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Quantum chaos on ordered structures by scattering techniques:
Application to low-energy electron diffraction
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We analyze statistical probability distributions of intensities collected using diffraction techniques such as
low-energy electron diffractiofLEED). A simple theoretical model based on hard-sphere potentials and
LEED formalism is investigated for different values of relevant parameters: energy, angle of incidence, muffin-
tin-potential radius, maximum spherical componépt,, number of stacked layers, and full multiple-
scattering or kinematic model. Given a complex enough syseeqn, including multiple scattering by at least
two Bravais lattices the computed probability distributions agree rather well wil;h%a)ne, characteristic of
the Gaussian unitary ensemble universality class associated with quantum chaos. A hypothesis on the possible
impact of the chaotic nature of wave functions on correlation factors is tested against the behavior of the
PendryR factor and the root mean square deviation fadt®0163-1829)00804-§

[. INTRODUCTION vantage of providing an unequivocal object to be studied and
a corresponding well defined methodology. In this paper we
There is much interest in the role of chaos on quantunadopt this statistical approach and having in mind the results
systems. The important consequences of chaos on classidg@m RMT, we study the probability distributions associated
systems motivate extending the Study of chaos to the quarYVIth wave functions relevant for popular surface structure
tum physics world. It is difficult, however, to explore quan- techniques, such as low-energy electron diffracibBED)
tum chaos by connecting the quantum and classical formul&®’ X-ray photoelectron diffractiofPED). Wave functions

tion using special limitd. Therefore, a group of pioneering potentially provide more information than the mere ins_pec_—
tion of levels and are also the natural objects to be studied in

investigators adopted a long time ago a point of view inde-h | hni find that th
pendent of any classical or semiclassical approach to chaodhese scattering techniques. We ind that the computed prob-

In this approach the object of interest is a Hamiltonian com—ébi”ty distributions_mat_ch closely_the statistics of f[he eigen-
posed of random numbefsandom matrix theoryRMT)].%* functions of a Hamiltonian belonging to the Gaussian unitary

conjectured by Wigner, Dyson, and others o be a reIevanZnsemble(GUE)' This is the universality class relevant to a

: . . cattering experiment, i.e., to an open geometry, where the
prototype for quantum chaotic behavior. A further conjectureenergy takes values in the continudgood quantum num-

by Porter and Thomasestablished the probability distribu- bers characterizing the wave function are the energykand

tion to be expected for intensities related to a typical chaotig, e surface Therefore, we take a fresh look at the physi-
wave function:)(,z,. This is a function that gives the probabil- 5 system and advance the hypothesis that the good struc-
ity distribution of intensities/(l), over the spatial support of tyral sensitivity of these techniques can be also understood as
the wave function at a given energji { is the corresponding a manifestation of quantum chaos on the wave functions.
mean valug Later on, Dyson demonstrated that the param-This conjecture is tested for two standard correlation factors
eterv can take only three different valuése., 1, 2, and 4, widely used to measure thdistancebetween a reference
depending on the Hamiltonian to be constructed with realstructure(usually the experimental opand a trial one cal-
complex, or quaternions numbgr©n the other hand, start- culated theoretically. The results point in the same direction
ing from a semiclassical analysis, Berry suggested that @s the statistical analysis of wave functions since we find that

typical wave function for a chaotic system could be formedthere is a region where the correlation factor grows at an
by an infinite superposition of plane waves traveling in ran-exponential rate.

dom directions and with random phase#lorking with this Even if our analysis is not directly linked to classical
important conjecture, Berry was able to show that the probphysics, it is worth mentioning that for every quantum sys-
ability distribution for those wave functions iB(1/{I))  tem we have considered its classical analog behaves chaoti-
=e ", with I =y*, and that the space-averaged spatialcally due to the intrinsic complexity of the many-scatterer
correlation of the wave functiofat a fixed energyis pro-  problem®® As the classical problem might behave chaoti-
portional to the zeroth-order integer Bessel function. Finally cally even if the scatterers are regularly distributed, it is sur-
the application of a supersymmetry formalism has producegbrising to find such a vast literature on quantum chaos re-
a rigorous deduction of the probability distributions associ-lated to some kind of disorder, but such little consideration
ated with a nonlinear supermatrix model! which under  of ordered systems because, using the classical analog to
certain assumptions can be shown to be equivalent to RM§uide intuition, it is not clear why quantum chaos should not
and results in the Porter-Thomas distributfon. to be found in perfectly ordered systems. Recently, Mucciolo
It is clear that RMT bears some limitations, derived par-et al1° have shown that the high-energy region of the calcu-
ticularly from its statistical nature. However, it has the ad-lated band structure of crystalline Si is complex enough to
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follow the statistical distribution of levels expected for the in Sec. IV the impact of our previous findings on the statis-

Gaussian orthogonal ensemble universality class. Inspired idjcal correlation factorgR factorg widely used in LEED or

these ideas, we have also presented a preliminary worRED to assess the confidence on a structure predicted by

studying the statistical properties of LEED statesn or-  theory. This is usually done by a trial and error fit, compar-

dered materials. Of course, the LEED problem is related tdng theoretically calculated diffracted intensities with the ex-

the band structure analysis, its main advantage being mereBeriment. The usual rules are as simpleiaghe lower theR

practical, because of the readily available experimental datgctor the better andii) the R factor should represent a

to test theoretical findings. (hopefully global minimum. In practice, becausg t.here is no
Berry has studied the Sinai billiard by mapping the prob-Way to secure a real gIong minimum in a multidimensional

lem to a periodic array of hard circles on a pldAelhis parameter space, the recipe of getting a_Iow-enough value

problem can be solved efficiently applying a Korringa-Kohn-becomes the only guide _to t_rust or r_10t a given structure. We

Rostoker formalism. His method not only has a number offhall see how a new criterion adding to the others can be

computational advantages, but also allows a detailed analysfPtained by identifying the existence of a region whereRhe

for the different role played by nonisolated and isolated orfactor changes quicklyexponentially from values typically

bits contributing to the wave functions. It is interesting to ©Ptained from the application of perturbation theori (

notice that the nonisolated orbits add to the complexity of thé=0) to values representative for uncorrelated intensities (

system only through the boundaries defining the billiard.~1). We argue that this exponential dependence is a conse-

Therefore, although their role is non-negligible to the deter-quence of the chaotic nature of wave functions obtained in a

mination of the chaotic nature of the levels in the closedcomplicated multiple-scattering scenario.

system, they do not contribute to the open problem of scat-

tering. In other words, paths that never strike a disk do not Il. SIMPLIFIED MODEL OF ELECTRON MULTIPLE

contribute to the reflectivity of a surfadéke in LEED) or SCATTERING BY AN N SCATTERER:

they are deliberately removed from the analysie in PED HARD-SPHERE POTENTIALS

or diffuse LEED(DLEED)] due to their lack of useful struc-

tural information. In scattering experiments, these paths

would be characterized by a probability distribution given by ~We analyze first the simplest case related to our problem:

x2 (a Dirac’s & function). Therefore, the study of an open the scattering of a plane waed” by a single atomic poten-

system allows one quite naturally to separate the influence dfal modeled by a hard-sphere of radigs* The scattered

nonisolated and isolated orbits because the nonisolated oné&@Ve is given asymptotically by

A. Scattering by an isolated potential

yield only a trivial contribution, in contradistinction to the ik
essential entanglement between both types in the bound ek f () —, (1)
problem. r

The organization of this paper is as follows. The scatteryitp
ing of a plane wave by an ordered array of hard-sphere po-
tentials is analyzed in Sec. Il by applying a LEED formal- 1
ism. This is a good analog to Berry’s work on Sinai's billiard fu(0)=1 I_Eozw VAT (21+1)t(K)Yio(6), 2
from a scattering point of view, although some important e
differences remain(e.g., it is a genuine three-dimensional where
system. The hard-sphere model is interesting from a theo- 5
retical point of view because of the strong similarity with the ti(k) =e"Isin(4))
billiard problem and also because its analysis uses the samg, 45
basic tools employed in the solution of the diffraction by a
surface. Certainly, the usual approach to the LEED i1 i+ 12(kR)
problent? starts by computing the diffraction matrices for a o)(k)=arctan(—1) I, kR’
single layer and then proceeds by stacking layers by different Sy
methods. In practice that means solving first the multipleThe hard-sphere potential can be compared with a realistic
scattering probleminside a layer and then the multiple- one representing a Ni atom by computing the total scattering
scattering problerbetweerlayers through a stacking process cross section. As an example, at an intermediate energy such
that finally recreates the material bulk, or at least a thickksE=5 a.u., this cross section is about 20% less for a hard
enough slab. The use of hard-sphere potentials simplifies thgphere havindiR=1 a.u. than for the Ni atom, while fdR
computational problem, allowing the identification of the key =2 a.u. it becomes three times bigger.
physical elements responsible for the appearance of the Figure 1 displays the probability distribution function for
Porter-Thomas probability distribution. Following the strat- intensities scattered by this model at constant energy when
egy of introducing the complexity step by step, we start bythe angleé is varied. This is compared with the Porter-
computing the reflection and transmission matrices for ondhomas law characteristic of a chaotic system to stress the
layer of hard-sphere potentials. Those layers are then stackelifferent statistical behavior. Only two parameters are rel-
to form a fcc crystal with an arbitrary lattice parameter bor-evant to this experiment: the length scaR<2 a.u.) and
rowed from copper. Section Ill gives a similar analysis for athe energy scale. The approximate semiclassical kite
LEED problem trying to represent realistically a few selected~I ., gives us some rough value for the maximum compo-
materials. Results corresponding to both DLEED and connent in the spherical wave expansion, and twice that value is
ventionall (E) analyses are discussed. Finally, we consideused in all our calculationsl {,,=20). Because the phase
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FIG. 1. Probability distribution for the scattering of a plane FIG. 2. Probability distributiqn of wave functions reflected by
wave by a single hard-sphere potenti@B=2 a.u.). Three energies one layer of ha_rd-sphere potentials. ResultsHer2 a.u. and three
(in a.u) are shownE=2 (short-dashed line E=5 (long-dashed different energl_es are showk:=2 a.u._(long-dashed ling 5 a.u.
line), andE = 10 (dotted ling. The thick solid line is tha 2 function  (Short-dashed line and 10 a.u(dotted ling.
corresponding to the GUE wave-function statistics.

minus sign denotes propagation towards the vacuum where

shifts bring some nontrivial dependence loR through the the original wave was originated and a plus sign propagation
spherical Bessel functions, the results for three different enin the opposite direction
ergy values spanning the range of interest are given to illus- Figure 2 shows the wave-function statistical distributions
trate this dependence. Basically, the same statistical pattefiptained for a two-dimensional square lattice of hard-sphere
is found, reflecting the smooth variation of the scatteringPotentials at nearest-neighbor distances taken from a
factor (modulated by the forward pepKThis probability dis-  CW(100) surface(4.82 a.u). Internal parameters relevant for
tribution is remarkably similar to the one found for the typi- the calculation are kept to the same values as the preceding
cal wave function of a chaotic system when too few randonfase R=2 a.u. andy,,=20). An arbitrarily small positive
components are used. imaginary par; is added to the energy to give the Green’s
functions the required analytical behavior. The physical ef-
fect of such a mathematical trick is to ensure the proper
decay of waves at infinity. The actual value used in our cal-

The same statistical probability distribution is expectedculations isVy=0.001 a.u., small enough compared with
for the diffraction of a single Bravais lattice in the kinematic all relevant energies as not to have any noticeable effect
approximation at normal incidence, where all the atoms scatKambe’s methotf is used to compute the lattice summation
ter the plane wave at the same time and are equivalent bend about 2300 lattice points are inclugle@iven these val-
cause of the Bravais-like symmetry. In this approximation,ues for the internal parameters of the model, intensities still
the lattice is merely contributing a structure factor composediepend on external parameters that typically will be explored
of & functions centered around Bragg conditidhslowever,  in real experiments: the energy and the incident and collec-
by taking an appropriate limit on the full dynamical result, tion angles. In our previous wotkwe have studied the sta-
we shall see that this is not the case when the angle of inciistical probability distribution in scattering intensities vary-
dence is variedcf. Fig. 4 because of tha sin(¢) extra path  ing the collection angléDLEED) and the energystandard
added to each scatterer in the plame=Q,©). I (E) LEED analysig, but at a fixed incident angle defined by

To proceed gradually from simple to more complicatedd and ¢. In this paper we increase the database size by
systems, we now analyze the diffraction matrix of a singleconsidering different initial incident directions on a solid

B. Electron diffraction by a plane of scatterers

two-dimensional Bravais latti¢&5’ angle centered aroun=0° and 30°-40° wide. As the en-
ergy is the main external parameter controlling the experi-
8] ment, the. results for three different energies span.ning the
Mgt gt=— E eld'sin(8,) range of interestE=2, 5, and 10 a.y.are systematically
99 |K5|K(§,’Z Lml’ m’ shown for comparison. We remark that the trivial Iim& is
. recovered at fixed energy from E@) for | ,,5,=0 or, alter-
X{i'(—l)"‘Y,_m(Kg)} natively, whenR—0, which eventually would make only
one spherical component necessary, eliminating the depen-
1 _p . dence on the anglé or ¢. All the parameters used in our
X(lT{I Y,,m,(Ké,)}. (3 model correspond to realistic values used in real LEED ex-
“AN)Im,'m’

periments, except for the very small imaginary part for the
. ) ) , ) optical potential. In a typical LEED experiment the inelastic

This expression gives the complex amplitude diffracted fromeraction is strong, concentrating the diffraction process on
an ingoing beank " into an outgoing on& ;, . Therefore, it the vicinity of the surfacéwhich explains the sensitivity of

is the basic quantity needed to compute the reflecBon the experiment to small atomic displacements in the last few
=M™~ and transmissioT=1+M"* of just one layefa layers. This can be taken into account effectively by includ-
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FIG. 3. Dependence of the wave-function probability distribu- . ) ) .
tion on the hard-sphere radius. Results =10 a.u. andR FIG. 4. Full dynamical model for a single Bravais latticlotted

=2.0 a.u.(dotted ling, 0.2 a.u.(dashed ling and 0.02 a.u(long- line) compared to a kinematic oridashed ling The parameters for
the calculation ar&=10 a.u., R=2 a.u., and 5= 20.

dashed lingare shown.
Thomas distribution, although the inclusion of intralayer

ing a large optical potentiak¢0.1-0.2 a.u.) in the energy. multiple scattering gives a distribution closer to the ideal

However, it is important to realize that the experiment isone.

conceived as purely elastic and electrons having lost some

energy do not contribute to the detected intensity. Realistic C. Electron diffraction by a stacking of planes

values have been used previously to make contact with of hard-sphere scatterers

experimentst and now we are more interested in isolating

H 3
the physical effects related to a complex behavior. ThereforeH We uhse thelayer (ljoubhngschemé tcl)( StaCkf Iayersfof |
we choose to work in the limW/y;— 0 to minimize the effect ard-sphere potentials. Layers are stacked to form a fcc lat-

of this value and we shall discuss the role of this paramete}lce’ borrpwm_g the intralayer dlstanc_es fr_om COpper, as b_e-
ore. Taking into account the small imaginary part used in

In more dEta'.I in Fig. 6. The acf[ual computer codg used is %ur calculations, we should at least double the width of the
modern version of routines given by Penél?yngre 2

) . . ; lab up to distances of aboly~ \2E/Vy;, approximately
e e e e oo dncluing 1000 ayers. This s o practc orecessar. e
) i . e only slowly double the slab size to investigate the influ-
the ideal Porter-Tho_ma_s law, Irrespective of the energy. . ence of the layer width on the statistical distribution.

Next, the energy is fixed at some arbitrary representative s js jllustrated in Fig. 5 for four different widths: 2, 4,
value E=10 a.u.) and the dependence of the statisticag ang 16 layergor comparison, the result for 1 layer can be
probability distribution of a two-dimensional Bravais lattice {oung in Fig. 4. Other parameters are fixed to the same
on the size of the hard-sphere potential is studied. Figure ajues previously used to isolate features only associated to
gives the statistics for three different sizes of the hard-sphergye slab width. It is easily appreciated how the statistical
radius. AsR— 0, the reflected intensities also become negli-distribution tends more to behave like the ideal Porter-
gible. From a computational point of view, we do not expectThomas one as the width is increased. It is difficult to math-
this limit to be strictly accessible for a numerical experiment
because the computer zero, determined by a numerical un-
derflow, might be contaminated by roundoff errors with a 1.0
statistical distribution not knowa priori. Average values for
the intensities aE=10 a.u. are 1.810 2, 2.5x10 %, and
4.1x 10 ©, respectively, foR=2, 0.2, and 0.02a.u). Fig- 0.1
ure 3 shows the tendency of the probability distribution to-
wards 2, associated with the constant value corresponding
to a very small radius value. As the main interest in this case
is to show the behavior near the origin, we have skipped the
usual log-log plot, well suited to manifest the fast exponen- 0.0014
tial decay, but not so useful to stress the behavior near the S — L
ongin. . 0.1 1.0 10.0

To understand the role of the complexity created by the
. . ) . /<>
intralayer multiple scattering versus the geometrical factor of
different incident angles, we have artificially made the infra- £, 5. Reflected intensities statistics of a full dynamical calcu-
layer scattering matrix equal to zer®=0. The result is |ation of a slab of increasing width: The numbers of stacked layers
shown in Fig. 4 for fixed values o, R, and |, Itis  are 2(dotted ling, 4 (dashed ling 8 (long-dashed ling and 16
observed that the kinemati¢-scatterer problem analyzed for (double-dash—double-dotted linedther computational parameters
different incident angles already approximates the Porterare given in Fig. 4.

P(t/<>)

0.01-
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FIG. 6. Probability distributions for a 16-layer slab for different
imaginary parts added to the energd}s;=0.001 a.u(thin continu-
ous line andVy=0.1 a.u.(dotted ling. Other computational pa-
rameters are given in Fig. 4.

FIG. 7. Probability distribution for DLEED intensities of
O/Ni(100. E=12 a.u.(dotted ling, 14 a.u.(short-dashed line
and 16 a.u(long-dashed ling

Ill. APPLICATION TO DIFFUSE AND CONVENTIONAL

ematically quantify this tendency, but an approximate wa
y 9 fy Y PP y I(E) LEED ANALYSIS

would be to make a least-squares fit of the data3dunc-
tions and give thes with the best agreement. This results in  All these ideas can be used to analyze LEED experiments
v=27, 23, 22,22, and 2.2 for 1, 2, 4, 8, and 16 layersconducted in standard surface structural analysis. Those ex-
respectively. The mean values of the intensity reflected argeriments are performed by measuring as a function of the
for each case 1.5810 2, 2.42<10 2, 2.55<10 %, 2.58 energy the available exiting beaigE) standard LEEDor
X 1072, and 2.5& 10 2. A penetration depth of 16 layers is by analyzing many different exiting beams at a few fixed
thought to be a practical upper limit for most experimentalenergies DLEED). The former technique is usually applied
systems. From these numbers it must be concluded that, & ordered surfaces, while the latter is more appropriate to
least under the particular conditions we have chosem-  surfaces with disorder. As the relevant physical principles
layer scattering between the first two layers helps the distrihehind LEED and DLEED are well described by a multiple-
bution most to compare well with the Porter-Thomas law,scattering formalism, it is not surprising to find that both
while further stacking of layers mainly contributes to im- intensities simulated theoretically for realistic systems and
prove the finer details. Therefore, a moderate amount of mukthe corresponding to values measured experimentally fit
tiple scattering should be generically held responsible for theather well the Porter-Thomas distribution. Indeed, the main
statistical behavior of wave functions, characteristic of quandifferences from our previous model are the atomic poten-
tum chaos. tials and the important electron-electron inelastic interaction
The main role of the imaginary part added to the energyhat attenuates the wave within a few layers of the surface.
Vi is to attenuate the wave field, as can be understood byhile our results are not very sensitive to a particular set of
reference to the underlying Green’s functions used in thehase shifts, as becomes obvious from our results for differ-
theory. Waves dying out with some characteristic lengthent materials simulated with realistic potentials, the influence
serve to mimic inelastic effects that can take away currendf a large optical potential is balanced by our finding that
from the pure elastic experiment considered in LEED theoryscattering by one or two layers at most is enough to repro-
Large values ofVy; imply waves decaying faster with dis- duce the characteristic GUE probability distribution.
tance and making the system lessnplexbecause the num- This is demonstrated in Figs. 7—11. We first explore the
ber of multiple scattering events is effectively reduced. Thisstatistical behavior of DLEED. A representative system con-
is the effect observed in Fig. 6, where, using the same pasidered many times in the literature from both the experi-
rameters as in Fig. 5, we have compared the result¥§pr mental and the theoretical point of view is the lattice gas
=0.001 and 0.1 a.u. The agreement between the ideal Portedisordered adsorption of oxygen on(Md0).!° Nickel is ob-
Thomas distribution and the different simulations considerediiously a strong scatterer and multiple scattering plays an
degrade systematically with larger values\gf;, as can be important role. This is relevant because the adsorbate is illu-
seen from a least-squares fit givimgr2.2, 2.2, 2.4, and 2.7 minated directly both by the wave coming from the electron
for Vo;=0.001, 0.01, 0.1, and 0.2 a.u., respectively. Thesgun and by the reflected wave coming from the surface,
numbers range from the very small valu@s001 a.u. is as- which depends on the energy and angle in a complicated
sociated with a decaying length of thousands of angstromsnanner dictated by the multiple scattering inside the sub-
to the few eV used in standard structural analy8i® a.u. is  strate. Geometrical parameters are taken from a detailed
associated with a decaying length of tenths of angstfomsstructural search, fixing the adsorption position at about 1.5
This discussion should make clear that the probability distri-a.u. on the fourfold symmetry position in the square surface
butions found here, representative of quantum chaos, do nddttice (less symmetric adsorption sites would only make
originate in inelastic or many-body effects represented by anore complex the system and therefore more likely to re-
complex self-energy, but are only due to complexity drivencover the Porter-Thomas lawThree different energies are
by the multiple-scattering scenario. computed theoretically using a dynamical approachT at
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FIG. 8. Probability distribution for experimental DLEED inten- FIG. 10. Probability distribution corresponding to the LEED
sities of O/N{100. E=3.7 a.u.(dotted ling, 5.6 a.u(short-dashed I(E) curves for C@100), considering different surface relaxations,
line), 7.5 a.u.(long-dashed ling 9.4 a.u.(long-dash—dotted line  d;,=3.40 a.u.(dotted ling, d;,=3.02 a.u.(short-dashed line an
and 11.1 a.u(long-dash—short-dashed line equally weighted average from 3.02 to 3(fdng-dashed ling and

d;,=2.00 a.u.(dash-dotted ling

=0 K, as described by Saldin and PendHf.o improve the
statistics, different incident angl@sand¢ are computed and layer adsorbed Less than one-thirtieth of the amount of data
used as explained above. The agreement with the Portensed in the theoretical analysis is available, making a poorer
Thomas law is quite goode.g.,E=12 a.u. gives a least- statistics, but the expected tendency is followed well, al-
squares fit value of 2.0, reflecting that although the diffuse though fluctuations are clearly observed.
background is generated by scattering with only one atom We have also analyzed the experimental data measured by
responsible for breaking the otherwise perfect symmetry thaihe Erlangen group on thelisorderedl K/Ni(100 system.
would result in Bragg conditions, the wave reflected by theNormal incidence and liquid-nitrogen cooling’ €90 K)
substrate and illuminating the atom is very complicated. Obare used again. Potassium coverage is kept at a lower value
viously what matters most here is that the forward scatterin@f 0.05. This system, however, shows an important differ-
of that wave by the adsorbate is stronger than or comparabknce from the last one: Potassium is adsorbed at the hollow
to the backscattering of the simple plane wave by the samsgite, but at a much higher positios;5.1 a.u. It is clear that
potential. the source of complexity is the substrate, and if the atom
Our previous findings can also be corroborated by analyzwould be isolated, or too far away from the surface, the
ing experimental DLEED intensities measured for the sam@®LEED intensities would simply correspond to the ones due
system by the Erlangen grodp.Figure 8 shows such an to a single atomic potential. From our previous estimate for
analysis for five different energies going frdg=3.7 a.u.to the typical decaying length, we find thiat= 15—-20 a.u. for
E=11.1 a.u. in approximate steps of 1.8 a.u. The databadée energies involved in the experimental data. Therefore, it
was measured in a sample cooled down to liquid-nitrogeris not unexpected that the probability distribution for
temperature £90 K), at normal incidence, and for an ap- K/Ni(100 bears some similarity to the one obtained for an

proximate coverage of 0.28 representing one full mono- isolated atom, as can be seen in Fig. 9.
By reference to the RMT or to Berry's hypothesis about
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FIG. 9. Probability distribution for experimental DLEED inten-
sities of K/Ni(100). E=3.7 a.u.(dotted ling, 5.6 a.u(short-dashed FIG. 11. Probability distribution corresponding to the LEED
line), 7.5 a.u.(long-dashed ling 9.4 a.u.(long-dash—dotted line I(E) curves for W100 (dotted ling, Si(111) (dashed ling and
and 11.1 a.u(long-dashed—short-dashed [ine c(8%2)-GaAs(100)(long-dashed ling
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the structure of the typical wave function of a chaotic sys-cannot be distinguished by eye from the measured data.
tem, it is clear that the same Porter-Thomas law shouldAgain, fair agreement between the obtained probability dis-
manifest if intensities are analyzed as a function of energy aributions and the ideal Porter-Thomas law is obtained, al-

a fixed arbitrary positiom. We have analyzed this behavior though we observe that the agreement is achieved over a

for scattering wave functions by calculating LEEIRE) limited range due to the smaller amount of available data.
curves for three materials not bearing a structural or an elec-

tronic relationship, C(100, W(100), and S{111), and by IV. R-FACTOR DEPENDENCE ON GEOMETRICAL
analyzing a real LEED experiment. Figure 10 shows the STRUCTURAL PARAMETERS

probability distributions computed for €00 and Fig. 11 ) _ ) ) .

gives the same result for {00), Si(111), and experimental An interesting question derived from the chaotic nature of

data forc(8x2) GaA€100. The Van Hove—Tong LEED the wave function is how quickly two given structures dif-
package is used to compute intensities within the renormal€fing in @ given structural parameterbecome unrelated

ized forward scatteringRFS approximation to describe from the point of view of diffracted intensities. This process

multiple scattering between layers and realistic phase shiftd@PPens, although the two structures are always related
representing the atomic potentials are considé?etb im- through some underlaying geometrical relationship, via the

prove the statistical confidence of the results, we choose agpmplgxity intrpduced by multiple .scattering. To invgstigate
arbitrary azimuthal angléot related to any symmetry direc- t[hIS point, we first analyze theoretically computgd dn‘fracted
tion) of ¢=30° and explore a range of polar angles frém intensities where only one rglevant parameter is varied. Af-
=5° t0 #=40°, in steps of9=5°. The first nine emergent terward, we _apply the same ideas to a recent structural search
beams over an energy range frd@2 to 20 a.u. are con- on an experimental system performed by other petpide

sidered and other parameters relevant for the calculation affeoretical exp_eriment Is perfqrmed using the same DLEED
la=7Voi=0.15 auT=0 K, and up to a maximum of program mentioned befof8.This allows us to simulate the
max 1 1 " e ’

; ; - dsorption of an oxygen atom on the hollow site of a perfect
101 beams included. For copper, we consider two dlﬁeren&lnrelaxed Ni(100 surface. The reference height is fixed

distances between the first and the second surface laye gain at 1.5 a.u. from the layer defined by the nickel cores,

d,»=3.4 a.u. and 3.02, corresponding, respectively, to théah. hi milar to th . tal val Chanai
perfect unrelaxed surface and to the experimental relaxatio Ich 1S very simriar 1o the experimental vajue. “hanging
found on clean C{1.00 crystals. Both cases are sdeh Fig. he oxygen adsorption he'ghtf we study the corresponding
10) to be well represented by thé probability distribution. changes in the DLEED intensities. We notice that the same
code has been used previously for a real structural search on

An average of intensities for different samples wit}y val- : e o : - .
ues going from 3.02 to 3.74 in steps of 0.08 a.u. is alséirgrs] f)ﬁ:}eembhp;gi\gglgsgztgﬁab'I'ty to give a realistic descrip
considered with a similar result. In addition, we compute a To measure the changeé in the LEED diffracted intensities

hypothetical relaxation ofd;,=2.0 a.u., where the RFS we adopt two common but otherwise unrelated correlation

technique is used outside its validity region and it results i P -
unphysical divergences. The statistical distribution assocri]rz-;f(;(()iri?t(r'])etgi JS?JQT;C?Q rSR(lu.%?rr?g\;:)ar%%'\iAsSch(eRseifrﬁ;I?a st

ated W'th. this absurd case Is seen to be very dn‘ferent fro hoice at hand and we apply it to the DLEED theoretical
the previous ones, signaling clearly that something wen xperiment:

wrong in the calculation. This is an extreme situation, but the
same we have been able to detect a theoretical problem with 1
a simple statistical analysis; the Porter-Thomas distribution Rrmso= \/_ (|rkef_|k)2’ (4)
may help to identify cases where gross experimental system- N «SIn
atic errors, such as an improper subtraction of the back- .
ground or saturation of some bright beams, occur. We havherek labels the differenk; .. This R factor is conve-
repeated a similar theoretical analysis for(M) and niently normalized to /N, the value expected for two ran-
Si(111) surfaces in Fig. 11. While similar conditions are useddom sets of intensities with the same average véhtensi-
for W(100), owing to experimental practical difficulties to ties are normalized to their average valu®n the other
measure the high-energy end in semiconductors, we use h®nd, the PendriR factor is a very common choice in stan-
smaller energy range for @il1) (from 1 to 11 a.u, but the  dard structural analysis ¢{E) LEED curves and because it
first 13 emerging beams are considered to have a databas@s used by Polopt al?* in their study ofc(2x2) Si/
with a similar size to the one considered for the metals. Cu(110, we simply analyze the behavior of their published
Although agreement between the multiple-scattering calvalues. The fact that we find the same type of behavior with
culations and experimental data is very good for geometriebvo so differentR factors supports our hypothesis that the
representing well a given surfage.g., the PendrR factor  effects discussed in this section are quite general.
for the structural analysis of CLOO) is already below 0.1 We distinguish the existence of three different regions in
and experimental and theoretiddE) curves are hardly dis- parameter spade: |, a perturbative region, characterized by
tinguishable by simple ocular inspectiprmve also take into a polynomial dependend@(p)=p"; I, an exponential re-
account experimental intensities from thec(8 gion R(p)«=eP, where small changes in a given structural
x 2)-GaAs(100) reconstructidi. Nineteen independent parameter result in rapidly increasiigyvalues; and Ill, a
beams measured at normal incidence and giving an approxitlly chaotic region where théR factor saturates approxi-
mated energy range of 86 a.u. are considered. Intensitigpately to the values expected for the comparison between
have been digitalized from the published results and interpotwo randomly generated structur@®y definition~1 in both
lated with splines in such a way that the interpolated curve® factors used hejeBeyond these regions, the existence of
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FIG. 12. Root mean square deviatidR,] measuring the corre- FIG. 14. The PendnR factor is analyzed in a similar way to

lation between a reference struct&@) and a family of structures Rgyspin Fig. 12. The data corresponding to an experimental struc-
labeled by the adsorption height of an at8(m). Region ll(see the tural analysis byt (E) LEED of c(2x2)Si/Cu(110) are considered.
text) is shown as the linear regiain logarithmic scalg between
the minimum(region ) and the saturation regiofmegion Ill). En-
ergy is fixed to 2.0 a.u.

sponds to a region where thefactor changes exponentially

with the structural parameter. Therefore, it is possible to un-
derstand why perturbation theory breaks around this region
diffraction multiple coincidence minima recreates again!> In Spite of the considerable effort that has been made to

similar although more imperfect conditiofsThe existence Write the change in the amplitude as a power series of the

of region | is justified by the applicability of perturbative atomic di;placemer’?ﬁ , o o
techniques(given a sufficiently small perturbatign This The existence of region Il is illustrated in Figs. 12 and 13

would result in a series expansion in terms of the parametefith theoretically simulated data and in Fig. 14 with data

p and the polynomial dependence. How small the perturbaPrOdUC_ed by_ comparing with the experiments. Regarding the
tion should be can be estimated by applying some Simp@weoret[cal simulation, we have slowly increased the stqrp—
version of perturbation theory. As an example, take tensofion height of the oxygen atom to get a corresponding in-
LEED in its first form, where the change in the scatteredcréase in theRgysp. To show the functional dependence
amplitude is proportional to the change in the potential. FoPetweenRgysp and h, we take logarithms in the ordinate
the simpler version, where the change in the potential is lin#xis and we identify an interval where the curve can be ap-
early related to the change in the atomic position, the rangBroximated very well by a straight line. This region should
of validity is known by common experience on different SyS_be _con5|dereq the onset of quantum chaos and therefore a
tems to be~0.2 a.l’’ A renormalized form of this theory, region of dubious value for structural work.

where the change in the amplitude is proportional to the 1O test whether or not this behavior is particular to a
change in thet matrix, is generally accepted up to 9iven definition of theR factor, we perform the same analy-

~0.8 a.u., but we notice that it already implies adding up arsiS Using the Pendrig factor. This function is defined in very
infinite series in the potential, going beyond the straight apdifferent terms from the simpleRgysp considered above.
plication of perturbation theory. Those displacements corretlowever, Fig. 14 shows the same type of behaviorRgr

spond typically toR factors between the reference structure This corresponds t& factors comparing structural models to
(by definition R=0) and the one to be computed perturba-€xperimental data for a recent structural search performed on

tively of aboutR=0.2—0.4. In the examples presented be-the systemc(2x2)Si/Cu(110) using conventionall(E)

layer distancesl;,, where the best value provided by the

. structural work has been subtracted to put the origid,at
L L =0.

1.0

V. CONCLUSIONS

0.5
. Scattering intensities have been analyzed from a statistical

. point of view. The computed probability distributions com-

pare well with the Porter-Thomas law, typical of random
wave functions. To understand the origin of such a similarity
we have analyzed models with increasing scattering com-
plexity, using a hard-sphere approximation for the interac-
T T tion potentials. The simplest case found by displaying a sta-
0.0 0.2 0.4 0.6 tistical distribution similar to the Porter-Thomas law is single

h(a.u.) scattering by a Bravais lattice ®f scatterers at an arbitrary
angle of incidence. When more complexity is added to the

FIG. 13. Same results as presented in Fig. 12, buEfel5.0  system(e.g., by considering intralayer multiple scattering or

a.u. multiple scattering between a few layers throudhyaer dou-

0.1

RMSD R—factor

T

0.05-]
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bling stacking strategy the statistical distribution of such use concepts borrowed from classical chaos and to propose a
idealized systems shows better agreement with the i)déal criterion for the reliability of a given minimum in th&
function. The same behavior is found if realistic potentialsfactor, depending on whether the structure lies in a perturba-
are considered to describe the atoms within the periodic lative region | or beyond the transition zone lII.

tice. The analysis of real experimental data is also consistent

with the same ideas, as expected from the known reliability

of those theoretical methods to give scattering intensities if ACKNOWLEDGMENTS
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