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Pauli blocking effects in quantum wells
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We derive generalized analytical expressions of changes in the oscillator strengthaafliarensional
exciton (2<a=<3) due to Pauli blocking mechanisms in quantum wells. The effect of dimensionality, tem-
perature, and density of charge carriers on the exciton binding energy are studied in the light of known
experimental results in GaAs/&ba, _,As and ZnSe/CgZn; _,Se quantum wells. Our results show that Pauli
blocking effects reach minimum levels at critical well widths depending on the material composition. The
quantitative study ofa provides an improvement on works which employ exact two-dimensional exciton
models.[S0163-18209)10803-9

I. INTRODUCTION of a continuous transition from an exact two-dimensional
system to an exact three-dimensional system on Pauli block-
Experimental works® performed using modulation- ing mechanisms in confined systems. We do not attempt to
doped quasi-two-dimensional structures have shown that exavestigate many-body effects like band-gap renormalization
citons in the lowest band levels can exist simultaneouslyand band filling'® but focus only on a single effect—Pauli
with free carriers up to sheet carrier densities of about 4locking effects in quantum wells. We utilize the concept of
x 10" cm 2. The exciton oscillator strength decreasesfractional dimensionality to analyze the qualitative effects of
gradually (exciton bleaching as the carrier density is in- Pauli blocking mechanisms for any arbitrary value of the
creased from zero. At a high enough carrier density, aflimension of a confined excitonic system<(2<3). The
abrupt transition from excitonic to free-electron-hole recom-fractional dimensional approach is expected to interpret ex-
bination occurs.Such excitonic nonlinearities originate from perimental results correctly and to clarify aspects of the
a combination of many-body-related efféctslike Pauli theory of excitonic optical nonlinearities in low-dimensional
blocking mechanisms, short-range exchange interaction, arfteterostructures.
long-range Coulomb interaction among charge carfi@mi- This paper is organized as follows. In Sec. Il, we derive
lomb screening generalized analytical expressions of saturation densities due
So far, the well-known theoriésf Pauli blocking mecha- to Pauli blocking mechanisms in fractional dimensional
nisms in quantum wells have been developed within theéspace. We also analyze the separate contributions of an ex-
strictly two-dimensional limit, even though experiments haveciton gas and an electron-hole plasma in Sec. II. In Sec. Il
been performed in quantum wells with widths comparable tgve study the dimensionality and temperature dependence of
the size of excitons. While the theories were able to explaifPauli blocking effects. We present the conclusion of this
some experimental resuft§ they contradict other theoretical Work in Sec. IV.
calculations and experimental work done on II-VI quantum
wells>® 1. PAULI BLOCKING IN FRACTIONAL
It is well known that the relative motion of the electron- DIMENSIONAL SPACE
hole pair which constitutes an exciton can never be consid- . _ i )
ered exactly two or three dimensional in quantum wells. A /AAS S00N as an exciton is generated, a Fermi sphere is
more appropriate approach to such systems is to treat exdiermed which reduces th& space available for single-
tons as intermediate between an exact two- and thred@rticle states. Since the single-particle states contribute to
dimensional system by utilizing the concept of a fractionalth® bound electron-hole state, the Fermi sphere forming pro-
dimensional spac¥. The problem of Wannier-Mott excitons €SS, also known as Pauli blocking, directly causes a reduc-
placed in strongly anisotropic medigemiconductor quan- t|on_ of thg exciton oscillator strength depoted b‘yl)( inan
tum wells, wires, and superlattidesas first popularized by @ dimensional space. Thus a dec.rease. |n_the exciton oscilla-
He (Ref. 11 and Lefebvre, Christol, and Mathi#uvho used ~ tor strength d_ue to Pauli’'s exclu5|on_ pr|nC|pIe. is mainly due
a metric space with a noninteger dimension to obtain exad@ the reduction in the number of single-particle states that
solutions for the excitonic energies and wave functions. Th&ontribute to the exciton state. _
advantage of using such an approach is that only a single Th_e change in the exciton pscnlator strgngth due to Pauli
parameter, known as the degree of dimensionatignoted blocking effect in ana-dimensional space is expressed as
by «), is needed to incorporate the effect of change in the Af N Uk
widths of the well or barrier regions on the strength of inter Ala =S (k) + (K] 1s )

action. « increases from 1 in an exact one-dimensional sys- fa N K Uis(k=0)’
tem (e.g., ideal quantum wirgsto 3 in an exact three-
dimensional systente.g., bulk crystals whereN is the density of electron-hole pairs ah{ is the

In this paper, we present a systematic study of the effect-dimensional total saturation density, which is determined
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using the forms assumed fog(k) andf,(k), the respective Upo(K) = (41) @~ 1)@+ (172
electron and hole distribution functionbl. 4(k) in Eq. (1)

denotes the Fourier transform of electron-hole relative mo- a—1 ag’?

tion orbital wave functionlJ 14(r), andN is the exciton den- xXA\T 2 a—1 s aror- (1)
sity. Equation(1) is interpreted as the fractional change that 1+|——kag

occurs in the exciton oscillator strength,, due to effects 2

arising from the presence of neighboring bound and Unbo“”ﬁquation(?) yields the expected forms in the exact three-
electron-hole pairs. Note that we have generalized By  gnd two-dimensional limité.

introducing a noninteger dimensian so that it reduces to In deriving Eq.(7), we have made use of the spatial inte-
well-established forms for bothr=2 and 3. o gral relation ine-dimensional spack:
The forms forfg(k) and f,(k) for charge carriers in a
nondegenerate plasma at equilibrium are expressed by the 2pla=1DI2 ro
Boltzmann distribution J r=—f
aD a—1
iy

A. Exciton gas

r“’ldrj dosin® %6.  (8)
0 0

B P i ,
(0= T 2mikeT)! @
wherem; ,i=e(h) is the electror{hole) effective mass, and Pauli blocking due to an exciton gas is determined using

T is the temperature. On the other hand, the distributiorE 1) and the form off.(k) given by Eas(3) and(7) as:
function for a system of correlated electron-hole pénsci- a-( (g y Eas(3) (7) as:

ton gas is expressed &s AT, 232 1)
—=—NG(a)

fe J

whereV,(a.) is the volume of ama-dimensional spheté

\ V(@) ©
fo(k)= (k) = 5 U1K, 3

where U, (k) is the Fourier transform of the electron-hole With radiusa;:
relative motion orbital wave functiot),(r), andN is the

exciton density. Equatioi3) means that the creation of a V. (a)= ™ @ (10
single exciton is associated with the occupation probability “*7B al B’
|U14(K)|? in fermion space. The factdr appears as result of i+

sharing between spin-up and -down particles.
In order to obtain an accurate form of the wave functionand G(«) is given by
for the electron-hole relative motion, a Sctitmger equation

incorporating all the known many-body effects has to be a—1 a| |a 3

solved. However, this is not a trivial procedure and an exact r T}F 1+ 2 r 2 [lat 2

solution is therefore not available. In order to simplify cal- Gla)= 3 - (17
culations, we use the form &f,¢(r) for an isolated exciton [|=(a+1)

in an a-dimensional spac¢éto evaluateU ;4(k): 2

The inverse of thex-dimensional saturation density cor-
, (4)  responding to the exciton gabls, is obtained, using Egs.
(1) and(9), as

r

2
Uls(r)=F(a)ex;{ -

a—1a
B

WhereaB is the three-dimensional Bohr radius of the exciton,

andF(a) is ‘Em i
gatl (1-a)2 1 1/2 —01.1 -

F(a)= a— ; . (5) 1_0;

BT

o
w
T

Using the relatiof?'*®

Saturationodensity N, (10!
b

06|
a+l
r 2 fo 05
dre~27lrlcg=2mia-r— (6)
0.4
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o

. . _ Well Width (A)
and the hydrogenic form of the wave functidd,s in

a-dimensional space given in Edg) and(5), U;4(k) in an FIG. 1. Total saturation densitye [Eq. (15)] as a function of
a-dimensional space is evaluated as the well width in GaAs/AlGa _,As quantum wells.
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1 23a-2(5 1) dimensionalitya of a confined exciton is at its minimum. It
—=0G(a) Va(a). (12 also explains why excitonic optical spectra is significantly
Ng Vm stronger in quantum wells than in bulk crystals as the exciton

Thus 1NS: 32 a2, which is the same as in an earlier 0scillator strength is increased by the contributions of a

ra . .
calculatiord obtained for the exact two-dimensional exciton larger number of electron-hole states at a lower dimension.

model. Equation(12) means that am-dimensional volume
A,=1/Ng is formed as a blocking space around the newly
created exciton. Any extra exciton cannot be formed within
this space. It should be noted that the dimensionless volume An analytical expression for the dimensionless volume,
[Aalva(aB)] of the Pauli blocking space increases with di- [Aalva(aB)]=[1/N§Va(aB)], of Pauli-blocked space due

mensionality. This means that the possibility of a newly cre-to free electron and holes is evaluated using Efjs(2), and
ated exciton sustaining more excitons is highest when thé7) as

B. Electron-hole plasma

o
F —
A o 2 al a+l 3
e n2a—1 | B8=a)2! LT 4 R ] T T
Via) i 2T g ar1]? 2'2’7'} e '2'7'} (13
2
wherey;=2fi?/mk_TaZ with i =e or h, and ¢[a,b;c] denotes a confluent hypergeometric function.
In deriving Eq.(13), we have made use of the integral relation
1+c
fwxcexq—axz)d 7 2 1+c 1 a] 1 © c+2 3 } 149
C X: C+1 1_;_ - = _7_;_
O (1+bx)z*t b 2r[5+1} 2. 72'b] bl 2 727D
2

Equations(12) and (13) are then used to evaluate the total well width is obtained by comparing experimental values

saturation densitylN¢g for a given value ofx: with a well-known expression of the exciton binding
energy*?
1 1 N 1 (15
INCEENT RN R
Noo N Ny Ep=r—2 5z, (16
It is important to note that the temperature dependence of n-+ T)

Pauli blocking effects in Eq(13) is due to the form of the
Fermi function in Eq(2). Experimental result§ of the car-  where R, is the exciton Rydberg, and=1,2,... is the
rier effects on the excitonic absorption in quantum wellsprincipal quantum number state. The ideal confinement at
have demonstrated that phase-space-filling effects depenghich «=2 is never reached due to the spreading of electron
more on temperature through the Fermi function than orand hole wave functions into the barrier regions in quantum
screening or other many-body effects. In this sense, theells. This spreading effect becomes increasingly significant
mechanism of Pauli blocking by an electron-hole plasma isat critical well widths?®?! Using Eqgs.(15) and (16) and ex-
distinguished by its dependence on temperature. Further digerimental exciton binding energf@sn GaAs/ALGa,_,As
cussion of this important aspect is given in Sec. lll. Unlike inquantum wells, we have plotted the total saturation density
Eqg. (2), the distribution of exciton gas in E(B) is indepen- N2 as a function of the well width for various aluminum
dent of temperature. This is because the excitonic wave funGgncentration in GaAs/AGa, _,As quantum wells in Fig. 1.
tion remains unaffected by temperature although it changesayli blocking effects reach minimum levels at critical well
with the well width, as confirmed by absorption wjdths, depending on the material composition. This is due
measurement$ of excitonic resonances in the temperaturetg the gradual decrease of critical well widths as wellaas
range 8—300 K of quantum-well systems. with the aluminum concentration, i.e., with the depth of the

quantum well.
Ill. EFFECT OF CARRIER DENSITY

ON DIMENSIONALITY B. High carrier densities

A. Low carrier densities It is generally difficult to obtain an accurate relation be-

At zero or very low carrier densities, reliable values of thetween « and the exciton binding energy when the carrier
dimensionalitya of an exciton in a quantum well of a known density becomes high. However, by studying the effect of an
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increasing carrier density on the exciton binding energy, one
can estimate the change af with the carrier density. In 11
order to do this, we use the approximatidthat the pertur- i
bation on an exciton by free carriers is small enough so that 1.0
the excitonic wave function of the form given in E@) is «
still valid. The effects of the surrounding charge carriers are £ oq |
incorporated in the exciton Bohr radias, which changes -
with the carrier densityN. The wave equation for an exciton 2
=

surrounded by charge carriers is described by an effective- »08

mass Schrodinger equation

2

29 e
Us(N=(1-7n_U

- a1l g
ZMrafl ar or

lS( r ) ’
17

0.7
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Dimensionality o

where u is the reduced mass of the exciton and the correc-

tion term,  in an a-dimensional space is derived as
a—1
U1s(K)J(a—2y2(KT),
(18
where k2 27N. For long-range screening at whiagke

<1 77(r) in Eq. (18) is evaluated for smal, using Eq.(7),
as

Kok
20U = [0k

~S(a)(ak.)?, (19

whereS(a)~3 for 2<a<3.

Using Egs.(17)—(19), the change in exciton binding en- L
ergy due to the presence of surrounding charge carriers i 10*cm”

obtained as

Ep(N) _
Ep(0)

(20

N 2
2Ng )
whereN¢ for a givena is given in Eq.(15). Using Eq.(20),

the effect of an increasing density of charge carriersxda
determined as

a—1
2Ng
N -1

Aa= (21)

The above equation shows that the change in dimensionalit)z 08

A« vanishes when the charge dendityis reduced to zero,

but gradually increases &bis increased. This is attributed to

the enlargement in excitonic Bohr radius wih so that the
degree of exciton confinement, as measuredabyis in-

creased. Whilex is almost unchanged at low densities, de- & o3[
termination of« at largerN values becomes complicated due
to the rapidly vanishing exciton binding energy brought 5 ‘“01 r

about by many-body-related effeéts.
The effect of increasing the density of charge carribks,
on the oscillator strength,, is determined using

fN) 1

fa(0) N
1+ —
Ng

(22)

In Fig. 2, the decrease dfg with « in CdSe quantum wells

FIG. 2. Total saturation densityNg as a function ofa in
ZnSe/CdzZn; _,Se quantum wells at 10 K.

at 10 K is plotted, using?* m*=0.13my =0.45, ande
=9.3 and Egs(12), (13), and(15). The normalized oscillator
strength[ f ,(N)/f,(0)] [Eg. (22)], as a function of sheet
carrier densityN is compared in Fig. 3 with experimental
data® in ZnSe/Cgq 1Zny ¢Se quantum wells of width 30 A .
For the purpose of comparison, we have assuvgfhg)
zwaZB. The dimensionality parametex for excitons in
30-A CdSe well materials is calculatédas a=3—exp
(—Ly/2ag)~2.4. From Fig. 2, we obtainNZ*~2.17
x10* em 2 N;*~1.75<10" cm™?,  and NZ*~0.97

2, Whlle the theoretical fit agrees well with the
experlmental data at lower carrier densities, the noticeable
difference at higher carrier densities is possibly due to in-
creasing importance of effects like band-gap shrinkage and
exchange interactions.

In Fig. 4, we compare theoretical results calculated using
Eq. (20) with experimental dafa of the normalized binding
energy[ E,(N)/EL(0)] [Eg. (20)] as a function of sheet car-
rier density N. The experimeAt was performed on
ZnSe/Cd 1Zng sSe quantum wells of width 30 A at 10 K.
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FIG. 3. Dots denote experimental valug®ef. 25 of the nor-
malized oscillator strengthf ,(N)/f,(0)] as a function of sheet
carrier densityN(cm™2), in ZnSe/Cg ;Zn, ¢Se quantum wells of
width 30 A . Solid lines ate=2.4 and 2.8 are obtained using Eq.
(22.
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FIG. 4. Diamond-shaped points denote experimental (R FIG. 6. Dots denote experimental valu&ef. 18 of the change

25) of the normalized binding enerd¥,(N)/E,(0)] [Eq. (20)] as  in exciton binding energies with temperature in amtype
a function of sheet carrier densitj(cm™2) in ZnSe/Cq Zn,sSe  modulation-doped GaAs/fiGa, As quantum well of width, 100
quantum wells of width 30 A at 10 K. Solida(=2.4), dotted ¢ A and an electron density of D&L0"! cm™2. Lines at well
=2.6), and dashed-dottedr&2.8) lines are obtained using Eq. widths 100 and 300 A are obtained using E4®), (13), (15), and
(20). (20).

While Eqg. (20) remains valid up to carrier densitiesl  versed at higher temperatures and largeatue to changes in
x 10 ecm™?, it is no longer applicable at larger densities the overlap of excitonic wave functions.

due to the assumptions used in its derivation and underesti- In Fig. 6, Egs.(12), (13), (15), and(20) substituted with
mated values of [Eq.(21)]. Nevertheless, it is interesting to the values ofa=2.44 for well widths of 100 A and
note the gradual decrease in critical carrier densities at whick: 2.85 for well widths of 300 A obtained from Fig. 1, are

the exciton becomes unbound, with an increase.in used to compare our theoretical results with experimental
datal® The experiment setdpwas designed to investigate
IV. TEMPERATURE DEPENDENCE OF PAULI f[he change in heavy-hole binding energies with temperature
BLOCKING EFEECTS in n-type modulation-doped GaAs/fMGa -As multiple

quantum wells of well widths of 100 A and an electron
In Fig. 5, we plot the individual dimensionless volume, density of 1.5<10'* cm 2. The figure shows the good

A, l[Va(a)], [Egs.(12) and(13)], as functions of dimen- agreement with experimental results at well widths of 100 A,
sionality, & at 20 and 200 K in GaAs/AkGa, ;As quantum with a smaller change in binding energies at larger well
wells. We have useth,=0.067n, andm,=0.15m,, where widths. Since heavy-holéHH) excitons have smaller bind-
m, is the free-electron mass. At low temperaturesing energies than light-holeLH) excitons, ey is greater
(~20 K) and dimensionality rangex<2.32), Pauli block- thana,y at a fixed well width. This means that HH excitons
ing effects due to an uncorrelated electron-hole plasma ar@uench faster than LH excitons, as reported by experimental
larger than effects due to an exciton gas. This trend is reobservation® of carrier effects on excitonic absorption in

GaAs/ALGa _,As quantum wells.

18 It is to be noted that II-VI materials with high exciton
ol binding energies, such as those of ZnSeg/Za, ;Se and
i Exciton gas ZnTel/CdZn,_,Te quantum wells, display quenching char-
o 14F (20 K, 200 K) acteristics different from excitons with smaller binding ener-
g 2l gies, for instance in GaAs/fba _,As quantum wells. Due
g | to the comparable exciton binding and thermal enekgdly |
B10r in ZnTe/CdZn,_,Te and related 1I-VI materials, Pauli
5 sl Electron-hole plasma (20 K) blocking effects due to highly confined excitofgs. (12)
g and (13)] become more important than those due to a cool
E & electron-hole plasma. Conversely, in materials where exci-
e P R tons have lower binding energies, Pauli blocking effects are
pressermmsssreme e T Electron-hole plasma (200 K) dominated by uncorrelated electron-hole pairs. Thus the fine
2r interplay between Pauli blocking effects due to neutral exci-
00 21 22 23 24 25 26 27 28 29 30 tons and electron-hole plasma depends on the exciton dimen-

sionality « and thermal kinetics of the material system under
study. Such an approach would resolve some of the disagree-
FIG. 5. Dimensionless volume\, /[V,(ag)] [Egs. (12 and  ment between earlier theoretical workemploying an exact
(13)] as a function of dimensionalitypy at 20 and 200 K in two-dimensional exciton model, and experimental restits.
GaAs/Al Gay ;As quantum wells. It is to be noted that studi€%?’ of the temperature varia-

Dimensionality o
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tion of excitonic transition energies indicate the strong tem-a-dimensional exciton (& a<3) due to Pauli blocking
perature dependence of the band gap of the constituent marechanisms in quantum wells. Our results, which agree well
terial in the well region. Furthermore, an analy8isf the  with experimental data for carrier densitiesl X 10! cm™2,
exciton resonance spectra points to the vital role of localize@how that the quenching characteristics of excitons are criti-
excitons at lower temperaturéselow 80 K and that of free  cally dependent on their dimensionality and the thermal ki-
excitons at high temperatures. These factors therefore havftics of carriers in the material system under study. These
to be included in order to make a further quantitative analyfactors are critical in resolving disagreements between theo-
sis of excitonic optical spectra obtained via experiments.  retical works which employ strictly two-dimensional exciton
models and experimental results of exciton absorption spec-
tra in quantum wells. It is expected that our results will be of

We have derived generalized analytical eXpﬂ_z.ssionfgnportance_in a qugntitati_ve understanding of Pauli blocking
which describe changes in the oscillator strength of arProcesses in low-dimensional systems.

V. CONCLUSION

1p. A. Folkes, M. Dutta, S. Rudin, H. Shen, W. Zhou, D. D. Smith,  of Mathematical Studies No. 1@Princeton University Press,
M. Taysing-Lara, P. Newman, and M. Cole, Phys. Rev. L&tt. Princeton, 194p
3379(1993. 16E. M. Stein and G. Weisdntroduction to Fourier Analysis on
2K. H. Schlaad, C. Weber, J. Cunningham, C. V. Hoof, G. Borghs, Euclidean SpacéPrinceton University Press, Princeton, 1875
G. Weimann, W. Schlapp, H. Nickel, and C. Klingshirn, Phys. p. 7.
Rev. B43, 4268(199)). 17|, s. Gradshteyn and I. M. RyzhiR;able of Integrals, Series and
SM. Kemerink, P. M. Koenraad, P. C. M. Christianen, R. van " Products(Academic, Boston, 1994
Schaijk, J. C. Maan, and J. H. Wolter, Phys. Rev5® 4853 D. Huang, J. Chyi, and H. Morkoc, Phys. Rev4B 5147(1990.

19C. Arena, L. Tarricone, F. Genova, and C. Rigo, Mater. Sci. Eng.,
(1997.
4S. Hunsche, K. Leo, H. Kurz, and K. Kohler, Phys. RevA® 16 20 B 21’_ 189(1993'
565 (1994, V. Voliotis, R. Grousson, P. Lavallard, and R. Planel, Phys. Rev.

B 52, 10 725(1995.
Z.L.Yuan, Z. Y. Xu, Weikun Ge, J. Z. Xu, and B. Z. Zheng, J.
Appl. Phys.79, 424(1996.

5p. C. Becker, D. Lee, A. M. Johnson, A. G. Prosser, R. D. Feld—;
man, R. F. Austin, and R. E. Behringer, Phys. Rev. L68.

6 1876(1992. ) 22G. Oelgart, M. Proctor, D. Martin, F. M. Genaud, F. K. Reinhart,
H. Haug and S. W. KochQuantum Theory of the Optical and B. Orschel, L. C. Andreani, and H. Rhan, Phys. Revi® 10
Electronic Properties of Semiconductgi/orld Scientific, Sin- 456 (1994).

gapore, 1994

23 KartheuserPolarons in lonic Crystals and Polar Semiconduc-
7S. Schmitt-Rink, D. S. Chemla, and D. A. B. Miller, Phys. Rev. B

tors, edited by J. T. Devreesé\orth-Holland, Amsterdam,

32, 6601(1985. 1972, p. 717.

®K. Tai, J. Hegarty, and W. T. Tsang, Appl. Phys. Ldif, 86  2H. J. Lozykowski and V. K. Shastri, J. Appl. Phy89, 3235
(1987. (1991).

9R. Zimmermann, Phys. Status Solidilg6, 371(1988. 25 Calcagnile, R. Rinaldi, P. Prete, C. J. Stevens, R. Cingolani, L.

= Stillinger, J. Math. Physl8, 1224(1977). Vanzetti, L. Sorba, and A. Franciosi, Phys. Rev58 17 248

11x. F. He, Phys. Rev. B3, 2063(1991]). (1995.

12p_ Lefebvre, P. Christol, and H. Mathieu, Phys. Rev@17 308  26C. F. Li, D. Y. Lin, Y. S. Huang, Y. F. Chen, and K. K. Tiong, J.
(1993. Appl. Phys.81, 400(1997.

13C. Ell, R. Blank, S. Brenner, and H. Haug, J. Opt. Soc. An6,B  ?’Y. G. Zhao, R. A. Masut, J. L. Brebner, C. A. Tran, and J. T.
2006(1989. Graham, J. Appl. Phys6, 5921(1994).

1A, Thilagam, Phys. Rev. 56, 9798(1997). 2\, 7. Shen, S. C. Shen, W. G. Tang, Y. Chang, Y. Zhao, and A.

155, Bochner and K. ChandrasekharBourier TransformsAnnals Z. Li, J. Phys.: Condens. Matt& 4751(1996.



