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Monte Carlo simulations of icosahedral quasicrystal growth and melting
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Three-dimensional Monte Carlo simulations for atomic growth and melting of icosahedral quasicrystals are
presented. It is supposed that the atoms can be locally ordered both icosahedrally and dodecahedrally, and the
preferred ordering arises during the growth according to statistical and energetical criteria. All the waiting
positions~where an atom could be in principle added! are generated on the cluster surface at every stage of the
growth. The binding energies of all atoms and all waiting positions are computed with an oscillating Friedel
potential. Then an object, chosen at random from the joined list of surface atoms and waiting positions, is
treated according to the Metropolis criterion. The suggested growth process is completely local. It is found that
the speed and sign of the process and the resulting structures depend strongly on the growth parameters. Most
frequently, the main structural motif of grown clusters is the dodecahedral local ordering~DLO! whereas the
icosahedral local ordering~ILO! is usually rare. However, the latter becomes dominant for rather exotic
interatomic potentials or for high growth rates. The phenomenon of critical seed size is observed: for those
parameters, for which large clusters grow, small enough seeds stop to grow and may even melt. The grown
quasicrystals are faceted and their sizes in perpendicular space are rather close to those predicted theoretically
and observed experimentally.@S0163-1829~99!11501-7#
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I. INTRODUCTION

Statistical methods were applied to quasicrystal grow
simulations from the very beginning of quasicrystal scien
in one of the first papers, Shechtman and Blech1 discussed
the random packing of icosahedra as a possible model fo
just discovered Al6Mn alloy. Since that time the energet
and entropic approaches are competing for a better des
tion of quasicrystal formation. The idea of Shechtman a
Blech was then developed in the so-called icosahedral g
model,2–4 which considers the growth as a random pack
of large identical atomicclusters~the Mackay icosahedra o
the Bergman triacontahedra! preserving long-range orienta
tional order. The clusters are attached to the growing sur
stochastically but with some limitations. The energetic co
tribution is supposed to be responsible for cluster format
whereas the entropic one works at longer distances.

The atomic simulations of growth frequently include th
Monte Carlo method for selecting atomic positions whe
atoms could be added or deleted. However, both in crysta5,6

and in two-dimensional quasicrystals,7,8 it is usually sup-
posed that the lattice is fixed and the Monte Carlo proc
determines only the sequence in which those fixed posit
are occupied. Olami9 showed that if the lattice is not fixeda
priori , then the growth of slightly defective two-dimension
quasicrystals is possible following some entirely local rul
More recently, Josef and Elser10 showed that the Monte
Carlo growth simulation of a two-dimensional octagon
tiling may result in an equilibrium disordered quasicryst
For the three-dimensional atomic growth of icosahedral q
sicrystals, a very effective model was suggested in our re
papers.11,12 It produces slightly defective quasicrystals wi
sizes up to 600 Å. However that model is, strictly speaki
PRB 590163-1829/99/59~1!/286~8!/$15.00
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not local because, at each step, the atom withthe lowest
energyis supposed to be added to the growing quasicrys
Perhaps the most realistic growth simulations are those o
based on molecular-dynamics studies13,14but they are limited
by present computer facilities.

In this paper, a Monte Carlo approach, which is a reas
able combination of energetic and entropic approaches
applied to three-dimensional icosahedral quasicrystals
Sec. II the atomic structure of icosahedral quasicrystals
interatomic potentials are discussed. In Sec. III a comple
local growth process is suggested. Then, in Sec. IV,
growth rate and the quality of grown quasicrystals are st
ied. Both growth and melting are simulated as a function
the growth parameters. The problem of initial seeds and
clustering of quasicrystals are discussed in Sec. V. It sho
be emphasized that we do not consider here electronic eff
and vibration entropy effects during growth, melting, a
clustering. These effects are, of course, important15 but in
this paper we prefer to focus on effects typical of quasicr
tals.

II. LOCAL ATOMIC STRUCTURE
AND INTERATOMIC POTENTIAL

The atomic structure of quasicrystals is not yet det
mined well enough, therefore it is better to leave it as free
possible so that the details of the structure would result fr
the growth process. Only typicallocal atomic arrangements
are fixed in our model; they do not fix the global structu
even though they do restrict it. They even allow for period
structures~so-called quasicrystal approximants!. This is an
important difference with the growth simulation of crysta
the latter usually presupposes a fixed global atomic lattic
286 ©1999 The American Physical Society
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PRB 59 287MONTE CARLO SIMULATIONS OF ICOSAHEDRAL . . .
In our simulations, two types of local atomic arrang
ments~or ideal local configurations16! are allowed in accor-
dance with the idealized structure of the approximants17 and
with the best available experimental data on quasicry
structure.18,19

~1! Icosahedral local ordering~ILO!, where the neares
neighbors are at the vertices of a small icosahedron; the
teratomic bonds are directed along the fivefold icosahe
axes and their length isr 5 .

~2! Dodecahedral local ordering~DLO!, where the neares
neighbors are at the vertices of a small dodecahedron;
interatomic bonds are directed along threefold icosahe
axes and their length isr 3 .

As a result of ILO and DLO, there are also interatom
bonds directed along the twofold icosahedral axes; th
length isr 2 . The three lengths,r 2 , r 3 , r 5 , will be referred to
as the first coordination shell@see Fig. 1~a!#. They can be
easily related to the quasilattice constantar : r 55ar /t, r 2

52r 5 /At211, r 35)r 2/2 ~r 3 :r 5 :r 250.866:0.951:1,r 2 is
about 3 Å in Al-Mn and Al-Pd-Mn alloys!. We will not
discuss here what are the atomic radii that favor those
types of local ordering~cf. Ref. 11!. Because only ILO and
DLO are allowed, there are not that many different int
atomic bonds in the next coordination spheres@see Fig. 1~a!#.

Finally, any possible atomic position,r, can be expresse
as a sum over six base vectors,e1 , . . . ,e6 :

r5(
j 51

6

njej , ~1!

where nj are all integer~for vertex positions! or all half-
integer~for body-centerpositions! and the vectorsej are cho-
sen in the following form:

e15
1

2
r 2~t,0,t21!;

e25
1

2
r 2~t21,t,0!;

e35
1

2
r 2~0,t21,t!;

e45
1

2
r 2~2t,0,t21!;

e55
1

2
r 2~t21,2t,0!;

e65
1

2
r 2~0,t21,2t!; ~2!

notice that uej u5r 3 . These six base vectors are direct
along the threefold icosahedral axes; however, we co
equivalently choose six base vectors directed along five-
icosahedral axes. We need from Eq.~1! only to describe the
two types of local atomic ordering, DLO and ILO.

A further important step is the computation of the atom
binding energy. Central pair potentials are assumed here
interatomic interactions, so that the energy of each in
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atomic bond depends only on the bond length and not on
bond direction. The binding energy of each position is t
sum of the bond energies over all the bonds connecting
position with all other atoms. We showed elsewhere11,12 that
interatomic potentials with suitable Friedel oscillations fav
quasiperiodic structures and suppress periodic ones. The
cillating potentials are claimed to be important for the stab
ity of quasicrystals20–24 ~see especially discussion in Re
24!. Therefore, here too we use potentials oscillating with
interatomic distance@Fig. 1~b!# and restrict the range of thes
potentials to 2r 3 ~i.e., about 5 Å!. The latter restriction is
introduced not only for computational reasons but becaus
the low conductivity of quasicrystals the oscillations shou

FIG. 1. ~a! Typical average coordination numbers,Nc , for dif-
ferent interatomic bonds of different lengths: histogram for id
quasicrystal, horizontal bars for the Monte Carlo simulations~the
difference is extremely small!. ~b! The interatomic potential with
Friedel oscillations used in this paper; the relevant energies, w
correspond to the interatomic bonds, are marked with dots; the
is only as a guide for the eye.~c! The perpendicular space lengths
interatomic bonds from~a!; those bonds, which exist for the waitin
positions but are absent in grown quasicrystals, are shown by
lines.
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288 PRB 59V. E. DMITRIENKO, S. B. ASTAF’EV, AND M. KLÉMAN
be damped at high and normal temperatures~see however25

where a mechanism of enhancement of the Friedel osc
tions in quasicrystals is suggested!. Only those values of po
tentials are of real importance which correspond to the p
sible bond lengths@they are marked by dots in Fig. 1~b!#.

The significance of the oscillating potentials just for qu
sicrystals is demonstrated by Fig. 1~c! in which the lengths
of the interatomic bonds in the so-called perpendicular sp
are plotted. According to Eq.~1!, any atomic position,r, of a
DLO/ILO lattice can be lifted into a six-dimensional cub
lattice so thatn1 , . . . ,n6 are its six-dimensional coordinate
Then its projection,r' , onto perpendicular space can b
found:

r'5(
j 51

6

nje' j , ~3!

where the vectorse' j are given by

e'15
1

2
r 2~t,t21,0!;

e'25
1

2
r 2~0,t,t21!;

e'35
1

2
r 2~t21,0,t!;

e'45
1

2
r 2~t,2t21,0!;

e'55
1

2
r 2~0,t,2t21!;

e'65
1

2
r 2~2t21,0,t!. ~4!

The perpendicular projections of the interatomic bon
should not be too large in order to avoid very short int
atomic distances. It is obvious from Fig. 1~c! that the
maxima of the selected potential correspond usually to
bonds with larger perpendicular lengths; hence those bo
will be suppressed or, may be, completely absent.

III. GROWTH PROCESS

The suggested growth process includes the follow
steps~see afterwards detailed comments about each step!.

~i! The growth starts from an initial seed cluster of atom
~ii ! New admissible atomic positions are generated aro

the quasicrystal at each stage of the growth~they will be
referred to as waiting positions! and ‘‘dangling’’ atoms are
deleted.

~iii ! The energies of all the atoms and of all the waiti
positions are computed with the interatomic potentials d
cussed above

~iv! An object, chosen at random from the joint list
surface atoms and waiting positions, is treated accordin
the standard Metropolis criteria:~a! if the energy of the at-
oms on the surface is larger than its energy in the liquid—
atom is deleted, if it is smaller—the atom may be dele
a-

s-

-

ce

s
-

e
ds

g

.
d

-

to

e
d

with a probability given by the Boltzmann distribution;~b! if
the energy of the waiting position on the surface is sma
than its energy in the liquid—the position is occupied by
atom, if it is larger—the position may be occupied with
probability given by the Boltzmann distribution.

~v! If an atom is deleted or added we go to~ii !; if not, we
repeat~iv!.

The following comments should clarify this procedure.
Comment to~i!: We use as initial seeds spherical piec

of an ideal face-centered quasicrystal. This ideal quasicry
has three acceptance domains in perpendicular spa26

a triacontahedron for even nodes~all nj are integer and
( j 51

6 nj52n!, a fivefold-ruffled triacontahedron for od
nodes~all nj are integer and( j 51

6 nj52n11!, and a small
triacontahedron for even body centers of the six-dimensio
cubic lattice~all nj are semi-integer and( j 51

6 nj52n!. The
seeds should be large enough since small seeds do not
and may even melt~see Sec. V!.

Comment to~ii !: ‘‘Admissible’’ means that~a! new posi-
tions obey the DLO and/or ILO with respect to the old atom
and~b! each new position has three or more atoms in the fi
coordination shell~i.e., in direct contact!. The latter condi-
tion is needed because the interatomic bonds in metals
not directional and the contacts with at least three atoms
needed to fix the position of any atom in space. Hence ‘‘d
gling’’ atoms, which have only one or two first-shell neigh
bors are not permitted and they are deleted immediately

Comment to~iii !: The binding energy of any position
Ebind, is computed as a sum of energies of all the bon
connecting this position with atoms of the growing qua
crystal:

Ebind52 (
bond

NbondEbond~r bond!, ~5!

where Nbond is the number of bonds with the energ
Ebond(r bond); the sign is chosen in such a way that a grea
binding energy means a stronger binding of the atom.
speed up the computations, all the bond energies are
posed to be integers. The energy of each bond may be
sidered as an independent parameter. To minimize the n
ber of the independent parameters, the bonds are divided
groups and the same energy is assigned to the bonds w
each group. In this paper, the potential is described by se
parameters@Figs. 1~a! and 1~b!#: E2 (E28) is the energy of the
r 2 bonds between two large~small! atoms;E3 is the energy
of the r 3 bonds between large and small atoms;E5 is the
energy of allr 5 bonds;EMack is the energy of all thetr 5 and
tr 2 bonds of the Mackay shell~the outer shell of the Mackay
icosahedron!; Egap1 is the energy of all the bonds which ar
in the gap between the first shell and the Mackay shell;
nally, Egap2 is the energy of all the bonds which are in th
second gap in coordination numbers just beyond the Mac
shell (tr 2,r<2r 3). In addition, we assume that no bond
shorter thanr 3 ~hard sphere approximation!. Previously11 we
assumed thatE25E28 ; in that case the interaction betwee
large and small atoms becomes completely symmetric.
resulting symmetry of the grown quasicrystal is primitiv
icosahedral. In contrast, ifE2ÞE28 , the symmetry become
face-centered icosahedral.12 This is a minimal scheme to
maintain the distinction between large and small atoms. N
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tice that the chosen oscillating potential suppresses autom
cally those bonds which have larger lengths in perpendic
space@Fig. 1~c!# because in the physical space they cor
spond to positive values of the potential. This is why t
growing quasicrystals are so severely restricted in perp
dicular space~see Sec. IV!. In fact, the energies of atoms an
waiting positions are computed and recomputed during
~ii ! step, so that no additional runs are needed for the en
computation.

Comment to~iv!: To apply the Metropolis criteria, the
difference in energies,DE, of atoms on the surface and i
the liquid must be found. Obviously,DE5(Ebind1Es f)
2Ef f whereEs f is the interaction energy of a surface ato
with fluid andEf f is the interaction of a fluid atom with fluid
It is assumed thatEs f does not depend on the atom enviro
ment and the difference,Dm5Es f2Ef f , is an independen
parameter which governs the growth and melting~adsorption
and desorption!: atoms withEbind.Dm have a tendency to
be adsorbed on the surface whereas atoms withEbind,Dm
have a tendency to be desorbed from the surface into fl
The Metropolis rule describes both tendencies quantitativ
~i! an atom is attached to the randomly chosen waiting p
tion if DE<0 and it is attached with probability
exp(2DE/kT) if DE.0; ~ii ! a randomly chosen atom is de
leted from the surface ifDE.0 and it is deleted with prob
ability exp(DE/kT) if DE<0.

As a result, detailed balance is obeyed as we h
checked. Atoms with more than eight first-shell neighb
are considered as bulk atoms and the Monte Carlo proce
is not applied to them; thus, in our model, atoms can
disappear from the bulk.

IV. GROWTH AND MELTING

For this initial study, we fix the energetic parameters
the model as shown in Fig. 1~b!. From the experience with
our previous pure-energetic model we know that the gro
with these parameters produces faceted quasicrysta
grains of rather good quality. In addition, we let the tempe
ture vary in a small interval around the melting point. Thu
the temperature variations~superheating and supercoolin!
affect onlyDm which is proportional to the temperature, s
thatDm5mmelt1a(T2Tmelt), whereaskT is supposed to be
constant and equal tokTmelt; kTmelt53 in the chosen energ
units.

The dynamics of the growth and melting process is sho
in Fig. 2 and Fig. 3 for various amount of supercooli
(Dm,mmelt) and superheating (Dm.mmelt). The growth
~melting! rate is shown in Fig. 4~the number of attempts i
proportional to the time of growth!. We see that for strong
supercooling the grains grow proportionally to time, where
for weak supercooling the growth is not linear: small gra
grow slowly. The latter is a natural effect of greater~on the
average! surface curvature of smaller grains; where the c
vature is strong the binding energy is smaller. Another int
esting effect observed at weak supercooling is the stepw
character of the growth~a slowing down of the growth for
some typical numbers of atoms!. This is a result of the inho-
mogeneous layered structure of quasicrystals. Indeed, w
the growing quasicrystal reaches a layer with lower den
and lower cohesive energy, the growth becomes slower.
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slowing down is more pronounced for melting~Fig. 3! and
for small clusters~the latter will be considered in Sec. V!. At
strong superheating the grains melt proportionally to tim
whereas at weaker superheating the melting process is
linear: it can even come to a stop when it reaches a sur
with a higher cohesive energy of atoms.

The shape of the grown quasicrystalline grains is usu
dodecahedral in the beginning and then becomes m
rounded; thus it is not yet clear whether the large grains

FIG. 2. Number of atoms in growing quasicrystals for differe
amounts of supercooling (Dm,mmelt) as a function of the numbe
of attempts~the latter is proportional to the growth time!. The
growth starts with an ideal spherical seed of about 15000 ato
The growth rate is smaller in the beginning because the ave
binding energy is smaller owing to the surface curvature; this ef
is practically absent at stronger supercooling. At the very ini
stage~not shown! the seed may be slightly melted because on
spherical surface there are not many enough sites available
growth. Dm533.0 ~1!, 34.0 ~2!, 35.0 ~3!, 35.5 ~4!, 35.8 ~5!, 36.0
~6!, 36.1 ~7!.

FIG. 3. Number of atoms in melting quasicrystals for differe
amounts of superheating (Dm.mmelt) as a function of the numbe
of attempts~or time!. The melting starts either with an ideal sphe
cal grain~1, 2, 3! or with an as-grown (Dm536.1) quasicrystal~4,
5, 6, 7!, both of about 105000 atoms.Dm545.0 ~1, 4!, 42.0 ~2, 3,
5!, 40.0~6!, 39.7~7!. Curves 2 and 3 demonstrate different realiz
tions of the Monte Carlo process below 45 000 atoms. The mel
is faster at the very beginning because it is difficult to add n
atoms on the smooth spherical surface of the initial grain and at
very end because the average binding energy is smaller owin
the large surface curvature. For the melting of the grown quasic
tal, the melting is slower below 15000 atoms~curves 6 and 7!
because the initial seed has the ideal structure.
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faceted. Indeed, to find the growth faceting of macrosco
samples, we should find and compare the growth rate
different facets but this would take a lot of computation
time and is beyond the scope of the present work.

The structure of grown quasicrystals is similar to the id
one: most of the atoms have their nearest neighbors a
vertices of a small dodecahedron~DLO!. The amount of at-
oms with the purely icosahedral local coordination~ILO! is
only about 3%. The coordination numbers of the grown a
ideal quasicrystals are also very similar@see Fig. 1~a!#. The
ILO is in minority in spite of our efforts to enlarge its pre
ence by choosing a stronger icosahedral binding (E5528)
in comparison with dodecahedral binding (E3523). Strong
icosahedral coordination is observed only in the next coo
nation sphere. On the average, each atom has abou
neighbors at distancetr 5 ~this is just the edge of the Am
mann rhombohedra!. In average, there are 20.7 atoms in t
Mackay shell~distancestr 5 andtr 2!, that is one half of the
complete Mackay icosahedron. This means that there
many almost complete pseudo-Mackay icosahedra. On
other hand, those minor atoms with icosahedral coordina
have almost 20 neighbors at distancetr 3 ~i.e., at the vertices
of large dodecahedron!; this yields a 33-atom cluster26

(1112120) which is a part of the Bergman triacontahedro
The surface of the grown quasicrystals is rather rou

Nevertheless, the topmost atomic layers are similar to
structure met inflat atomic layers observed after annealing27

the surface is covered by small icosahedra, and their sh
together with atoms in between, produce the two topm
layers ~or one dense puckered layer! whereas their center
produce the third layer. Such a structure is a result of a ra
large ratioE5 /E3 , so that each icosahedron tends to be co
pleted ~in Ref. 27 those icosahedra are supposed not to
complete: the topmost vertices are absent!. But of course,
because of the growth, some atoms violate this surface s
ture and this description works better for slow grow
melting and annealing or, even better, for stable clus
~see below!.

The ILO becomes more common for stronger superco
ings ~i.e., for smallerDm!; for the considered energy, sma
ILO clusters appear as intersticials ifDm530.0 and they
become larger and more numerous forDm520.0. It is not
clear, however, whether these values ofDm are physically
accessible. Changing the interatomic potentials~for example,
increasingE5 /E3!, it is possible to grow quasicrystals wit

FIG. 4. Growth ~melting! rate of quasicrystals as function o
Dm. The growth rates are taken from Fig. 2 between 43105 and
53105 atoms, and the melting rates are taken from Fig. 3 betw
23104 and 93104 atoms.
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pure ILO. In these quasicrystals only two types of latti
positions are occupied~say, even vertices and even bod
centers!. However, it is possible to select a deflated cub
lattice witht times smaller size~in the general case it would
be a face-centered icosahedral lattice! where only vertices
are occupied~no body centers!. Hence, these quasicrysta
should have at times inflated diffraction pattern. In ou
simulations these ILO quasicrystals always have rather la
and quickly growing sizes in perpendicular space and ra
small atomic density. This may be why they have never b
observed, to the best of our knowledge. However it is int
esting to note that there exists an approximant of these
quasicrystals, the well-known Al12W structure, with pure
ILO of atoms and having a diffraction patternt times in-
flated in comparison with other Al-transition-metal approx
mants~usually Al12W is wrongly considered as an approx
mant of conventional Al-Mn and Al-Mn-Pd quasicrystals!.

Figure 3 shows the melting dynamics of ideal and
grown ~slightly defective! quasicrystals. The ideal quasicry
tal is constructed as described in the comment to~i! above.
There is a remarkable difference in the melting rates: for
sameDm the ideal quasicrystal melts more slowly. It mea
that even a small amount of phason defects can stron
change the melting rate; this phenomenon may be impor
for the improvement of quasicrystal quality because, in r
slow growth, the alloys crystallize and melt locally man
times before final crystallization. Notice again the stepli
character of melting which is especially pronounced at we
superheating and in ideal quasicrystals. The melting proc
does not proceed as reversed growth: in the beginning
surface becomes rough and appears to be covered by s
clusters. Then the clusters become larger~containing about
1900 atoms! and more stable: the plateaus on the melt
curve~Fig. 3, curves 2 and 3! correspond to situations whe
the clusters do not melt and the smallest step between
plateaus just reflects the melting of one cluster. For gro
~hence imperfect! quasicrystals the melting-induced cluste
ing on the surface is less pronounced. We conclude that
clustering on the surface is quite typical for the melting p
cess but it is not clear yet what is the equilibrium spectr
of the cluster sizes. In order to get quantitative results,
tailed simulations of the growth of an isolated surface
needed, at least for twofold, threefold and fivefold surfac
this work is now in progress.

In order to characterize the quality of the grown quas
rystals ~their phason disorder!, they are lifted to the six-
dimensional cubic lattice and their projections on the perp
dicular space are computed in accordance with Eq.~3! ~Fig.
5!. These projections are three-dimensional clouds of d
each dot being the projection of one atomic position; in
two-dimensional figure many projections coincide. The nu
ber of even and odd lattice points is different, implying th
the grown quasicrystal has a face-centered icosahedral
tice. Notice that the clouds are only slightly larger than t
atomic surfaces of the ideal quasicrystal and they slowly
crease in size throughout the growth. Figure 6 shows
mean-square radius,^r'

2 &, of the clouds as a function of th
physical-space distance from the center of the growing q
sicrystals. For each distance, we find^r'

2 & within a spherical
shell about 2r 2 thick. For the sake of simplicity,̂ r'

2 & is
computed altogether for both types of vertices and both ty

n
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of body centers of the face-centered icosahedral lattice
cording to the same formula:

^r'
2 &5

1

N (
i 51

N S r' i2
1

N (
j 51

N

r' j D 2

, ~6!

whereN is the total number of atoms in the layer. Of cours
the perpendicular sizes increase with increasing numbe
atoms~hence the phason disorder increases as well!. Yet, this
increase may be smaller than for our previous approa12

when the best atom was stuck each time~curve ‘‘old’’ in Fig.
6!. It is not clear whether the perpendicular size tends tow
some finite value; in our previous simulations we have fou
that for 107 atoms the perpendicular size increases up to 3
above the size of the ideal quasicrystal~the real-space size i
about 600 Å, similar to the coherence length of Al-Mn qu
sicrystals!. It should be emphasized that there is nophonon

FIG. 5. ~a! View along a twofold symmetry axis of a grow
cluster ~450 000 atoms,Dm535.0! in perpendicular space. Th
dots are projections of the even~odd! vertices,n0 (n1), and the
even ~odd! body centers,b0 (b1); they are shifted in the figure
plane to show them separately~in reality the centers of gravity o
those four projections should coincide!. ~b! Same view of the idea
face-centered quasicrystal26 ~the large triacontahedron forn0, the
fivefold-ruffled triacontahedron forn1, the small triacontahedron
for b0, and nothing forb1!. Relative concentrations of differen
vertices are shown in percentage.
c-

,
of

rd
d
%

-

disorder in this growth model because the shortest in
atomic distancesr 3 , r 5 and r 2 are fixed.

V. STABLE CLUSTERS

Here we present a few results concerning the problem
cluster formation during growth and melting; a more detai
presentation will be given elsewhere. An interesting ph
nomenon is observed if we begin the Monte Carlo proc
from a small seed and choosem so that large grains grow
slowly ~i.e., if m and the temperatureT are only slightly
below the melting point!. In this case the result depends o
the seed size: the seed either grows or melts and approa
one of a set of typical clusters which are very stable and o
fluctuate a little around some intrinsic form and size.

Examples are shown in Fig. 7. If there are less than 3
atoms in the initial ideal seeds, the seeds melt. For about
atoms, the seed, at random, either melts or grows and
fluctuates around a ‘‘stable’’ cluster which contains abo
440 atoms~its shape is approximately dodecahedral!. Larger
clusters~up to 600 atoms! also approaches to this stable clu
ter. This cluster is only relatively stable: a large enough flu
tuation, which, of course, has a very small probability, c
provoke either melting or further growth. The next ‘‘stable
cluster contains about 1050 atoms and its shape is app
mately icosahedral. After that, the next ‘‘stable’’ cluster
about 4300 atoms the shape is triacontahedral in shape
this case, the stepwise growth is rather obvious: this me

FIG. 6. The mean-square perpendicular-space size,^r'
2 &, of

growing quasicrystals for different supercoolingsDm as a function
of the physical-space distance from the center of growing qu
crystals. For the ideal quasicrystal the mean-square size is a
0.4. The curve ‘‘old’’ corresponds to the growth process when
atom with the best energy is added to the quasicrystal. The dro
extremities of the curves occurs because sites on the surface h
smaller mean-square perpendicular size than bulk positions.
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that there are several closely spaced minima of the clu
energy.

The bulk structure of the stable clusters is practica
equivalent to the structure of ideal quasicrystals; even
there is some growth, the grown part is rather thin and
phason disorder in it is very small. The structure of t
grown cluster surface is similar to that of slowly grown
melted quasicrystals: the layers of small icosahedra fo
something like a crust on the surface and stabilize it aga
further growth or melting.

Above we used as initial seeds spherical clusters wh
are cut from an ideal quasicrystal so that they have a bo
center position at their center~both in real and in perpendicu
lar space!. Thus there is a small icosahedron around the c
tral atom of the seed. When we change the position of
center, the sizes of ‘‘stable’’ clusters may also change.
example, if we take spherical seeds with a pseudo-Mac
icosahedron at the center, they melt completely as long
they contain less than 1100 atoms, whereas in the range
tween 1300 and 2900 atoms they tend to a ‘‘stable’’ clus
of about 1900 atoms. The latter is just the cluster wh
arises on the partly melted surfaces.

The dependence of the size of the clusters on the in
seeds is rather natural because~i! the structure of quasicrys
tals is nonhomogeneous on this scale~about ten interatomic
distances! and~ii ! with the Monte Carlo method it is difficul
to reach absolute equilibrium if the barriers are large enou
This shows us the limitations of the suggested Monte Ca
procedure. But it seems that the physical result is valid
spite of the limitations of the model: the ‘‘stable’’ cluste
survive longer than others even if they eventually do mel
start growing. In other words, the solidification~melting!
temperature of quasicrystalline clusters should depend
their size ~this phenomenon is well known for crystallin
clusters as well28,29!. Perhaps it is possible to fix~quench!
these clusters in real alloys if the growth conditions va
rapidly enough~clusters of comparable sizes, 103 to 104 at-
oms, were observed30 in Ca!.

VI. DISCUSSION

The preliminary results obtained in this paper show t
now we have a reasonable growth model which is worthy

FIG. 7. Formation of stable clusters; different sets of poi
correspond either to different initial seeds or to different runs of
Monte Carlo process.
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further studies~the growth of different planes with differen
potentials, differentkTmelt, annealing of grown clusters!.
The proposed Metropolis algorithm is entirely local. Neve
theless, it allows to obtain atomic structures close to th
that have been theoretically suggested as well as experim
tally determined for actual quasicrystals. In our model th
is no need of large ready-made clusters and the clusters
as a result of growth; but of course, any additional mec
nism which favors cluster formation31 could improve the
quality of the final structure. It is typical of quasicrystals th
the density of possible atomic positions is larger than
density of finally occupied positions~phason freedom!. The
occupied positions are selected by the Monte Carlo proc
according to both energetical and entropical preferenc
therefore, this is not the occupation of a fixed lattice as
most of the Monte Carlo growth simulations of crystals5 and
quasicrystals.8 Instead, two types of local atomic configura
tions are allowed~icosahedral and dodecahedral! which
leave more freedom for structure formation. The final qua
lattices and, hence, atomic surfaces of grown quasicrys
~see Fig. 5!, result from the growth process; it is possible
change them changing the interatomic potential, to introd
more or less defects, etc. so that the grown quasicry
might better fit experimental diffraction patterns. It should
emphasized that our growth algorithm is completely thr
dimensional; we use the perpendicular components only
characterization of grown quasicrystals.

The growth~melting! rate is governed by the differenc
between atomic energies in the liquid and on the surface
well as by kTmelt. On the average, the final positions a
occupied only after many attempts~see Fig. 4!; this is typical
of real growth from the liquid state when an atom is fina
fixed in the solid phase after 103 to 106 adsorptions and
desorptions.32 It is difficult to simulate such a slow growth
within reasonable computer time. Hence, in our simulatio
the growth run so fast~less than 103 attempts per atom! that
it corresponds rather to a quenching process or to rapid m
ing ~notice that the number of Monte Carlo attempts is larg
than the number of adsorptions and desorptions because
all of the attempts are successful!. In this range the growth
~melting! rate is approximately proportional toDm, hence to
amount of supercooling~superheating!. Within a certain in-
terval around the melting point, the growth~melting! should
be extremely slow because of the energy barriers. In
respect quasicrystals behave even worse than crystals
cause they have an inhomogeneous hierarchical structur
is practically impossible to overcome these barriers wit
the Monte Carlo simulations~that is true even of the barrier
between small clusters considered in Sec. V!.

Traditionally, the cluster concept has been very popula
quasicrystal science. The clusters are usually considere
ther as ready-made building blocks2–4 or as a result of a
hierarchical organization of quasicrystals.31 We have demon-
strated here that different types of clusters may result fr
local growth with spherically symmetrical Friedel potentia
The clustering reveals itself during growth and especia
during melting; it seems to be a result of the difference
energy between different atomic positions. Indeed, in av
age, the positions with a higher energy~which are at the
periphery of the acceptance domain! melt first. This is con-
firmed by our observation that the positions on the grow
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~melting! surface have a smaller mean-square perpendic
size. In real alloys, this should result in a difference betwe
bulk and surface concentrations of different chemical e
ments: the surface should be enriched by those elem
which are closer to the center of the atomic surface in p
pendicular space.

Usually, in our grown quasicrystals, the so-call
‘‘tears,’’ which were typical of earlier models,2,3 are not
found, except if the growth process is so bad that the perp
dicular space size of the cluster is rapidly expanded; the
few tears do appear, that is to say, some short interato
distances acquire wrong values that violate both DLO a
ILO. A ‘‘bad growth process’’ means either an interatom
potential without oscillations or a very high growth rate.
fact, the average size in perpendicular space always incre
d
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with the real-space size; this means that the growing qu
crystal contains more and more phason defects. Howeve
our growth model, this increase is much less than in the b
previous models3,4 and this model has a potential for furthe
improvement.
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