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Gauge-invariant theory for semiclassical magnetotransport through ballistic microstructures
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Within the semiclassical theory of magnetotransport through ballistic cavities, fluctuations in the transmis-
sion amplitude and in the conductance originate from the Aharonov-Bohm phase of directed areas. We for-
mulate the semiclassical transmission amplitude in gauge-invariant form. The gauge invariant phases can be
visualized in terms of areas enclosed by classical paths, which consist of the real path connecting the entrance
point to the exit point and a virtual path leading back to the entrance point. We implement this method on
different levels of a semiclassical description of magnetotransport with applications to magnetoconductance
fluctuations and correlations. The validity of the semiclassical theories is analyzed.@S0163-1829~99!10903-2#
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I. INTRODUCTION

In recent years considerable effort has been made to
scribe electron transport through open ballistic microstr
tures for which the elastic and inelastic mean free paths
large compared to the system dimensions.1 Several experi-
ments have been performed, showing strong fluctuation
the conductance as a function of a perpendicular homo
neous magnetic field. Investigations of magnetoconducta
fluctuations have become a focal point for studies of regu
and chaotic dynamics on a microscopic scale.2–6 A relation
between periodic conductance fluctuations and scars in
wave functions has been pointed out.7,8

Quantum mechanically, ballistic transport through the m
crostructure represents a two-dimensional phase-cohe
scattering problem of electrons entering through the entra
lead and scattering at the potential given by the walls of
structure before exiting through the same lead~reflection! or
another lead~transmission!. Classically, the electron is
launched through the entrance lead into the cavity and
dergoes multiple specular reflections at the walls before
iting. Semiclassical theory provides a link between the cl
sical and the quantum description of ballistic transport. I
particularly useful in the study of ‘‘quantum chaos’’9 and is
well suited to explore nonuniversal properties of cond
tance fluctuations that originate from geometry-specific s
tering processes. Several semiclassical approaches have
applied to the open billiard problem.10–19 While significant
progress has been made, there remain considerable obs
to a consistent semiclassical description of ballistic quan
transport in the presence of a magnetic field, some of wh
are the subject of this paper.

The semiclassical theory expresses the conductanc
terms of a sum over classical paths connecting the entra
and the exit leads~or quantum wires!, each path carrying an
amplitude and a phase. The contribution of the phase
depends on the magnetic fieldB ~equivalent to an Aharonov
Bohm phase!, FB5aB/c, is determined by the directed are
enclosed by the trajectory. The areaa is usually defined as
the path integral over the vector potentialAW :12,13
PRB 590163-1829/99/59~4!/2956~12!/$15.00
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BEq
AW drW, ~1!

where q is the classical path starting at the entrance le
bouncing with the cavity walls, and then exiting through t
exit lead. It is important to note that the area as defined
Eq. ~1! is not invariant under gauge transformations of t
vector potential sinceq is not a closed path. This results in
gauge dependence of transport properties that are shape
cific. One purpose of the present paper is to formulate
semiclassical theory in gauge-invariant form. This
achieved by incorporating the proper magnetic phases
the wave function in the quantum leads. Semiclassically,
can be interpreted as adding a virtual path to the real paq
to form a closed path.

The quantum transport problem is characterized by diff
ent length scales, as given by the linear dimension of
cavity D'AA, whereA is the area of the billiard, and th
width of the quantum wired. In typical experimental realiza
tions, the de Broglie wavelength of the electronl is small
compared to the size of the structurel!D but comparable
to the width of the quantum wirel<d. This leads to diffrac-
tive scattering at the lead mouths that imposes limitations
the validity of a semiclassical theory.17–19 We compare dif-
ferent methods to overcome this problem and present res
for magnetoconductance fluctuations and its autocorrela
function using different semiclassical approximations. Se
classical results will be compared with full quantum calcu
tions and experimental data. Furthermore, the significanc
these results is analyzed in light of the observation that se
classical theory violates unitarity. Deviations from unitari
as a function of the wave number and the parameters of
billiards will be investigated.

II. GAUGE-INVARIANT SEMICLASSICAL THEORY

We consider the ballistic transport through open quant
billiards with two leads, also referred to as quantum wir
which are attached to electron reservoirs at different elec
chemical potentials. Within the framework of the Landau
formula,20 the conductance
2956 ©1999 The American Physical Society
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g5 (
m51

N

g~m!5
2e2

h (
m,n51

N

utmnu2 ~2!

is directly related to the transmission amplitudestmn con-
necting the incoming modem in the quantum wire 1~en-
trance lead! with the outgoing moden in the quantum wire 2
~exit lead!. Each mode corresponds to a bound state in
coordinate transverse to the flux direction. The correspo
ing transverse wave function in the lead with infinitely hig
potential walls in the absence of a magnetic field is

fn~y!5A2

d
sinFnp

d S y1
d

2D G , ~3!

whered is the width of the lead.N is the total number of
transmitted modes, while mode numbersn.N correspond to
evanescent waves.

The starting point of the semiclassical analysis is
quantum-mechanical expression for the transmission am
tude as a projection of the retarded Green’s functionG onto
the transverse wave functions in the leads:11

tmn~kF!52 iAvx2 ,nvx1 ,m

3E
2d/2

d/2

dy2E
2d/2

d/2

dy1fn* ~y2!G~y1 ,y2 ,kF!fm~y1!.

~4!

The Green’s function describes the constant energy prop
tion from the transverse coordinatey1 in the mouth of the
entrance lead to the transverse coordinatey2 in the mouth of
the exit lead andvx1 ,m ,vx2 ,n are the longitudinal velocities
in the leads corresponding to modesm andn. For simplicity
the longitudinal coordinatesx1,2 of the entrance and exit lea
mouths are suppressed. Atomic units (\5ueu5me f f51) will
be used throughout the paper. A more general expressio
the multilead case has been given by Baranger and Sto21

where gauge invariance is discussed within the framewor
quantum transport.

The semiclassical approximation proceeds by replac
the quantum-mechanical Green’s function by its semicla
cal limit GSC:11,22

GSC~y1 ,y2 ,kF!5
2p

~2p i !3/2 (
q:y1→y2

uDq~y1 ,y2 ,kF!u1/2

3expF iSq~y1 ,y2 ,kF!2 i
p

2
mqG . ~5!

The summation extends over all classical pathsq connecting
y1 in the entrance lead withy2 in the exit lead mouth.Sq

5*qdrW pW is the action of the path, uDqu
5u]2Sq /]y2]y1u/uvx1

vx2
u is a measure for the divergence

nearby trajectories, andmq is the Maslov index.
The homogeneous magnetic fieldB perpendicular to the

plane of the billiard is introduced by the ‘‘minimal substitu
tion’’ for the canonical momentum
e
d-

e
li-

a-

for
e
of

g
i-

pW 5vW 2
1

c
AW ~rW !, ~6!

wherevW 5kW is the kinetic momentum andAW (rW) is the vector
potential of theB field. The classical pathsq consist now
of segments of circular orbits with cyclotron radiu
r c5ckF/B. The corresponding action is

Sq~kF ,B!5kFLq2
1

cEq
AW drW. ~7!

Since the pathq, which has the lengthLq and connects lead
1 with lead 2 is open, the classical action@Eq. ~7!# and there-
fore the semiclassical Green’s function@Eq. ~5!# are not
gauge invariant. However, in the presence of a magn
field, the lead wave function@Eq. ~3!# needs to be gauge
transformed consistently with the gauge used for the cav
even in the limit of weak fields. This introduces a pha
distortion to the lead wave function. We will show belo
that incorporation of this distortion renders the semiclass
theory gauge invariant in the presence of a magnetic fiel

For the calculation of the transmission coefficients,
construct asymptotic scattering states in the leads using
corresponding Landau gauges (j 51,2),

AW j5B~2yj ,0!, ~8!

when calculating the lead wave functions.21 We use a local
coordinate system for each lead wherexj denotes the direc-
tion along the lead andyj the transverse direction. Therefor
AW 1 andAW 2 are different when the leads are not parallel. W
these choices for the gauge, themth channel wave function
can be written~like in the field free case! as a product of a
plane wave in flux direction satisfying scattering bounda
conditions for short-ranged potentials and a transverse w
function

cm~xj ,yj !5eikxj
xjfm~yj !. ~9!

The transverse wave function satisfies

F2
1

2

d2

dyj
2

1V~yj !1
1

2
vc

2~yj2y0!2Gfm~yj !5EFfm~yj !,

~10!

where V(yj ) is the confining potential of the walls,vc
5B/c is the cyclotron frequency, andy05ckxj

/B. This
equation is usually solved numerically.23 In the following,
we assume narrow leads and weakB fields such that the
cyclotron radiusr c is large compared to the lead widthd. In
this limit, the diamagnetic term (}vc

2) can be neglected an
the transverse wave functions are approximately given by
zero-field limit @Eq. ~3!#.

The crucial point to be noted is thatfm(y1) andfn(y2)
are constructed in different gauges, even though they do
explicitly depend on the magnetic field in the weak-field a
proximation. For the evaluation of the transmission amp
tude in Eq.~4!, they must be transformed to the referen
gaugeAW in the interior of the cavity, yielding additiona
phase factors, exp@2(i/c)Lj#, with
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L j~x,y!5E
G j

~AW j2AW !drW, ~11!

whereG j is a path starting at an arbitrary reference pointP0
and extending to the point (xj ,yj ) where the pathq intersects
the mouth of leadj. Inserting these additional phases into E
~4!, the actionSq in Eq. ~5! must be replaced by

Fq5Sq~B!1
1

c
L12

1

c
L2

5kFLq2
1

cF E
q
AW drW2E

G1

~AW 12AW !drW1E
G2

~AW 22AW !drWG
5kFLq2

1

cF R
q2G21G1

AW drW2E
G1

AW 1drW1E
G2

AW 2drWG .
~12!

Equation~12! is independent of the gaugeAW inside the cavity
since the corresponding line integral is closed. A particula
useful choice of the pathG j is shown in Fig. 1, whereP0 is
at the intersection of the extension of the center of the le
into the cavity andG j goes fromP0 to the middle of the
mouth of leadj and from there to the point (xj ,yj ). With this
choice, the last two integrals on the right-hand side~RHS! of
Eq. ~12! are zero and by Stokes’s theorem

Fq5kFLq~B!2
1

c R
q2G21G1

AW drW

5kFLq~B!2
1

c
Baq~B!, ~13!

whereaq denotes the directed gauge-invariant area.
The existence of a gauge-invariant phase has a sim

geometric interpretation in terms of areas enclosed by clo
loops. The loop consists of a combination of the class
pathq and the pseudopaths2G2 andG1 . We callG j pseudo-
paths because the corresponding kinetic action for these
ments is missing in Eq.~13!. The contributions from pseudo
paths were omitted in previous semiclassical analyses.

We thus arrive at the gauge-invariant expression of
semiclassical transmission amplitude:

FIG. 1. Example for a real classical pathq ~solid line! followed
by virtual pathsG1 and 2G2 ~dashed lines! generating the gauge
invariant enclosed area of the trajectory.
.

y
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ed
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tmn~kF ,B!52 iAvx,nvx,m

2p

~2p i !3/2 (
a

E dy2E dy1

3fn* ~y2!fm~y1!uDa~y1 ,y2 ,kF ,B!u1/2

3expF ikFLa~y1 ,y2 ,B!2
i

c
Baa~y1 ,y2 ,B!

2 i
p

2
maG . ~14!

The sum in Eq.~14! extends over all pathbundlesa rather
than individual isolated paths.18 The underlying organization
of transport in terms of bundles can easily be visualized
classical phase-space portraits. Figure 2 displays exam
for the circle ~an integrable system in the absence of t
leads! and the Bunimovich stadium24 ~its closed version is
fully chaotic!. For each trajectory specified by phase-spa
coordinates (y1 ,sinu1) at the entrance lead, we determine t
domains of the constant number of bounces with the billi
walls before it reaches the exit lead. Each domain co

FIG. 2. Phase-space portraits for the transverse phase-spac
ordinates (y1 ,sinu1) at the entrance lead mouth of the billiard. Ea
connected area corresponds to one bundle reaching the exit
after a specified number of bounces with the cavity walls:~a! circle
with R5A4/p11 andd50.25 and~b! stadium withR5 l /251 and
d50.25~the parameters are chosen such that areaA of both cavities
is the same!. In the circle, the number of bundles grows linear
with the number of bounces whereas in the chaotic stadium,
number of bundles proliferates exponentially.
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sponds to a bundle of topologically equivalent trajectori
The transverse coordinatey2 in the exit lead is a piecewis
continuous function of the phase-space coordinates.
number and the size of the bundles are characteristically
ferent for regular and chaotic structures. In the chaotic
dium the number of bundles proliferates exponentially w
the number of bounces while the area in phase sp
(Dy1D sinu1) occupied by each bundle decreases expon
tially. With the increasing number of bounces, the mapp
acquires a self-similar structure. Even at a number of o
four bounces where the trajectories are still quite shortL
&4D), already more than 50 bundles contribute to the tra
port through the stadium. In the circle, however, there
only four bundles at four bounces. This difference in t
behavior of short paths is of practical importance since,
cause of the incoherent mean-free-path length in the exp
ments, long paths do not effectively contribute to transp
The dominant contribution comes from the few-boun
bundles, of which the occupied phase-space area is still r
tively large.

The importance of the gauge invariance introduced h
will be illustrated below for the directed area distributio
that enter semiclassical estimates for weak localization
magnetoconductance autocorrelation functionsC(DB).

III. SEMICLASSICAL APPROXIMATIONS

We discuss in this section a hierarchy of semiclass
approximations that result from additional approximatio
and simplifications of the fundamental semiclassical exp
sion @Eq. ~14!#, some of which have already been discuss
in the literature.10–19 We recall that Eq.~14! employs the
semiclassical Green’s function, or Fourier-Laplace transfo
of the Van Vleck propagator,22,9 for the motion in the interior
of the billiard structure. No additional approximation h
been made up to this point. In particular, the elements of
S ~or T) matrix are still evaluated as a projection of th
Green’s function onto the transverse~quantum-mechanical!
eigenstates of the entrance or exit leads. Additional appr
mations are now invoked to perform the double integral
Eq. ~14! pertaining to different limiting cases.

A. Primitive semiclassical approximation

In the primitive semiclassical~PSC! approximation, the
remaining integrals over the lead mouths in Eq.~14! are
performed in stationary-phase approximation~see, e.g., Ref.
12!. The underlying assumption is that the phases in Eq.~14!

Fa~y1 ,y2 ,kF ,B!5kFLa~y1 ,y2 ,B!2
B

c
aa~y1 ,y2 ,B!,

~15!

are rapidly varying over the integration interval (2d/2
<y1,2<d/2). This, however, is only valid in the case whe
kFd@2p, or equivalently in the high-mode limitN@1. The
transmission amplitude is then given by

tmn
~PSC!~kF ,B!52

~2p i !1/2

2d (
q~ n̄,m̄!

sgn~ n̄! sgn~m̄!uD̃qu1/2

3expF i F̃ q~kF ,B!2 i
p

2
m̃qG , ~16!
.
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where the sum extends over all isolated paths, withn̄5

6n, m̄56m, for which the transverse momentaky1
and

ky2
are conserved at the entrance and exit leads, i.e.,

ky1
5kF sinu156mp/d,

ky2
5kF sinu256np/d. ~17!

The weighting factor for each path is

D̃q5
1

kF

]y1

]~sinu2!
usinu1

, ~18!

u1 andu2 are the incoming and outgoing angles of the pa
and m̃q is the modified Maslov index due to the addition
singularities ofD̃q . The interference phase is determined
the compensated action of each path

F̃q~kF ,B!5Fq1ky1
y11ky2

y2 . ~19!

In previous studies~e.g., Ref. 12!, Eq. ~16! was evaluated in
the limit of a weak magnetic field. In this limit, the B field i
included through the Aharonov-Bohm phaseBaq /c while
the classical path is taken as a straight-line trajectory. T
accounts for magnetic-field effects to first order, i.e., orb
paramagnetism.27 Terms of higher order, i.e., diamagnet
corrections, which are of the orderB2 and enter through the
curvature of the classical paths, are neglected. For a cha
billiard, such as the stadium, however, the validity of th
approximation is not obvious, since a chaotic system d
not only display exponential sensitivity to initial condition
but also exponential sensitivity to perturbations. Figure
shows the phase-space portrait for two selected bounce n
bers atB50 ~straight trajectories! and at a magnetic field
that corresponds to a cyclotron radiusr c525R, i.e., about
one order of magnitude larger than the linear dimension
the stadium. It illustrates that, even in a strongly chao
cavity, the dominant bundles in the phase space are stru
ally stable. This means that, in spite of the sensitivity
perturbations, for small variationsDB, it is possible to vary
y1 and y2 for B1DB such that the resulting path has th
same bouncing pattern and the same initial and final angl
the corresponding path atB. A Taylor expansion for the
compensated action@Eq. ~19!# yields

F̃q~B1DB!

5F̃q~B!2
aq

c
DB

1S kF

]~Lq1sinu1y11sinu2y2!

]B
2

B

c

]aq

]B DDB

1O~DB2!. ~20!

A numerical evaluation of the two derivative terms in th
parentheses shows that they cancel out within each bun
provided that sinu1 and sinu2 are kept constant and provide
that the gauge-invariant area is used. It should be noted
this cancellation is not trivial. If one either uses open~non-
gauge-invariant! paths or mixed boundary conditions~e.g.,
y1 and sinu1 fixed!, curvature-dependent linear correctio
in DB are nonvanishing. The origin of the cancellation lies
the fact that each trajectory consists of a set of circular s
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ments. For a closed circle, the relationr dL/dr2da/dr50
holds, wherer is the radius,L is the circumference, anda is
the area. For a sequence of segments each followed
specular reflection at the wall, the cancellation still ho
provided homogeneous boundary conditions (sinu1 and
sinu2 fixed ory1 andy2 fixed! are imposed on the trajectory

The Taylor expansion of the action within the bundle
duces then to

F̃q~B1DB!5F̃q~B!2
aq

c
DB1O~DB2!, ~21!

i.e., to first order, the variationDB only appears as a chang
in the Aharonov-Bohm phase, leaving the path unchang
This justifies the use of straight-line trajectories for we
magnetic fields. Equation~21! is important for the semiclas

FIG. 3. Phase-space map for the bundles with two and f
bounces in the chaotic stadium@inset of Fig. 2~a!# for two different
magnetic-field strengths corresponding to a cyclotron radiusr c

5` andr c525R'10AA. The bundles are structurally stable whe
the magnetic field is varied as long asr c@AA.
a
s

-

d.

sical expressions of magnetoconductance fluctuations, w
paths from the same bundle but at different magnetic fie
enter~see below!.

B. Fraunhofer diffraction approximation

The stationary-phase approximation for the evaluation
the integrals over the lead mouths in Eq.~14! is invalid for
low-mode numbers, i.e., smallkF . The key observation is
that within each bundle~Fig. 2!, the classical action
Fa(y1 ,y2 ,kF ,B) @Eq. ~13!# varies only slowly. The variation
is of the order ofkFd. SincekF is of the order ofNp/d, the
variation of the action isDFq&Np. Therefore, unless the
number of open channelsN is large, the evaluation of the
double integral in Eq.~14! by stationary-phase approxima
tion, which requiresDFq@2p, is bound to fail. The primi-
tive semiclassical~PSC! approximation can only be expecte
to work well in the case of high-mode numbers, if at a
Moreover, for direct collision-free trajectories as well as f
bundles that only collide with straight sections of the micr
structure, the PSC approximation breaks down since tra
tories satisfying the transverse momentum conservation@Eq.
~17!# are not isolated but form continuous manifolds.

We therefore implement a modification of the semiclas
cal treatment of the transmission amplitude, which holds
low-mode numbers and all geometries, by using a more
curate approximation for the double integral over all pa
bundles. We rewrite Eq.~14! as

tmn
~SC!52Avx,mvx,n

2p i

~2p i !3/2

3(
a

expF i F̄ a~kF ,B!2 i
p

2
maGHa~m,n,kF!,

~22!

where F̄a is the average classical compensated action
each bundle, evaluated aty15y250. The amplitude factor
for each bundleHa is

Ha~m,n,kF!5E dy2E dy1fn* ~y2!fm~y1!

3uDa~y1 ,y2 ,kF!u1/2exp@ i $Fa~y1 ,y2 ,kF ,B!

2F̄a~kF ,B!%#. ~23!

The integrand in the amplitude factorHa is, in general, a
weakly varying function ofy1 and y2 for small m and n.
Only in the limit of a large number of open channels (kF
→`), it displays rapid oscillations by which the stationar
phase limit@Eq. ~16!# is recovered. In Eq.~23! the coupling
to the lead is treated quantum mechanically. Physically,
latter implies the nonconservation of transverse momen
@Eq. ~17!# at the entrance and exit leads. The integral o
the transverse coordinates in Eq.~23! for fixed-channel num-
bers m and n amounts to an integration over nonclassic
paths connecting the entrance and the exit leads with
interior of the cavity. In this way Eq.~23! automatically
takes into account diffraction of the wave at the entrance
exit leads.

r
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The transmission amplitudet (SC) @Eq. ~22!# can be evalu-
ated analytically to a good approximation.18 Since
Da(y1 ,y2 ,kF ,B) varies very smoothly within a given
bundlea, we replace it by its value at the center of bund
D̄a(kF ,B). For the exponent in Eq.~23!, we use a Taylor
expansion to first order iny1 andy2 :

Fa~y1 ,y2 ,kF ,B!2F̄a~kF ,B!'2kFsinu1y11kFsinu2y2 .
~24!

Keeping only terms up to first order corresponds to a Fra
hofer diffraction approximation~FDA! to the diffraction in-
tegral @Eq. ~23!#. The FDA transmission amplitude is give
by

tmn
~FDA!~kF1

B!52
1

~2p i !1/2

2

d
Akx,nkx,m (

a
uD̄a~kF ,B!u1/2

3hm* ~kF ,sinu1!hn~kF ,sinu2!

3expF i S kFL̄a2
1

c
BāaD2 i

p

2
maG ~25!

with

hn~kF ,sinu!5 i n21

sinF S np

d
1kFsinu Dd

2G
np

d
1kFsinu

2~2 i !n11

sinF S np

d
2kFsinu Dd

2G
np

d
2kFsinu

~26!

and

D̄a~kF ,B!5
1

kFcosu1cosu2
U] sinu1

]y2
U

y15y250

. ~27!

Alternative diffraction approximations using Kirchhoff’s dif
fraction theory have been introduced in Ref. 17.

C. CTMC method

One important feature of the Fraunhofer diffraction a
proximation is the incorporation of the bundle structure a
of diffraction effects, i.e., the breaking of the correlation b
tween launching angle and the transverse-mode quan
number. These features can be preserved in simplified f
with the help of the classical trajectory Monte Carlo~CTMC!
method.25,26In the CTMC method, the PSC approximation
assumed to be valid for the evaluation of the classical qu

tities D̃q and F̃q . However, the mapping of quantum num
bers in the quantum wires onto the initial and final conditio
for classical trajectories inside the cavity employs pha
space binning. Accordingly, each quantum number is ass
ated with a classical bin within each of which a microcano
cal distribution of trajectories is assumed~alternative
distributions are possible!. These techniques have foun
widespread applications in the theory of ion-atom collisio
-

-
d
-
m
m

n-

s
-
i-

-

s

and chemical physics~see, e.g., Refs. 25 and 26!. In the
present case, the CTMC method maps the quantum num
in the wires onto the classical angular distribution inside
cavity in terms of bins of the classical phase space in
transverse degree of freedom according to the microcan
cal ensemble. Each quantum numberm is mapped onto the
uniform distribution of launching angles corresponding to
uniform distribution of transverse momentum, or equiv
lently, of sinu1 within the bin

UkFsinu16
mp

d U< p

d
. ~28!

Furthermore, for a constant potential across the mouth of
lead, also the microcanonical position distribution is unifo
in y1 . An equivalent binning is performed for the arriva
angle u2 in order to map the classical angular distributio
onto the quantum number of the exit lead. Consequen
each mode number for a givenkF is associated with a distri
bution of launching~and arrival! angles @Eq. ~28!# rather
than the discrete values of Eq.~17!.

Binning techniques can be understood as a way to in
duce nonclassical paths, more precisely, paths assoc
with nonclassical initial conditions. Nonconservation of t
transverse momentum is introduced within the width of t
bin. The CTMC method allows us therefore to partially tre
diffraction effects where the width of zero-order diffractio
maxima is well represented while the higher-order diffra
tion peaks are missing.19

D. Classical limit

The classical limit of the semiclassical approximation c
be extracted from the PSC expression@Eq. ~16!# by decom-
posing the transmission~or reflection! coefficient Tmn

(PSC)

5utmn
(PSC)u2 into a diagonal and off-diagonal component wi

respect to the path indexq. The ‘‘classical’’ part Tmn
cl

5(q5q8( ) excludes interferences between different pa
while the nonclassical partTmn2Tmn

cl 5(qÞq8( ) contains the
quantum interferences. Following an argument by Baran
et al.,12,15 the diagonal ‘‘classical’’ part can be shown t
yield the classical transmission probabilityTm , i.e., the prob-
ability, that a trajectory with an entrance angleu1 corre-
sponding to modem but arbitrary transverse coordinatey1 ,
leaves the stadium via the exit lead

Tm
cl5(

n
Tmn

cl 5
p

2d2(n
(

q
uD̃qu. ~29!

For high-mode numbers, the sum overn can be converted
into an integral over the exit angleu2 :

(
n
→

dkF

p E d~sinu2!. ~30!

The sum extends now over all bundlesb, which, in this
context, consist of sets of paths that have the same entr
angle, corresponding to modem, but a variable exit angle
Within each bundle, the integral extends from the minimu
to the maximum exit angle,
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(
n

Tmn
cl 5

dkF

p (
b

E
~sin u2!min

~sin u2!max
d~sinu2!uD̃bu. ~31!

InsertinguD̃bu5u(1/kF)(]y1 /] sinu2)usin u1
yields

(
n

Tmn
cl 5

1

2d(b E
~y1!min

~y1!max
dy1 . ~32!

This is just the total classical transmission probability
trajectories entering the cavity with an angle belonging
mode numberm. The same argument holds for the sum ov
reflected trajectories and the classical reflection probab
Rm

cl . Since an electron will leave the cavity either throu
the exit or the entrance lead,

Tm
cl1Rm

cl51. ~33!

Equation~33! can be understood as a classical unitar
~or flux conservation! relation. As will be discussed below,
is the off-diagonal contributions from quantum interferenc
that lead to violation of unitarity in the semiclassical a
proximation.

IV. MAGNETOCONDUCTANCE FLUCTUATIONS

Magnetotransport displays strongly irregular yet rep
ducible fluctuations as a function of both the effective Fer
wave numberkF and the magnetic fieldB. Most experimen-
tal studies are performed as a function ofB, which is easier
to manipulate than the Fermi energy of the structure. M
netoconductance fluctuations in ballistic quantum transp
are far from being random but possess long-range corr
tions. The goal of semiclassical analysis is to relate the m
netoconductance fluctuations to the underlying classical
namics of ballistic transport.

A. Area spectrum

On the most elementary level, this can be done by stu
ing the power spectrum of the transmission amplitude fo
fixed pair of mode numbers

u t̃ mn~kF ,a!u25U 1

Bmax
E

0

Bmax
dB eiaB/ctmn~kF ,B!U2

.

~34!

Accordingly, the total power spectrum is given by

Ptot~kF ,a!5(
m,n

u t̃ mn~kF ,a!u2. ~35!

The variable conjugate toB is the effective areaa within the
framework of semiclassical approximation. The power sp
trum at fixedkF can be identified with the spectrum of are
enclosed by classical trajectories. Similar to the case of
length spectrum for the field free transmission,16–18,28 the
choice of the integration interval of the Fourier integr
@0,Bmax# has nontrivial consequences beyond the limitat
of the resolution. Since the curvature of the paths and, he
the enclosed areas change as functions of the magnetic
the resulting area spectrum is to be understood as an ave
over area distributions pertaining to different fields.
r
o
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We focus first on the classical area spectrumPcl(a) at
fixed magnetic field.Pcl(a) corresponds to the area spectru
within the framework of the CTMC simulation. Calculation
have been performed for the integrable circle billiard and
chaotic stadium billiard.

Figure 4 displays the directed area distributionP(a) cal-
culated in both non-gauge-invariant and gauge-invari
form for the 90° stadium geometry. A large number of initi
trajectories (>106) are launched with initial conditions a
the entrance lead uniformly distributed in phase space,
uniform in y1 and in sinu1, and for each trajectory the en
closed directed area is recorded. Several features are w
noting. For larger enclosed areas, we find an approxima
exponential ‘‘universal’’ distribution in agreement with pre
vious investigations.12,13 Moreover, the exponential deca
constant is reproduced even if the non-gauge-invariant fo
is used. For small and intermediate values of the areaa,
however, the distribution functions are highly structur
functions and strongly gauge dependent. These nonexpo
tial structures, missing in previous studies~see, e.g., Ref.
12!, contain the geometry-specific information of ballist
transport and of magnetoconductance fluctuations. We th
fore arrive at the conclusion that the calculation of the se
classical magnetoconductance correlation function~see be-
low! beyond the simple ‘‘universal’’ exponential distributio
requires a gauge-invariant description. All Aharonov-Boh
phases and resulting area distributions discussed in the
lowing are calculated in gauge-invariant form.

The magnetic-field dependence of the area distributio
displayed in Fig. 5. As anticipated from the structural stab
ity of bundles under variation of theB field ~see Fig. 3!, the
B-field dependence ofP(a) is weak as long as the cyclotro
radiusr c remains about an order of magnitude larger than
linear dimension of the cavity,r c.10AA. Within this limi-
tation, the Fourier transform@Eq. ~34!# of the quantum and

FIG. 4. Directed area distribution functionP(a) in gauge-

invariant (a5rq2G21G1
AW drW) and non-gauge-invariant (a

5*qAW drW) form with different gauges for the stadium billiard wit
R5 l /251 andd50.25. The exponential decay of larger areas i
universal feature of chaotic structures and the slope is gauge i
pendent, but the nonuniversal behavior of the area distributio
small values strongly depends on the gauge.
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semiclassical amplitude can be associated with a sin
~broadened! area distribution.

Comparison between the classical area distributionPcl
and the area spectrum within the PSC approximation
shown in Fig. 6 for the circular billiard with the two leads
an angle of 90° to each other. Note that for an infinite in
gration interval overB but the underlying classical dynamic
kept at fixedB, Eq. ~34! implies that the two should agre
provided that the sum over all paths has converged.
observed level of agreement is therefore primarily a meas
for the completeness of the sum over all paths in Eq.~16!. In
the present example, about 18 000 trajectories are inclu
It should be noted thatP(a) is not symmetric with respect to
the reversal of the sign of the directed area (a→2a), or
equivalently, the transmission amplitude is not invariant u

FIG. 5. Dependence of the classical area distributionPcl(a) on
the magnetic field ~cyclotron radius!: r c5` ~solid line!, r c

510AA ~dashed line!. Because of the structural stability of bundle
under a change of magnetic field~see Fig. 3!, the principal features
of the nonuniversal distribution of small areas are the same in b
curves and the universal exponential decay at larger areas is
affected.

FIG. 6. Comparison between the total power spectr

(m,nu t̃ mn
(PSC)(a)u2 at kF550.5p/d and the classical area distributio

Pcl(a) for a circle with perpendicular leads (R5A4/p11,d
50.4).
le

is

-

e
re

d.
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der the inversion of the field (B→2B) since the 90° geom-
etry of the attached quantum wires breaks the reflection s
metry of the scattering problem.

One important difference to previously investigat
length spectra16–18 ~power spectra oftmn as a function ofk)
is that the association of pronounced peaks with individ
bundles of trajectories is not clear cut. One reason for thi
that the directed area, unlike the length, is not positive d
nite. Therefore, long trajectories can have small enclosed
eas, just as short trajectories, because of strong cancell
effects of directed areas segments of opposite sign. This
cellation effect results in the accumulation of trajector
with small directed areas.

B. Conductance fluctuations and autocorrelation functions

Experimentally accessible is the magnetoconductance
function of the applied magnetic field

Tmn~B!5utmn~B!u2. ~36!

Within the semiclassical approximation,Tmn(B) depends on
pairs of trajectories~or bundles! and, correspondingly, dif-
ferences between directed areas. In the PSC approxima
we have

Tmn
~PSC!~B!5

p

2d2(
q,q8

sgn~m̄!sgn~ n̄!sgn~m̄8!sgn~ n̄8!

3uD̃qD̃q8u
1/2expF i @ F̃q~B!2F̃q8~B!#

2 i
p

2
~m̃q2m̃q8!G ~37!

and, correspondingly, in the FDA

Tmn
~FDA!~B!5

vx,mvx,n

2p (
a,a8

Ha~m,n,kF!Ha8
* ~m,n,kF!

3expF i @ F̄a~B!2F̄a8~B!#2 i
p

2
~ma2ma8!G .

~38!

In both approximations@Eqs. ~37! and ~38!#, the oscilla-
tory component is determined by differences between
rected areas. The cancellation effects and hence the diffic
in mapping Fourier components onto distinct classi
bundles becomes even more severe than for the power s
trum of the transmission amplitude. Cancellation effects n
take place not only between different segments of a gi
trajectory but also between directed areas of different tra
tories resulting in pronounced accumulation of Fourier co
ponents witha'0 in the power spectrum ofT.

The magnetoconductance calculated in the PSC appr
mation using Eq.~37! should agree with the CTMC resu
provided the off-diagonal terms in the path index are n
glected. In this case, the agreement provides an indication
the completeness of the path sum. An example is show
Fig. 7 for the circle with leads at an angle of 90° relative
each other. The overall agreement is very good. The m
pronounced deviation occurs at very lowm ~classical shoot-

th
ot
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ing angle nearu.0) and at highm. The failure nearu50
results from the fact that there is nom50 state, which would
accommodate classical trajectories withu50.15 The devia-
tion at highm results from the fact that for the correspondi
shooting angles most trajectories belong to the direct bun
for which the PSC approximation fails and which is therefo
calculated by direct numerical evaluation of the double in
gral in Eq.~14!.

Fluctuations in the conductance can be conveniently
scribed by the autocorrelation function

C~DB!5^dT~B1DB!dT~B!&, ~39!

wheredT(B)5T(B)2^T(B)& and the ensemble average
taken either over a range ofkF or a range ofB fields. With
the help of Eqs.~37! and ~38!, C(DB) can be evaluated in
the semiclassical, as well as primitive semiclassical, appr
mations. The value of the non-normalized correlation fu
tion at zero fieldC(DB50) gives the mean-squared condu
tance fluctuation ^dT2&, which has been extensivel
investigated within the framework of random matr
theory.29 Frequently, the correlation functionC(DB) is nor-
malized such thatC(0)51. The correlation functionC(DB)
is customarily evaluated within the so-called ‘‘diagon
approximation’’12

C~DB!'(
n,m

Cmn~DB!

5(
n,m

^dTmn~B1DB!dTmn~B!&B . ~40!

Here, correlations between fluctuations in different mod
are neglected. Using the PSC amplitudes@Eq. ~37!# and the
Taylor expansion@Eq. ~21!#, the correlation function is re
duced to

Cmn~DB!5S p

2d2D 2

(
qÞq8

uD̃qD̃q8uexpF i

c
DB~aq2aq8!G .

~41!

FIG. 7. Classical transmission (Tm5(nTmn) and reflection
(Rm5(nRmn) in the circle billiard~inset of Fig. 6! as a function of
entrance lead mode numberm at kF550.5p/d, i.e., 50 open modes
Dashed lines, CTMC simulation; solid lines, result of Eq.~29!.
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The sum over bundles in Eq.~41! can be transformed into a
integral over enclosed area differences between pairs
paths,19

Cmn~DB!5E
2`

`

da P2
m,n~a5aq2aq8uqÞq8!expF2

i

c
DBaG .

~42!

P2
m,n denotes the correlation function for the area differen

between pairs of paths,q and q8, having a difference in
directed area ofa5aq2aq8 with sinuq and sinuq8 lying in
the bin of the entrance anglem and of the exit anglen as
defined in Eq.~28!.

We notice that the binning technique@Eq. ~28!# is of cru-
cial importance for uncovering oscillatory structures
C(DB). P2

m,n contains the information on the angular corr
lation between bundles connecting a given set of mo
(m,n). Without binning, only a positive-definite correlatio
function of Lorentzian form can be obtained as in previo
studies.12,13This is demonstrated in the following way: With
out binning, the pair distribution functionP2(a) can be ex-
pressed by the self-convolution of the simple area distri
tion P(a),

P2~a!5E
2`

`

da8P~a81a!P~a!. ~43!

The correlation functionC(DB) is then reduced to a squar
of the Fourier transform of the directed area distribution

C~DB!5
1

4U E da P~a!expF2
i

c
DBaGU2

, ~44!

which is positive definite. If we further assume a ‘‘unive
sal’’ exponential distribution for the area,P(a)}exp@2ba#,
the autocorrelation reduces to a squared Lorentzian12,13

C~DB!5C~0!/@11~1/c!2~DB/b!2#2, ~45!

a frequently invoked simplified model that has been used
fit the behavior ofC(DB) for small magnetic fieldsDB.2–4

In Figs. 8 and 9 we present the comparison between

FIG. 8. Comparison of magnetoconductance autocorrela
functions obtained with the CTMC binning method~dashed curve!,
FDA for kF53.5p/d ~solid curve!, and the experimental data~Ref.
19, dotted curve! in the stadium withl /25R51 andd50.4. For
unit conversion we used an effective area in the experimen
Ae f f50.5 mm.
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perimental data, a full quantum calculation, and differe
semiclassical approximations for the stadium with differe
geometries. Experimental data of Marcus and co-workers2,19

are shown in Fig. 8 together with the semiclassical desc
tion in the Fraunhofer diffraction approximation~FDA! and
the CTMC simulation for the stadium with leads at 90° re
tive to each other. In Fig. 9, the semiclassical approximati
are compared with full quantum-mechanical calculation11

for opposite leads. The full evaluation of the semiclassi
expression within FDA@Eq. ~38!# including off-diagonal
correlations improves the agreement with the data and
quantum calculations compared to the CTMC evaluati
This is not surprising in view of the fact that the CTM
method is intrinsically a high-mode approximation while t
experimental data and quantum calculations are for relativ
low modes (N<3). Nevertheless, the oscillatory structur
are qualitatively reproduced, thereby lending some crede
to the intuitive path interference picture as the origin of t
oscillatory structures. As will be discussed in the followin
section, however, this agreement, while not acciden
should be viewed with caution.

V. VIOLATION OF UNITARY

The quantum analog to the classical unitarity relation@Eq.
~33!#

(
n

~Tmn1Rmn!51 ~46!

imposes constraints on the fluctuations of the transmis
and reflection probabilities,

dT52dR. ~47!

In other words, transmission and reflection are fully an
correlated due to the unitarity of theS matrix, or equiva-
lently, due to flux conservation. Accordingly, the autocor
lation function for transmissionC(T) and reflectionC(R)

should agree:

FIG. 9. Autocorrelation function for a stadium geometry wi
opposite leads~inset!. Solid line: Fraunhofer diffraction approxima
tion ~FDA!; dotted line, quantum calculation from Ref. 11. Th
semiclassical and quantum calculations are forkF54.5p/d, d
5R/2, B05ckF /d.
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C~R!~DB!5C~T!~DB!. ~48!

While for quantum calculations on the one hand and cl
sical calculations on the other hand Eq.~46! is satisfied,
semiclassical approximations violate unitarity. Therefore,
equivalence of the correlation function in transmission a
reflection is not guaranteed.

We present in the following a simple example that prov
the fundamental deficiency of the semiclassical approa
which persists even when diffractive corrections are tak
into account. To this end, we consider a circular billiard
tached to only one lead. For this system, the sum over
paths can be easily performed. Moreover, with only one le
open, the quantum-mechanical and classical reflection p
abilities are equal to one andTm5dTm50. This means that
the following equation should be true:

dRm5
2p

~2d!2(n
(

qÞq8
sgn~m̄!sgn~ n̄!sgn~m̄8!sgn~ n̄8!

3uD̃qD̃q8u
1/2expF i ~S̃q2S̃q8!2 i

p

2
~m̃q2m̃q8!G50.

~49!

A numerical evaluation of Eq.~49! shows, however, tha
the sum over path pairs does not cancel in the semiclas
approximation. Figure 10 displaysR(PSC)5(mRm

(PSC) as a
function of the magnetic field for differentkF ~or equiva-
lently, differentN). The remarkable observation is that th
fluctuationsdR(PSC) that are due to the incomplete cancell
tion of the semiclassical path contributions are independ
of m, i.e., they persist even for very high mode numbers.
other words, the limitdR(PSC) is not equal to zero, asN goes
to infinity (limN→`dR(PSC)Þ0).

It is also instructive to study the influence of the le
width d on dR(PSC). Figure 11 shows that the fluctuations fo
fixed m560 andkF5100p/d become smaller when the lea
width is chosen larger. This explains the observation by
and Jensen14 who found that unitarity is approximately con

FIG. 10. R(PSC)(B) in a circle billiard with only one open lead
for different kF and, therefore, different number of open leadsN.
R5A4/p11, d50.4. The exact result, classically and quantu
mechanically, is complete reflection:R(B)5N ~dashed line!. The
fluctuations demonstrate the violation of unitarity in the PSC
proximation whose amplitude is independent ofN.
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served for a circle with wide leads. The increase of the v
lation of unitarity with smaller lead width~and therefore
smaller de Broglie wavelengthl'd/2m) appears to contra
dict the notion that the semiclassical approximation sho
improve asl decreases. The origin for this behavior lies
the increase of the number of contributing bundles and
tionary paths as the lead width decreases. Violation of u
tarity is determined by the number of the terms in the p
sum(qÞq8 in Eq. ~49!. The larger the number of terms, th
larger the fluctuationdR(PSC). In the present example, fo
d50.4 the sum extends over 2174 paths while ford51.16
only 1500 paths contribute. In fact, assuming the phase
Eq. ~49! to be random, the RHS of the equation can
viewed as the realization of a random walk in the comp
plane. Its end point will be further from the origin the mo
steps are taken. This problem persists when one employ
FDA rather than the PSC approximation. Figure 12 prese
a comparison between those two approximations fordRm
@Eq. ~49!# with m510. The deviation from unitarity are com
parable for both semiclassical approximations. On the m
fundamental level, the origin is the fact that for hard-w
structures the condition of a smooth potential on the scal
the de Broglie wavelength is locally not satisfied.

Another remarkable consequence of this failure is that
resulting autocorrelation functionC(R)(DB), which should
vanish identically in the present case of only one open le
displays an approximately Lorentzian shape according to
~45!. This is because the area distribution decays expon
tially in this one-lead case as well. It has been argued tha
‘‘universal’’ approximation in terms of the squared Lorent
ian would satisfy the condition of reciprocity between tran
mission and reflection. The present finding indicates, ho
ever, that the violation of unitarity may also affect th
universal behavior, frequently assumed to be more rob
against errors within semiclassical approximations.

The size of the unitarity fluctuations limits the region
which the semiclassical description of conductance fluct
tions remains valid. The validity of the semiclassical descr
tion requires that the conductance fluctuations^dT2&1/2 are
larger than the mean deviation from unitarity. For the au

FIG. 11. Rm
(PSC)(B)5(nRmn

(PSC)(B) for m560 in the circle bil-
liard with one open lead~inset of Fig. 10! at kF5100.5p/d, i.e.,
100 open modes for two different choices of the lead width. Dot
line, d50.4; solid line,d51.16. The dashed line marks the exa
result: Rm(B)51. The violation of unitarity decreases for larg
lead width.
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correlation function, this condition can be satisfied in gene
only near the first two maxima. Furthermore, if the me
values of^T& and^R& are very different as it can happen
regular structures, the range of the validity may be differ
in the reflection and transmission channels. Conseque
the range of validity of the semiclassical approximation
C(T)(DB) andC(R)(DB) will also be different.

VI. SUMMARY

The semiclassical description of magnetoconducta
fluctuations for ballistic microstructures involves directed
eas enclosed by classical paths. We have developed a ga
invariant description of directed areas that can be visuali
as the closure of areas by adding a virtual path to the
path connecting the leads. Gauge invariance of the resu
area distribution is found to be important for geometr
sensitive nonuniversal properties of transport. We have
culated the magnetoconductance on different levels of se
classical approximation, namely the Fraunhofer diffracti
approximation, the primitive semiclassical approximatio
and the classical trajectory Monte Carlo approximation. W
find qualitative agreement with experimental data and
quantum calculations, which allows us to trace magnetoc
ductance fluctuations to path interferences. A fundame
limitation of semiclassical descriptions is the violation
unitarity in ballistic scattering. Deviations from unitarity ca
be even larger than the fluctuations itself. This poses lim
tions to the validity of the semiclassical description a
points to the need to improve the semiclassical transp
theory to a theory that takes into account nonclassical p
in the interior of the structure.30,31 Work along these lines is
in progress.
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FIG. 12. Comparison of the deviation from unitarity betwe
the PSC approximation~solid line! and the FDA~dotted line! in the
circle with one open lead~inset of Fig. 10! at kF510.5p/d, d
50.4. The exact result isR(B)510 ~dashed line!.
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