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Quantum transport of electrons in open nanostructures with the Wigner-function formalism
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A theoretical Wigner-function approach to the study of quantum transport in open systems in presence of
phonon scattering is presented. It is shown here that in order to solve the Wigner equation in its integral form
the knowledge of the Wigner function at all points of the phase space at an initial timet0 can be substituted by
the knowledge of the same function inside the region of interest att0 and on its boundary at all timest8 less
then the observation timet. The theory has been applied to calculate the current associated with electron
quantum transport across given potential profiles and in presence of phonon scattering.
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I. INTRODUCTION

Electron transport in mesoscopic systems has been wi
investigated in recent years.1–4 The increasing interest o
this subject is mainly related to the fundamental problems
basic physics involved, as well as to possible application
the field of device modeling.

Since the dimensions of mesoscopic systems are com
rable with typical electron coherence lengths, a corr
analysis of transport phenomena in such systems requir
detailed quantum-mechanical treatment. The Wign
function ~WF! formalism5–7 has been found particularly ap
propriate for the theoretical analysis of quantum transp
since it combines the rigorous approach of quantum mech
ics with more familiar functions defined in phase spa
However, while ballistic coherent transport has been ext
sively investigated in the recent literature using the WF, d
sipative scattering by phonons has been included in
theory only by means of phenomenological approaches~e.g.,
the relaxation-time approximation6,7!. Recently an approach
to the problem of quantum transport in presence of pho
scattering has been proposed by the authors of the pre
paper in the framework of the WF.8–11 However, the prob-
lem of a rigorous description of an open system of indep
dent electrons interacting with phonons has been left
solved. Nevertheless, any real electronic device is an o
system that can be thought of as a bounded region exch
ing particles with at least two external reservoirs. Thus,
extension of the theory mentioned above is of great
evance in view of its possible applications.

In order to solve the Wigner equation for an open syst
by means of a suitable numerical procedure8,12 the main dif-
ficulty is related to the fact that the initial condition for th
WF ~i.e., knowledge of the WF at all points of the pha
space at a given initial timet0) does not provide a suitabl
description of an open system, for which the WF must
supposed known on the boundary between the system
interest and the rest of the universe at any time, in additio
the knowledge of the same function inside the region of
terest at the initial time.
PRB 590163-1829/99/59~4!/3060~10!/$15.00
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In this paper, the above initial/boundary conditions at t
basis of the existence of Wigner paths11 are proved to be
equivalent to the initial condition over an infinite domain
the purpose of solving the Wigner equation for an open s
tem. Numerical calculations for some model physical s
tems will be shown in the limit of single-collision electro
propagation.

The general framework of the WF approach used in
present paper is summarized in Sec. II. In Sec. III, the th
retical development related to the boundary-condition tre
ment for an open system is presented. In Sec. IV, the ite
tive expansion of the integral equation for the WF
analyzed. Numerical results are shown and discussed in
V. Conclusions and perspectives are summarized in Sec

II. THEORETICAL APPROACH

A three-dimensional system of independent electrons
teracting with phonons is considered. For simplicity trans
tional invariance along two directions (x,y) is assumed here
even though this assumption is not essential to the b
theory. The HamiltonianH of the system is

H5H01He-p5
2\2¹2

2m
1V~r !1(

q
bq

†bq\vq1He-p ,

~2.1!

wherem is the electron effective mass andV(r ) is the elec-
tron potential profile~including the applied voltage!, bq and
bq

† are the annihilation and creation operators of the pho
modeq with frequencyvq . The electron-phonon interactio
HamiltonianHe-p is given by

He-p5(
q

i\F~q!~bqe
iq•r2bq

†e2 iq•r!, ~2.2!

whereF(q) is a function depending on the type of phono
scattering analyzed.

The generalized WF~Ref. 12! for an electron-phonon sys
tem is
3060 ©1999 The American Physical Society
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f w~r,p,$nq%,$nq8%,t !

5E dr8e2 ip•r8/\^r1r8/2,$nq%ur~ t !ur2r8/2,$nq8%&,

~2.3!

wherer is the density operator of the electron-phonon s
tem. For any given basis$uwn&% in the space of the electro
states the coefficients13

f nn8~r,p!5E dr8e2 ip•r8/\^r1r8/2uwn&^wn8ur2r8/2&

~2.4!

connect the generalized WF to the density mat
r(n,$nq%;n8,$nq8%;t) and vice versa.11

Starting from the Liouville equation for the density matr
in the interaction picture, it is possible to derive the equat
for the corresponding WF that is reported here in his co
pact form:11

f w~ t !5
1

h3FT~ t0 ,t !F †f w
~0!~ t0!1

1

h3FE
t0

t

dt8T~ t8,t !

3$H8F †f w~ t8!2F †f w~ t8!H8%

5 f w
~0!1D f w , ~2.5!

where

T~ t0 ,t !5exp̂ 2 i @v~n,$nq%!2v~n8,$nq8%!#~ t2t0!‰
~2.6!

is the ‘‘free-evolution’’ operator, andF is the compact ex-
pression of the coefficients defined in Eq.~2.4!. In Eq. ~2.5!
the first term (f w

(0)) and the term containingH8
5H8/ i\(D f w) are, respectively, the ballistic contributio
and the contribution to the WF due to the presence of s
tering. The physical meaning of these two terms is illustra
in Fig. 1.

The above integral equation is linear in the unknownf w .
This property guarantees that if the WF att5t0 is the sum of
several contributions, then each of them will evolve acco

FIG. 1. Schematic representation of the integral equation for
Wigner function: the ballistic term@curve (a)] being the contribu-
tion to the Wigner function att5t0 from all phase-space points tha
do not suffer interactions fromt0 to t, while the second term@curve
(b)] represents the contribution to the Wigner function from t
last electron-phonon interaction in any (r8,p8) and t8 beforet.
-

n
-

t-
d

-

ing to Eq.~2.5!, and the solution of the equation at any give
time t.t0 will be given by the sum of the single contribu
tions evaluated at the same time. This property will be u
to our purposes in the next section.

III. WIGNER EQUATION FOR AN OPEN SYSTEM

For the sake of simplicity in the following we will con
sider a one-dimensional case in the space (z,p). There is no
essential difference with the three-dimensional~3D! case,
and the numerical examples presented in Sec. V have b
actually realized in 3D with translational invariance alongx
andy.

As it can be seen by an iterative Neumann expansion
order to solve Eq.~2.5! we need to know the WF at the initia
time t0 at each point (z,p) of the phase space. We will show
that such initial condition can be substituted by the know
edge of the WF at the initial timet0 inside the system and, a
all times, on the boundary between the system and the e
ronment. From the analytical point of view this transform
tion can be realized by splitting the integral over thez8 co-
ordinate in Eq.~2.5! ~extended from2` to 1`) into three
terms: 2`,z8,2A, 2A<z8<1A, and A,z8,1`,
6A being the boundary coordinates for the 1D system. T
two space integrals over open domains not including the s
tem must be transformed into time integrals at the t
boundaries6A. In the following the proof will first be ob-
tained assuming that the eigenstates of the unpertu
Hamiltonian are plane waves. Then the results will be
tended to more general cases in Sec. III C.

A. Ballistic free electrons

We will analyze first the transformation of the ballist
term:

f w
~0!~z,p,$nq%,$nq8%,t !

5
1

~2p!2h E dkE dk8 f kk8~z,p!

3exp̂ 2 i @v~k,$nq%!2v~k8,$nq8%!#~ t2t0!‰

3E dz8E dp8 f kk8
* ~z8,p8! f w~z8,p8,$nq%,$nq8%,t0!,

~3.1!

where f kk8 are the coefficients in Eq.~2.4! that, for the case
of a basis set of plane waves, are given by

f kk8~z,p!5E dz8e2 ipz8/\eik~z1z8/2!e2 ik8~z2z8/2!

5\ei ~k2k8!zdS p2\
k1k8

2 D . ~3.2!

In Eq. ~3.1! for clarity we have explicitly inserted the inte
gral symbols. By substituting the coefficients in Eq.~3.2!
into Eq. ~3.1!, the ballistic evolution of the WF after som
straightforward calculations, results to be

e
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f w
~0!~z,p,$nq%,$nq8%,t !

5 f wS z2
p

m
~ t2t0!,p,$nq%,$nq8%,t0D

3exp̂ 2 i @v~$nq%!2v~$nq8%!#~ t2t0!‰,

~3.3!

where\v($nq%) is the total energy of the phonon bath in th
state $nq%. The two factors on the right-hand-side of E
~3.3! describe the free trajectory of the electron and the ti
evolution of the free-phonon bath, respectively. Equat
~3.3! shows that if the initial WF is considered as the integ
of d-like contributions, each of them, in absence of exter
forces, carries its value following a classical trajectory. Th
the ballistic contribution to the WF shown symbolically
e
n
l
l
,

Fig. 1 has to be considered as ‘‘carried’’ along a classi
trajectory in absence of external forces. This concept
Wigner paths11 has guided us in developing the followin
derivation.

Let us consider the range2`,z8,2A in the integral in
Eq. ~3.1! and callf L

(0) the corresponding part off w
(0) . Making

use of the properties of the coefficientsf kk8 ~Ref. 11! we
insert into the considered term the factor~equal to unity!:

1

~2p!2h E dk9E dk-E dzE dp fkk8~z,p! f k9k-
* ~z,p! .

~3.4!

Then, substituting the explicit expression of the coefficie
f given by Eq.~3.2! we obtain
f L
~0!~z,p,$nq%,$nq8%,t !5

\2

~2p!6 E dkE dk8ei ~k2k8!zdS p2\
k1k8

2 DexpS 2 i ~k2k8!
\

m

k1k8

2
~ t2t0! D

3expS 2 i(
q

~nq2nq8!vq~ t2t0! D E dk9E dk-E
2`

2A

dz8E dp8e2 i ~k2k8!z8

3dS p82\
k1k8

2 Dei ~k92k-!z8dS p82\
k91k-

2 D E dz9E dp9e2 i ~k92k-!z9dS p92\
k91k-

2 D
3 f w~z9,p9,$nq%,$nq8%,t0!. ~3.5!

In order to proceed we introduce the variable transformations

K̄5
k1k8

2
and k̄5k2k8 ~3.6!

and transform the integrals overk andk8 into integrals over the new variables. By use of the delta function we obtain

f L
~0!~z,p,$nq%,$nq8%,t !5

1

~2p!5 E
2`

2A

dz8E dp8dS z2z82
p8

m
~ t2t0! D d~p2p8!

3expS 2 i(
q

~nq2nq8!vq~ t2t0! D E dk9E dk-ei ~k92k-!z8dS p82\
k91k-

2 D
3 E dz9E dp9 f k9k-

* ~z9,p9! f w~z9,p9,$nq%,$nq8%,t0!. ~3.7!
n

Using again the properties of thed function we get the fol-
lowing constraints on the space variablesz andz8:

z8,2A⇒z2
p8

m
~ t2t0!,2A, ~3.8!

which, in turn, imply constraints on the time variable:

t.t01
z2~2A!

p8

m

if p8.0,
t,t01
z2~2A!

p8

m

if p8,0. ~3.9!

Since we are interested in the WF inside the device thez
.2A andz2(2A).0. As a consequence, beingt.t0 , the
second condition of Eq.~3.9! is never verified. As it regards
the first-time constraint in Eq.~3.9! we may notice that

t85t2
z2~2A!

p8

m

5t02
z82~2A!

p8

m

, ~3.10!
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is the time at which the path crosses the boundary atz52A. Thus, the constraints mean that contributions from the left m
have positive momentum. By using the crossing timet8 as a new integration variable in place ofz8 in Eq. ~3.7! it is obtained:

f L
~0!~z,p,$nq%,$nq8%,t !5

1

~2p!4h2 E
t0

t

dt8E
0

1`

dp8
p8

m
hE dkE dk8 f kk8~z,p!

3e2 i @v~k,$nq%!2v~k8,$nq8%!#~ t2t8! f kk8
* ~2A,p8!hE dk9E dk- f k9k-~2A,p8!

3e2 i @v~k9,$nq%!2v~k-,$nq8%!#~ t82t0!E dz9E dp9 f k9k-
* ~z9,p9! f w~z9,p9,$nq%,$nq8%,t0!. ~3.11!

The last part of the above expression describes the free evolution of the WF outside the domain of interest correspo
the Wigner paths~a! 1-2 in Fig. 2, so thatf L

(0) can be finally written as

f L
~0!~z,p,$nq%,$nq8%,t !5

1

~2p!2h E dkE dk8 f kk8~z,p!E
t0

t

dt8e2 i @v~k,$nq%!2v~k8,$nq8%!#~ t2t8!

3E
0

1`

dp8
p8

m
f kk8
* ~2A,p8! f w

~0!~2A,p8,$nq%,$nq8%,t8!. ~3.12!

The space integral over the variablez8 has been substituted by a time integral over the crossing timet8 from the initial time
t0 to the observation timet, with the WF evaluated at the left boundary of the system (z52A), as desired.

Similar calculations can be performed for the case1A,z8,1`, so that Eq.~3.1! becomes

f w
~0!~z,p,$nq%,$nq8%,t !5

1

~2p!2h E dkE dk8 f kk8~z,p!

3H e2 i @v~k,$nq%!2v~k8,$nq8%!#~ t2t0!E
2A

1A

dz8E dp8 f kk8
* ~z8,p8! f w~z8,p8,$nq%,$nq8%,t0!

1E
t0

t

dt8e2 i @v~k,$nq%!2v~k8,$nq8%!#~ t2t8!F E
0

1`

dp8
p8

m
f kk8
* ~2A,p8! f w~2A,p8,$nq%,$nq8%,t8!

1E
2`

0

dp8
p8

m
f kk8
* ~2A,p8! f w~A,p8,$nq%,$nq8%,t8!G J , ~3.13!

which is the expected result. Contributions coming from paths that att5t0 start from inside the region of interest are given
the first term in the above equation left unchanged with respect to the original description. In Eq.~3.13! the boundary of the
evolution equation of the ballistic termf w

(0) is the bold line in Fig. 2~a!.

B. Phonon scattering

We consider now the collision term:

D f w~z,p,$nq%,$nq8%,t.0!5
1

~2p!3h E dkE dk8 f kk8~z,p!E
t0

t

dt8e2 i @v~k,$nq%!2v~k8,$nq8%!#~ t2t8!

3 (
mq

E dk9E dz8E dp8@H 8~k,$nq%,k9,$mq%! f k9k8
* ~z8,p8! f w~z8,p8,$mq%,$nq8%,t8!

2 f kk9
* ~z8,p8! f w~z8,p8,$nq%,$mq%,t8!H 8~k9$mq%,k8$nq8%!#. ~3.14!
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We shall again be guided by the concept of Wigner pa
since it has been shown11 that each electron-phonon intera
tion vertex maintains the propagation along a Wigner p
with a momentum transfer equal to half of the phonon m
mentum (q/2). As it was done in the previous case, Eq
~3.2! and ~3.4! are substituted into Eq.~3.14!, and the inte-
gral overz8 is split into three parts. Let us consider first th
rangez8,2A corresponding to an electron-phonon intera
tion occurring outside the left boundary of the region of
terest. Introducing the transformation in Eq.~3.6! the inte-
grals *dk*dk8 can be transformed into*dk̄*dK̄ and the
second one can be performed using delta functions conta
in the coefficients in Eq.~3.2!. Then we introduce the time
variable t9 ~corresponding to the time at which the pa
crosses the left boundary! defined through the space coord
natez8:

z852A2~ t92t8!
p8

m
. ~3.15!

Whenz8,2A and p8.0 we are led to the following con
straints on the variablet9: t8<t9<t0 ~corresponding to par
ticles entering the system from the left boundary!. The inte-
gral overz8 can be easily transformed into an integral overt9
and the following change in the integral limits is used:

E
t0

t

dt8E
t8

t

dt95E
t0

t

dt9E
t0

t9
dt8. ~3.16!

By inserting the identity\*dKd(p2\K)51 and consider-
ing the inverse variable transformation of Eq.~3.6! we are
left with
,

h
-
.

-

ed

FIG. 2. Schematic representation of the integral equation for
Wigner function with the boundary conditions. The integration co
tour of the evolution equation of the Wigner function is the bo
line. ~a! Ballistic evolution: Wigner paths coming from outsid
@curve (a)] and from inside@curve (b)] the domain of interest.~b!
Ballistic contributions@curve (a) and curve (b)] and contributions
of the perturbation term having the last electron-phonon interac
inside @curve (c)] and outside@curve (d)] the domain of interest.
The terms of type (a) and (d) can be summed to give the tota
Wigner function on the boundary. Therefore, to consider the c
tribution to the Wigner function coming from the boundary corr
sponds to take into account all the terms of type (a) and (b).
ns
D f w,L~z,p,$nq%,$nq8%,t !5
1

~2p!5h E dkE dk8 f kk8~z,p!E
0

1`

dp8E
t0

t

dt9E
t0

t9
dt8

p8

m

3exp̂ 2 i @v~k,$nq%!2v~k8,$nq8%!#~ t2t9!‰f kk8
* ~2A,p8!

3exp̂ 2 i @v~$nq%!2v~$nq8%!#~ t92t8!‰E dk9E dk-

3exp$2 i ~k92k-!p8/m~ t92t8!% f k9k-~2A,p8!(
mq

E dkivE dz9E dp9

3@H 8~k9$nq%,k
iv$mq%! f kivk-

* ~z9,p9! f w~z9,p9,$mq%,$nq8%,t8!

2 f k9kiv* ~z9,p9! f w~z9,p9,$nq%,$mq%,t8!H 8~kiv$mq%,k-$nq8%!#, ~3.17!

where we have used once more the expression in Eq.~3.2! for the f coefficients. After some straightforward manipulatio
using the delta functions and remembering Eq.~3.14! we are left with the following result:



tion term

of

at

PRB 59 3065QUANTUM TRANSPORT OF ELECTRONS IN OPEN . . .
D f w,L~z,p,$nq%,$nq8%,t !5
1

~2p!2h E dkE dk8 f kk8~z,p!E
t0

t

dt9

3e2 i @v~k,$nq%!2v~k8,$nq8%!#~ t2t9!

3E
0

1`

dp8
p8

m
f kk8
* ~2A,p8!D f w~2A,p8,$nq%,$nq8%,t9!. ~3.18!

Similar calculations can be performed for the casez8.A ~andp8,0). The final result is

D f w,R~z,p,$nq%,$nq8%,t !5
1

~2p!2h E dkE dk8 f kk8~z,p!E
t0

t

dt9

3e2 i @v~k,$nq%!2v~k8,$nq8%!#~ t2t9!

3E
2`

0

dp8
2p8

m
f kk8
* ~A,p8!D f w~A,p8,$nq%,$nq8%,t9!. ~3.19!

Equations~3.18! and ~3.19! show that the interaction term in the integral equation~2.5! corresponding to the laste-ph
interaction occurring outside the region of interest can be substituted by a free coherent propagation of the interac
D f w of the v frequence from the boundary to the observation point. This term will be summed to the term~3.13! previously
analyzed, corresponding to the free propagation of the WF withoute-ph interactions.

Finally the term in Eq.~3.14! associated to the range2A<z8<A corresponds to interactions occurring inside the region
interest and needs not to be changed to our purposes.

By collecting the above results we can rewrite Eq.~2.5! as follows:

f w~z,p,nq ,nq8 ,t !5
1

~2p!2h E dkE dk8 f kk8~z,p!E
t0

t

dt8 exp̂ 2 i @v~k,$nq%!2v~k8,$nq8%!#~ t2t8!‰

3H E
0

1`

dp8
p8

m
f kk8
* ~2A,p8! f w~2A,p8,$nq% ,$nq8% ,t8!

2E
2`

0

dpz8
p8

m
f kk8
* ~A,p8! f w~A,p8,$nq% ,$nq8% ,t8!J

1
1

~2p!2h (
kk8

f kk8~z,p!exp̂ 2 i @v~k,$nq%!2v~k8,$nq8%!#~ t2t0!‰

3E
2A

A

dz8E dp8 f kk8
* ~z8,p8! f w~z8,p8,$nq% ,$nq8% ,t0!

1
1

~2p!3h E dkE dk8 f kk8~z,p!E
t0

t

dt8 exp̂ 2 i @v~k,$nq%!2v~k8,$nq8%!#~ t2t8!‰

3E dk̃HH 8~k,$nq%,k̃,$mq%!E
2A

A

dz8E dp8 f
k̃n8
* ~z8,p8! f w~z8,p8,$mq% ,$nq8% ,t8!

2E
2A

A

dz8E dp8 f kk̃
* ~z8,p8! f w~z8,p8,$nq% ,$mq% ,t8!H 8~ k̃,$mq%;k8,$nq8%!J , ~3.20!

where the initial condition att0 over the space domainsz,2A andz.A has been substituted with the boundary condition
the system boundaries6A both in the ballistic and in the scattering terms. The change from initial~for closed systems! to
boundary conditions~for open systems! is symbolically illustrated in Fig. 2~a!.
ba
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e
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coef-
in
C. Phonons and potential profile

In this section we analyze the case in which the pertur
tion term is again given by the electron-phonon interacti
while the unperturbed HamiltonianH0 contains, besides th
free-electron and free-phonon Hamiltonians also a poten
-
,

al

profile and an applied bias defined in the region of intere
The eigenstates ofH0 are no longer plane waves but if, as w
assume in our case, the potential is flat outside the regio
interest, they can be taken as scattering states, and the
ficients f kk8(z,p) do not have the simple form presented
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Eq. ~3.2!. For this general case the validity of Eq.~3.20! will
be extended on the basis of physical and analytical con
erations. This will allow us to solve the problem for the ca
of an arbitrary potential profile taking advantage of the res
obtained in the previous section. To this purpose we can
the linearity of the equation of motion for the WF@Eq. ~2.5!#
and decompose the WF into a sum of a number of ini
contributions well localized in phase space. Furthermore,
set the boundaries of our system where the potential is c
stant, far from the region where the potential is rapidly va
ing. Under these hypotheses a single contribution to the
evolves in a constant potential profile while it is entering t
device from the boundary.

Let us now consider the time evolution of the WF:

i\
]

]t
f w~z,p,t !5E dz8eipz8/\

3H i\
]C~z2z8/2,t !

]t
C* ~z1z8/2,t !

1 i\C~z2z8/2,t !
] C* ~z1z8/2,t !

]t J ,

~3.21!

where the overbar means ensemble average, and subs
the time derivative of the wave function by means of t
time-dependent Scho¨dinger equation:

i\
]

]t
f w~z,p,t !52

\2

2m E dz8eipz8/\

3H d2C~z2z8/2,t !

dz2 C* ~z1z8/2,t !

2C~z2z8/2,t !
d2C* ~z1z8/2,t !

dz2 J
1E dz8eipz8/\$V~z2z8/2!2V~z1z8/2!%

3C* ~z1z8/2,t !C~z2z8/2,t !. ~3.22!

The time evolution of the WF in this case is written as t
sum of two terms: the first one corresponds to the balli
evolution, the second one represents the scattering with
potential profile. For a WF localized in a region of the re
space where the potential is constant, the term including
scattering potential gives no contribution. In fact, from t
properties of the WF deriving from its definition, it follow
that, in the real-space region where the WF is zero for
value of the momentum,uCu250 and therefore all the cor
responding wave functions of the ensemble are zero. Th
fore, since either V(z2z8/2)2V(z1z8/2)50 or
C* (z1z8/2,t)C(z2z8/2,t)50 for eachz andz8, the scat-
tering term is zero. As a consequence, the contribution
the WF entering the device across the boundaries move
the region of constant potential, according to a free evo
tion. Moreover, assuming perfectly thermalizing contac
these contributions can be supposed to be distributed acc
ing to the equilibrium distribution when they enter th
boundaries. Then we may assume such a distribution to
d-
e
lt
se

l
e
n-
-
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tute

c
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l
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-
,
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respond to the initial condition att0 . This means that the
contribution provided by the initial condition att0 for an
interval dz aroundz, is transferred to the one provided b
the boundary condition for an intervaldt aroundt through
the path transformationdz5(p/m)dt, wherep/m is the ve-
locity corresponding to the Wigner variablep.

Since the explanation given above may result someh
involved, it can be useful to summarize it. The time evo
tion of the WF can be written as the sum of the time evo
tions of its single contributions, and they move ‘‘free’’ in th
real-space region where the potential is constant. Perfe
thermalizing contacts allow to consider them distributed
cording to an equilibrium distribution that can be suppos
to derive directly from the initial conditionf w(z8,p8,t0).
Then the same considerations developed in the previous
tions apply, and the initial condition can be substituted by
boundary conditions.

Concerning the evolution of the contributions to the W
starting inside the device att0 , they are accounted for, as fo
the case discussed in the previous section, by integrating
position variable between2A andA.

We can conclude that Eq.~3.20! describes the time evo
lution of the WF also in presence of an arbitrary potent
profile far from the boundaries, and in this case a pro
basis set of scattering states is used in place of plane wa
The change from initial~for closed systems! to boundary
conditions~for open systems! is symbolically illustrated for
this general case in Fig. 2~b!.

IV. THE ITERATIVE EXPANSION

In order to solve the integral equation for the WF@Eq.
~3.20!#, a Neumann expansion has been obtained by itera
substitution of Eq.~3.20! into itself. In the compact formal-
ism introduced in Eq.~2.5! this expansion results to be

f w~ t !5 f w
~0!~ t0 ,t !1

1

h3FE
t0

t

dt8T~ t8,t !

3HH8F †F f w
~0!~ t0 ,t8!1

1

h3F2E
t0

t8
dt9T2~ t9,t8!

3$H28F 2
†f w

~0!~ t0 ,t9!2F 2
†f w

~0!~ t0 ,t9!H8%G
2F †F f w

~0!~ t0 ,t8!1
1

h3F2E
t0

t8
dt9T2~ t9,t8!

3$H28F 2
†f w

~0!~ t0 ,t9!2F 2
†f w

~0!~ t0 ,t9!H8%GH81¯J ,

~4.1!

where

f w
~0!~ t0 ,t !5

1

h3FT~ t0 ,t !F †f w
~0!~ t0!, ~4.2!

and pairs of adjacentFF † can be simplified using the uni
tarity relations defined in Ref. 11. At the initial timet0 elec-
trons and phonons are assumed to be at equilibrium and
interacting, so that the total WF is diagonal in the phon
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variables. This assumption is equivalent to assume that
electron-phonon interaction is switched on att0 . In practice,
the effect of such an assumption becomes negligible if
dynamical evolution of the system is studied for sufficien
long times and the boundaries of the system are sufficie
far from the region of interest.

Since, at the observation timet, the trace over phonon
must be performed when electron variables are investiga
only diagonal terms in the phonon variables of the gene
ized WF in Eq.~3.20! are to be evaluated. This implies th
only even-order terms of the Neumann expansion contrib
to our solution, and only terms corresponding to real a
virtual phonon interactions,14 where twice the same modeq
is considered in the factorsH8 in Eq. ~4.1!.

For each phonon modeq the matrix elements of the in
teraction Hamiltonian between the statesuk,$nq%& and
uk8,$nq8%& ~wherek is the incoming wave vector of the elec
tron scattering state, andnq the phonon occupation numbe!
are given by

H8~k8,$nq8%;k,$nq%!

5^fk8 ,$nq8%uF~q!~bqe
iqz2bq

†e2 iqz!ufk ,$nq%&

5AnqC~k8,q,k!2Anq11C* ~k,q,k8! ~4.3!
he

e

ly

d,
l-

te
d

whereC(k8,q,k) is the matrix element ofeiqz between the
electron statesuk& anduk8&. As it regards the square roots o
the phonon occupation numbers appearing in the ab
equation, they becomenq or nq11 when the second-orde
contributions of interest are considered. They correspon
the phonon occupation numbers which specify the ac
phonon state at the considered time. However, when
trace operation over the phonon variables is performed
the thermal bath is assumed at equilibrium they must
substituted by their average values, given by the Bo
Einstein distribution.14

The perturbative contributions to the integral equation
the WF still maintain very complex expressions involvin
several integrations, so that, before their numerical eva
tion, analytical manipulations are necessary. In particu
the time integrals have been performed analytically and
following identities have been used:

E dk9C~k,6q,k9! f k9,k8
* ~z,p!5e6 iqzf k,k8

* S z,p6\
q

2D
~4.4!

that can be easily obtained using the analytical propertie
the quantities involved.
FIG. 3. ‘‘Ballistic invasion’’of the Wigner function into an empty device with local equilibrium boundary conditions att510 fs ~a!, t
540 fs ~b!, t580 fs ~c! for electrons entering from the boundaries into a region with a potential step and stationary Wigner function~d!, as
obtained by means of an equilibrium density matrix diagonal over the scattering states for a 0.1-eV step potential.
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V. NUMERICAL RESULTS

The theory described in the previous sections has b
applied to investigate electron transport in GaAs-based
soscopic heterostructures. Numerical calculations have b
performed for a three-dimensional system. The electro
unperturbed states have been chosen as the scattering
of the considered potentials as it regards the direction
thogonal to the interfaces, obtained as numerical solution
the corresponding Schro¨dinger equation. Along the plane o
the interface plane waves have been assumed. For simp
the effective mass has been assumed to be the same all
the structure (m* 50.067m0).

Electron interaction with polar-optical phonons has be
considered in this paper, characterized by a coupling fu
tion F(q) in Eq. ~2.2! given by

F~q!5Fe2KBupop

2\2«0
H 1

«~`!
2

1

«~0!J G1/21

q
, ~5.1!

whereKBupop is the energy of the polar optical phonons
GaAs (upop5410 K), and«(`)510.92 and«(0)512.9 are
the high- and low-frequency dielectric constant, respectiv

FIG. 4. Electron current across step potential as a function of
step height. In the figure a comparison between quantum and s
classical calculations with and withoute-ph interaction is shown.
The following cases are reported: Wigner-ballistic curve~solid
line!, Wigner curve withe-ph scattering~circles!, semiclassical bal-
listic curve ~dashed line!, semiclassical curve withe-ph scattering
~dotted line!. A value of the carrier densityn at the contacts ofn
51016 cm23 has been assumed.

FIG. 5. Wigner function for a double-barrier potential profile,
a 160-mV applied bias, including the effect of ane-ph scattering
switched on 50 fs before the ‘‘observation’’ time.
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As first application we have evaluated the ballistic evoluti
of an electron flux across a step potential profile. The follo
ing initial and boundary conditions have been assumed:f w
50 at t5t0 inside the device and a Maxwellian local equ
librium incoming distribution at the left and right boundarie
Results are shown in Figs. 3~a!–3~d! at different times after
the initial condition. At the longest times we recover forf w
the same result, which is obtained without using bound
conditions for a stationary infinite system, wheref w is evalu-
ated by means of an equilibrium density matrix diagon
over the scattering states.

In order to evaluate the effect of a single electron-phon
scattering event on the otherwise coherent electron prop
tion across the step we have evaluated the second-order
tribution in thee-p perturbation Hamiltonian to the iterativ
expansion of Eq.~3.20!.

The integral over the phonon modes has been perform
by means of a Monte-Carlo sampling. All the other integr
appearing in the perturbative terms have been performed
merically by means of finite-difference and fast-Fourier
gorithms. Space correlations for the evaluation of the coe
cients in Eq.~3.2! have been considered up to 40 nm, and
some cases the results have been verified assuming twice
value.

Owing to the formidable computational burden associa
to the numerical integrations, we have developed and im
mented a parallel algorithm suitable to exploit the features
modern supercomputers. Typical computer CPU times
quired for the evaluation of a point in theI (V) characteristics
of the considered structures are of the order of 30 h on a
CPU-Cray T3E machine.

Figure 4 shows the electron current as a function of
step-potential height as obtained with the ballistic WF~solid
curve! and with the WF corrected by the effect of ane-ph
scattering process~circles! switched on 50 fs before the ‘‘ob
servation time.’’ Comparison is presented with the outco
of a semiclassical calculation based on the Boltzmann eq
tion in absence~dashed line! and in presence~dotted line! of
phonon scattering.

The quantum ballistic curve is always lower than the c
responding semiclassical one, and instead of reaching a s
ration value, it rises up to a maximum and then decrea
This is due to the fact that in the quantum picture increas

e
i-

FIG. 6. Electron current as a function of the applied bias for
case of a double-barrier potential profile. A comparison is sho
between the results obtained using the ballistic Wigner funct
~solid line! and the Wigner function corrected by the effect of
electron-phonon scattering process~full circles! switched on 50 fs
before the ‘‘observation time.’’
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the potential step leads, as a consequence of quantum re
tion, to a decrease of the transmission coefficient, that is,
decrease of the current intensity. Finally, in both quant
and semiclassical calculations the effect of thee-ph interac-
tion is, as expected, a reduction of the current with respec
the ballistic case.

As a second case we considered a double-barrier s
ture. The two AlGaAs barriers are 0.28-eV high and 2.8-
wide, and they are separated by a GaAs layer of 5 nm
constant external electric field has been applied to the c
sidered structure.

The steady-state WF for a double barrier potential profi
at a 160-meV applied bias, including the effect of ane-ph
scattering is presented in Fig. 5. In Fig. 6, the current
displayed as a function of the applied bias for such a po
tial profile. The solid curve is obtained with the ballistic W
whilst the full circles~with the error bars! are the results of
the calculations performed using the WF corrected for effe
of an e-ph scattering mechanism. Even considering the
certainty introduced by problems of numerical accuracy,
effect of thee-ph scattering process on the characteristics
the I (V) curve is clearly detectable: the peak to valley c
rent ratio is reduced and, in the highest voltage region,
current is increased. These results can be interpreted in t
of the loss of coherence and of the broadening of the re
nance states, and are in agreement with those obtaine
Frensley15 and by Ragazziet al. using a semiclassica
Boltzmann collision operator.16
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VI. CONCLUSIONS

We have developed a general method for the solution
quantum electron transport problems for an open sys
containing an arbitrary potential profile and electron-phon
interaction with thermalizing contacts located in regions w
constant potential profile. In particular, we have proved t
in order to evaluate the Wigner equation including electro
phonon interaction the initial condition of the WF over th
whole space can be substituted by a suitable boundary
dition. The analytical proof has been initially given for th
case in which the eigenstates of the unperturbed Hamilton
are plane waves and then extended to the more general
of scattering states. From the physical point of view this n
result provides a natural description of an open system
imposing at the boundaries the correct conditions determi
by the environment. The theory has been applied to calcu
the current associated with electron quantum transport ac
a potential step and a double barrier in presence of sin
phonon-scattering process.
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