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Monte Carlo simulations of icosahedral quasicrystal growth and melting
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Three-dimensional Monte Carlo simulations for atomic growth and melting of icosahedral quasicrystals are
presented. It is supposed that the atoms can be locally ordered both icosahedrally and dodecahedrally, and the
preferred ordering arises during the growth according to statistical and energetical criteria. All the waiting
positions(where an atom could be in principle adglede generated on the cluster surface at every stage of the
growth. The binding energies of all atoms and all waiting positions are computed with an oscillating Friedel
potential. Then an object, chosen at random from the joined list of surface atoms and waiting positions, is
treated according to the Metropolis criterion. The suggested growth process is completely local. It is found that
the speed and sign of the process and the resulting structures depend strongly on the growth parameters. Most
frequently, the main structural motif of grown clusters is the dodecahedral local ord®Mii@) whereas the
icosahedral local orderinglLO) is usually rare. However, the latter becomes dominant for rather exotic
interatomic potentials or for high growth rates. The phenomenon of critical seed size is observed: for those
parameters, for which large clusters grow, small enough seeds stop to grow and may even melt. The grown
quasicrystals are faceted and their sizes in perpendicular space are rather close to those predicted theoretically
and observed experimentaly50163-18209)11501-1

I. INTRODUCTION not local because, at each step, the atom \ilith lowest
energyis supposed to be added to the growing quasicrystal.
Statistical methods were applied to quasicrystal growttPerhaps the most realistic growth simulations are those ones
simulations from the very beginning of quasicrystal sciencebased on molecular-dynamics studie$ but they are limited
in one of the first papers, Shechtman and Blediscussed by present computer facilities.
the random packing of icosahedra as a possible model for the In this paper, a Monte Carlo approach, which is a reason-
just discovered AMn alloy. Since that time the energetic able combination of energetic and entropic approaches, is
and entropic approaches are competing for a better descrigPplied to three-dimensional icosahedral quasicrystals. In
tion of quasicrystal formation. The idea of Shechtman andSec. Il thg atomic structure of icosahedral quasicrystals and
Blech was then developed in the so-called icosahedral gladgteratomic potentials are discussed. In Sec. Ill a completely
model?>~* which considers the growth as a random packinglocal growth process is suggested. Then, in Sec. IV, the
of large identical atomiclusters(the Mackay icosahedra or growth rate and the quality of grown quasicrystals are stud-
the Bergman triacontahedrareserving long-range orienta- ied. Both growth and melting are 5|mula'Fe_d_ as a function of
tional order. The clusters are attached to the growing surfacde growth parameters. The problem of initial seeds and the
stochastically but with some limitations. The energetic con-Clustering of quasicrystals are discussed in Sec. V. It should
tribution is supposed to be responsible for cluster formatiorP€ €mphasized that we do not consider here electronic effects
whereas the entropic one works at longer distances. and vibration entropy effects during growth, melting, and
The atomic simulations of growth frequently include the clustering. These effects are, of course, impoffahtit in
Monte Carlo method for selecting atomic positions wherethis paper we prefer to focus on effects typical of quasicrys-
atoms could be added or deleted. However, both in cryals tals.
and in two-dimensional quasicrystdl&,it is usually sup-
posed that the lattice is fixed and the Monte Carlo process
determines only the sequence in which those fixed positions
are occupied. Olamishowed that if the lattice is not fixeal
priori, then the growth of slightly defective two-dimensional ~ The atomic structure of quasicrystals is not yet deter-
quasicrystals is possible following some entirely local rulesmined well enough, therefore it is better to leave it as free as
More recently, Josef and El$8rshowed that the Monte possible so that the details of the structure would result from
Carlo growth simulation of a two-dimensional octagonalthe growth process. Only typicébcal atomic arrangements
tiling may result in an equilibrium disordered quasicrystal.are fixed in our model; they do not fix the global structure
For the three-dimensional atomic growth of icosahedral quaeven though they do restrict it. They even allow for periodic
sicrystals, a very effective model was suggested in our recerstructures(so-called quasicrystal approximantdhis is an
papers:112 |t produces slightly defective quasicrystals with important difference with the growth simulation of crystals:
sizes up to 600 A. However that model is, strictly speakingthe latter usually presupposes a fixed global atomic lattice.

Il. LOCAL ATOMIC STRUCTURE
AND INTERATOMIC POTENTIAL
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In our simulations, two types of local atomic arrange-
ments(or ideal local configuratiort$) are allowed in accor-
dance with the idealized structure of the approximdrasd
with the best available experimental data on quasicrystal
structure'®1°

(1) Icosahedral local orderingLO), where the nearest
neighbors are at the vertices of a small icosahedron; the in-
teratomic bonds are directed along the fivefold icosahedral
axes and their length is;.

(2) Dodecahedral local orderin@®LO), where the nearest
neighbors are at the vertices of a small dodecahedron; the 0.6 0.8
interatomic bonds are directed along threefold icosahedral
axes and their length is;.

As a result of ILO and DLO, there are also interatomic 0] energy=H
bonds directed along the twofold icosahedral axes; their
length isr,. The three lengths,,, r3, rs, will be referred to
as the first coordination shelkee Fig. 1a)]. They can be
easily related to the quasilattice constant rs=a,/7, r,
=2rg/\V72+1, r3=v3r,/2 (r3:r5:r,=0.866:0.951:1r, is
aboud 3 A in Al-Mn and Al-Pd-Mn alloys. We will not
discuss here what are the atomic radii that favor those two
types of local orderindgcf. Ref. 11. Because only ILO and
DLO are allowed, there are not that many different inter-
atomic bonds in the next coordination sphdie=e Fig. 1a)].

Finally, any possible atomic position, can be expressed
as a sum over six base vectoeg, . . . ,&5:

vertical lines - ideal quasicrystals
124 bars - grown quasicrystals
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where n; are all integer(for vertex positions or all half-
integer(for body-centepositionsg and the vectors; are cho-
sen in the following form:

perpendicular lengths of bonds/r

e=£r( 07 1);
1=5T2(70.77);

—_—
()
-

ezzlrz(f’l,T,O); FIG. 1. (a) Typical average coordination numbeb,, for dif-

2 ferent interatomic bonds of different lengths: histogram for ideal
quasicrystal, horizontal bars for the Monte Carlo simulati¢the
difference is extremely small(b) The interatomic potential with
Friedel oscillations used in this paper; the relevant energies, which
correspond to the interatomic bonds, are marked with dots; the line

_1 -1 .
63—§r2(0,7' !T):

1 is only as a guide for the eyé&) The perpendicular space lengths of
e4=§r2( -7,07°Y); interatomic bonds fronfa); those bonds, which exist for the waiting
positions but are absent in grown quasicrystals, are shown by dash
lines.
e&=5r,(7 1, —1,0); i
2 atomic bond depends only on the bond length and not on the

bond direction. The binding energy of each position is the
1 sum of the bond energies over all the bonds connecting this
eezzfz(ofl, —7); (2)  position with all other atoms. We showed elsewh&téthat
interatomic potentials with suitable Friedel oscillations favor
notice that|g|=r;. These six base vectors are directedquasiperiodic structures and suppress periodic ones. The os-
along the threefold icosahedral axes; however, we couldillating potentials are claimed to be important for the stabil-
equivalently choose six base vectors directed along five-folity of quasicrystal®-2* (see especially discussion in Ref.
icosahedral axes. We need from Efj) only to describe the 24). Therefore, here too we use potentials oscillating with the
two types of local atomic ordering, DLO and ILO. interatomic distancfgFig. 1(b)] and restrict the range of these
A further important step is the computation of the atomicpotentials to 25 (i.e., about 5 A. The latter restriction is
binding energy. Central pair potentials are assumed here fantroduced not only for computational reasons but because of
interatomic interactions, so that the energy of each interthe low conductivity of quasicrystals the oscillations should
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be damped at high and normal temperatusze howevéP  with a probability given by the Boltzmann distributioft) if
where a mechanism of enhancement of the Friedel oscillahe energy of the waiting position on the surface is smaller
tions in quasicrystals is suggeste®nly those values of po- than its energy in the liquid—the position is occupied by an
tentials are of real importance which correspond to the posatom, if it is larger—the position may be occupied with a
sible bond length§they are marked by dots in Fig(l]. probability given by the Boltzmann distribution.
The significance of the oscillating potentials just for qua- (v) If an atom is deleted or added we go(iD; if not, we
sicrystals is demonstrated by Figclin which the lengths repeat(iv).
of the interatomic bonds in the so-called perpendicular space The following comments should clarify this procedure.
are plotted. According to Eq1), any atomic position;, of a Comment to(i): We use as initial seeds spherical pieces
DLO/ILO lattice can be lifted into a six-dimensional cubic of an ideal face-centered quasicrystal. This ideal quasicrystal
lattice so than,, . .. ng are its six-dimensional coordinates. has three acceptance domains in perpendicular $Bace:
Then its projection,r, , onto perpendicular space can bea triacontahedron for even nodgall n; are integer and
found: Ejﬁ:lnj=2n), a fivefold-ruffled triacontahedron for odd
nodes(all n; are integer anoﬁlenj:2n+ 1), and a small
triacontahedron for even body centers of the six-dimensional
cubic lattice(all n; are semi-integer anﬁlenJ:Zn). The
seeds should be large enough since small seeds do not grow
and may even melisee Sec. Y.
1 Comment ta(ii): “Admissible” means that(a) new posi-
e ==ry(77 10); tions obey the DLO and/or ILO with respect to the old atoms
2 and(b) each new position has three or more atoms in the first
coordination shelli.e., in direct contagt The latter condi-
tion is needed because the interatomic bonds in metals are
not directional and the contacts with at least three atoms are
needed to fix the position of any atom in space. Hence “dan-
gling” atoms, which have only one or two first-shell neigh-
bors are not permitted and they are deleted immediately.
Comment to(iii): The binding energy of any position,

6
U:jzl Ni€ ., ©)

where the vectorg, ; are given by

eLzzzrz(O,T,T_l);

1
e¢3:§r2(771,0,7');

1 . Eping, is computed as a sum of energies of all the bonds

ei4:§r2(7':_7' 0); connecting this position with atoms of the growing quasi-
crystal:

1
e s==r,0,r—71);
52 20 =7 Epind= — boEnd NpondEbond I bond » ()

1 1 where Npong IS the number of bonds with the energy

ele—_rz(_’T ,O,’T). (4) X . . .

2 EpondFbond; the sign is chosen in such a way that a greater

. L . . binding energy means a stronger binding of the atom. To
The perpendicular projections of the Interatomic k?Ondsspeed up the computations, all the bond energies are sup-
should not be too large in order to avoid very short 'mer'posed to be integers. The energy of each bond may be con-

atomic_distances. It is obvious from Fig(cl that the  qjareq as an independent parameter. To minimize the num-

maxima .Of the selected pqtennal correspond usually to th er of the independent parameters, the bonds are divided into
bonds with larger perpendicular lengths; hence those bon

i b d b letalv ab oups and the same energy is assigned to the bonds within
will be suppressed or, may be, completely absent. each group. In this paper, the potential is described by seven

parameter§Figs. 1@ and Xb)]: E, (E,) is the energy of the
Ill. GROWTH PROCESS r, bonds between two largemal) atoms;E; is the energy

The suggested growth process includes the following®f the rs bonds between large and small atorfs; is the
steps(see afterwards detailed comments about each.step €nergy of allrs bonds;Eyc is the energy of all ther s and

(i) The growth starts from an initial seed cluster of atoms." 2 bonds of the Mackay shefthe outer shell of the Mackay

(i) New admissible atomic positions are generated arountfosahedrop Eg,p is the energy of all the bonds which are
the quasicrystal at each stage of the grottiey will be  in the gap between the first shell and the Mackay shell; fi-
referred to as waiting positionsind “dangling” atoms are hally, Egapz is the energy of all the bonds which are in the
deleted. second gap in coordination numbers just beyond the Mackay

(i ) The energies of all the atoms and of all the waitingshell (7r,<r=<2r3). In addition, we assume that no bond is
positions are computed with the interatomic potentials disShorter tham ; (hard sphere approximatiprPreviously* we
cussed above assumed thaE,=E,; in that case the interaction between

(iv) An object, chosen at random from the joint list of large and small atoms becomes completely symmetric. The
surface atoms and waiting positions, is treated according teesulting symmetry of the grown quasicrystal is primitive
the standard Metropolis criteriga) if the energy of the at- icosahedral. In contrast, E,#E,, the symmetry becomes
oms on the surface is larger than its energy in the liquid—thdace-centered icosahedrdl.This is a minimal scheme to
atom is deleted, if it is smaller—the atom may be deletedmaintain the distinction between large and small atoms. No-
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tice that the chosen oscillating potential suppresses automati-
cally those bonds which have larger lengths in perpendicular
space[Fig. 1(c)] because in the physical space they corre-
spond to positive values of the potential. This is why the
growing quasicrystals are so severely restricted in perpen-
dicular spacédsee Sec. V. In fact, the energies of atoms and
waiting positions are computed and recomputed during the
(i) step, so that no additional runs are needed for the energy
computation.

Comment to(iv): To apply the Metropolis criteria, the

6x105]

5x105]

4x105 1

3x10% 1

2x105 1

1x1051 energy =-4,-3,-3,-8,-2,1,1

number of atoms in growing quasicrystal

. . _ . kT =30

difference in energiesAE, of atoms on the surface and in o r melt . .
the liquid must be found. ObviouslyAE=(Epnq+ Esf) 0 2x107 4107 6x107 8x107
—E¢; whereEg; is the interaction energy of a surface atom number of Monte Carlo attempts

Wi.th fluid andE;; is the interaction of a fluid atom with qujd. FIG. 2. Number of atoms in growing quasicrystals for different
It is assumed tha; does not depend on the atom environ- ;qunts of supercoolingMu < e @s a function of the number
ment and the differenc&} u=Es;—Ey;, is an independent of attempts(the latter is proportional to the growth tineThe
parameter which governs the growth and meltiadsorption  growth starts with an ideal spherical seed of about 15000 atoms.
and desorption atoms withEpj,¢>Ax have a tendency to The growth rate is smaller in the beginning because the average
be adsorbed on the surface whereas atoms Bithy<<Ax  binding energy is smaller owing to the surface curvature; this effect
have a tendency to be desorbed from the surface into fluids practically absent at stronger supercooling. At the very initial
The Metropolis rule describes both tendencies quantitativelystage(not shown the seed may be slightly melted because on the
(i) an atom is attached to the randomly chosen waiting posispherical surface there are not many enough sites available for
tion if AE<O and it is attached with probability growth.Ax=33.0(1), 34.0(2), 35.0(3), 35.5(4), 35.8(5), 36.0
exp(—AE/KT) if AE>O0; (i) a randomly chosen atom is de- (6), 36.1(7).

leted from the surface IAE>0 and it is deleted with prob-

ability expAE/KT) if AE<O. slowing down is more pronounced for meltitigig. 3 and

As a result, detailed balance is obeyed as we havéor small clustersthe latter will be considered in Sec)\At
checked. Atoms with more than eight first-shell neighborsstrong superheating the grains melt proportionally to time,
are considered as bulk atoms and the Monte Carlo proceduighereas at weaker superheating the melting process is not
is not applied to them; thus, in our model, atoms cannolinear: it can even come to a stop when it reaches a surface
disappear from the bulk. with a higher cohesive energy of atoms.

The shape of the grown quasicrystalline grains is usually
IV. GROWTH AND MELTING dodecah.edral in the beginning and then becomes_ more
rounded; thus it is not yet clear whether the large grains are

For this initial study, we fix the energetic parameters of
the model as shown in Fig.(d). From the experience with
our previous pure-energetic model we know that the growth
with these parameters produces faceted quasicrystalline
grains of rather good quality. In addition, we let the tempera-
ture vary in a small interval around the melting point. Thus,
the temperature variationsuperheating and supercool)ng
affect only Ax which is proportional to the temperature, so
thatA w= pmer+ @(T—Ther ,» WhereakT is supposed to be
constant and equal 10T ,eii; KTrer= 3 in the chosen energy
units.

The dynamics of the growth and melting process is shown : . .
in Fig. 2 and Fig. 3 for various amount of supercooling 0 2x107 4x107 6x107
(AM< /-Lmelt) and Superheating A(ﬂ> Mmelt)- The growth number of Monte Carlo attempts

(melting rate is shown in Fig. 4the number of attempts is FIG. 3. Number of atoms in melting quasicrystals for different

proportlon'al to the tl'me of growih W.e See that. for strong amounts of superheating\ u> u o) @s a function of the number
supercooling the grains grow proportionally to time, whereas

. . . ; ~~of attemptgor time). The melting starts either with an ideal spheri-
for weak supercooling t_he growth is not linear: small grains grain(L, 2, 3 or with an as-grown & u=36.1) quasicrystal4,
grow slowly. The latter is a natural effect. of greaten the 5, 6, 7, both of about 105000 atomd u =45.0(1, 4), 42.0(2, 3,
averagg surface curvature of smaller grains; where the cur) 49 (6), 39.7(7). Curves 2 and 3 demonstrate different realiza-
vature is strong the binding energy is smaller. Another interions of the Monte Carlo process below 45 000 atoms. The melting
esting effect observed at weak supercooling is the stepwisg faster at the very beginning because it is difficult to add new
character of the growtita slowing down of the growth for atoms on the smooth spherical surface of the initial grain and at the
some typical numbers of atomdhis is a result of the inho-  very end because the average binding energy is smaller owing to
mogeneous layered structure of quasicrystals. Indeed, wheRe large surface curvature. For the melting of the grown quasicrys-
the growing quasicrystal reaches a layer with lower densityal, the melting is slower below 15000 atorfisurves 6 and ¥
and lower cohesive energy, the growth becomes slower. Thisecause the initial seed has the ideal structure.
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energy =4,-3,-3,-8,-2,1,1 kT =3.0 purg_ILO. In these quasicrystals only two types of lattice
melt positions are occupie@say, even vertices and even body
center$. However, it is possible to select a deflated cubic
o0ar Ap [in units of energy] lattice with 7 times smaller siz¢in the general case it would
0.00 ' e ' ' ' be a face-centered icosahedral laitieenhere onl ti
34 36 38 42 44 y vertces
are occupiedno body centeps Hence, these quasicrystals
-0.04 | should have ar times inflated diffraction pattern. In our
0.06 simulations these ILO quasicrystals always have rather large
[ and quickly growing sizes in perpendicular space and rather
small atomic density. This may be why they have never been
observed, to the best of our knowledge. However it is inter-
FIG. 4. Growth(melting rate of quasicrystals as function of esting to note that there exists an approximant of these ILO

Ap. The growth rates are taken from Fig. 2 between14® and quasicrystals, the well-known AW structure, with pure

5% 10° atoms, and the melting rates are taken from Fig. 3 betweerj1|-O Of_ atoms and hav.ing a diffraction _pattenntimes in- .
2% 10 and 9% 10* atoms. flated in comparison with other Al-transition-metal approxi-

mants(usually Al,W is wrongly considered as an approxi-
faceted. Indeed, to find the growth faceting of macroscopid¢nant of conventional Al-Mn and Al-Mn-Pd quasicrystals
samples, we should find and compare the growth rate of Figure 3 shows the melting dynamics of ideal and as
different facets but this would take a lot of computationalgrown (slightly defective quasicrystals. The ideal quasicrys-
time and is beyond the scope of the present work. tal is constructed as described in the comment t@bove.

The structure of grown quasicrystals is similar to the idealThere is a remarkable difference in the melting rates: for the
one: most of the atoms have their nearest neighbors at tf&@meAu the ideal quasicrystal melts more slowly. It means
vertices of a small dodecahedréDLO). The amount of at- that even a small amount of phason defects can strongly
oms with the purely icosahedral local coordinati®hO) is ~ change the melting rate; this phenomenon may be important
only about 3%. The coordination numbers of the grown andor the improvement of quasicrystal quality because, in real
ideal quasicrystals are also very simiaee Fig. 1a)]. The  slow growth, the alloys crystallize and melt locally many
ILO is in minority in spite of our efforts to enlarge its pres- times before final crystallization. Notice again the steplike
ence by choosing a stronger icosahedral bindiiig<{—8)  character of melting which is especially pronounced at weak
in comparison with dodecahedral bindinfs= —3). Strong  superheating and in ideal quasicrystals. The melting process
icosahedral coordination is observed only in the next coordidoes not proceed as reversed growth: in the beginning the
nation sphere. On the average, each atom has about 7s§rface becomes rough and appears to be covered by small
neighbors at distancers (this is just the edge of the Am- clusters. Then the clusters become largemntaining about
mann rhombohedjaln average, there are 20.7 atoms in the1900 atoms and more stable: the plateaus on the melting
Mackay shell(distancesrr s and 7t»,), that is one half of the ~curve(Fig. 3, curves 2 and)Xorrespond to situations when
complete Mackay icosahedron. This means that there arf@e clusters do not melt and the smallest step between two
many almost complete pseudo-Mackay icosahedra. On thelateaus just reflects the melting of one cluster. For grown
other hand, those minor atoms with icosahedral coordinatiofhence imperfegtquasicrystals the melting-induced cluster-
have almost 20 neighbors at distantg (i.e., at the vertices ing on the surface is less pronounced. We conclude that the
of large dodecahedron this yields a 33-atom clustér  clustering on the surface is quite typical for the melting pro-
(1+ 12+ 20) which is a part of the Bergman triacontahedron.Cess but it is not clear yet what is the equilibrium spectrum

The surface of the grown quasicrystals is rather rougth the cluster sizes. In order to get quantitative results, de-
Nevertheless, the topmost atomic layers are similar to théailed simulations of the growth of an isolated surface are
structure met irflat atomic layers observed after annealfig: needed, at least for twofold, threefold and fivefold surfaces;
the surface is covered by small icosahedra, and their shell#)is work is now in progress.
together with atoms in between, produce the two topmost In order to characterize the quality of the grown quasic-
layers (or one dense puckered layenhereas their centers rystals (their phason disordgrthey are lifted to the six-
produce the third layer. Such a structure is a result of a rathg¢imensional cubic lattice and their projections on the perpen-
large ratioEs/E3, so that each icosahedron tends to be comdicular space are computed in accordance with(B(Fig.
pleted (in Ref. 27 those icosahedra are supposed not to b&)- These projections are three-dimensional clouds of dots,
complete: the topmost vertices are abseBut of course, €ach dot being the projection of one atomic position; in the
because of the growth, some atoms violate this surface struéwo-dimensional figure many projections coincide. The num-
ture and this description works better for slow growth,ber of even and odd lattice points is different, implying that
melting and annealing or, even better, for stable clusterhe grown quasicrystal has a face-centered icosahedral lat-
(see below tice. Notice that the clouds are only slightly larger than the

The ILO becomes more common for stronger supercoolatomic surfaces of the ideal quasicrystal and they slowly in-
ings (i.e., for smallerAw); for the considered energy, small crease in size throughout the growth. Figure 6 shows the
ILO clusters appear as intersticials A =30.0 and they Mean-square radiué;?), of the clouds as a function of the
become larger and more numerous fior.=20.0. It is not  physical-space distance from the center of the growing qua-
clear, however, whether these values/gi are physically —sicrystals. For each distance, we fird ) within a spherical
accessible. Changing the interatomic potentifdsexample, shell about 2, thick. For the sake of simplicity(rf} is
increasingEs/Ej3), it is possible to grow quasicrystals with computed altogether for both types of vertices and both types

0.06

0.04 F ¢

-0.02 |-

-0.08 |-

growth or melting rate [atoms/attempt]

0.10 |-
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FIG. 6. The mean-square perpendicular-space s{irz@, of
growing quasicrystals for different supercoolinga as a function
of the physical-space distance from the center of growing quasi-
crystals. For the ideal quasicrystal the mean-square size is about
0.4. The curve “old” corresponds to the growth process when the
atom with the best energy is added to the quasicrystal. The drop at

4 extremities of the curves occurs because sites on the surface have a

(b) b1=0% ~ nl=43.7% smaller mean-square perpendicular size than bulk positions.

FIG. 5. (@ View along a twofold symmetry axis of a grown disorder in this growth model because the shortest inter-
cluster (450 000 atomsAw=35.0 in perpendicular space. The atomic distancess, rs andr, are fixed.
dots are projections of the evéndd) vertices,n0 (nl), and the
even(odd) body centersp0 (bl); they are shifted in the figure

plane to show them separatdin reality the centers of gravity of V. STABLE CLUSTERS
those four projections should coincjdéb) Same view of the ideal .
face-centered quasicrystalthe large triacontahedron far0, the Here we present a few results concerning the problem of

fivefold-ruffled triacontahedron fon1, the small triacontahedron Cluster formation during growth and melting; a more detailed
for b0, and nothing forb1). Relative concentrations of different Presentation will be given elsewhere. An interesting phe-
vertices are shown in percentage. nomenon is observed if we begin the Monte Carlo process
from a small seed and choogeso that large grains grow
of body centers of the face-centered icosahedral lattice aglowly (i.e., if u and the temperatur& are only slightly
cording to the same formula: below the melting point In this case the result depends on
the seed size: the seed either grows or melts and approaches
N N 2 one of a set of typical clusters which are very stable and only
> (r“_ i > H') ' (6) fluctuate a little around some intrinsic form and size.
i=1 N Examples are shown in Fig. 7. If there are less than 300
atoms in the initial ideal seeds, the seeds melt. For about 350
whereN is the total number of atoms in the layer. Of course,atoms, the seed, at random, either melts or grows and then
the perpendicular sizes increase with increasing number dfuctuates around a ‘“stable” cluster which contains about
atoms(hence the phason disorder increases agwédk, this 440 atomgits shape is approximately dodecahedrhbrger
increase may be smaller than for our previous apprBach clusters(up to 600 atomsalso approaches to this stable clus-
when the best atom was stuck each tifmarve “old” in Fig. ter. This cluster is only relatively stable: a large enough fluc-
6). It is not clear whether the perpendicular size tends towarduation, which, of course, has a very small probability, can
some finite value; in our previous simulations we have foundorovoke either melting or further growth. The next “stable”
that for 10 atoms the perpendicular size increases up to 30%luster contains about 1050 atoms and its shape is approxi-
above the size of the ideal quasicrydthle real-space size is mately icosahedral. After that, the next “stable” cluster of
about 600 A, similar to the coherence length of Al-Mn qua-about 4300 atoms the shape is triacontahedral in shape. In
sicrystals. It should be emphasized that there isptonon  this case, the stepwise growth is rather obvious: this means

<fi>=ﬁ
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energy=-4,-3,-3,-8,-2,1,1
f kT =3.0 Au= 36.0

) o i
swﬁmm;w,w“wm

1%
1000 ] S icosahedron -->

further studiegthe growth of different planes with different
potentials, differentk T, annealing of grown clustexs
The proposed Metropolis algorithm is entirely local. Never-
theless, it allows to obtain atomic structures close to those
that have been theoretically suggested as well as experimen-
tally determined for actual quasicrystals. In our model there
is no need of large ready-made clusters and the clusters arise
as a result of growth; but of course, any additional mecha-
nism which favors cluster formatiéh could improve the
quality of the final structure. It is typical of quasicrystals that

¢

®
o
[«
G

F different sets of points correspond either to
different sizes of initial seeds or
600+ to different Monte Carlo runs

dodecahedron -.->
"

number of atoms in growing quasicrystals

200757 quick melting the density of possible atomic positions is larger than the
oL , . . : . . , density of finally occupied positionghason freedojn The
0 1x105 2x105 3x105 occupied positions are selected by the Monte Carlo process

number of Monte Carlo attempts (~time of growth) according to both energetical and entropical preferences;
therefore, this is not the occupation of a fixed lattice as in
FIG. 7. Formation of stable clusters; different sets of pointsmost of the Monte Carlo growth simulations of crys?aiﬂd
correspond either to different initial seeds or to different runs of thequasicrystal§. Instead, two types of local atomic configura-
Monte Carlo process. tions are allowed(icosahedral and dodecahedrathich
leave more freedom for structure formation. The final quasi-
Shttices and, hence, atomic surfaces of grown quasicrystals

The bulk structure of the stable clusters is practically(See Fig. 3 resuit from the growth process; it is possible to

equivalent to the structure of ideal quasicrystals; even if:hange them changing the interatomic potential, o introduce

there is some growth, the grown part is rather thin and thenore o less defects, etc. so that the grown quasicrystal

phason disorder in it is very small. The structure of themlght better fit experimental diffraction patterns. It should be

grown cluster surface is similar to that of slowly grown or emphasized that our growth algorithm is completely three-

melted quasicrystals: the layers of small icosahedra forrrc]ilmensmnal; we use the perpendicular components only for

A I . characterization of grown quasicrystals.
something like a crust on the surface and stabilize it agains ; : .
; The growth(melting rate is governed by the difference
further growth or melting. b

Above we used as initial seeds spherical clusters which etween atomic energies in the liquid and on the surface, as

are cut from an ideal quasicrystal so that they have a bodywe” as bykTpe. On the average, the final positions are

center position at their centévoth in real and in perpendicu- occupied only after many atftemr(mee Fig. 4 this is typlc_al
lar spacg Thus there is a small icosahedron around the cen(-?f rea! growth fr.om the liquid stiate W%gn an atom Is finally
tral atom of the seed. When we change the position of thgxed in the solid phase after 10o 10" adsorptions and

center, the sizes of “stable” clusters may also change. Foggsqrpnoni It is difficult to glmulate such a SIOV\.’ growth
within reasonable computer time. Hence, in our simulations,

example, if we take spherical seeds with a pseudo-Mack%e growth run so fasfless than 1dattempts per atojrthat

icosahedron at the center, they melt completely as long if corresponds rather to a quenching process or to rapid melt-
they contain less than 1100 atoms, whereas in the range bg- P 9 9p P

tween 1300 and 2900 atoms they tend to a “stable” clustefN9 (notice that the number of Monte Carlo attempts is larger

of about 1900 atoms. The latter is just the cluster whichg;flgft?heen;(:gglertgfa?gssoljgggg;fjgﬂh(:gsrg;ptg)?ﬁebefsxfhe not
arises on the partly melted surfaces. P 9 9

The dependence of the size of the clusters on the initiaqmelting) rate is approximately proportional thy, hence to

seeds is rather natural becauBethe structure of quasicrys- ,?errvoatfn;rg:;r‘:‘ggﬁ;c?noem?upgirr?te?ﬁgp yg&gﬁeﬁiﬁgrgﬂgdg
tals is nonhomogeneous on this sc@bout ten interatomic g point, 9

distancesand(ii) with the Monte Carlo method it is difficult °¢ €Xémely slow because of the energy barriers. In this

to reach absolute equilibrium if the barriers are large enoughres’peCt quasicrystals behave even worse than crystals be-

This shows us the limitations of the suggested Monte Carl&saufzctt?czl h?r\:]e gsns;gIr:aogog\?gricc))l:nsehItizaagghtl)(;?lriztrrsu?/Sijtﬁﬁ It
procedure. But it seems that the physical result is valid i P y Imp

spite of the limitations of the model: the “stable” clusters he Monte Carlo simulation&hat is true even of the barriers

survive longer than others even if they eventually do melt O'bet‘:'l\;zgﬂisr?:lllu CtI;IJeStSIfsfeorncs(I)Criwifdt hnasseb)e:z.e\rf verv pobular in
start growing. In other words, the solidificatidmelting uasicrystal s)c/’ience The clusterg are usuall cgnZiéoered ei-
temperature of quasicrystalline clusters should depend o y ' y

their size (this phenomenon is well known for crystalline hr;e: ?shirealld{-mggetibl:]lld;ng bl?ikét%;\‘f ﬁ :/esgltrr?fna
clusters as welf?9. Perhaps it is possible to figguench erarchical organization of quasicrys € have demon-

these clusters in real alloys if the growth conditions Varystrated here that different types of clusters may result from

. . 3 ~ “local growth with spherically symmetrical Friedel potentials.
L?Tﬁ);dlzvgpeoggggrlvgéﬁasg;comparable sizes, "1 10" at The clustering reveals itself during growth and especially

during melting; it seems to be a result of the difference in
energy between different atomic positions. Indeed, in aver-
age, the positions with a higher ener@yhich are at the
The preliminary results obtained in this paper show thatperiphery of the acceptance domamelt first. This is con-
now we have a reasonable growth model which is worthy ofirmed by our observation that the positions on the growing

that there are several closely spaced minima of the clust
energy.

VI. DISCUSSION
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(melting) surface have a smaller mean-square perpendiculawith the real-space size; this means that the growing quasi-
size. In real alloys, this should result in a difference betweertrystal contains more and more phason defects. However, in
bulk and surface concentrations of different chemical ele-our growth model, this increase is much less than in the best
ments: the surface should be enriched by those elemengsevious modefs* and this model has a potential for further
which are closer to the center of the atomic surface in perimprovement.
pendicular space.
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