~100! system1 reveals a substantially lower activatio

FIG. 11. Pathways for decamer evolution from the 33311
configuration, which involves~a! dimer kink escape and~b! trimer
edge hopping. # indicates the transition states.
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barrier for decamer diffusion than for sexamer and octam
diffusion. This suggests that the 532 decamer configuration
was not accessed in the experimental observation tim
speculation that has been confirmed by further analysis of
original experimental data.15

VI. CORRELATIONS IN THE MOTION OR WALK
OF CLUSTERS

Diffusion of monomers and dimers, according to t
model presented above, is described by a ‘‘pure’’ rand
walk, i.e., the mean-square displacement increases ex
linearly for all times, i.e.,̂ r 2&54Dt for all t. However, for
trimers and larger clusters, we shall see that the mean-sq
displacement typically increases ‘‘more rapidly’’ initially
before achieving a slower asymptotic linear increase sati
ing ^r 2&;4Dt. The rapid initial increase is generally in
duced by the faster perimeter hopping processes. The l
range motion is mediated by a slower rate controlli
process. Thus the ‘‘time-dependent diffusion coefficien
D(t)5^r 2(t)&/4t exhibits adecreasefrom an initial high
value ~controlled by the faster hop rates! to its lower
asymptotic value ofD. Such a decrease is the signature o
backward correlation in the cluster’s walk.8,12 Exact analytic
determination of this behavior is possible using the form
ism of Sec. III, but for convenience below we utilize kinet
Monte Carlo simulation techniques.

In the case of trimer diffusion withhe@hr , if one starts
from a bentconfiguration, the center of mass will jump ra
idly at a ratehe between four locations, as the trimer cycl
between four bent configurations~constituting the single
quasiconfiguration discussed in Sec. IV!. A simple calcula-
tion shows that̂ r 2& increases rapidly to around19 on a time
scale of the order of 1/he . Thereafter, the increase in^r 2& is
slower on a time scale of order 1/hr , being mediated by
corner rounding, so the overall behavior reflects a backw
correlation~cf above!. Starting from alinear configuration,
one finds a roughly linear increase in^r 2& for all times~on a
time scale of order 1/hr!. Here this increase for very sho
times is already controlled by corner rounding and is actu
slower than the asymptotic increase. Performing an equ
rium average over all initial configurations again yiel
backward correlation behavior. See Fig. 12. Finally, we n
that a more comprehensive analysis of limiting behavio
possible using quasiconfiguration ideas.

Analogous and sometimes more complicated behavio
observed for larger clusters. In the case of tetramer diffus
with he@hr@hc , if one starts from anL, T, or Z configura-
tion, the center of mass will jump rapidly at a ratehe be-
tween that of eight configurations constituting a single q
siconfiguration discussed in Sec. IV. Thus^r 2& increases
rapidly on a time scale of order 1/he to around13

64,
9
64, and5

64

for initial L, T, andZ configurations, respectively. Then^r 2&
will increase more slowly on a time scale of order 1/hr as the
tetramer makes transitions to linear and toL, T, andZ con-
figurations not included in the initial quasiconfiguration, b
fore eventually becoming ‘‘trapped’’ in a square configur
tion. Thereafter, the increase in̂r 2& is slower, being
mediated by core breakup. Distinct behavior is found start
with linear or square configurations.
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VII. CONCLUSIONS

An exact analytic treatment of cluster diffusion of th
type presented above in principle provides the most comp
understanding of this phenomenon. Such studies quantify
role of competing kinetic pathways to diffusion~often ex-
ploiting series resistance or electrical network analogies4,5!
and facilitate analysis of limiting regimes. We have show
that concerted adatom moves, which can sometimes con
cluster diffusion~cf. Ref. 7!, can also be incorporated. A
fundamental problem remains in that the size or dimens
of the analytic calculation is given by the number of clus
configurations, which increases exponentially with size. T
introduction of quasiconfigurations in this work serves
reduce this dimension. Another strategy that we plan to c
sider in future work is to restrict the number of configur
tions of large clusters by limiting ‘‘excitations’’ about
near-square or near-rectangular shape.
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APPENDIX: ACOUSTIC EIGENVALUE ANALYSIS
FOR M= „k…

To determine the acoustic eigenvalue ofM= (k) it is suffi-
cient to analyze the determinant5

det@M= ~k!2lI=#[ (
0<n<C

Cn~k!ln

sincel0(k);C0(k)/C1(k) ask→0. One can actually show
that5 C0(k)5(21)CA0k21O(k4) and that C1(k)
5(21)CA11O(k2), so D5A0 /A1 . Determination ofC0

FIG. 12. Simulation study of trimer diffusion withhe /hr5100
showing^r 2(t)& versushrt for initially bent and linear configura-
tions and for the equilibrium average initial configuration. The in
shows the behavior ofD(t)/hr→100/303 ashrt→` for the latter.
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and C1 and their Taylor expansions ink can be easily per-
formed usingMATHEMATICA . Again, here we set the surfac
lattice constant to unity.

1. Monomer diffusion

Here possible center-of-mass displacements arer
5(61,0) or ~0,61!, occurring with a rateh0 , and one has

M ~k!52h0@cos~kx!1cos~ky!22#5l0~k!,

so A05h0 , A151, andD5h0 .

2. Dimer diffusion

Here possible center-of-mass displacements for tra
tions between horizontal and vertical configurations arer
5(6 1

2 ,6 1
2 ), occurring with a ratehr , and one has

M= ~k!54hr S 21
cos~kx/2!cos~ky/2!

cos~kx/2!cos~ky/2!

21 D ,

so A054(hr)
2, A158hr , andD5hr /2.
o
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u

d
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nt
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g
v

i-

3. Trimer diffusion

Consider first the full analysis with four bent and tw
linear configurations, soC56. See Fig. 3. Possible cente
of-mass displacements for transitions between bent confi
rations in the center of Fig. 3 arer5(6 1

3 ,0) and~0,61
3! and

between bent and linear configurations arer5(6 1
3 ,6 1

3 ).
Transition rates are also indicated in Fig. 3. We do n
present the full 636 matrix M= (k), but just give the results
of the determinant analysis in terms ofG5he /hr . One finds
that

A05~hr !
6@64G1192G21128G2#,

A15~hr !
5@1921768G1960G21348G3#,

so D5(hr /3)G/(11G).
We now turn to the simpler analysis forhe→`, where the

four bent configurations are treated as a single quasiconfi
ration, so with the two linear configurations one now hasC
53. See Fig. 4. Possible center-of-mass displacements
tween the linear and quasiconfigurations arer5(6 1

2 ,6 1
2 ).

Transition rates are indicated in Fig. 4. One has
M= ~k!5hrS 24
0

4 cos~kx/2!cos~ky/2!

0
24

4 cos~kx/2!cos~ky/2!

cos~kx/2!cos~ky/2!

cos~kx/2!cos~ky/2!

22
D ,
odel
n

be-

are
7.

s-
the
stic
where the top two components correspond to the linear c
figurations and the bottom one to the quasiconfigurati
Thus one finds thatA058(hr)

3 and A1524(hr)
2, so D

5hr /3, consistent with the above general result in theG
→` limit.

4. Tetramer diffusion

Here we consider only the simplified analysis forhe
→`, with one square, two linear, and two quasiconfigu
tions, soC55. See Fig. 5. Possible center-of-mass displa
ments for transitions between the square and quasiconfig
tions are r5(6 1

2 ,0) and ~0,61
2! and between linear an

quasiconfigurations arer5(6 1
2 ,6 1

2 ). Transition rates are
also indicated in Fig. 5. Here, we do not present the ful
35 matrixM= (k), but just give the results of the determina
analysis in terms ofL5hr /hc5exp(bJ). One finds that

A05168~hc!
5L4, A15~hc!

4L3~28L1504!,

so D56hcL/(L118).

5. Tetramer diffusion via dimer shearing

Here again we consider only the simplified analysis
he→`, with the same configurations as for the above st
dard model of tetramer diffusion, soC55. Thus we just
include an additional pathway from square and quasiconfi
rations via dimer shearing and for the reverse process
reverse shearing. We setF5hs8/hr , C5hs /hr , and q
5hc /hr . Then a detailed analysis reveals that
n-
.

-
-

ra-

r
-

u-
ia

A05~hr !
5@4F2C152FC14F2q

1168C152Fq1168q#,

A15~hr !
4@4F2132F172FC128

1504C172Fq1504q#,

consistent with the above expressions for the standard m
~upon settingF5C50!. These results yield the expressio
for D reported in the text.

6. Pentamer diffusion

Here we consider only the simplified analysis forhe→`
andhc→` with four quasiconfigurations, soC54. See Fig.
7. Possible center-of-mass displacements for transitions
tween the 180° rotated quasiconfigurations arer5(6 3

5 ,0)
and ~0,6 3

5! and between 90° rotated quasiconfigurations
r5(6 3

10 ,6 3
10 ). Transition rates are also indicated in Fig.

We do not present the full 434 matrix M= (k), but just give
the results of the determinant analysis in terms ofV
5hk /hr . One finds that

A05~hr !
4V~11V!/4, A152~hr !

3~11V!2,

so D5 1
8 hrV/(V11).

7. General comments

It is appropriate to note that further simplification is po
sible in some of the above analyses. Special features of
master equations can endow symmetries on the acou
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eigenspace ofM= (k) for arbitraryk, thus leading dimensiona
reduction and simpler determination ofl0(k). For the
dimer problem, both components of the acoustic eigenve
are equal, which immediately implies thatl0(k)
l
t

d

.

e

A

J

or

54hr@cos(kx/2)cos(ky/2)21#. For the full trimer problem,
as well as for the simpler analysis incorporating a quasic
figuration whenhe→`, both components for linear trimer
are equal.
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