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Quantum transport of electrons in open nanostructures with the Wigner-function formalism

P. Bordone, M. Pascoli, R. Brunetti, A. Bertoni, and C. Jacoboni
Istituto Nazionale per la Fisica della Materia, Dipartimento di Fisica, UniversiiaModena, Via Campi 213/A, 41100 Modena, Italy

A. Abramo
DIEGM, Universitadi Udine, Viale delle Scienze 208, 33100 Udine, Italy
(Received 13 July 1998

A theoretical Wigner-function approach to the study of quantum transport in open systems in presence of
phonon scattering is presented. It is shown here that in order to solve the Wigner equation in its integral form
the knowledge of the Wigner function at all points of the phase space at an initialticam be substituted by
the knowledge of the same function inside the region of interegf and on its boundary at all times less
then the observation time The theory has been applied to calculate the current associated with electron
guantum transport across given potential profiles and in presence of phonon scattering.
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[. INTRODUCTION In this paper, the above initial/lboundary conditions at the
Electron transport in mesoscopic systems has been WidePa‘Q’l-S of the existence of ngner pa‘ﬂmr_e pro ved to b ©
. . ; 1ol : o é(quwalent to the initial condition over an infinite domain to
'”_Ves“g?‘teo'_ n re_ce”t yearS. The increasing interest on the purpose of solving the Wigner equation for an open sys-
this subject is mainly related to the fundamental problems ofgy, - Nymerical calculations for some model physical sys-
basic physics involved, as well as to possible applications ijems will be shown in the limit of single-collision electron
the f_|eld of de\_/lce m_odellng. _ propagation.

Since the dimensions of mesoscopic systems are compa- The general framework of the WF approach used in the
rable with typical electron coherence lengths, a correcpresent paper is summarized in Sec. Il. In Sec. Ill, the theo-
analysis of transport phenomena in such systems requiresrétical development related to the boundary-condition treat-
detailed quantum-mechanical treatment. The Wignerment for an open system is presented. In Sec. 1V, the itera-
function (WF) formalisn?~’ has been found particularly ap- tive expansion of the integral equation for the WF is
propriate for the theoretical analysis of quantum transporanalyzed. Numerical results are shown and discussed in Sec.
since it combines the rigorous approach of quantum mechané. Conclusions and perspectives are summarized in Sec. VI.
ics with more familiar functions defined in phase space.

However, while ballistic coherent transport has been exten- Il. THEORETICAL APPROACH

sively investigated in the recent literature using the WF, dis- ) ) ) )
sipative scattering by phonons has been included in the A three-dimensional system of independent electrons in-
theory only by means of phenomenological approaches, tgractmg w_lth phonons is copsmgred. qu simplicity transla-
the relaxation-time approximati®f). Recently an approach tional invariance along two directions,/) is assumed here,
to the problem of quantum transport in presence of phonofVen though this assumption is not essential to the basic
scattering has been proposed by the authors of the preséf€ory- The Hamiltonia of the system is

paper in the framework of the WE1! However, the prob- s

lem of a rigorous description of an open system of indepen- |, _ _ +

dent electrons interacting with phonons has been left un- H=HotHep="5n +V(r)+% babeft gt He-p,
solved. Nevertheless, any real electronic device is an open (2.1
system that can be thought of as a bounded region exchang- ) . .

ing particles with at least two external reservoirs. Thus, thevherem is the electron effective mass aN(r) is the elec-

extension of the theory mentioned above is of great reliron potential profile(including the applied voltageb, and
evance in view of its possible applications. b, are the annihilation and creation operators of the phonon
In order to solve the Wigner equation for an open systeninodeq with frequencyw,. The electron-phonon interaction
by means of a suitable numerical proceddfdghe main dif-  HamiltonianH..,, is given by
ficulty is related to the fact that the initial condition for the
WF (i.e., knowledge of the WF at all points of the phase
space at a given initial timg)) does not provide a suitable
description of an open system, for which the WF must be
supposed known on the boundary between the system efhereF(q) is a function depending on the type of phonon
interest and the rest of the universe at any time, in addition tgcattering analyzed.
the knowledge of the same function inside the region of in- The generalized WIRef. 12 for an electron-phonon sys-
terest at the initial time. tem is

Hep=> ihF(q)(be" —ble "), (2.2
q
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time ing to Eq.(2.5), and the solution of the equation at any given
t1 €9 time t>t, will be given by the sum of the single contribu-
b) tions evaluated at the same time. This property will be used

to our purposes in the next section.

Ill. WIGNER EQUATION FOR AN OPEN SYSTEM

For the sake of simplicity in the following we will con-
' position sider a one-dimensional case in the space). There is no
r essential difference with the three-dimensiof@D) case,
and the numerical examples presented in Sec. V have been
Qctually realized in 3D with translational invariance along
andy.

As it can be seen by an iterative Neumann expansion, in
order to solve Eq(2.5 we need to know the WF at the initial
timety at each pointZ,p) of the phase space. We will show
that such initial condition can be substituted by the knowl-
fo(rpdngh, it t) edg_e of the WF at the initial timg, inside the system and, at _
Wi el gl all times, on the boundary between the system and the envi-

ronment. From the analytical point of view this transforma-
_ r—ip-r! , , p tion can be realized by splitting the integral over ttieco-
_f dr'e™®" ’h(r+r /2,{nq}|p(t)|r—r /2,{nq}>, ordinate in Eq(2.5) (extended from—o to + =) into three

terms: —o<z'<—A, —AszZ's+A, and A<z’ <+x,

2.3 + A being the boundary coordinates for the 1D system. The
two space integrals over open domains not including the sys-
tem must be transformed into time integrals at the two
boundariest A. In the following the proof will first be ob-
tained assuming that the eigenstates of the unperturbed

Hamiltonian are plane waves. Then the results will be ex-
fnn,(r,p):f dr'e P 1712 o) @ne [T =11 12) tended to more general cases in Sec. Il C.

(2.4)

to

FIG. 1. Schematic representation of the integral equation for th
Wigner function: the ballistic terrhcurve @)] being the contribu-
tion to the Wigner function at=t, from all phase-space points that
do not suffer interactions fromy, to t, while the second terifturve
(b)] represents the contribution to the Wigner function from the
last electron-phonon interaction in any/ (p’) andt’ beforet.

wherep is the density operator of the electron-phonon sys
tem. For any given basi§¢,)} in the space of the electron
states the coefficients

A. Ballistic free electrons

connect the generalized WF to the density matrix e will analyze first the transformation of the ballistic
p(n{ng}:n’ {ng};t) and vice versa: term:
Starting from the Liouville equation for the density matrix
in the interaction picture, it is possible to derive the equation o, ,
for the corresponding WF that is reported here in his com- fw (ZP:{Ngh{nght)

pact form?! 1
ZWJ dkf dk’fkkr(z,p)

1 1 t
fu(t)= 3 FI(t O F 1) (te) + 5 F | dt'T(t’,
(t) h3 ﬂto t) (t0)+ h3 J;O t ﬂt t) Xexp{—i[w(k,{nq})—w(k’,{né})](t_to)}

X{H' F ) — FH(tHHY
x [ dz [ dp om0 g ngh o)

=fO+Af,, (2.5
where @1
Tito,H)=exp{—i[w(n,{ng) —w(n’ {n:H](t—to)} wheref,,, are the coefficients in Eq2.4) that, for the case
4 a (2.6 of a basis set of plane waves, are given by
is the “free-evolution” operator, and is the compact ex- _ s Cipz! T aik(24+ 2 12) e ik (2—2'12)
pression of the coefficients defined in E8.4). In Eq. (2.5 fkk’(z'p)_f dz'e”!Peeizrs e e
the first term ¢”) and the term containingH’ ,
=H'lin(Af,) are, respectively, the ballistic contribution —peik-K)zg p_ﬁkJ“k ) (3.2
and the contribution to the WF due to the presence of scat- 2

tering. The physical meaning of these two terms is illustrated

in Fig. 1. In Eq. (3.2) for clarity we have explicitly inserted the inte-
The above integral equation is linear in the unknadyn gral symbols. By substituting the coefficients in H8.2)

This property guarantees that if the WR att, is the sum of into Eq. (3.1), the ballistic evolution of the WF after some

several contributions, then each of them will evolve accordstraightforward calculations, results to be
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fgf)(z,p,{nq},{n’},t) Fig. 1 has to be considered as “carried” along a classical
d trajectory in absence of external forces. This concept of

p , Wigner path$' has guided us in developing the following
=fu| 2= 1 (t=to),p,{ng}, {Ng} to derivation.
_ ) Let us consider the rangex <z’ <—A in the integral in
Xexp{—i[o({ng}) —o({ngh)](t—to)}, Eq.(3.1) and callf(?) the corresponding part 6f°) . Making

(3.3  Uuse of the properties of the coefficierfig., (Ref. 11 we

) ) insert into the considered term the factequal to unity:
wherefiw({ng}) is the total energy of the phonon bath in the

state{ny}. The two factors on the right-hand-side of Eq. 1

(3.3) describe the free trajectory of the electron and the time " m *

evolution of the free-phonon bath, respectively. Equation (2m)*h f dk fdk fdzf dpfie (Z.P)ion(2.P)

(3.3) shows that if the initial WF is considered as the integral (3.9

of &like contributions, each of them, in absence of external

forces, carries its value following a classical trajectory. Thus Then, substituting the explicit expression of the coefficients
the ballistic contribution to the WF shown symbolically in f given by Eq.(3.2 we obtain

h? o k+k' , hok+k'
f§°>(z,p,{nq},{na},t)=wfdkf dk’e'("k)25<p—ﬁ 5 )exp{—l(k—k’)ET(t—to))

—A i 1yt
xexp(—iE (nq—n[])wq(t—to))jdk”f dk”’f dz’jdp’e"(k’k)z
q — 0

k + k, H " " ! k” + k"/ H " " " k” + k//,
X 8 pr_ﬁ eI(k —K )25 p/_h J’ dZ"f dp//efl(k -k )25 p”_ﬁ
2 2 2
><fW(z”,p”,{nq},{nA},tO). (3.5
In order to proceed we introduce the variable transformations
— k+k’ —
K= 5 and k=k—k’ (3.6

and transform the integrals ovkrandk’ into integrals over the new variables. By use of the delta function we obtain

’ 1 A ’ ’ ’ p, ’
fE-O)(Z,p'{nq}’{nq},t):(ZT)Sffocdz j dp olz—z _E(t_to)>5(p_p )

H " " ’ k"+k,”
xex;n(—iz (nq—nc’])wq(t—to))fdk”j dk"e! (kK ~k"z 5(p’—ﬁ > )
q
X f dz’,f dp”f:”k///(z,,lp”)fw(znvp”r{nq}v{na}!to)' (37)
|
Using again the properties of thfunction we get the fol- z—(-A)
lowing constraints on the space variabfeandz’: t<to+ o if p’<0. (3.9
m
) P’
Z'<—A=z-(t-lg)<—A, (38  Since we are interested in the WF inside the device then

>—A andz—(—A)>0. As a consequence, beihg ty, the
second condition of Eq3.9) is never verified. As it regards

which, in turn, imply constraints on the time variable: the first-time constraint in Eq3.9) we may notice that
z—(—A) z—(—A) Z’—(—-A)
t>to+ ——— if p’>0, f=to g 3.1
0 p p P 0 P’ (3.10
m m m
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is the time at which the path crosses the boundagrat A. Thus, the constraints mean that contributions from the left must
have positive momentum. By using the crossing tirhas a new integration variable in placezfin Eq. (3.7) it is obtained:

1 t +o0 p’
(0) ’ — ’ P 7 ’ ,
2P g (g 0=z [ o [ ap e [ ok ai oz
Xe*i[w(ky{Nq})*w(k’,{né})](tft’)f:k,(_A,p/)hJ dklrJ’ dk”’fkuk///(—A,p')

x @~ Lotk {ngh— (K" {ngh )t ~to) f dz’ f dp" Fnen(Z, P fu(2 P gk dnghte).  (3.1D

The last part of the above expression describes the free evolution of the WF outside the domain of interest corresponding to
the Wigner pathga) 1-2 in Fig. 2, so thaf(®) can be finally written as

1 t H ! ! !
10z p.Anghingh )= 5 f dk J dK fye(2,p) f dtle Totlng) (k' {ngh -t
(2m)h t

A p’ * ’ ' ' ’
xfo dp’ i (AP (= A" {ngh.{ng} t'). (3.12

The space integral over the varialdehas been substituted by a time integral over the crossingttifrem the initial time
to to the observation time, with the WF evaluated at the left boundary of the system { A), as desired.
Similar calculations can be performed for the casA<z'<+«, so that Eq(3.1) becomes

1
fs‘?)(z,p,{nq},{né},t)=mfdkf dk'fi e (z,p)
_ o, A
X[el[w(ky{nq})w(k v{nq})](tfto)J’iAder dp’f:kr(zl,p')fw(Z,,p,,{nq},{né},to)

! ra—i[o -k’ {n’ -t/ e rp/ ’ ’ ’ ’

+ | avestking etk ”[ | - ARt AR g g )
0 /p’ * i ’ ’ i

+ledp Efkk/(_A!p )fw(Avp v{nq}v{nq}!t ) ’ (313

which is the expected result. Contributions coming from paths thiat & start from inside the region of interest are given by
the first term in the above equation left unchanged with respect to the original description. (B1Eythe boundary of the
evolution equation of the ballistic teri{®) is the bold line in Fig. ).

B. Phonon scattering

We consider now the collision term:

1 t A ’ ! ’
Afy(z,p,{ng}{ng},t>0)= m] dkf dk frw(z,p) ft dt’ e~ ile(kingh - oK' {ngh(t-t")
0

%3 [k [ a2 [ dp T (g K i (2012 7 il gt
Mg

—fe(@ P (2 " {ngh {mgh t')H " (K"{mg} k' {ngh)]. (3.14
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We shall again be guided by the concept of Wigner path,
since it has been showhthat each electron-phonon interac-
tion vertex maintains the propagation along a Wigner path
with a momentum transfer equal to half of the phonon mo-
mentum /2). As it was done in the previous case, EQs.
(3.2 and (3.4) are substituted into Ed3.14), and the inte-
gral overz’ is split into three parts. Let us consider first the
rangez’ < — A corresponding to an electron-phonon interac-
tion occurring outside the left boundary of the region of in-

P. BORDONEget al.

terest. Introducing the transformation in E@.6) the inte-
grals fdkfdk’ can be transformed intgdk/dK and the

second one can be performed using delta functions contained

in the coefficients in Eq(3.2). Then we introduce the time
variable t” (corresponding to the time at which the path
crosses the left boundardefined through the space coordi-
natez’:

!

Z’=—A—(t”—t’)%. (3.19

Whenz'<—A andp’>0 we are led to the following con-
straints on the variable': t' <t"<t, (corresponding to par-
ticles entering the system from the left boundaifhe inte-
gral overz’ can be easily transformed into an integral ot/er
and the following change in the integral limits is used:

t t t t
['ae ‘o= [ [“ar.
to t to to

By inserting the identityz f[dKS(p—#K)=1 and consider-
ing the inverse variable transformation of H8.6) we are
left with

(3.19

1 + o0 t t
AfW’L(z,p,{nq},{né},t)= mj ko dk’fkk,(Z,p) Jo dp'Jt dt” ,[ dt’
0 0

PRB 59
(a)
time
(r,t)
t4
4
(a) (b)
t’ ...............................
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A r A
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FIG. 2. Schematic representation of the integral equation for the
Wigner function with the boundary conditions. The integration con-
tour of the evolution equation of the Wigner function is the bold
line. (a) Ballistic evolution: Wigner paths coming from outside
[curve @)] and from inside curve ()] the domain of interesib)
Ballistic contributiongcurve @) and curve )] and contributions
of the perturbation term having the last electron-phonon interaction
inside [curve ()] and outsidgcurve ()] the domain of interest.
The terms of type §) and (d) can be summed to give the total
Wigner function on the boundary. Therefore, to consider the con-
tribution to the Wigner function coming from the boundary corre-
sponds to take into account all the terms of typg &nd ().

P
m

xexp{—i[w(k,{ngh) — w(k’ . {ngh 1(t—t")} . (—A,p")

xexpi—iloing)— oty 1)} | ak' | ak”

><exp{—i(k”—k”’)p’/m(t”—t’)}fk”km(—A,p')z fdki”fdz”f dp”
Mg

X[H ’(k"{nq},ki”{mq})f:ivk,,,(Z",p”)fW(Z",p",{mq},{né},t’)

(2D 2" gk Mgt )M (K {mg) K" (g,

(3.17

where we have used once more the expression in(Ef). for the f coefficients. After some straightforward manipulations
using the delta functions and remembering E3314 we are left with the following result:
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1 t
AfW,L(Z'p7{nq}'{n(§]}lt): (277)?h j dkf dk,fkk’(Z,p)J‘t dt”
0

x e~ o(ki{ngh) —w(k’ {ngh](t-t")

e ! p, * ! ! ! ”n
on dp kak,(—A,p AT (—A,p ,{nq},{nq},t ). (3.18

Similar calculations can be performed for the case A (andp’<0). The final result is

1 t
AfW,R(z,p,{nq},{né},t):mf dkf dk’fkk/(z,p)J’t dt”

x e~ i@k {ng)—w(k’ {ngh](t-t")

0 _n/
X fﬁmd p’Tp fr (AP ) AT (AP’ Anghingh,t"). (3.19

Equations(3.18 and (3.19 show that the interaction term in the integral equati@rb) corresponding to the last-ph
interaction occurring outside the region of interest can be substituted by a free coherent propagation of the interaction term
Af,, of the w frequence from the boundary to the observation point. This term will be summed to th€3tdB3npreviously
analyzed, corresponding to the free propagation of the WF witeeuh interactions.

Finally the term in Eq(3.14) associated to the rangeA<z' <A corresponds to interactions occurring inside the region of
interest and needs not to be changed to our purposes.

By collecting the above results we can rewrite E2}5) as follows:

1 t
fw(z,p,ng,Ng,t)= mj ko dk’fkk,(z,p)J’tOdt’ exp{—i[w(K,{ng}) — (k' {ngh)](t—t")}

te P "o
x fo dp’ =i (AP fu(=A.p" {ngt {ng} ,t")

0 !
—J_mdpé%fEkr(A,p’)fW(A,p’,{nq},{na},t’)}
1 1 ’ !
R 2 T @pled-iletung) ok {ngh I(t-to))
A
xf_Adz’f dp' i (2',p" ) fu(z'.p" . {ng} .{ng} .to)
1 t
| o d"'fkk’(z’p)ftodt’ expl—ilw(k {ng) — (k' {nh)](t-t")}
. ~ A . o
<[ dk[H’(k,{nq},k,{mqb [* 0z [[awrez 201tz ot i) )
A ~
_ffAdZ,f dp,f:}(zrap,)fw(z,!p,!{nq}!{mq}!t,)Hr(k!{mq};k,!{né}) ' (32Q
where the initial condition at, over the space domaiizs< —A andz>A has been substituted with the boundary condition at

the system boundaries A both in the ballistic and in the scattering terms. The change from irffoalclosed systemsto
boundary condition$for open systemsis symbolically illustrated in Fig. @).

C. Phonons and potential profile profile and an applied bias defined in the region of interest.

In this section we analyze the case in which the perturbal € eigenstates é, are no longer plane waves but if, as we
tion term is again given by the electron-phonon interaction@SSume in our case, the potential is flat outside the region of
while the unperturbed Hamiltoniad, contains, besides the interest, they can be taken as scattering states, and the coef-
free-electron and free-phonon Hamiltonians also a potentidicients fy/(z,p) do not have the simple form presented in
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Eq. (3.2. For this general case the validity of E§.20 will respond to the initial condition &t . This means that the
be extended on the basis of physical and analytical consiccontribution provided by the initial condition at for an
erations. This will allow us to solve the problem for the caseinterval dz aroundz, is transferred to the one provided by
of an arbitrary potential profile taking advantage of the resulthe boundary condition for an intervelt aroundt through
obtained in the previous section. To this purpose we can usge path transformatiodz= (p/m)dt, wherep/m is the ve-

the linearity of the equation of motion for the WEQ.(2.5] locity corresponding to the Wigner variabpe

and decompose the WF into a sum of a number of initial Since the explanation given above may result somehow
contributions well localized in phase space. Furthermore, wénvolved, it can be useful to summarize it. The time evolu-
set the boundaries of our system where the potential is conion of the WF can be written as the sum of the time evolu-
stant, far from the region where the potential is rapidly vary-tions of its single contributions, and they move “free” in the
ing. Under these hypotheses a single contribution to the Wireal-space region where the potential is constant. Perfectly
evolves in a constant potential profile while it is entering thethermalizing contacts allow to consider them distributed ac-

device from the boundary. cording to an equilibrium distribution that can be supposed
Let us now consider the time evolution of the WF: to derive directly from the initial conditiorf,,(z',p’,to).
Then the same considerations developed in the previous sec-
'ﬁifw(z,p,t)Z f dz elp?' I tions apply, anq Fhe initial condition can be substituted by the
at boundary conditions.

Concerning the evolution of the contributions to the WF

lin oW (z—2'12}) W (z+2'121) starting inside the device &, they are accounted for, as for
ot ’ the case discussed in the previous section, by integrating the
- - position variable betweer A andA.
- o V(222 We can conclude that E¢3.20 describes the time evo-
+iaW(z—2'12}t) , . . . .
at lution of the WF also in presence of an arbitrary potential

(3.21) profile far from the boundaries, and in this case a proper
' basis set of scattering states is used in place of plane waves.
where the overbar means ensemble average, and substitqtee change from initiakfor closed systemsto boundary
the time derivative of the wave function by means of theconditions(for open systemsis symbolically illustrated for

time-dependent Scldinger equation: this general case in Fig(19.
9 h? o
|ﬁﬁfw(z,p,t)= - 2—] dz'elPz/t IV. THE ITERATIVE EXPANSION
m
5 In order to solve the integral equation for the WEQ.
y d“¥(z—z'/12}) W (24 2'121) (3.20], a Neumann expansion has been obtained by iterative
dz (z+2'72, substitution of Eq(3.20 into itself. In the compact formal-

ism introduced in Eq(2.5) this expansion results to be

d’W* (z+2'/2})

—-W(z—2'12}) 12

1 [t

0= 10,0 + 7| dv Tt
to

+f dz' eP?"{\(z—2'12)—V(z+7'12)}

x{?—[’f*

1 ’
2 (to,t')+ Ffzft dt" T(t",t")
XU*(z+72' 121)W(z—2'12}1). (3.22 to

The time evolution of the WF in this case is written as the
sum of two terms: the first one corresponds to the ballistic
evolution, the second one represents the scattering with the
potential profile. For a WF localized in a region of the real
space where the potential is constant, the term including the
scattering potential gives no contribution. In fact, from the

X{HLFSE (1, 17) = F 3 (K ,t”)H’}}

1| £(0) ’ 1 t ” "oy
—FI 10t 1)+ 37 | AU Tt t)
to

properties of the WF deriving from its definition, it follows (0 m _ 1£(0) Ly P,
that, in the real-space region where the WF is zero for any X{HRF ot (o 1) = Fofu (o ) R} H' + ’
value of the momentun{¥|?=0 and therefore all the cor- .1

responding wave functions of the ensemble are zero. There-
fore, since either V(z—Z2'/12)—V(z+Z'/2)=0 or where
W*(z+2'/2t)W(z—2'/2t)=0 for eachz andz’, the scat-

tering term is zero. As a consequence, the contributions to 0 1 £(0)

the WF entering the device across the boundaries move, in fu ' (to, )= {3 FX(to ) F ' (to), 4.2

the region of constant potential, according to a free evolu-

tion. Moreover, assuming perfectly thermalizing contactsand pairs of adjacenfZ ' can be simplified using the uni-
these contributions can be supposed to be distributed accorthrity relations defined in Ref. 11. At the initial tinig elec-

ing to the equilibrium distribution when they enter the trons and phonons are assumed to be at equilibrium and non-
boundaries. Then we may assume such a distribution to cointeracting, so that the total WF is diagonal in the phonon
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variables. This assumption is equivalent to assume that thehereC(k’,q,k) is the matrix element o&'9% between the
electron-phonon interaction is switched ort@t In practice, electron statefk) and|k’). As it regards the square roots of
the effect of such an assumption becomes negligible if thehe phonon occupation numbers appearing in the above
dynamical evolution of the system is studied for sufficientlyequation, they become, or n,+1 when the second-order
long times and the boundaries of the system are sufficientlgontributions of interest are considered. They correspond to
far from the region of interest. the phonon occupation numbers which specify the actual
Since, at the observation tinte the trace over phonons phonon state at the considered time. However, when the
must be performed when electron variables are investigatedsace operation over the phonon variables is performed and
only diagonal terms in the phonon variables of the generalthe thermal bath is assumed at equilibrium they must be
ized WF in Eqg.(3.20 are to be evaluated. This implies that substituted by their average values, given by the Bose-
only even-order terms of the Neumann expansion contribut&instein distributiort*
to our solution, and only terms corresponding to real and The perturbative contributions to the integral equation for
virtual phonon interaction¥’ where twice the same mode  the WF still maintain very complex expressions involving
is considered in the factof®’ in Eq. (4.1). several integrations, so that, before their numerical evalua-
For each phonon modg the matrix elements of the in- tion, analytical manipulations are necessary. In particular,
teraction Hamiltonian between the statdls{n,}) and the time integrals have been performed analytically and the
[k’,{ng}) (wherek is the incoming wave vector of the elec- following identities have been used:
tron scattering state, ang, the phonon occupation number
are given by s q
fdk”C(k,tq,k”)f:,,’k,(z,p)=e—'quk’k,(z,pthz)

H' (k' {ng}:k,{n
(k" {nghk.{ng}) o .4
={(¢. ,{n}F b,e'9%—b e '%? N
(B q}| (@(bq a Ndeingh) that can be easily obtained using the analytical properties of
=nC(K',q,k) = Vng+1C* (k,q,k") (4.3  the quantities involved.

(at, wnits)
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FIG. 3. “Ballistic invasion”of the Wigner function into an empty device with local equilibrium boundary conditions-a0 fs (a), t
=40fs(b), t=80fs(c) for electrons entering from the boundaries into a region with a potential step and stationary Wigner f(d)ctisn
obtained by means of an equilibrium density matrix diagonal over the scattering states for a 0.1-eV step potential.
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FIG. 4. Electron current across step potential as a function of the G 6. Electron current as a function of the applied bias for the
step height. In the figure a comparison between quantum and seMizse of a double-barrier potential profile. A comparison is shown
classical calculations with and withoetph interaction is shown. petween the results obtained using the ballistic Wigner function
The following cases are reported: Wigner-ballistic curteelid  (s|id line) and the Wigner function corrected by the effect of an
line), Wigner curve withe-ph scatterindcircles, semiclassical bal- electron-phonon scattering proce$sll circles) switched on 50 fs
listic curve (dashed ling semiclassical curve wite-ph scattering  pefore the “observation time.”

(dotted ling. A value of the carrier density at the contacts of

=10%cm 2 has b d. ) L _ .
cm ~has been assume As first application we have evaluated the ballistic evolution
V. NUMERICAL RESULTS of an electron flux across a step potential profile. The follow-

ing initial and boundary conditions have been assunigd:

The theory described in the previous sections has beera (0 att=t, inside the device and a Maxwellian local equi-
applied to investigate electron transport in GaAs-based meibrium incoming distribution at the left and right boundaries.
soscopic heterostructures. Numerical calculations have bee@Results are shown in Figs(8—3(d) at different times after
performed for a three-dimensional system. The electronighe initial condition. At the longest times we recover fqr
unperturbed states have been chosen as the scattering stat@s same result, which is obtained without using boundary
of the considered potentials as it regards the direction oreonditions for a stationary infinite system, whégis evalu-
thogonal to the interfaces, obtained as numerical solutions afted by means of an equilibrium density matrix diagonal
the corresponding Schdimger equation. Along the plane of gver the scattering states.
the interface plane waves have been assumed. For simplicity In order to evaluate the effect of a single electron-phonon
the effective mass has been assumed to be the same all owyattering event on the otherwise coherent electron propaga-
the structure fi* =0.067n,). tion across the step we have evaluated the second-order con-

Electron interaction with polar-optical phonons has beenyribution in thee-p perturbation Hamiltonian to the iterative

considered in this paper, characterized by a coupling funcexpansion of Eq(3.20.
The integral over the phonon modes has been performed

tion F(q) in Eq. (2.2) given by

2 0 1 11121 by means of a Monte-Carlo sampling. All the other integrals

F(q)= € Rg p0p| _ ] - (5.1) appearing in the perturbative terms have been performed nu-

2h%ey |e() &(0) q’ merically by means of finite-difference and fast-Fourier al-
whereKg 6y, is the energy of the polar optical phonons in g_orithrr_]s. Space correlations for t_he evaluation of the coefﬁ-
GaAS (00,— 410K), ands(x<)=10.92 ande(0)=12.9 are cients in Eq.(C;,].Z) havle br(]aen cgnaderg? udp to 40 nm, ar_wd mh.
the high- and low-frequency dielectric constant, respectivelysgmg cases the results have been verified assuming twice this
Owing to the formidable computational burden associated
to the numerical integrations, we have developed and imple-
mented a parallel algorithm suitable to exploit the features of
modern supercomputers. Typical computer CPU times re-
quired for the evaluation of a point in théV) characteristics
of the considered structures are of the order of 30 h on a 100
CPU-Cray T3E machine.

Figure 4 shows the electron current as a function of the
step-potential height as obtained with the ballistic {gblid
curve and with the WF corrected by the effect of arph
scattering procedgircles switched on 50 fs before the “ob-
servation time.” Comparison is presented with the outcome
of a semiclassical calculation based on the Boltzmann equa-
tion in absencédashed lingand in presencéotted ling of

phonon scattering.
The quantum ballistic curve is always lower than the cor-

FIG. 5. Wigner function for a double-barrier potential profile, at responding semiclassical one, and instead of reaching a satu-
ration value, it rises up to a maximum and then decreases.

a 160-mV applied bias, including the effect of arph scattering
switched on 50 fs before the “observation” time. This is due to the fact that in the quantum picture increasing
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the potential step leads, as a consequence of quantum reflec- VI. CONCLUSIONS

tion, to a decrease of the transmission coefficient, that is, to a

decrease of the current intensity. Finally, in both quantum We have developed a general method for the solution of
a_md 'sem|cIaSS|caI calculatlons the effect Ofﬁqﬂh_ Interac- qguantum electron transport problems for an open system
tion is, as expected, a reduction of the current with respect teontaining an arbitrary potential profile and electron-phonon

the ballistic case. : . interaction with thermalizing contacts located in regions with
As a second case we considered a double-barvier Stru(c::'onstant otential profile. In particular, we have proved that
ture. The two AlGaAs barriers are 0.28-eV high and 2.8-nm P P - np Do P

n order to evaluate the Wigner equation including electron-

wide, and they are separated by a GaAs layer of 5 nm. h it tion the initial diti f the WF h
constant external electric field has been applied to the corphonon interaction the initial condition of the over the

sidered structure. whole space can be substituted by a suitable boundary con-

The steady-state WF for a double barrier potential profiledition. The analytical proof has been initially given for the
at a 160-meV applied bias, including the effect of@ph  Case in which the eigenstates of the unperturbed Hamiltonian
scattering is presented in Fig. 5. In Fig. 6, the current is2€ plane waves and then extended to the more general case
displayed as a function of the applied bias for such a poterof scattering states. From the physical point of view this new
tial profile. The solid curve is obtained with the ballistic WF, result provides a natural description of an open system by
whilst the full circles(with the error barsare the results of imposing at the boundaries the correct conditions determined
the calculations performed using the WF corrected for effectdy the environment. The theory has been applied to calculate
of an e-ph scattering mechanism. Even considering the unthe current associated with electron quantum transport across
certainty introduced by problems of numerical accuracy, the potential step and a double barrier in presence of single
effect of thee-ph scattering process on the characteristics ophonon-scattering process.
the I (V) curve is clearly detectable: the peak to valley cur-
rent ratio is reduced and, in the highest voltage region, the
current is increased. These results can be interpreted in terms ACKNOWLEDGMENTS
of the loss of coherence and of the broadening of the reso-
nance states, and are in agreement with those obtained by )

Frensley’® and by Ragazzietal. using a semiclassical  'his work has been partially funded by A.R.O. and
Boltzmann collision operatdf O.N.R. through E.R.O.
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