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Within the semiclassical theory of magnetotransport through ballistic cavities, fluctuations in the transmis-
sion amplitude and in the conductance originate from the Aharonov-Bohm phase of directed areas. We for-
mulate the semiclassical transmission amplitude in gauge-invariant form. The gauge invariant phases can be
visualized in terms of areas enclosed by classical paths, which consist of the real path connecting the entrance
point to the exit point and a virtual path leading back to the entrance point. We implement this method on
different levels of a semiclassical description of magnetotransport with applications to magnetoconductance
fluctuations and correlations. The validity of the semiclassical theories is anal{b3-182699)10903-2

. INTRODUCTION 1¢. .
a= 3 f Adr, (1)
In recent years considerable effort has been made to de- d
scribe electron transport through open ballistic microstrucwhere g is the classical path starting at the entrance lead,
tures for which the elastic and inelastic mean free paths arkouncing with the cavity walls, and then exiting through the
large compared to the system dimensibr&everal experi- exit lead. It is important to note that the area as defined by
ments have been performed, showing strong fluctuations dfq. (1) is not invariant under gauge transformations of the
the conductance as a function of a perpendicular homogeector potential since is not a closed path. This results in a
neous magnetic field. Investigations of magnetoconductanc@uge dependence of transport properties that are shape spe-
fluctuations have become a focal point for studies of regulafific. One purpose of the present paper is to formulate the
and chaotic dynamics on a microscopic séafeA relation ~ Sémiclassical theory in gauge-invariant form. This is
between periodic conductance fluctuations and scars in treehieved by incorporating the proper magnetic phases into
wave functions has been pointed 8. the wave function in the ql_Jantum. leads. Semiclassically, this
Quantum mechanically, ballistic transport through the mi-can be interpreted as adding a virtual path to the real gath
crostructure represents a two-dimensional phase-coherem form a closed path. . . .
scattering problem of electrons entering through the entrance The quantum transport problem is characterized by differ-

lead and scattering at the potential given by the walls of theem length scales, as given by the linear dimension of the

structure before exiting through the same I¢aalection) or cavity D=~ VA, whereA is the area of the billiard, and the

another lead (transmission Classically, the electron is width of the quantum wirel. In typical experimental realiza-

launched throuah the entrance lead into the cavity and nt_ions, the de Broglie wavelength of the electioris small
u ug . ! vity u compared to the size of the structwreeD but comparable
dergoes multiple specular reflections at the walls before e

iting. Semiclassical th i link b he *fo the width of the quantum wire<d. This leads to diffrac-
iting. Semiclassical theory provides a link between the clasy, o gcattering at the lead mouths that imposes limitations on

sical and the quantum description of ballistic transport. It isy,o validity of a semiclassical theoly-1°We compare dif-
particularly useful in the study of “quantum chadSdnd iS  ferent methods to overcome this problem and present results
well suited to explore nonuniversal properties of conduC+,r magnetoconductance fluctuations and its autocorrelation
tance fluctuations that originate from geometry-specific scalfynction using different semiclassical approximations. Semi-
tering processes. Several semiclassiggl approaches have begfisjcal results will be compared with full quantum calcula-
applied to the open billiard probleffi=* While significant  iong and experimental data. Furthermore, the significance of
progress has been made, there remain considerable obstagi§sse results is analyzed in light of the observation that semi-
to a consistent semiclassical description of ballistic quantumssical theory violates unitarity. Deviations from unitarity

transport in the presence of a magnetic field, some of whichg 5 fynction of the wave number and the parameters of the
are the subject of this paper. billiards will be investigated.
The semiclassical theory expresses the conductance In

terms of a sum over classical paths connecting the entrance
and the exit leadgor quantum wires each path carrying an
amplitude and a phase. The contribution of the phase that \ye consider the ballistic transport through open quantum
depends on the magnetic fiekd(equivalent to an Aharonov- pjjjiards with two leads, also referred to as quantum wires,
Bohm phasg ®g=aBic, is determined by the directed area hjch are attached to electron reservoirs at different electro-
enclosed by the trajectory. The araas usually defined as  chemical potentials. Within the framework of the Landauer
the path integral over the vector potenthal*?3 formula? the conductance
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wherev =K is the kinetic momentum andi(r) is the vector
potential of theB field. The classical pathg consist how
of segments of circular orbits with cyclotron radius
ckg/B. The corresponding action is

is directly related to the transmission amplitudgs, con-
necting the incoming moden in the quantum wire 1(en-
trance leaglwith the outgoing mode in the quantum wire 2
(exit lead. Each mode corresponds to a bound state in thée™
coordinate transverse to the flux direction. The correspond- 1
ing transverse wave function in the lead with infinitely high- Sy(ke ,B)=KeLy— _f Adr. 7

potential walls in the absence of a magnetic field is
2 nT
$nly)= \[HS"-{F fore the semiclassical Green’s functi¢&
g. (5)] are not
gauge invariant. However, in the presence of a magnetic
whered is the width of the leadN is the total number of field, the lead wave functiofEq. (3)] needs to be gauge
transmitted modes, while mode numbars N correspond to  transformed consistently with the gauge used for the cavity,
evanescent waves. even in the limit of weak fields. This introduces a phase
The starting point of the semiclassical analysis is thedistortion to the lead wave function. We will show below
guantum-mechanical expression for the transmission amplihat incorporation of this distortion renders the semiclassical
tude as a projection of the retarded Green’s funcoanto  theory gauge invariant in the presence of a magnetic field.

Since the patly, which has the length, and connects lead

d 3) 1 with lead 2 is open, the classical actidtg. (7)] and there-

yts

the transverse wave functions in the ledts: For the calculation of the transmission coefficients, we
construct asymptotic scattering states in the leads using the
— corresponding Landau gaugegs<1,2),
mn(kF) - sz nv)(:L m p g g gq?( )
A;j=B(—Y;0), ®)

di2 dr2
Xf dyzjldlzd)ﬁ(ﬁ:(Y2)G(y1:Y2akF)¢m(y1)-

—di2 when calculating the lead wave functiocifswe use a local

(4) coordinate system for each lead whetedenotes the direc-
tion along the lead ang; the transverse direction. Therefore

The Green’s function describes the constant energy propaga?1 andﬁ\z are different when the leads are not parallel. With
tion from the transverse coordinayg in the mouth of the these choices for the gauge, timth channel wave function
entrance lead to the transverse coordingtén the mouth of  can be written(like in the field free cageas a product of a
the exit lead andle,m,vxzyn are the longitudinal velocities plane wave in flux direction satisfying scattering boundary

in the leads corresponding to modesandn. For simplicity cond!tions for short-ranged potentials and a transverse wave
the longitudinal coordinates, , of the entrance and exit lead function
mouths are suppressed. Atomic units=(|e| =mgs;=1) will ,
be used throughout the paper. A more general expression for Ym(X} . Yj) =€ (). 9
the multilead case has been given by Baranger and Ston
where gauge invariance is discussed within the framework o
guantum transport.

The semiclassical approximation proceeds by replacing
the quantum-mechanical Green’s function by its semiclassi-
cal limit GSC&11:22

he transverse wave function satisfies

1 d? 1 )
2dy +V(y])+ wc(yj Yo) d’m(yj):EFd)m(yj)y

(10

5 where V(y;) is the confining potential of the wallsp.
GSC(yl,yz,kF)=—Tr 2 IDq(yl,yz,kF )12 =Blc is the cyclotron frequency, anglo=ck, /B. This
(27i)%% ayr— equation is usually solved numericaffyIn the following,
we assume narrow leads and weRkfields such that the
XeXF{ISq(yl Y. kg)— q} (5)  cyclotron radiug . is large compared to the lead widthIn
this limit, the diamagnetic terrrpf(wg) can be neglected and
] ] . the transverse wave functions are approximately given by the
The summation extends over all classical patitonnecting  zero-field limit[Eq. (3)].
yi in 'Ehfz entrance lead witly, in the exit lead mouthS, The crucial point to be noted is thai,(y;) and ¢,(Y-)
=f02dr p is the action of the path, |D are constructed in different gauges, even though they do not
=|3°Sq/dy2y1|l|vy,vy,| is @ measure for the divergence of explicitly depend on the magnetic field in the weak-field ap-
nearby trajectories, and, is the Maslov index. proximation. For the evaluation of the transmission ampli-
The homogeneous magnetic fiekdperpendicular to the tude in Eq.(4), they must be transformed to the reference
plane of the billiard is introduced by the “minimal substitu- gaugeA in the interior of the cavity, yielding additional
tion” for the canonical momentum phase factors, exp-(i/c)A;], with
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wherel’; is a path starting at an arbitrary reference péigt ~ — T\
and extending to the poink(,y;) where the patlg intersects % 00 + 4t 4t 4
the mouth of leadl. Inserting these additional phases into Eq. ‘& — T —— ]
(4), the actionS; in Eq. (5) must be replaced by
05 F 41F 1F -
Sy(B) + 1A 1A
B q( C 1 C 2 b) _1.0 1 1 1 O— 3 Il 1
1 041 0 0.1 -01 0 01 -01 0 0.1
L -[ [(Aoi- | Ba-ris [ (/KZ—A)dF} »
ClJg Iy )
1 FIG. 2. Phase-space portraits for the transverse phase-space co-
=kely— = 3§ Adr— f Ald r+ f Azdf ) ordinates ¥, ,sin#,) at the entrance lead mouth of the billiard. Each
4 ¢l Jq [p+Ty ry r, connected area corresponds to one bundle reaching the exit lead

after a specified number of bounces with the cavity waliscircle
with R=y4/7+ 1 andd=0.25 andb) stadium withR=1/2=1 and

. . S . d 0.25(the parameters are chosen such that Arefboth cavities
Equation(12) is independent of the gaugeinside the cavity s the samg In the circle, the number of bundles grows linearly

since the corresponding line integral is closed. A part'cwarlywnh the number of bounces whereas in the chaotic stadium, the
useful choice of the path is shown in Fig. 1, wher® is number of bundles proliferates exponentially.

at the intersection of the extenS|on of the center of the leads

into the cavity andl’; goes fromP, to the middle of the -

mouth of lead and from there to the poink(,y;). With this I S f f

choice, the last two integrals on the right—lgan]d <idelS) of tmake B)= =1 Voxnos, "(27i)32 ; dyz | dys

Eqg. (12) are zero and by Stokes’s theorem

12

X bp (Y2) Dm(YD D o(Y1.Y2 . Ke B)|¥2

_ _= ' . i
Fa=keLa(B) c fﬁq—rzwlAdr Xex[{lkFLa(yl!yZIB)_EBaa(yliyZ!B)
1 a
—keLo(B)~ - Bay(B), 13 4 E“a} 14
wherea, denotes the directed gauge-invariant area. The sum in Eq(14) extends over all patbundlesa rather

The eX|stence of a gauge-invariant phase has a simplgan individual isolated patH§.The underlying organization
geometric interpretation in terms of areas enclosed by closedf transport in terms of bundles can easily be visualized by
loops. The loop consists of a combination of the classicatlassical phase-space portraits. Figure 2 displays examples
pathq and the pseudopathsI’, andI'; . We calll’; pseudo-  for the circle (an integrable system in the absence of the
paths because the corresponding kinetic actlon for these selgadd and the Bunimovich stadiuth (its closed version is
ments is missing in Eq13). The contributions from pseudo- fully chaotic. For each trajectory specified by phase-space
paths were omitted in previous semiclassical analyses. coordinatesy;,sin#,) at the entrance lead, we determine the

We thus arrive at the gauge-invariant expression of thelomains of the constant number of bounces with the billiard
semiclassical transmission amplitude: walls before it reaches the exit lead. Each domain corre-



PRB 59 GAUGE-INVARIANT THEORY FOR SEMICLASSICAL ... 2959

sponds to a bundle of topologically equivalent trajectoriesyhere the sum extends over all isolated paths, with
The 'transverse cpordma;q in the exit lead is a piecewise . = +m for which the transverse momenikg, and
continuous function of the phase-space coordinates. Th are conserved at the entrance and exit leads ile
number and the size of the bundles are characteristically dif-Y2 T
ferent for regular and chaotic structures. In the chaotic sta-
dium the number of bundles proliferates exponentially with
the number of bounces while the area in phase space ky,= K sin,= = na/d. (17)
(Ay;A sing;) occupied by each bundle decreases exponen- o _
tially. With the increasing number of bounces, the mappingrhe weighting factor for each path is
acquires a self-similar structure. Even at a number of only

. . . . ~ 1 9y
four bounces where the trajectories are still quite shbort ( =i ————|sing.
<4D), already more than 50 bundles contribute to the trans- ke d(sinf;) =T
port through the stadium. In the circle, however, there arey, and 6, are the incoming and outgoing angles of the path,

behavior of short paths is of practical importanc_:e since, be'singularities ofd,. The interference phase is determined by
cause of the incoherent mean-free-path length in the experjpo compensate?j action of each path

ments, long paths do not effectively contribute to transport.

ky1: ke sinf,=tmmx/d,

(18

The dominant' contribution' comes from the fev_v-bqunce Eq(kFyB):Fq+ Ky Y1+ky,Ya. (19)
bundles, of which the occupied phase-space area is still rela- ] ) )
tively large. In previous studiese.g., Ref. 12, Eq.(16) was evaluated in

will be illustrated below for the directed area distributions INcluded through the Aharonov-Bohm phaBeg/c while

that enter semiclassical estimates for weak localization ani{'€ classical path is taken as a straight-line trajectory. This

magnetoconductance autocorrelation functiGfa B). accounts for mggnetlc-fleld effects to first order, i.e., orbital
paramagnetisri’. Terms of higher order, i.e., diamagnetic

corrections, which are of the ordB? and enter through the
curvature of the classical paths, are neglected. For a chaotic
We discuss in this section a hierarchy of semiclassicabilliard, such as the stadium, however, the validity of this
approximations that result from additional approximationsapproximation is not obvious, since a chaotic system does
and simplifications of the fundamental semiclassical expreshot only display exponential sensitivity to initial conditions
sion[Eqg. (14)], some of which have already been discussedut also exponential sensitivity to perturbations. Figure 3
in the literature’®*° We recall that Eq(14) employs the shows the phase-space portrait for two selected bounce num-
semiclassical Green’s function, or Fourier-Laplace transfornbers atB=0 (straight trajectorigsand at a magnetic field
of the Van Vleck propagatd®for the motion in the interior that corresponds to a cyclotron radius=25R, i.e., about
of the billiard structure. No additional approximation hasone order of magnitude larger than the linear dimension of
been made up to this point. In particular, the elements of théghe stadium. It illustrates that, even in a strongly chaotic
S (or T) matrix are still evaluated as a projection of the cavity, the dominant bundles in the phase space are structur-
Green’s function onto the transvergguantum-mechanical ally stable. This means that, in spite of the sensitivity to
eigenstates of the entrance or exit leads. Additional approxiperturbations, for small variationsB, it is possible to vary
mations are now invoked to perform the double integral iny; andy, for B+AB such that the resulting path has the

Ill. SEMICLASSICAL APPROXIMATIONS

Eq. (14) pertaining to different limiting cases. same bouncing pattern and the same initial and final angle as
the corresponding path &. A Taylor expansion for the
A. Primitive semiclassical approximation compensated actidrEq. (19)] yields

In the primitive semiclassicalPSQ approximation, the ¢ (B+AB)
remaining integrals over the lead mouths in Ef§4) are q
performed in stationary-phase approximatigee, e.g., Ref. ~ ay
12). The underlying assumption is that the phases in(E4). =Fq(B) _?AB

J(Ly+sinfy,;+sind B oa,
ke (Lq 1Y1 ZY2)___q AB

B
Fa(yliyZ!kF !B):kFLa(yl!yZIB)_ Eaa(ylvy21B)v
B c JB

(19

2
are rapidly varying over the integration interval-¢/2 +0O(AB%). (20
<y, ,<d/2). This, however, is only valid in the case when A numerical evaluation of the two derivative terms in the
ked> 21, or equivalently in the high-mode limii>1. The  parentheses shows that they cancel out within each bundle,

transmission amplitude is then given by provided that sir; and sind, are kept constant and provided
(2mi) 12 that the gauge-invariant area is used. It should be noted that
(PSQ __ = IR 112 this cancellation is not trivial. If one either uses og@on-
tmn” (ke ,B) 2d E sgrn) sgr(m)|Dq| gauge-invariant paths or mixed boundary conditiorge.g.,

a(n,m) e : .
y; and sing; fixed), curvature-dependent linear corrections
= . T~ in AB are nonvanishing. The origin of the cancellation lies in

X —i= : . )
eXF{'Fq(kF Bl 2Hal (16) the fact that each trajectory consists of a set of circular seg-
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2 bounces, rg=co 2 bounces, r,=25R sical expressions of magnetoconductance fluctuations, where
T r r T T T paths from the same bundle but at different magnetic fields
1.0 — enter(see below.
\
N i B. Fraunhofer diffraction approximation
05 The stationary-phase approximation for the evaluation of
- ] the integrals over the lead mouths in Ef4) is invalid for
s —— 4t i low-mode numbers, i.e., smadll-. The key observation is
= 00 e ————— Q that within each bundle(Fig. 2), the classical action
g7 ——— F.(y1,Y2,ke,B) [Eq.(13)] varies only slowly. The variation
is of the order okgd. Sincekg is of the order oN#/d, the
os [ ———pF/—/—————— variation of the action i\AF,<N. Therefore, unless the
number of open channeN is large, the evaluation of the
I [ R — double integral in Eq(14) by stationary-phase approxima-
T = = L tion, which requiresAF>2, is bound to fail. The primi-
-0 01 0 01 -0 0 0.1 tive semiclassicalPSQ approximation can only be expected

to work well in the case of high-mode numbers, if at all.
Moreover, for direct collision-free trajectories as well as for
bundles that only collide with straight sections of the micro-
structure, the PSC approximation breaks down since trajec-
tories satisfying the transverse momentum conservion
(17)] are not isolated but form continuous manifolds.

We therefore implement a modification of the semiclassi-
cal treatment of the transmission amplitude, which holds for
low-mode numbers and all geometries, by using a more ac-
curate approximation for the double integral over all path
bundles. We rewrite Eq14) as

2i

SO _
tgnn)_ ~ VUx,mUx,n

(27_” )3/2

— aa
x> eXF{iFa(kp,B)—iEﬂa Ho(m,nKe),

(22

Y1

FIG. 3. Phase-space map for the bundles with two and fOup/vhere F, is the average classical compensa}ted action for
bounces in the chaotic stadidinset of Fig. 2(a)] for two different each bundle, evalgated #i=y,=0. The amplitude factor
magnetic-field strengths corresponding to a cyclotron radius fOr €ach bundleH, is
=00 andr.=25R~10JA. The bundles are structurally stable when

the magnetic field is varied as long s> VA. Ha(mvnka):J dsz dY1¢:(Y2)¢m(Y1)

ments. For a closed circle, the relatiodL/dr—da/dr=0 X|D o(Y1.Y2.Ke) | Y2exXd i{F o(y1.,Y2.Ke ,B)
holds, where is the radiusL is the circumference, analis o
the area. For a sequence of segments each followed by a —Fa(ke,B)}]. (23

specular reflection at the wall, the cancellation still holds
provided homogeneous boundary conditions @girand The integrand in the amplitude factét,, is, in general, a
sin 6, fixed ory; andy, fixed) are imposed on the trajectory. Weakly varying function ofy; andy, for small m and n.
The Taylor expansion of the action within the bundle re-Only in the limit of a large number of open channels: (
duces then to —o), it displays rapid oscillations by which the stationary-
phase limit[Eq. (16)] is recovered. In Eqg(23) the coupling
to the lead is treated quantum mechanically. Physically, the
~ ~ aq ) latter implies the nonconservation of transverse momentum
Fq(B+AB)=F4(B)—~AB+O(ABY), (21 [Eq. (17)] at the entrance and exit leads. The integral over
the transverse coordinates in Eg3) for fixed-channel num-
bersm and n amounts to an integration over nonclassical
i.e., to first order, the variatioAB only appears as a change paths connecting the entrance and the exit leads with the
in the Aharonov-Bohm phase, leaving the path unchangednterior of the cavity. In this way Eq(23) automatically
This justifies the use of straight-line trajectories for weaktakes into account diffraction of the wave at the entrance and
magnetic fields. Equatiof21) is important for the semiclas- exit leads.
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The transmission amplitudé®© [Eq. (22)] can be evalu- and chemical physicgsee, e.g., Refs. 25 and )28n the

ated analytically to a good approximatith. Since present case, the CTMC method maps the quantum numbers

D.(y1,Y2.ke,B) varies very smoothly within a given in the wires onto the classical angular distribution inside the

bundle @, we replace it by its value at the center of bundlecavity in terms of bins of the classical phase space in the

D, (ks ,B). For the exponent in Eq23), we use a Taylor transverse degree of freedom according to the microcanoni-

expansion to first order ig; andy,: cal ensemble. Each quantum numhefs mapped onto the

uniform distribution of launching angles corresponding to a

- ; ; uniform distribution of transverse momentum, or equiva-

Fa(Y1Y2 ke B) ~Falke B)~ —kesindays + szmaﬂé'Af) lently, of sing, within the bin

Keeping only terms up to first order corresponds to a Fraun-
hofer diffraction approximatioriFDA) to the diffraction in-
tegral[Eqg. (23)]. The FDA transmission amplitude is given

by Furthermore, for a constant potential across the mouth of the
lead, also the microcanonical position distribution is uniform

Kesingy = | < — 28
FSINOL="4715 4 (28)

FDA) _ # 112 in y;. An equivalent binning is performed for the arrival
(k F1 B)= )1/2d Km E |D (ke .B)| angle 6, in order to map the classical angular distribution
onto the quantum number of the exit lead. Consequently,
X h*m(kF ,siné1)hn(Ke ,sind,) each mode number for a givéam is associated with a distri-
1 - bution of launching(and arrival angles[Eq. (28)] rather
Xexr{i(kpfa— —Ba,|—i —ﬂa} (25)  than the discrete values of EQL7).
c 2 Binning techniques can be understood as a way to intro-
with duce nonclassical paths, more precisely, paths associated

with nonclassical initial conditions. Nonconservation of the
na d transverse momentum is introduced within the width of the
(—+ Kesin@ > bin. The CTMC method allows us therefore to partially treat

sin
d diffraction effects where the width of zero-order diffraction

hn(ke ,sing)=i""1

K , maxima is well represented while the higher-order diffrac-
—— +Kkgsing . e
d tion peaks are missing.
|(nm o \d N
sin T—kpsme > D. Classical limit
—(—i)n+? o (26) The classical limit of the semiclassical approximation can
— —Kgsing be extracted from the PSC express|éy. (16)] by decom-
d posing the transmissiorfor reflection coefficient T{F>9
and = |t(PSQ| into a diagonal and off-diagonal component with
respect to the path indey. The “classical” part Tfn'n
1 |t9SInt91| =24=q¢'() excludes mterferences between different paths

Da(kr.B)= k-C056,C050, dy, | - @) \while the nonclassical paft,,— T On="2q+q'() contains the

Y17¥2=0 guantum interferences. Following an argument by Baranger
Alternative diffraction approximations using Kirchhoff's dif- et al,*>*® the diagonal “classical” part can be shown to

fraction theory have been introduced in Ref. 17. yield the classical transmission probabifity,, i.e., the prob-
ability, that a trajectory with an entrance angle corre-
C. CTMC method sponding to moden but arbitrary transverse coordinate,

) ) ) leaves the stadium via the exit lead
One important feature of the Fraunhofer diffraction ap-

proximation is the incorporation of the bundle structure and

of diffraction effects, i.e., the breaking of the correlation be- Te=> 1 212 > Dyl (29)
tween launching angle and the transverse-mode quantum " 242 a

number. These features can be preserved in simplified form

with the help of the classical trajectory Monte Caf@rMC)  For high-mode numbers, the sum overcan be converted
method?>?¢In the CTMC method, the PSC approximation is into an integral over the exit anglg, :

assumed to be valid for the evaluation of the classical quan-

tities _ﬁq and|~:q. Howgver, the mappipg of ql_Jantum num- E _)%J d(sing,). (30)
bers in the quantum wires onto the initial and final conditions T

for classical trajectories inside the cavity employs phase-

space binning. Accordingly, each quantum number is associFhe sum extends now over all bundigs which, in this
ated with a classical bin within each of which a microcanoni-context, consist of sets of paths that have the same entrance
cal distribution of trajectories is assumeghlternative angle, corresponding to mode, but a variable exit angle,
distributions are possible These techniques have found Within each bundle, the integral extends from the minimum
widespread applications in the theory of ion-atom collisionsto the maximum exit angle,
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dk (sin 65) - 10° T T T T TT
> T?n'n=—F2 f maxd(sin 0)|D4. (3D i i — gauge invariant
n ™ B J(sin6o)min sk A=B/2(-yx)
—— A=B(0x-4)
Inserting|D | = | (1/kg) (9y1/0 Sin B))lsin 4, yields
2
1 (Y1)
S TS [ ay, @ |
n B (YD min E? F

This is just the total classical transmission probability for g

trajectories entering the cavity with an angle belonging to
mode numbem. The same argument holds for the sum over
reflected trajectories and the classical reflection probability

2 F

Rﬁq'. Since an electron will leave the cavity either through
the exit or the entrance lead,

T9+RY=1. (33

Equation(33) can be understood as a classical unitarity.

(or flux conservationrelation. As will be discussed below, it

107

1~ L 1 L 1 L 1 N 1

-10 -5

area
FIG. 4. Directed area distribution functioR(a) in gauge-

invariant (a=giq_rz+rl,5\df) and non-gauge-invariant a(

is the off-diagonal contributions from quantum interferences=J A dr) form with different gauges for the stadium billiard with

that lead to violation of unitarity in the semiclassical ap-
proximation.

IV. MAGNETOCONDUCTANCE FLUCTUATIONS

Magnetotransport displays strongly irregular yet repro-

R=1/2=1 andd=0.25. The exponential decay of larger areas is a
universal feature of chaotic structures and the slope is gauge inde-
pendent, but the nonuniversal behavior of the area distribution at
small values strongly depends on the gauge.

We focus first on the classical area spectrinj(a) at

ducible fluctuations as a function of both the effective Fermifixag magnetic fieldP,(a) corresponds to the area spectrum

wave numbekg and the magnetic fiel®8. Most experimen-
tal studies are performed as a functionByfwhich is easier
to manipulate than the Fermi energy of the structure. Mag

netoconductance fluctuations in ballistic quantum transport
a-

are far from being random but possess long-range correl
tions. The goal of semiclassical analysis is to relate the ma
netoconductance fluctuations to the underlying classical d
namics of ballistic transport.

A. Area spectrum

within the framework of the CTMC simulation. Calculations
have been performed for the integrable circle billiard and the
chaotic stadium billiard.

Figure 4 displays the directed area distribut®(a) cal-
culated in both non-gauge-invariant and gauge-invariant
form for the 90° stadium geometry. A large number of initial
trajectories &10°) are launched with initial conditions at
the entrance lead uniformly distributed in phase space, i.e.,
uniform iny; and in sind;, and for each trajectory the en-
closed directed area is recorded. Several features are worth

~ On the most elementary level, this can be done by studynoting. For larger enclosed areas, we find an approximately
ing the power spectrum of the transmission amplitude for &yponential “universal” distribution in agreement with pre-

fixed pair of mode numbers

2

~ 1 Bmax B
[tmn(ke ,@)|?= f dB 2Bt (kg ,B)| .
Bmax 0
(34)
Accordingly, the total power spectrum is given by
Proi(ke @)= 2, [Tmake @)% (35

The variable conjugate tB is the effective area within the

vious investigations>*® Moreover, the exponential decay
constant is reproduced even if the non-gauge-invariant form
is used. For small and intermediate values of the aea
however, the distribution functions are highly structured
functions and strongly gauge dependent. These nonexponen-
tial structures, missing in previous studiésee, e.g., Ref.
12), contain the geometry-specific information of ballistic
transport and of magnetoconductance fluctuations. We there-
fore arrive at the conclusion that the calculation of the semi-
classical magnetoconductance correlation functigee be-
low) beyond the simple “universal” exponential distribution

framework of semiclassical approximation. The power specfequires a gauge-invariant description. All Aharonov-Bohm

trum at fixedkg can be identified with the spectrum of areas
enclosed by classical trajectories. Similar to the case of th
length spectrum for the field free transmissi6n‘®28 the

choice of the integration interval of the Fourier integral

phases and resulting area distributions discussed in the fol-
®wing are calculated in gauge-invariant form.

The magnetic-field dependence of the area distribution is
displayed in Fig. 5. As anticipated from the structural stabil-

[0Bmax has nontrivial consequences beyond the limitationity of bundles under variation of the field (see Fig. 3, the

of the resolution. Since the curvature of the paths and, henc8-field dependence d?(a) is weak as long as the cyclotron
the enclosed areas change as functions of the magnetic fielthdiusr ;. remains about an order of magnitude larger than the
the resulting area spectrum is to be understood as an averalijgear dimension of the cavity,.>10yA. Within this limi-

over area distributions pertaining to different fields.

tation, the Fourier transforfEqg. (34)] of the quantum and
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10” - T - T - T T —] der the inversion of the fieldd— — B) since the 90° geom-

; ] etry of the attached quantum wires breaks the reflection sym-
metry of the scattering problem.

One important difference to previously investigated
length spectr® 8 (power spectra of.,, as a function ok)
1 is that the association of pronounced peaks with individual
‘ - bundles of trajectories is not clear cut. One reason for this is
| A NP ] that the directed area, unlike the length, is not positive defi-
Vi / YNV L i ] nite. Therefore, long trajectories can have small enclosed ar-
] eas, just as short trajectories, because of strong cancellation
.1 y ] effects of directed areas segments of opposite sign. This can-
J cellation effect results in the accumulation of trajectories
102k - with small directed areas.

3 _1'0 ' '5 ' (') ' : ' 1'0 B. Conductance fluctuations and autocorrelation functions

area

w

Experimentally accessible is the magnetoconductance as a
FIG. 5. Dependence of the classical area distribuBigifa) on  function of the applied magnetic field
the magnetic field (cyclotron radiug r.=« (solid line), r.
=10yA (dashed ling Because of the structural stability of bundles Ton(B) =tmn(B) |2 (36)

under a change of magnetic figlsee Fig. 3, the principal features Within the semiclassical approximatiofi,,(B) depends on

of the nonuniversal distribution of small areas are the same in both _. . . . .
) . is nDAirs of trajectoriegor bundle$ and, correspondingly, dif-
curves and the universal exponential decay at larger areas is n

affected. erences between directed areas. In the PSC approximation
we have

semiclassical amplitude can be associated with a single - L o

(broadenefarea distribution. T 2(B)=—2, sgr(m)sgr(n)sgn(m’)sgr(n’)
Comparison between the classical area distribufan 2d%q,q’

and the area spectrum within the PSC approximation is

shown in Fig. 6 for the circular billiard with the two leads at % |5q5q,|1’2ex;{i[l~:q(8)—IEq,(B)]

an angle of 90° to each other. Note that for an infinite inte-

gration interval oveB but the underlying classical dynamics T

kept at fixedB, Eq. (34) implies that the two should agree —i E(,u,q—,u,qr)} (37
provided that the sum over all paths has converged. The

observed level of agreement is therefore primarily a measurgnd, correspondingly, in the FDA

for the completeness of the sum over all paths in&6). In

the present example, about 18 000 trajectories are included. (FDA) «mUx.n .

It should be noted tha®(a) is not symmetric with respectto  Tmn (B)= TE H,(m,nkg)HL, (m,n,kg)

the reversal of the sign of the directed area+—a), or @

equivalently, the transmission amplitude is not invariant un- — — T
Xex%l[Fa(B)_Fa'(B)]_l E(Iu’a_/*l’a') .

0.35 [ —7rIr r r r r rr 1, 1+ 1+ 1 (38)
03 ] In both approximationg$Egs. (37) and (38)], the oscilla-
025 | d R _ tory component is determined by differences between di-
| ] rected areas. The cancellation effects and hence the difficulty
oo b T\ il i in mapping Fourier components onto distinct classical
= | ' bundles becomes even more severe than for the power spec-
Eo sk ] trum of the transmission amplitude. Cancellation effects now
Tl ] take place not only between different segments of a given
o1k | i trajectory but also between directed areas of different trajec-
tories resulting in pronounced accumulation of Fourier com-
005 L ' ponents witha~0 in the power spectrum of.
I ! The magnetoconductance calculated in the PSC approxi-
00 X T WY U L ! mation using Eq(37) should agree with the CTMC result

-20 -15 -10

(.3
)

provided the off-diagonal terms in the path index are ne-
glected. In this case, the agreement provides an indication for
FIG. 6. Comparison between the total power spectrumthe completeness of the path sum. An example is shown in
S malt59(a)|? atke=50.57/d and the classical area distribution Fig. 7 for the circle with leads at an angle of 90° relative to
Pq(a) for a circle with perpendicular leadsRE V4/r+1,d  each other. The overall agreement is very good. The most
=0.4). pronounced deviation occurs at very low(classical shoot-

area
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FIG. 7. Classical transmissionT=X,T.) and reflection
(Rm=Z2,Rpp) in the circle billiard(inset of Fig. § as a function of FIG. 8. Comparison of magnetoconductance autocorrelation
entrance lead mode numberatkg =50.57/d, i.e., 50 open modes.  functions obtained with the CTMC binning methétashed curve
Dashed lines, CTMC simulation; solid lines, result of E2g). FDA for ke=3.57/d (solid curve, and the experimental datRef.

19, dotted curvein the stadium withl/2=R=1 andd=0.4. For
ing angle nea®=0) and at highm. The failure nea=0 unit conversion we used an effective area in the experiment of
results from the fact that there is mo=0 state, which would ~ Aefr=0-5 #m.
- i i ik 0 15 ] : ,
accommodate classical trajectories witk-0.> The devia-  The sum over bundles in E41) can be transformed into an

tion at highm results from the fact that for the corresponding integral over enclosed area differences between pairs of
shooting angles most trajectories belong to the direct bundl aths?®

for which the PSC approximation fails and which is therefore

calculated by direct numerical evaluation of the double inte- o o i
gral in Eq.(14). Cmn(AB)= %da Py (a=ag—ag|qzq)ex —cABal.
Fluctuations in the conductance can be conveniently de- (42)

scribed by the autocorrelation function mn ] . .
P>"" denotes the correlation function for the area difference

between pairs of pathgy and q’, having a difference in
directed area oh=aq—ay with sing, and sing, lying in

the bin of the entrance angla and of the exit anglen as
defined in Eq.(28).

C(AB)=(8T(B+AB)sT(B)), (39)

where 5T(B)=T(B)—(T(B)) and the ensemble average is

taken either over a range &f or a range o fields. With We notice that the binning techniqiigq. (28)] is of cru-

the help of Egs(37) and(38), C(AB) can be evaluated in cial importance for uncovering oscillatory structures in

the semiclassical, as well as primitive semiclassical, approxi- . . )
; P . » app C(AB). P2"" contains the information on the angular corre-
mations. The value of the non-normalized correlation func-

. ; o . lation between bundles connecting a given set of modes
tion at zero fieldC(AB=0) gives the mean-squared conduc- : - he o .
tance fluctuation (5T2), which has been extensively (m,n). Without binning, only a positive-definite correlation

investigated within the framework of random matrix ];liﬂgit'eosngg#;;eigtg':;(ﬁﬁgaigg i?lezthCJengIIIr:)(\:;\gjinasvxllg pr\?v\ﬂﬁus
theory?® Frequently, the correlation functidB(AB) is nor- ' g way:

malized such tha€(0)= 1. The correlation functiol®(AB) out binning, the pair distributjon functioﬁ_z(a) can be ex-
is customarily evaluated within the so-called “diagonal pressed by the self-convolution of the simple area distribu-

approximation'i2 tion P(a),

Pz(a):f da’'P(a’+a)P(a). (43
C(AB)=~2, Cpy(AB) o
nm The correlation functiofC(AB) is then reduced to a square

of the Fourier transform of the directed area distribution

<5Tmn(B+AB)5Tmn(B)>B- (40)

n,m 2

: (44)

1
C(AB)=Z

[
f da P(a)ex;{ - EABa
Here, correlations between fluctuations in different modes . o )
are neglected. Using the PSC amplitulEs. (37)] and the ~ Which is positive definite. If we further assume a “univer-
Taylor expansior{Eq. (21)], the correlation function is re- Sal” exponential distribution for the are&(a)cexg —pa],

duced to the autocorrelation reduces to a squared Lorentzign
C(AB)=C(0)/[1+(1/c)*(ABIB)?]?, (45)

a frequently invoked simplified model that has been used to
fit the behavior ofC(AB) for small magnetic field&B.2™*
(41 In Figs. 8 and 9 we present the comparison between ex-

- ~ i
E’ |Dqu,|exr{EAB(aq—aq,)

C (AB)—( 77)2
mn! 542 ot
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0.12 220 T T T T T T T T T T T T

kp=50.5m/d
20 " 1 2 1 " 1 2 1 " 1 2 1 "
0.0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
AB(T)
-0.04 M 1 L 1 L 1 L
0.0 0.02 0.04 0.06 0.08 FIG. 10. R(PS9(B) in a circle billiard with only one open lead

AB/Bg for different kg and, therefore, different number of open ledds

FIG. 9. Autocorrelation function for a stadium geometry with R=V4/m+1, d=0.4. The exact result, classically and guantum
opposite leadéinsed. Solid line: Fraunhofer diffraction approxima- Mechanically, is complete reflectioR(B)=N (dashed ling The
tion (FDA); dotted line, quantum calculation from Ref. 11. The fluctuations demonstrate the violation of unitarity in the PSC ap-
semiclassical and quantum calculations are kpr=4.5m/d, d  Proximation whose amplitude is independent\of
=R/2,By=ckg/d.

c®AB)=CcT(AB). (48)

perimental data, a full quantum calculation, and different
semiclassical approximations for the stadium with different  While for quantum calculations on the one hand and clas-
geometries. Experimental data of Marcus and co-wofk&rs sical calculations on the other hand Edo6) is satisfied,
are shown in Fig. 8 together with the semiclassical descripsemiclassical approximations violate unitarity. Therefore, the
tion in the Fraunhofer diffraction approximatighkDA) and  equivalence of the correlation function in transmission and
the CTMC simulation for the stadium with leads at 90° rela-reflection is not guaranteed.
tive to each other. In Fig. 9, the semiclassical approximations We present in the following a simple example that proves
are compared with full quantum-mechanical calculattbns the fundamental deficiency of the semiclassical approach,
for opposite leads. The full evaluation of the semiclassicalvhich persists even when diffractive corrections are taken
expression within FDA[Eqg. (38)] including off-diagonal into account. To this end, we consider a circular billiard at-
correlations improves the agreement with the data and theached to only one lead. For this system, the sum over all
quantum calculations compared to the CTMC evaluationpaths can be easily performed. Moreover, with only one lead
This is not surprising in view of the fact that the CTMC open, the quantum-mechanical and classical reflection prob-
method is intrinsically a high-mode approximation while the abilities are equal to one anid,,= 6T,,=0. This means that
experimental data and quantum calculations are for relativelyhe following equation should be true:
low modes N=<3). Nevertheless, the oscillatory structures
are qualitatively reproduced, thereby lending some credence 2
to the intuitive path interference picture as the origin of the J6Ry,=

> > sgrim)sgr(n)sgnm’)sgrin’)

2
oscillatory structures. As will be discussed in the following (2d)"n gzq’
section, however, this agreement, while not accidental, o o o
should be viewed with caution. ><|Dqu/|1’2exp{i(Sq—Sq/)—i 5 (g~ tqr) | =0.
V. VIOLATION OF UNITARY (49)
The quantum analog to the classical unitarity relafigg. A numerical evaluation of Eq49) shows, however, that
(33)] the sum over path pairs does not cancel in the semiclassical
approximation. Figure 10 displayB"S9=3 R(PS9 as a
> (TontRnp) =1 (46)  function of the magnetic field for differerky (or equiva-
n lently, differentN). The remarkable observation is that the

fluctuationssR(PS9 that are due to the incomplete cancella-
tion of the semiclassical path contributions are independent
of m, i.e., they persist even for very high mode numbers. In
5T=— SR, (47)  other words, the limiR("S9 is not equal to zero, as goes
to infinity (limy_,..6R(PS9+£0).

In other words, transmission and reflection are fully anti- It is also instructive to study the influence of the lead
correlated due to the unitarity of th® matrix, or equiva- width d on SR(PS9. Figure 11 shows that the fluctuations for
lently, due to flux conservation. Accordingly, the autocorre-fixed m=60 andkr=1007/d become smaller when the lead
lation function for transmissiorC(™ and reflectionC(®  width is chosen larger. This explains the observation by Lin
should agree: and Jenséf who found that unitarity is approximately con-

imposes constraints on the fluctuations of the transmissio
and reflection probabilities,
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FIG. 11. R(S9(B) =3 ,R(PSO(B) for m=60 in the circle bil- FIG. 12. Comparison of the deviation from unitarity between

liard with one open leadinset of Fig. 10 at ke=100.57/d, i.e., the PSC approximatio(solid line) and the FDA(dotted ling in the
100 open modes for two different choices of the lead width. Dottedcircle with one open leadinset of Fig. 10 at ke=10.5x7/d, d
line, d=0.4; solid line,d=1.16. The dashed line marks the exact =0.4. The exact result iR(B) =10 (dashed ling

result: R,(B)=1. The violation of unitarity decreases for larger

lead width. correlation function, this condition can be satisfied in general

) ] ) ] _only near the first two maxima. Furthermore, if the mean
smaller de Broglie wavelength~d/2m) appears to contra- i the reflection and transmission channels. Consequently,

dict the notion that the semiclassical approximation shouldhe range of validity of the semiclassical approximation for
improve as\ decreases. The origin for this behavior lies in c(M(AB) andC(®(AB) will also be different.

the increase of the number of contributing bundles and sta-

tionary paths as the lead width decreases. Violation of uni-

tarity is determined by the number of the terms in the path VI. SUMMARY
sumg.q in Eq. (49). The larger the number of terms, the
larger the fluctuatiorsR(PSO. In the present example, for
d=0.4 the sum extends over 2174 paths whileder1.16

The semiclassical description of magnetoconductance
fluctuations for ballistic microstructures involves directed ar-

only 1500 paths contribute. In fact, assuming the phases ifaS €nclosed by classical paths. We have developed a gauge-
Eq. (49 to be random, the RHS of the equation can pelnvariant description of directed areas that can be visualized

viewed as the realization of a random walk in the complex2S the closure of areas by adding a virtual path to the real
plane. Its end point will be further from the origin the more path connecting the leads. Gauge Invariance of the resulting
steps are taken. This problem persists when one employs €2 distribution is found to be important for geometry-

FDA rather than the PSC approximation. Figure 12 present§en3itive nonuniversal properties of transport. We have cal_-
a comparison between those two approximations 8y, culated the magnetoconductance on different levels of semi-

[Eq. (49)] with m= 10. The deviation from unitarity are com- classical approximation, namely the Fraunhofer diffraction

parable for both semiclassical approximations. On the mosqpproximation, the _primitive semiclassical approximation,
fundamental level, the origin is the fact that for hard-wall21d the classical trajectory Monte Carlo approximation. We

structures the condition of a smooth potential on the scale otfnd qualitative agreement with experimental data and full
the de Broglie wavelength is locally not satisfied. quantum calculations, which allows us to trace magnetocon-

Another remarkable consequence of this failure is that th ugtance fluctuat_ions t_o path int.erferenges. A fgndgmental
resulting autocorrelation functio8®(AB), which should imitation of semiclassical descriptions is the violation of

vanish identically in the present case of only one open lea nhitarity in ballistic scattering. ngiat?ons fr°”.‘ unitarity can
displays an approximately Lorentzian shape according to E?e even larger tha_n the quctuatlo_ns "S_e”- This POses limita-
(45). This is because the area distribution decays expone lons to the validity of_the semlclassma_l des_crlptlon and
tially in this one-lead case as well. It has been argued that th oints to the need to improve the semiclassical transport
“universal” approximation in terms of the squared Lorentz- Neory to a theory that take%,'glto account nonclas§|cal paths
ian would satisfy the condition of reciprocity between trans-" the interior of the structure.™ Work along these lines is
mission and reflection. The present finding indicates, how!" Progress.

ever, that the violation of unitarity may also affect the

universal behavior, frequently assumed to be more robust ACKNOWLEDGMENTS

against errors within semiclassical approximations.
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