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Quantum chaos on ordered structures by scattering techniques:
Application to low-energy electron diffraction

P. L. de Andres and J. A. Verge´s
Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientı´ficas, Cantoblanco, E-28049 Madrid, Spain

~Received 23 June 1998; revised manuscript received 20 August 1998!

We analyze statistical probability distributions of intensities collected using diffraction techniques such as
low-energy electron diffraction~LEED!. A simple theoretical model based on hard-sphere potentials and
LEED formalism is investigated for different values of relevant parameters: energy, angle of incidence, muffin-
tin-potential radius, maximum spherical componentl max, number of stacked layers, and full multiple-
scattering or kinematic model. Given a complex enough system~e.g., including multiple scattering by at least
two Bravais lattices!, the computed probability distributions agree rather well with ax2

2 one, characteristic of
the Gaussian unitary ensemble universality class associated with quantum chaos. A hypothesis on the possible
impact of the chaotic nature of wave functions on correlation factors is tested against the behavior of the
PendryR factor and the root mean square deviation factor.@S0163-1829~99!00804-8#
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I. INTRODUCTION

There is much interest in the role of chaos on quant
systems. The important consequences of chaos on clas
systems motivate extending the study of chaos to the qu
tum physics world. It is difficult, however, to explore qua
tum chaos by connecting the quantum and classical form
tion using special limits.1 Therefore, a group of pioneerin
investigators adopted a long time ago a point of view in
pendent of any classical or semiclassical approach to cha2

In this approach the object of interest is a Hamiltonian co
posed of random numbers@random matrix theory~RMT!#,3,4

conjectured by Wigner, Dyson, and others to be a relev
prototype for quantum chaotic behavior. A further conjectu
by Porter and Thomas5 established the probability distribu
tion to be expected for intensities related to a typical cha
wave function:xn

2 . This is a function that gives the probabi
ity distribution of intensitiesI /^I &, over the spatial support o
the wave function at a given energy (^I & is the corresponding
mean value!. Later on, Dyson demonstrated that the para
etern can take only three different values~i.e., 1, 2, and 4,
depending on the Hamiltonian to be constructed with re
complex, or quaternions numbers!. On the other hand, start
ing from a semiclassical analysis, Berry suggested tha
typical wave function for a chaotic system could be form
by an infinite superposition of plane waves traveling in ra
dom directions and with random phases.6 Working with this
important conjecture, Berry was able to show that the pr
ability distribution for those wave functions isP(I /^I &)
5e2I /^I &, with I 5cc* , and that the space-averaged spa
correlation of the wave function~at a fixed energy! is pro-
portional to the zeroth-order integer Bessel function. Fina
the application of a supersymmetry formalism has produ
a rigorous deduction of the probability distributions asso
ated with a nonlinear supermatrixs model,7 which under
certain assumptions can be shown to be equivalent to R
and results in the Porter-Thomas distribution.8

It is clear that RMT bears some limitations, derived p
ticularly from its statistical nature. However, it has the a
PRB 590163-1829/99/59~4!/3086~9!/$15.00
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vantage of providing an unequivocal object to be studied
a corresponding well defined methodology. In this paper
adopt this statistical approach and having in mind the res
from RMT, we study the probability distributions associat
with wave functions relevant for popular surface structu
techniques, such as low-energy electron diffraction~LEED!
or x-ray photoelectron diffraction~PED!. Wave functions
potentially provide more information than the mere inspe
tion of levels and are also the natural objects to be studie
these scattering techniques. We find that the computed p
ability distributions match closely the statistics of the eige
functions of a Hamiltonian belonging to the Gaussian unit
ensemble~GUE!. This is the universality class relevant to
scattering experiment, i.e., to an open geometry, where
energy takes values in the continuum~good quantum num-
bers characterizing the wave function are the energy anki
to the surface!. Therefore, we take a fresh look at the phy
cal system and advance the hypothesis that the good s
tural sensitivity of these techniques can be also understoo
a manifestation of quantum chaos on the wave functio
This conjecture is tested for two standard correlation fact
widely used to measure thedistancebetween a reference
structure~usually the experimental one! and a trial one cal-
culated theoretically. The results point in the same direct
as the statistical analysis of wave functions since we find
there is a region where the correlation factor grows at
exponential rate.

Even if our analysis is not directly linked to classic
physics, it is worth mentioning that for every quantum sy
tem we have considered its classical analog behaves ch
cally due to the intrinsic complexity of the many-scatter
problem.6,9 As the classical problem might behave chao
cally even if the scatterers are regularly distributed, it is s
prising to find such a vast literature on quantum chaos
lated to some kind of disorder, but such little considerat
of ordered systems because, using the classical analo
guide intuition, it is not clear why quantum chaos should n
to be found in perfectly ordered systems. Recently, Mucci
et al.10 have shown that the high-energy region of the cal
lated band structure of crystalline Si is complex enough
3086 ©1999 The American Physical Society
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follow the statistical distribution of levels expected for th
Gaussian orthogonal ensemble universality class. Inspire
these ideas, we have also presented a preliminary w
studying the statistical properties of LEED states11 on or-
dered materials. Of course, the LEED problem is related
the band structure analysis, its main advantage being me
practical, because of the readily available experimental d
to test theoretical findings.

Berry has studied the Sinai billiard by mapping the pro
lem to a periodic array of hard circles on a plane.12 This
problem can be solved efficiently applying a Korringa-Koh
Rostoker formalism. His method not only has a number
computational advantages, but also allows a detailed ana
for the different role played by nonisolated and isolated
bits contributing to the wave functions. It is interesting
notice that the nonisolated orbits add to the complexity of
system only through the boundaries defining the billia
Therefore, although their role is non-negligible to the det
mination of the chaotic nature of the levels in the clos
system, they do not contribute to the open problem of s
tering. In other words, paths that never strike a disk do
contribute to the reflectivity of a surface~like in LEED! or
they are deliberately removed from the analysis@like in PED
or diffuse LEED~DLEED!# due to their lack of useful struc
tural information. In scattering experiments, these pa
would be characterized by a probability distribution given
x`

2 ~a Dirac’s d function!. Therefore, the study of an ope
system allows one quite naturally to separate the influenc
nonisolated and isolated orbits because the nonisolated
yield only a trivial contribution, in contradistinction to th
essential entanglement between both types in the bo
problem.

The organization of this paper is as follows. The scatt
ing of a plane wave by an ordered array of hard-sphere
tentials is analyzed in Sec. II by applying a LEED forma
ism. This is a good analog to Berry’s work on Sinai’s billia
from a scattering point of view, although some importa
differences remain~e.g., it is a genuine three-dimension
system!. The hard-sphere model is interesting from a the
retical point of view because of the strong similarity with t
billiard problem and also because its analysis uses the s
basic tools employed in the solution of the diffraction by
surface. Certainly, the usual approach to the LE
problem13 starts by computing the diffraction matrices for
single layer and then proceeds by stacking layers by diffe
methods. In practice that means solving first the multi
scattering probleminside a layer and then the multiple
scattering problembetweenlayers through a stacking proce
that finally recreates the material bulk, or at least a th
enough slab. The use of hard-sphere potentials simplifies
computational problem, allowing the identification of the k
physical elements responsible for the appearance of
Porter-Thomas probability distribution. Following the stra
egy of introducing the complexity step by step, we start
computing the reflection and transmission matrices for
layer of hard-sphere potentials. Those layers are then sta
to form a fcc crystal with an arbitrary lattice parameter b
rowed from copper. Section III gives a similar analysis fo
LEED problem trying to represent realistically a few selec
materials. Results corresponding to both DLEED and c
ventional I (E) analyses are discussed. Finally, we consi
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in Sec. IV the impact of our previous findings on the stat
tical correlation factors~R factors! widely used in LEED or
PED to assess the confidence on a structure predicted
theory. This is usually done by a trial and error fit, comp
ing theoretically calculated diffracted intensities with the e
periment. The usual rules are as simple as~i! the lower theR
factor the better and~ii ! the R factor should represent
~hopefully global! minimum. In practice, because there is n
way to secure a real global minimum in a multidimension
parameter space, the recipe of getting a low-enough va
becomes the only guide to trust or not a given structure.
shall see how a new criterion adding to the others can
obtained by identifying the existence of a region where thR
factor changes quickly~exponentially! from values typically
obtained from the application of perturbation theory (R
'0) to values representative for uncorrelated intensitiesR
'1). We argue that this exponential dependence is a co
quence of the chaotic nature of wave functions obtained
complicated multiple-scattering scenario.

II. SIMPLIFIED MODEL OF ELECTRON MULTIPLE
SCATTERING BY AN N SCATTERER:

HARD-SPHERE POTENTIALS

A. Scattering by an isolated potential

We analyze first the simplest case related to our probl
the scattering of a plane waveeikz by a single atomic poten
tial modeled by a hard-sphere of radiusR.14 The scattered
wave is given asymptotically by

eikz1 f k~u!
eikr

r
, ~1!

with

f k~u!5
1

k (
l 50,̀

A4p~2l 11!t l~k!Yl0~u!, ~2!

where

t l~k!5eid lsin~d l !

and15

d l~k!5arctanF ~21! l 21
Jl 11/2~kR!

J2 l 21/2~kR!G .
The hard-sphere potential can be compared with a real
one representing a Ni atom by computing the total scatte
cross section. As an example, at an intermediate energy
asE55 a.u., this cross section is about 20% less for a h
sphere havingR51 a.u. than for the Ni atom, while forR
52 a.u. it becomes three times bigger.

Figure 1 displays the probability distribution function fo
intensities scattered by this model at constant energy w
the angleu is varied. This is compared with the Porte
Thomas law characteristic of a chaotic system to stress
different statistical behavior. Only two parameters are r
evant to this experiment: the length scale (R52 a.u.) and
the energy scale. The approximate semiclassical rulekR
' l max gives us some rough value for the maximum comp
nent in the spherical wave expansion, and twice that valu
used in all our calculations (l max520). Because the phas
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3088 PRB 59P. L. de ANDRES AND J. A. VERGE´ S
shifts bring some nontrivial dependence onkR through the
spherical Bessel functions, the results for three different
ergy values spanning the range of interest are given to il
trate this dependence. Basically, the same statistical pa
is found, reflecting the smooth variation of the scatter
factor ~modulated by the forward peak!. This probability dis-
tribution is remarkably similar to the one found for the typ
cal wave function of a chaotic system when too few rand
components are used.11

B. Electron diffraction by a plane of scatterers

The same statistical probability distribution is expect
for the diffraction of a single Bravais lattice in the kinema
approximation at normal incidence, where all the atoms s
ter the plane wave at the same time and are equivalent
cause of the Bravais-like symmetry. In this approximatio
the lattice is merely contributing a structure factor compo
of d functions centered around Bragg conditions.16 However,
by taking an appropriate limit on the full dynamical resu
we shall see that this is not the case when the angle of i
dence is varied~cf. Fig. 4! because of then sin(u) extra path
added to each scatterer in the plane (n50,̀ ).

To proceed gradually from simple to more complicat
systems, we now analyze the diffraction matrix of a sin
two-dimensional Bravais lattice13,16,17

MKW
gW 8
6

,KW
gW
65

8p2i

uKW gW
6uKW gW 8,z

6 (
l ,m; l 8,m8

eid l 8sin~d l 8!

3$ i l~21!mYl 2m~KW gW
6

!%

3
1

~12X! lm,l 8m8

$ i 2 l 8Yl 8m8~KW gW 8
6

!%. ~3!

This expression gives the complex amplitude diffracted fr
an ingoing beamKW gW

6 into an outgoing oneKW gW 8
6 . Therefore, it

is the basic quantity needed to compute the reflectionR
5M 1,2 and transmissionT5I 1M 1,1 of just one layer~a

FIG. 1. Probability distribution for the scattering of a plan
wave by a single hard-sphere potential (R52 a.u.). Three energie
~in a.u.! are shown:E52 ~short-dashed line!, E55 ~long-dashed
line!, andE510 ~dotted line!. The thick solid line is thex2

2 function
corresponding to the GUE wave-function statistics.
n-
s-
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g

t-
e-
,
d

i-

e

minus sign denotes propagation towards the vacuum wh
the original wave was originated and a plus sign propaga
in the opposite direction!.

Figure 2 shows the wave-function statistical distributio
obtained for a two-dimensional square lattice of hard-sph
potentials at nearest-neighbor distances taken from
Cu~100! surface~4.82 a.u.!. Internal parameters relevant fo
the calculation are kept to the same values as the prece
case (R52 a.u. andl max520). An arbitrarily small positive
imaginary partV0i is added to the energy to give the Green
functions the required analytical behavior. The physical
fect of such a mathematical trick is to ensure the pro
decay of waves at infinity. The actual value used in our c
culations isV0i50.001 a.u., small enough compared wi
all relevant energies as not to have any noticeable ef
~Kambe’s method18 is used to compute the lattice summatio
and about 2300 lattice points are included!. Given these val-
ues for the internal parameters of the model, intensities
depend on external parameters that typically will be explo
in real experiments: the energy and the incident and col
tion angles. In our previous work11 we have studied the sta
tistical probability distribution in scattering intensities var
ing the collection angle~DLEED! and the energy@standard
I (E) LEED analysis#, but at a fixed incident angle defined b
u and f. In this paper we increase the database size
considering different initial incident directions on a sol
angle centered aroundu50° and 30° –40° wide. As the en
ergy is the main external parameter controlling the exp
ment, the results for three different energies spanning
range of interest (E52, 5, and 10 a.u.! are systematically
shown for comparison. We remark that the trivial limitx`

2 is
recovered at fixed energy from Eq.~3! for l max50 or, alter-
natively, whenR→0, which eventually would make only
one spherical component necessary, eliminating the de
dence on the angleu or f. All the parameters used in ou
model correspond to realistic values used in real LEED
periments, except for the very small imaginary part for t
optical potential. In a typical LEED experiment the inelas
interaction is strong, concentrating the diffraction process
the vicinity of the surface~which explains the sensitivity o
the experiment to small atomic displacements in the last
layers!. This can be taken into account effectively by inclu

FIG. 2. Probability distribution of wave functions reflected b
one layer of hard-sphere potentials. Results forR52 a.u. and three
different energies are shown:E52 a.u.~long-dashed line!, 5 a.u.
~short-dashed line!, and 10 a.u.~dotted line!.
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ing a large optical potential ('0.120.2 a.u.) in the energy
However, it is important to realize that the experiment
conceived as purely elastic and electrons having lost s
energy do not contribute to the detected intensity. Reali
values have been used previously to make contact w
experiments11 and now we are more interested in isolati
the physical effects related to a complex behavior. Theref
we choose to work in the limitV0i→0 to minimize the effect
of this value and we shall discuss the role of this param
in more detail in Fig. 6. The actual computer code used
modern version of routines given by Pendry.13 Figure 2
clearly shows how the single Bravais layer gives diffrac
intensities that already have statistical distributions close
the ideal Porter-Thomas law, irrespective of the energy.

Next, the energy is fixed at some arbitrary representa
value (E510 a.u.) and the dependence of the statist
probability distribution of a two-dimensional Bravais lattic
on the size of the hard-sphere potential is studied. Figu
gives the statistics for three different sizes of the hard-sph
radius. AsR→0, the reflected intensities also become neg
gible. From a computational point of view, we do not expe
this limit to be strictly accessible for a numerical experime
because the computer zero, determined by a numerical
derflow, might be contaminated by roundoff errors with
statistical distribution not knowa priori. Average values for
the intensities atE510 a.u. are 1.631022, 2.531024, and
4.131026, respectively, forR52, 0.2, and 0.02~a.u.!. Fig-
ure 3 shows the tendency of the probability distribution
wardsx`

2 , associated with the constant value correspond
to a very small radius value. As the main interest in this c
is to show the behavior near the origin, we have skipped
usual log-log plot, well suited to manifest the fast expone
tial decay, but not so useful to stress the behavior near
origin.

To understand the role of the complexity created by
intralayer multiple scattering versus the geometrical facto
different incident angles, we have artificially made the int
layer scattering matrix equal to zero:X50. The result is
shown in Fig. 4 for fixed values ofE, R, and l max. It is
observed that the kinematicN-scatterer problem analyzed fo
different incident angles already approximates the Por

FIG. 3. Dependence of the wave-function probability distrib
tion on the hard-sphere radius. Results forE510 a.u. andR
52.0 a.u.~dotted line!, 0.2 a.u.~dashed line!, and 0.02 a.u.~long-
dashed line! are shown.
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Thomas distribution, although the inclusion of intralay
multiple scattering gives a distribution closer to the ide
one.

C. Electron diffraction by a stacking of planes
of hard-sphere scatterers

We use thelayer doublingscheme13 to stack layers of
hard-sphere potentials. Layers are stacked to form a fcc
tice, borrowing the intralayer distances from copper, as
fore. Taking into account the small imaginary part used
our calculations, we should at least double the width of
slab up to distances of aboutl c'A2E/V0i , approximately
including 1000 layers. This is not practical, or necessary,
we only slowly double the slab size to investigate the infl
ence of the layer width on the statistical distribution.

This is illustrated in Fig. 5 for four different widths: 2, 4
8, and 16 layers~for comparison, the result for 1 layer can b
found in Fig. 4!. Other parameters are fixed to the sam
values previously used to isolate features only associate
the slab width. It is easily appreciated how the statisti
distribution tends more to behave like the ideal Port
Thomas one as the width is increased. It is difficult to ma

-
FIG. 4. Full dynamical model for a single Bravais lattice~dotted

line! compared to a kinematic one~dashed line!. The parameters for
the calculation areE510 a.u., R52 a.u., andl max520.

FIG. 5. Reflected intensities statistics of a full dynamical calc
lation of a slab of increasing width: The numbers of stacked lay
are 2 ~dotted line!, 4 ~dashed line!, 8 ~long-dashed line!, and 16
~double-dash–double-dotted line!. Other computational parameter
are given in Fig. 4.
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ematically quantify this tendency, but an approximate w
would be to make a least-squares fit of the data toxn

2 func-
tions and give then with the best agreement. This results
n52.7, 2.3, 2.2, 2.2, and 2.2 for 1, 2, 4, 8, and 16 laye
respectively. The mean values of the intensity reflected
for each case 1.5831022, 2.4231022, 2.5531022, 2.58
31022, and 2.5831022. A penetration depth of 16 layers i
thought to be a practical upper limit for most experimen
systems. From these numbers it must be concluded tha
least under the particular conditions we have chosen,intra-
layer scattering between the first two layers helps the dis
bution most to compare well with the Porter-Thomas la
while further stacking of layers mainly contributes to im
prove the finer details. Therefore, a moderate amount of m
tiple scattering should be generically held responsible for
statistical behavior of wave functions, characteristic of qu
tum chaos.

The main role of the imaginary part added to the ene
V0i is to attenuate the wave field, as can be understood
reference to the underlying Green’s functions used in
theory. Waves dying out with some characteristic len
serve to mimic inelastic effects that can take away curr
from the pure elastic experiment considered in LEED theo
Large values ofV0i imply waves decaying faster with dis
tance and making the system lesscomplexbecause the num
ber of multiple scattering events is effectively reduced. T
is the effect observed in Fig. 6, where, using the same
rameters as in Fig. 5, we have compared the results forV0i
50.001 and 0.1 a.u. The agreement between the ideal Po
Thomas distribution and the different simulations conside
degrade systematically with larger values ofV0i , as can be
seen from a least-squares fit givingn52.2, 2.2, 2.4, and 2.7
for V0i50.001, 0.01, 0.1, and 0.2 a.u., respectively. Th
numbers range from the very small values~0.001 a.u. is as-
sociated with a decaying length of thousands of angstro!
to the few eV used in standard structural analysis~0.2 a.u. is
associated with a decaying length of tenths of angstrom!.
This discussion should make clear that the probability dis
butions found here, representative of quantum chaos, do
originate in inelastic or many-body effects represented b
complex self-energy, but are only due to complexity driv
by the multiple-scattering scenario.

FIG. 6. Probability distributions for a 16-layer slab for differe
imaginary parts added to the energy:V0i50.001 a.u.~thin continu-
ous line! and V0i50.1 a.u.~dotted line!. Other computational pa
rameters are given in Fig. 4.
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III. APPLICATION TO DIFFUSE AND CONVENTIONAL
I „E… LEED ANALYSIS

All these ideas can be used to analyze LEED experime
conducted in standard surface structural analysis. Those
periments are performed by measuring as a function of
energy the available exiting beams@ I (E) standard LEED# or
by analyzing many different exiting beams at a few fix
energies~DLEED!. The former technique is usually applie
to ordered surfaces, while the latter is more appropriate
surfaces with disorder. As the relevant physical princip
behind LEED and DLEED are well described by a multipl
scattering formalism, it is not surprising to find that bo
intensities simulated theoretically for realistic systems a
the corresponding to values measured experimentally
rather well the Porter-Thomas distribution. Indeed, the m
differences from our previous model are the atomic pot
tials and the important electron-electron inelastic interact
that attenuates the wave within a few layers of the surfa
While our results are not very sensitive to a particular se
phase shifts, as becomes obvious from our results for dif
ent materials simulated with realistic potentials, the influen
of a large optical potential is balanced by our finding th
scattering by one or two layers at most is enough to rep
duce the characteristic GUE probability distribution.

This is demonstrated in Figs. 7–11. We first explore
statistical behavior of DLEED. A representative system co
sidered many times in the literature from both the expe
mental and the theoretical point of view is the lattice g
disordered adsorption of oxygen on Ni~100!.19 Nickel is ob-
viously a strong scatterer and multiple scattering plays
important role. This is relevant because the adsorbate is
minated directly both by the wave coming from the electr
gun and by the reflected wave coming from the surfa
which depends on the energy and angle in a complica
manner dictated by the multiple scattering inside the s
strate. Geometrical parameters are taken from a deta
structural search, fixing the adsorption position at about
a.u. on the fourfold symmetry position in the square surfa
lattice ~less symmetric adsorption sites would only ma
more complex the system and therefore more likely to
cover the Porter-Thomas law!. Three different energies ar
computed theoretically using a dynamical approach aT

FIG. 7. Probability distribution for DLEED intensities o
O/Ni~100!. E512 a.u. ~dotted line!, 14 a.u. ~short-dashed line!,
and 16 a.u.~long-dashed line!.
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50 K, as described by Saldin and Pendry.20 To improve the
statistics, different incident anglesu andf are computed and
used as explained above. The agreement with the Po
Thomas law is quite good~e.g., E512 a.u. gives a least
squares fitn value of 2.0!, reflecting that although the diffus
background is generated by scattering with only one a
responsible for breaking the otherwise perfect symmetry
would result in Bragg conditions, the wave reflected by
substrate and illuminating the atom is very complicated. O
viously what matters most here is that the forward scatte
of that wave by the adsorbate is stronger than or compar
to the backscattering of the simple plane wave by the sa
potential.

Our previous findings can also be corroborated by ana
ing experimental DLEED intensities measured for the sa
system by the Erlangen group.21 Figure 8 shows such a
analysis for five different energies going fromE53.7 a.u. to
E511.1 a.u. in approximate steps of 1.8 a.u. The datab
was measured in a sample cooled down to liquid-nitrog
temperature ('90 K), at normal incidence, and for an a
proximate coverage of 0.25~1 representing one full mono

FIG. 8. Probability distribution for experimental DLEED inten
sities of O/Ni~100!. E53.7 a.u.~dotted line!, 5.6 a.u.~short-dashed
line!, 7.5 a.u.~long-dashed line!, 9.4 a.u.~long-dash–dotted line!,
and 11.1 a.u.~long-dash–short-dashed line!.

FIG. 9. Probability distribution for experimental DLEED inten
sities of K/Ni~100!. E53.7 a.u.~dotted line!, 5.6 a.u.~short-dashed
line!, 7.5 a.u.~long-dashed line!, 9.4 a.u.~long-dash–dotted line!,
and 11.1 a.u.~long-dashed–short-dashed line!.
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layer adsorbed!. Less than one-thirtieth of the amount of da
used in the theoretical analysis is available, making a poo
statistics, but the expected tendency is followed well,
though fluctuations are clearly observed.

We have also analyzed the experimental data measure
the Erlangen group on the~disordered! K/Ni ~100! system.
Normal incidence and liquid-nitrogen cooling (T590 K)
are used again. Potassium coverage is kept at a lower v
of 0.05. This system, however, shows an important diff
ence from the last one: Potassium is adsorbed at the ho
site, but at a much higher position,'5.1 a.u. It is clear that
the source of complexity is the substrate, and if the at
would be isolated, or too far away from the surface, t
DLEED intensities would simply correspond to the ones d
to a single atomic potential. From our previous estimate
the typical decaying length, we find thatl c'15220 a.u. for
the energies involved in the experimental data. Therefore
is not unexpected that the probability distribution f
K/Ni ~100! bears some similarity to the one obtained for
isolated atom, as can be seen in Fig. 9.

By reference to the RMT or to Berry’s hypothesis abo

FIG. 10. Probability distribution corresponding to the LEE
I (E) curves for Cu~100!, considering different surface relaxation
d1253.40 a.u.~dotted line!, d1253.02 a.u.~short-dashed line!, an
equally weighted average from 3.02 to 3.74~long-dashed line!, and
d1252.00 a.u.~dash-dotted line!.

FIG. 11. Probability distribution corresponding to the LEE
I (E) curves for W~100! ~dotted line!, Si~111! ~dashed line!, and
c(832)-GaAs(100)~long-dashed line!.
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the structure of the typical wave function of a chaotic s
tem, it is clear that the same Porter-Thomas law sho
manifest if intensities are analyzed as a function of energ
a fixed arbitrary positionrW. We have analyzed this behavio
for scattering wave functions by calculating LEEDI (E)
curves for three materials not bearing a structural or an e
tronic relationship, Cu~100!, W~100!, and Si~111!, and by
analyzing a real LEED experiment. Figure 10 shows
probability distributions computed for Cu~100! and Fig. 11
gives the same result for W~100!, Si~111!, and experimenta
data for c(832) GaAs~100!. The Van Hove–Tong LEED
package is used to compute intensities within the renorm
ized forward scattering~RFS! approximation to describe
multiple scattering between layers and realistic phase s
representing the atomic potentials are considered.22 To im-
prove the statistical confidence of the results, we choose
arbitrary azimuthal angle~not related to any symmetry direc
tion! of f530° and explore a range of polar angles fromu
55° to u540°, in steps ofu55°. The first nine emergen
beams over an energy range fromE52 to 20 a.u. are con
sidered and other parameters relevant for the calculation
l max57,V0i50.15 a.u.,T50 K, and up to a maximum o
101 beams included. For copper, we consider two differ
distances between the first and the second surface la
d1253.4 a.u. and 3.02, corresponding, respectively, to
perfect unrelaxed surface and to the experimental relaxa
found on clean Cu~100! crystals. Both cases are seen~cf. Fig.
10! to be well represented by thex2

2 probability distribution.
An average of intensities for different samples withd12 val-
ues going from 3.02 to 3.74 in steps of 0.08 a.u. is a
considered with a similar result. In addition, we compute
hypothetical relaxation ofd1252.0 a.u., where the RFS
technique is used outside its validity region and it results
unphysical divergences. The statistical distribution ass
ated with this absurd case is seen to be very different fr
the previous ones, signaling clearly that something w
wrong in the calculation. This is an extreme situation, but
same we have been able to detect a theoretical problem
a simple statistical analysis; the Porter-Thomas distribu
may help to identify cases where gross experimental syst
atic errors, such as an improper subtraction of the ba
ground or saturation of some bright beams, occur. We h
repeated a similar theoretical analysis for W~100! and
Si~111! surfaces in Fig. 11. While similar conditions are us
for W~100!, owing to experimental practical difficulties t
measure the high-energy end in semiconductors, we u
smaller energy range for Si~111! ~from 1 to 11 a.u.!, but the
first 13 emerging beams are considered to have a data
with a similar size to the one considered for the metals.

Although agreement between the multiple-scattering c
culations and experimental data is very good for geomet
representing well a given surface@e.g., the PendryR factor
for the structural analysis of Cu~100! is already below 0.1
and experimental and theoreticalI (E) curves are hardly dis
tinguishable by simple ocular inspection#, we also take into
account experimental intensities from thec(8
32)-GaAs(100) reconstruction.23 Nineteen independen
beams measured at normal incidence and giving an app
mated energy range of 86 a.u. are considered. Intens
have been digitalized from the published results and inter
lated with splines in such a way that the interpolated cur
-
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cannot be distinguished by eye from the measured d
Again, fair agreement between the obtained probability d
tributions and the ideal Porter-Thomas law is obtained,
though we observe that the agreement is achieved ov
limited range due to the smaller amount of available data

IV. R-FACTOR DEPENDENCE ON GEOMETRICAL
STRUCTURAL PARAMETERS

An interesting question derived from the chaotic nature
the wave function is how quickly two given structures d
fering in a given structural parameterp become unrelated
from the point of view of diffracted intensities. This proce
happens, although the two structures are always rela
through some underlaying geometrical relationship, via
complexity introduced by multiple scattering. To investiga
this point, we first analyze theoretically computed diffract
intensities where only one relevant parameter is varied.
terward, we apply the same ideas to a recent structural se
on an experimental system performed by other people.24 The
theoretical experiment is performed using the same DLE
program mentioned before.20 This allows us to simulate the
adsorption of an oxygen atom on the hollow site of a perf
~unrelaxed! Ni~100! surface. The reference height is fixe
again at 1.5 a.u. from the layer defined by the nickel cor
which is very similar to the experimental value. Changi
the oxygen adsorption height, we study the correspond
changes in the DLEED intensities. We notice that the sa
code has been used previously for a real structural searc
this system, proving its capability to give a realistic descr
tion of the physical system.19

To measure the changes in the LEED diffracted intensi
we adopt two common but otherwise unrelated correlat
factors:~i! the root mean square deviationRRMSD ~Ref. 16!
and~ii ! the PendryR factorRP .25 The former is the simples
choice at hand and we apply it to the DLEED theoretic
experiment:

RRMSD5A1

N (
k51,N

~ I k
re f2I k!

2, ~4!

wherek labels the differentkW i ,out . This R factor is conve-
niently normalized to 1/AN, the value expected for two ran
dom sets of intensities with the same average value~intensi-
ties are normalized to their average value!. On the other
hand, the PendryR factor is a very common choice in stan
dard structural analysis ofI (E) LEED curves and because
was used by Polopet al.24 in their study of c(232) Si/
Cu~110!, we simply analyze the behavior of their publishe
values. The fact that we find the same type of behavior w
two so differentR factors supports our hypothesis that t
effects discussed in this section are quite general.

We distinguish the existence of three different regions
parameter spaceP: I, a perturbative region, characterized b
a polynomial dependenceR(p)}pn; II, an exponential re-
gion R(p)}ep, where small changes in a given structur
parameter result in rapidly increasingR values; and III, a
fully chaotic region where theR factor saturates approxi
mately to the values expected for the comparison betw
two randomly generated structures~by definition'1 in both
R factors used here!. Beyond these regions, the existence
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diffraction multiple coincidence minima recreates aga
similar although more imperfect conditions.26 The existence
of region I is justified by the applicability of perturbativ
techniques~given a sufficiently small perturbation!. This
would result in a series expansion in terms of the param
p and the polynomial dependence. How small the pertur
tion should be can be estimated by applying some sim
version of perturbation theory. As an example, take ten
LEED in its first form, where the change in the scatter
amplitude is proportional to the change in the potential. F
the simpler version, where the change in the potential is
early related to the change in the atomic position, the ra
of validity is known by common experience on different sy
tems to be'0.2 a.u.27 A renormalized form of this theory
where the change in the amplitude is proportional to
change in the t matrix, is generally accepted up t
'0.8 a.u., but we notice that it already implies adding up
infinite series in the potential, going beyond the straight
plication of perturbation theory. Those displacements co
spond typically toR factors between the reference structu
~by definition R50) and the one to be computed perturb
tively of aboutR50.220.4. In the examples presented b
low ~Figs. 12 and 13!, we observe that this normally corre

FIG. 13. Same results as presented in Fig. 12, but forE55.0
a.u.

FIG. 12. Root mean square deviation (R2) measuring the corre
lation between a reference structureS(0) and a family of structures
labeled by the adsorption height of an atomS(h). Region II~see the
text! is shown as the linear region~in logarithmic scale! between
the minimum~region I! and the saturation region~region III!. En-
ergy is fixed to 2.0 a.u.
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sponds to a region where theR factor changes exponentiall
with the structural parameter. Therefore, it is possible to
derstand why perturbation theory breaks around this reg
II, in spite of the considerable effort that has been made
write the change in the amplitude as a power series of
atomic displacement.28

The existence of region II is illustrated in Figs. 12 and
with theoretically simulated data and in Fig. 14 with da
produced by comparing with the experiments. Regarding
theoretical simulation, we have slowly increased the adso
tion height of the oxygen atom to get a corresponding
crease in theRRMSD. To show the functional dependenc
betweenRRMSD and h, we take logarithms in the ordinat
axis and we identify an interval where the curve can be
proximated very well by a straight line. This region shou
be considered the onset of quantum chaos and therefo
region of dubious value for structural work.

To test whether or not this behavior is particular to
given definition of theR factor, we perform the same analy
sis using the PendryR factor. This function is defined in very
different terms from the simplerRRMSD considered above
However, Fig. 14 shows the same type of behavior forRP .
This corresponds toR factors comparing structural models
experimental data for a recent structural search performe
the systemc(232)Si/Cu(110) using conventionalI (E)
curves.24 RP is studied as a function of the two outer inte
layer distancesd12, where the best value provided by th
structural work has been subtracted to put the origin atd12
50.

V. CONCLUSIONS

Scattering intensities have been analyzed from a statis
point of view. The computed probability distributions com
pare well with the Porter-Thomas law, typical of rando
wave functions. To understand the origin of such a similar
we have analyzed models with increasing scattering co
plexity, using a hard-sphere approximation for the inter
tion potentials. The simplest case found by displaying a s
tistical distribution similar to the Porter-Thomas law is sing
scattering by a Bravais lattice ofN scatterers at an arbitrar
angle of incidence. When more complexity is added to
system~e.g., by considering intralayer multiple scattering
multiple scattering between a few layers through alayer dou-

FIG. 14. The PendryR factor is analyzed in a similar way to
RRMSD in Fig. 12. The data corresponding to an experimental str
tural analysis byI (E) LEED of c(232)Si/Cu(110) are considered
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bling stacking strategy!, the statistical distribution of such
idealized systems shows better agreement with the ideax2

2

function. The same behavior is found if realistic potenti
are considered to describe the atoms within the periodic
tice. The analysis of real experimental data is also consis
with the same ideas, as expected from the known reliab
of those theoretical methods to give scattering intensitie
the geometries are already known. Finally, we have fou
that standardR factors behave exponentially in a transitio
region II before the intrinsic complexity of multiple scatte
ing effectively decouples wave functions for different ge
metrical structures. The existence of this region allows u
,

nd

R

cs

o

s
t-
nt
y
if
d

-
to

use concepts borrowed from classical chaos and to propo
criterion for the reliability of a given minimum in theR
factor, depending on whether the structure lies in a pertur
tive region I or beyond the transition zone III.
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