PHYSICAL REVIEW B VOLUME 59, NUMBER 4 15 JANUARY 1999-11

Noise properties and ac conductance of mesoscopic diffusive conductors with screening
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A theory of nonequilibrium(*shot” ) noise and high-frequency conductance in diffusive mesoscopic con-
ductors with screening is presented. Detailed results are obtained for two simple geometries, for both large and
short electron-electron scattering lengith, at frequencies of the order of the inverse Thouless time.1The
conductance and the noise are found to exhibit significant frequency dependende<<kgQr the high-
frequency (7r>1) shot-noise spectral densi§(w) approaches a finite value betweerlB and 21,
depending on the screening properties of the system, with temperature correct®s)tdeinglinearin T.
However, wherL>| .., S(w) grows ase** (at T=0), is not upper-bound bye, and has a temperature-
dependent componequadraticin T. As a result, measurements §{w,T) can be utilized as a probe of the
strength of electron-electron scatterif§0163-182@08)05047-4

[. INTRODUCTION noise is that it is white up to very high frequencies. In bal-
listic structures the noise is reduced only at frequencies of
Significant attention has recently been focused on the dythe order of the inverse time of flight of the electron across
namic electronic properties of mesoscopic systems. Thedbe device'! In diffusive conductors, there are at least thaee
properties include the ac conductance which gives the meapriori candidates to the analog of this time constant: the
current response to applied ac voltage, and the noise, i.e., tigdastic scattering time, the (much largey “Thouless” time
deviations of the current from its average value. Due to therr of electron diffusion through the sample, and the Maxwell
fluctuation-dissipation theorem, equilibrium Johnson-relaxation timee/4wo. In addition, quantum effects also
Nyquist noise, as measured in the external leads, does notay be manifested by a frequency-dependent noise spec-
convey any additional information to that obtained from thetrum, increasing the noise ai>eV/#, whereV is the ap-
ac conductance. This is not the case for nonequilibriunplied voltage'? Recently we have showhthat even at high
(“shot”) noise. Here, the current fluctuations are dependentoltage, eV>#/7+, where quantum effects are negligible,
upon the nonequilibrium distribution function, as well as onthe shot noise in diffusive structures may exhibit consider-
electron-electron correlations. Moreover, the shot noise magble frequency dependence at frequencies as lowms4/
be interpreted as an indication that the transport mechanisin that work, however, only the zero-temperature case was
through the structure involves discrete transfer of charge, asonsidered and the ac conductance and effects of electron-
opposed to the continuous charge transfer that takes place @lectron interaction were not explored.
macroscopic conductofs. The issue of high-frequency noise cannot be separated
Earlier, shot noise in diffusive conductors was calculatedrom that of the ac conductance at the same frequency. Pre-
in the zero-frequency limit;® with the conclusion that the vious works studied the ac conductance in diffusive struc-
low-frequency spectral density equals 1/3 of the classicalures with rind®>8or linear*~2*geometries. In the first case,
Schottky value 21, wherel is the averagédc) current in  noninteracting electrons were considered, and the frequency
the system. This result was obtained in two very differentdependence of the ac conductance was found to be similar to
theoretical frameworks, namely in a quantum-mechanicathe Drude dependenc®!’i.e., appreciable only ab~ 1/7.
transmission approathwhich is generally based on the However, usual conductofsvith electrodescannot be con-
guantum coherence of the different electron states, and in sidered separately from their electrodynamic environment.
semiclassical approachin which quantum coherence is ne- For such conductors general expressions for the conductivity
glected, and the only effects on the noise are due to thwere obtained to linear order in the frequeriey?! Under
single-particle nonequilibrium distribution function of the the assumption of absolute local electroneutrality, it was
electrons. We believe that this surprising agreement betweeiound that this linear correctiofthe “emittance”) vanishes
the two theories was adequately explaihby showing that and the conductance is again independent of the frequency
the main ingredient in the quantum transmission approachyp to w~ 1/7.?! Here we are interested in the case where the
the bimodal distribution of transmission coefficients, is theconductor’s length or its thicknesg are comparable to the
only distribution compatible with Ohm’s law, and thus can screening lengtix, so local charge neutrality may no longer
be asserted by semiclassical considerations &ldffee 1/3  be retained. While we confirm the previous resdlfsr Lt
suppression result is strictly valid only in a noninteracting>\, we show that observable deviations from them may
electron picture. The electron-electron interaction slightly in-appear already dt/\ ~10 ort/\~ 10.
creases the zero-frequency noise value, which reaches A vast amount of research has been dedicated to the ef-
(v3/2)el in the limit when the electrons are locally fects of weak localization on the dc conductance of mesos-
thermalized*° copic diffusive conductor® Its effect on the ac
One of the most important characteristics of classical shotonductanc&?* and the high-temperature nois&@ >eV)
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(Ref. 25 led to corrections to these quantities which are ofwherer=7(r) is the local elastic relaxation time. Note that
the order of the quantum unit of conductare®h (times in the diffusion approximation the term proportional ¥dJ
some characteristic energy in the case of noi$eese cor- s usually neglected, since it is of the orderfgf However,
rections will be neglected in this work, since we will con- in our case this term may be linear ig, becaus&v/U has
sider the case of conductance much higher #fdh, so that  the componen¥ ¢ even in the absence of current.
deviations of the high-frequency conductance and the noise As usual® we proceed by separating E(R.3) into its
from their zero-frequency values are much larger than thgymmetric and antisymmetric paftsee Eq(2.1)] and in the
weak localization corrections. first order inf, we get

In the present work the noise properties and the ac con-
ductance of diffusive conductors much shorter than the ofs  ofg U J cos 6

electron-phonon mean free path are calculated at frequencies — + -VU+Vf,-vcosd=0,

. \ at = ae gt 7 ok
comparable to I or 4mwole, with account of screenind. (2.43
Throughout the work we assume that the electrons form a '
degenerate gas with Fermi wavelengthmuch smaller than
X ; . g 1
the elastic mean free pathwhile [ <<L,\. This allows us to (_ + = |facos 0+ Vi v=0. (2.4b
use the Boltzmann-Langevin approach introduced by Kogan a T

and Shulmafl (see also Ref. 28 and study both the ac

conductance and the noise in a unified way. In Sec. Il we In this work we are interested only in the case of frequen-
analyze the Boltzmann-Langevin equation in a nonuniforrrcies much smaller than 4/ In this case Eqgs(2.4) may be
structure, obtain the boundary conditions for the distributioncombined to give

function at the conductor-electrode interface, and derive a

“drift-diffusion-Langevin” equation for the current. In Sec. dfy dfs U VT J cosé

Il we apply this equation to two specific models of diffusive 3t * 7z at S cosg ok YU V(Vigvr)-v
conductors(a “sandwich” and a conductor over a ground

pland. In Sec. IV the kernels, which describe the response of ~ =0. (2.5

the system to external voltage, and to the random Langevin i , , L ,
sources, are found. Using these response functions we calclptegration of this equation over the directionskogives
late the conductance and thermal no{S=c. \}, and the | of 3

i ; ) s
nonequilibrium shot nois¢Sec. V). Section VIl presents a Kl os V.[s,Vf]- EIVLfS'VLU:O (2.6)

discussion of the results and conclusions. D ot

withD=D(r)=I(r)ve(r)/3andl=I(r)=7(r)ve(r), ve be-

ing the Fermi velocity.V, denotes differentiation in the
In order to describe both the conductor and electrodes, welane perpendicular to the current directianEquation(2.6)

need self-consistent equations for the current in a systen$ a generalization of the regular diffusion equation for the

which may be substantially nonuniform on a scake>1. In  distribution function in the case when the potential or the

the diffusion approximation the electron distribution function mean free path change substantially in space.
can be written as The random nature of the scattering in the conductor may

be described?® by a stochastic source terdfi(r,k,t), with

f="f(e,cos0,r,t)="fy(e,r,t)+f(e,r,t)cosd, (2.1) zero average, added to the right-hand side of ). Its
correlation function was found by Kogan and Shul'ffan

II. BOLTZMANN-LANGEVIN-POISSON THEORY

where|f,|~I/L<1 ande is the total electron energy, assuming Poisson statistics of the scattering events, and tak-
ing into account the Fermi correlations of the electrons. For
e=grte(r)—ed(r,t)=g +U(r,t). (2.20  the case of strong isotropic impurity scattering<() the

result reads
Hereg, is the kinetic energy of an electron with momentum

k while g¢(r) is the equilibrium local conduction-band edge, 68(r—r')s(e—¢e")d(t—t")
which includes possible band-bending due to mismatch in (Ja(r.e,0)J3(r",e",t"))= (DN

the local Fermi energies in the nonuniform conductor, and

hence describes the equilibriuftibuilt-in” ) electric field xXfe,N[1-fe,n)], (2.7

Eo=—Ve./e. fis the angle betweek and the direction of
the current, andb(r,t) is the time-dependent electric poten- whereJ; is the antisymmetric component af, MV(r) is the
tial, so thatU(r,t) is the total instantaneous potential energylocal density of states at the Fermi leviekcluding the spin

of the electrons. In the above variables, the velocity of thedegeneracy andf is the ensemble average of the distribu-
particle is both position- and time-dependent v (e,r,t), tion function.

and the Boltzmann equation within the usual relaxation-time Equations for the current can be obtained by including the

approximation looks like source termJ® in Egs.(2.4), and then integrating them over
the electrons’ momenta. It is convenient at this stage to

f9_f+ﬁﬂ_ af 9 coso VULVE.ut faC059_O change variables in Eq$2.4) from & to &, by using Eq.

ot de gt dcosf® ok ' r ' (2.2. Integrating Eq.(2.4a over k, we get the continuity

(2.3 equation
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where the variables include both the deterministic and sto-
chastic parts.

The correlation function of the current sourgésn any
direction « follows from Egs.(2.7) and (2.10:

G )js(r t))y=8(r=r")s(t—t")S(r) (2.14

with the correlator

S(r)=Eezr(r)N(r)vz(r)focdef_(s N[1—fye,r)]
3 F B 5] s\, .

(2.15
FIG. 1. Schematic description of the geometries studdrhe Now let us consider a system in which a homogeneous
conduction band-edge profile in both models) The sandwich  conductor connects two homogeneous electrodes with inter-
model.(c) The ground-plane model. faces at+L/2, with the only source of inhomogeneity being
the band bending due to charge transfer between the materi-
d . als[Fig. 1(a)]. Let the interfaces be normal to tlkeaxis and
FP(HH+V-(r1)=0 (2.8 much sharper than the screening lengthis, in the conduc-

tor and the electrodes, respectively. We define the interface
with j(r,t) the current density anal(r,t) the excess electron regions to be the regions of widthbZround+L/2, with |
density, i.e., the total charge density minus its equilibrium< s<x \,,L. A major assumption of this work is that the
value po(r) (which includes the possible charge transferyoltage in the system drops entirely in the bulk of the con-
when two materials have been brought into contathe  ductor, i.e., the resistances of the electrodes and the
Langevin term integrates out from this equation, as expectediectrode-conductor interfaces are small compared to that of

for particle-conserving scattering processes. the conductor. This is the natural situation when the elec-
If, before integration ovek, we multiply Eq.(2.4b (in-  trodes are of high conductivity and when the interfaces are
cluding the Langevin terjnby v, it yields smooth on the scale ofr, so no reflections of electrons
. occur at the interfaces.
1(r,t)==D(r)V[po(r)+p(r.,t)] Let us consider, for example, the interface la2 and
+[o(r)+ 8a(r, ) [Eg(r)+E(r,t)]+jS(r,t) definefngS(LIZ— S) andfngS(L/2+ 8). Since the volt-

age drop in the electrode is negligibg, is just the equilib-
(2.9 rjum Fermi-Dirac distribution
with o(r)=e7(r)po(r)/m(r) and o (r,t)=er(r)p(r,t)/
m(r). Herem(r) is the local effective masdor simplicity, fe=fo(e+eVi2)= 1
the parabolic and isotropic dispersion relation was assymed s 0 F(ereV/Z—,u
and 1+ex — T

) , (2.1

o _ s where the chemical potential is defined as the average of
] (r,t)—er(r)}k: Vild™(r, K, t). (210 the chemical potentials in the two electrodes. Moreover, the
fact that there is no voltage drop across the interface region
At equilibrium, and in the absence of external fluctuationimplies thatf¢ is also given by Eq(2.16), f¢=f¢. Integrat-
sources, the currerj{r,t) should vanish. Thus, the built-in ing this equation over the electron’s momenta and using the
electric field satisfies the equation relation \V(r) = e/4mwe®\?(r) leads to the first boundary con-
dition at the electrode-conductor interfate,

—D(r)Vpo(r)+a(r)Ee(r)=0 (2.13)
2. c_y2,.e
which may be interpreted as the constancy of the electro- NpT=hep 219
chemical potential a¥=0 andj®=0. with p°=p(L/2— ) and pe=p(L/2+ ).
_The terms proportional téa (r,t) in Eq. (2.9 are negli- The second boundary condition is the continuity of the
gible if current across the interface,
e[ Do(r)+D(r,t)[<ep—ec(r) (2.12

=i (218
(whereeg is the equilibrium Fermi enerdyFig. 1(a)]), i.e., if e e .
the band bending and the external potential are small corﬁ’—\”th b Jx th_e tralnsverse current densities la@—4, L/2
pared to the local Fermi energy. Under the conditi2ri2), + 4, respectively’ _ . :
Eq. (2.9), together with the constrain2.11), vyield the If complemented with the Poisson equation
“drift-diffusion-Langevin” equation 4

a

V.- E(r,t)=——=p(r,t), (2.19

j(r,ty=a(n)E(r,t)—D(r)Vp(r,t)+js(r,t), (2.13 e(r)
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where€(r) is the dielectric constant, Eq&2.8) and (2.13 -

(2.19 form a closed system which is the basis for our calcu-

lations.

Ill. MODELS

A. The sandwich model

We study two analytically solvable models which differ in

their assumed sample geometry, and hence
electrostatics® In our first, “sandwich” model, which is

schematically shown in Fig.(ft), a short conductor of length

L<t is sandwiched between two wide electrodéss(the
smallest transverse dimension of the condyctdrefining
the quantitiesd ,(x), q,(X), E,(X), 1,(x), and1(x) as
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FIG. 2. The dependence @f, on R’/h=t/(t+2d) for a homo-
geneous cylindrical conductor close to a ground plane.

B. The ground-plane model

integrals over the sample’s cross section of the temporal Inthe second“ground plane”) model we consider a long

Fourier components ab(r,t), p(r,t), E,(r,t), J.(r,t), and
j3(r,t), respectively, we get from Eqg¢2.8), (2.13, and
(2.19,

dl,(x)

—iw0,()+ 5= =0, (3.)
dax)

I o(X)=a(X)E,(X)—D(x) ax +1,(x), (3.2

dE,(x) 4w 53

ax_ —mqw(x)-

and thin conductor close and parallel to a well-conducting
ground planel >t,d, wheret is the thickness of the con-
ductor andd is its distance from the ground plane—see Fig.
1(c). The width of the conductow (i.e., its second dimen-
sion, parallel to the ground planean be arbitrary. As we
will show below, this geometry is more promising for ex-
perimental observation of some of the effects studied in this
work.

In the same way as for the previous model, E8sB) and
(2.13 can be replaced with their 1D versions, i.e., E§s1)
and(3.2), respectively. The Poisson equation, however, leads
to a different one-dimensional equation since in this model
the gradient of the field in th& direction is much smaller

[Deriving Eg.(3.3), we have neglected the transverse derivathan the transverse gradients. In this case, the linearity of the
tives of E(r,t), since, by Gauss’ theorem, they are propor-Poisson equation leads to a linear dependence of the poten-
tional to the circumference of the cross section of the sampldjal on the local charge, both integrated over the conductor’s

while the derivative in thes direction is proportional to the cross section:

cross-section arep.

Integration of Egs(3.1) and(3.3) provides a simple rela-

tion between the current and the electric field,

i we(X)
4

|,(X)= E,()+18. (3.4

Ad,(X)
Co '

@, (x)= (3.9
where A is the cross-sectional area afy) is the specific
capacitanceper unit length.

For a homogeneous cylindrical conductor of radRs

The integration constarit, has the physical sense of the =t/2 and distanceh=t/2+d between its center and the

current induced deep inside the electrofekereE ,=0). It

can be found from the condition that the current fluctuationghe conductor is thickté\

do not affect the voltag¥,, applied to the structure:

°° 4 o _
fﬁmdx iwe(x)[l‘”_l“’(x)]_v“" (3.5

Inserting Egs(3.1) and(3.4) in Eqg. (3.2) we get the basic
equation of this model,

d?,(0) o 1,
dX2 - K (X!w)lw(x): D(X) Iw(x)_ )\2(X) Iw;
(3.6
with
) 1 iw
K (X,w)ZW—W, 3.7
and the static screening length is given hy(x)

=[e(x)D(X)/47a(x)]2 Equation(3.6) is valid for both
the conductor itself and the electrodes.

ground planeC, assumes the following limiting values: if
),32

(R>N\), (3.9

Comr—m
0" 2 cosh I(h/R)
with €, the dielectric constant of the medium between the
conductor and the ground plane. In the opposite limit, the
cylinder is uniformly charged. Taking for simplicity
=€mn, one finds

B 2€ _ 2€
CO_1+4In(h/R)+4I(h/R)_14—4In(2h/R) (R,
(3.10
with
1 X
I(b)Efoden 1+ Vl_W)' (3.11

The dependences €f, on the ratioR/h are shown in Fig. 2.
If the conductor is a uniform strip of widtiv>d,t, then
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€mW to the total interface charge in the electrode. In the case when
Co=z.q (=M, (3.123  the screening length in the electrodesis much shorter than
N, Eqg. (2.17) therefore giveqdon the conductor side of the
eW interface
C°_47-r(d+t/3) (t<N). (3.12h .
e o a9
In the quantum limit, with only the first quantum level popu- 2

lated,C, may still be presented with E3.12b, though the
thicknesst must be replaced by an effective thickness.
For a square well potential with infinite barriers the effective
thickness is

Since the voltage drop in the electrode vanishes, the con-
straint of fixed voltagdi.e., the equivalent of E¢3.5] in
this model becomes

3 L) VA
1+m):1.07t. (3.13 P\ 5] =F—— (320

teﬁ:t

Integration of Eq.(3.18 from *L/2 to =L'/2, and use of

like relation between the current and the linear charge denI—Eq' (3.8 at £L'/2, now yields the required boundary con-

Combining Eq.(3.2) with Eq. (3.8) provides a diffusion-

sity, ditions,
L’ V Ao
dg,(X) =2
()= =D — L= +1%(x), (3.14 do| =5 | =+ 2D (321
with In this ground-plane model, finite charge densities in the
conductor create image charges on the ground plane. Thus, at
D'=D+ ﬂ (3.15 any finite frequencyw some parts of the interface currents
Co’ ' are responsible for periodic recharging of the ground plane

[see Fig. Lo)]. Therefore, the current] measured in the
electrodes at a distance far from conductor-electrode inter-
face may be different from the current which flows through
d2l (%) , , . this interface(note also that the two interface currents are not
—aZ K (0)l ,(X)=—k“(X,0)I5(x) (3.1 ngcessarlly equal In an experimental scheme ;ymmetrlc
with respect to the conductor, the curréfjtflowing into the

With the help of Eq(3.1) we once again get a simple equa-
tion for the current

with external circuit is the symmetric component of the two cur-
] rents:
— i@
(w)=—57- (3.17 e L], Ly, (L -
w_z o| z + ® E . ( . 2

We now analyze the conditions under which E8.8) is
valid. Expanding Eq(3.16 in spatial harmonics we see that While the currentd ,(£L/2) in this expression are the cur-
harmonics with wave numbek,>|«]=\w/D’ contribute rents at the electrode side of the interfaces, due tdZE48
negligibly to the current fluctuatiors, . Thus, at frequencies they are equal tb,(=L'/2). Of course, if the leads connect-
ws?{lzD’/L2<D’/d2,D’/t2, we can consider only the ing the sample to the measurement instrument have some
wave number&, which are much smaller thah 1,t 1. For ~ Mmutual capacitance, the current in the instrument will be less

these harmonics, the transversal gradients of the electric fiellan1*(») given by Eq.(3.22, but this loss factor may be
dominate in the Poisson equation, justifying E818) at that taken into account by the standard circuit theory methods.
frequency range.

Equation(3.8) is not valid at distances comparable do IV. THE RESPONSE FUNCTIONS
from the interface with the electrodes. Equati¢8.16) . .
should therefore be solved only inside the conductor, with From now on we will consider the most natural case of
boundary conditions at L'/2= + (L/2— &), wheresis now wel_l-conductmg.e!ectr(_)des of size much larger th@p and
some distance for whickd<s<L,1/x]. To find these resistance negligible in comparison with the resistaRce

boundary conditions we write down E®.2) (which is valid ~ — L/oA of the conductor. We first show that the total noise
even near the interfagén the form produced in the electrodes is negligible compared to that

originating in the conductor. For equilibrium noise, this is a
d A direct consequence of the fluctuation-dissipation theorem.
lo(X)=—0 g | Pu(X)+ T)\qu(x) . (3189  The same is true for shot noise, because of the fact that the
electron distribution function in the electrodes is almost
[The sourceds(x) in the small interface region may be ne- equilibrium. The electrode-conductor interface is also not an
glected] The values ofg, and @, at the actual interfaces appreciable source of noise since, in the diffusion approxi-
x=*L/2 are found from the boundary conditions E517) mation studied here, the electron distribution at the conduc-
and(2.18. First note that whiley,, can be arbitrarily large on tor side of the interface is the same equilibrium Fermi distri-
the electrode side\.q,, should remain finite, since it is equal bution as in the electrode. Moreover, even deviations from
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this approximation would result at the most in a few inelasticEquation(4.1) shows that the current at frequeneyat any
scattering events in the electrodes, leading to thermalizatiopoint x is composed of two components. The first is the
of hot electrons arriving from the conductor. As longlas response to the applied voltage across the conductor, and the
<L, the number of those events per transferred electron isecond is the response to the random Langevin current
much smaller than the number of elastic evgntg(L/1)?] sources inside the conductor.

the electron experiences in the conductor, so the thermaliza- The response function$(x; w) andK(x,x’; w) are found

tion process at the interface can also be neglected as a souteg solving the equations for the current with(x) =0 and

of noise. V,=0, respectively. They can be presented in a compact
In this situation, the solutions to Eq&.6) and(3.16 can  form by defining the following auxiliary functions, withy
thus be presented in the form =KkN%/\g, U=kL/2, sinch{)=sinh@)/u, Q=weldro,

and y=|x|—L/2:

1 (L2
Iw(x):Y(x;w)VerE f K(X,X" ;)15 (x")dx'.
2

7 4.1 Dlw)= coshu)+ 7 sinh(u)’ 4.2
|
1_uiQ[sinr(ui kx)+ 7 cosfuxkx)] (|x|<L/2),
(X )= U 4.3
1_|Q n eXF(_KeX) (|X|>L/2)1

1-iQD(w)cosh kx)

| [1-10][1-10D(w)sinchu)] (Ix|<L/2),
F(X,w)= 1-iQ[1— nD(w)sinh(u)exp( — kgx) ] (4.4)

0 1= 0D(@)sncuy]  (X7H2):
_ iQEL(X,w)
G-(X,w)= sinh(u) + 7 cosiu) @5
Ho(X,0)=iQD(w)[ F(X,0)+E+(X,0)]. s
|
For the sandwich model, the response functions are costEx’)
KX )= (4.10

K(X,X";w)=F(X,w)* G+ (X,w)sinh(kx") sinct(w)
—H.(X,w)cosh kx") 4.7 The response to voltag&(x, ) in this model is identical
- to K&(x; w)/R,
and

1-iQ Y(X; )= (4.11

Y(Xiw)= —5—F(Xw), (4.9 R sinchu)

At low frequencies, and in both models, the response

where, in Eq.(4.7), the upper sign should be used fof functions tend to constant values:

>x and the lower sign fok’ <x.

In the ground-plane model, the functioksandY inside 1
the conductor are found to be the same as for the sandwich K(x,x';0)=1, Y(x;0)==.
model (but with D—D’) in the limit of vanishing conduc- R
tivity of the conductor, i.e., in the formal limip?~Q—oe
(which also impliesk=k):

(4.12

Figure 3 shows the response functions for the sandwich
model at intermediate and high frequencies.cAt>1, the
responses are exponentially close to the source, i.&/, to

i (4.9  the case oK(x,x";w) and to*L/2 in the case o (x;w).
sinch(2u) At any frequency and position, and for any valuelof,

__ cosiu¥«x’)
K(x,X";w)=cosHu=* kX)) ———————

with u=«L/2 and with the upper sign used fof>x and the 1 fLe
lower for x’ <x. The response in the electrod€§(x’; w) to - f K(X,X': w)dx’ =1. 4.13
a fluctuation aix’ is obtained with the help of Eq3.22), Lo 77
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FIG. 3. Position dependence of the résblid lines and imagi- FIG. 4. The real and imaginary parts of the correction to the

nary (dashed linesparts of the response functions for the sandwichconductance of the sandwich model. The various curves are for
model at high frequencies, and for two valued 6k. REY(X;w)] is different values ofL/\, and for \;=\. (@) D(w)sinchu). The
in units of 1R. Im[Y(X;w)] is in units of —Q/R. x"=0.3 here. low-frequency value of this quantity is equal to one plus the emit-
tance of the systenib) F°(w)=Y(w)/[(1—-iQ)/R].

This general result is a manifestation of the constraipt
=0, as can be seen by assuming a uniform current source fior any frequencyw. Equation(5.2) allows a simple interpre-
Eqg. (4.2). Then, the only solution of the problem which tation: Y(w) is just the complex admittance of the conduc-
maintains the constraint of fixed voltage is a uniform currentanceR ™ coupled in parallel to the capacit@ formed by
everywhere] ,(x)=1% , leading immediately to Eq4.13). the two electrodes.

The relation between the spectral density of the current However, already att/\.=10 the correction
noiseS,;(x,w) and the response functidfx,x’; ) is made
clear through the identity Fw)=

Si(X, @) 8(w) =2(1 ,(x)15(X)). (4.14 - N .
to this simple result is significant. Figure 4 shows the real
With Eq. (4.1), and using the condition of fixed voltage and and imaginary parts of this correction for different values of
the locality of the current correlatdEq. (2.14)], this expres-  L/\, for the casen =\, (for example, the conductor and the
sion becomes electrodes are made of the same material, but the electrodes
OA (L2 have much fewer impuritigs For L/)\?> 1, rt]he correction
_=" T NI2Q V[ term is insensitive to an increase Bf so the appropriate
S(x0)= L? f KX @) )dx’.— (4.19 curves of Fig. 4 also correspond to the case of a low-density
. _ L conductor between metal electrodes. Figuf@ 4hows the
The noise power deep inside the electrodes is given by 1oy p( ) sinch(u) which appears in the denominator of Eq.
_ (5.1). The low-frequency value of this term is equal to 1
S(@)=5( ). (418 el RE0). with E(0)=idY/dw|, o being the
The dynamic conductance is the response in the electrodes temittance.” For a long conductorl(/A>1)
external voltage,

1
1-iQD(w)sinchu)

(5.3

A
Y(0)=Y(e,0). (4.17 E(0)= 5 =C. (5.4

As in Eq. (5.2), the emittance in this case can be viewed as
the sum of the intrinsic emittance of the conductor and that
of the capacitor formed by the electrodes. Then, the total

V. RESULTS: CONDUCTANCE
AND EQUILIBRIUM NOISE

A. Sandwich model emittance(5.4) is entirely due to the parallel-plate capaci-
For the sandwich model we have from E¢4.4), (4.8, tance, and the emittance of the “conductor itself” equals
and (4.17) zero, in agreement with the result of Ref. 21. However, as
seen from Fig. @), this result does not hold for a relatively
1-iQ 1 short conductor, which means that the simple view of an
Y(o)=—¢ 1= D(w)sinchu)’ (5.))  additive emittance does not generally hold.

It is important to note that the calculations leading to Eq.
If the screening length in the electrodes is very small com{5.1) were not dependent on the distribution function of the

pared toL, thennpu>1, and we get electrons. Therefore, the correction Y§w) is due only to
] the screening properties of the system, and does not depend
Y(w)= 1-iQ “R1-iwC C= €A (5.2 on thermalization or phase breaking of the electrons. Equa-
R ' 4L’ ' tion (5.1) is thus also valid if the inelastic scattering length is
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smaller thanL. Despite its mesoscopic natufee., the fact g

that Y(w) assumes its ordinary value E¢.2) for large R/L @ R/L ‘
enoughL ], the correction discussed here should not be con- Co Co
fused with other mesoscopic corrections to the conductivity ool L L Ie
of diffusive wires®? 11 11

Let us now comment on the possibility of observing the _ o
results depicted in Fig. 4. These results deviate from the FIG. 5. Equivalent circuit for the geometry of the ground-plane
standard theory only wheh is comparable to\ and the ~Model
frequency is comparable to the crossover frequeneie2In
order for the diffusion approximation used in Sec. Il to apply
to this regime, two conditions must be met:

Fig. 4 to lower values oE/\ only to provide a better under-
standing of the effects of screening on the conductance of
this conceptually simple system.

and B. Ground-plane model
5 For the ground-plane model, Eq8.22 and (4.11) lead
Am Akl to the following expression for the conductance of the sys-
—oT= <1 (5.9 .
3may tem:
with a,= e2?/mé the effective Bohr radius. Combining the 1/ L L
two leads to the conditich Y(0)=5 FE> cth(?z). (5.10
167 . L .
kpag> _ (5.7  This expression is identical to the conductance of a macro-
3 scopic wire of resistancR coupled to the ground plane via
The screening lengtk is given by capacitance per unit length of
e Y2 1 [ g5\16 1 1\71
“lamen] "2 (§ Bo(an™) " (6.9 Cormlc, ey e
Combining Egs(5.7) and(5.8), we get the final criteriofin \yitp
addition to Eq.(5.5)] which should be met in order to ob-
serve the results presented in this section: eA
Co=—>. (5.12
ag>5\. (5.9 S 4m\?

For example, im-GaAs, a;~10 nm, while inn-InSb, a,  The boundary conditions for this model, E§.21), can also
~60 nm. Therefore, samples with/A ~10 (where we pre- be rewritten in terms o€ as
dict deviations of conductance by more than 15% from the
results of the standard thegrgan be implemented with no L’
fundamental difficulties. As an example consider an Yo
InSb  sandwich layer of thicknessL=60 nm with
n=8x10"cm™> and I=8nm. Then \~6nm, \g Thus, the ground-plane model can be described by the
~4.7 nm, 0~10" Hz, and 7~0.7 fs, so that the required equivalent circuit shown in Fig. 5. The capacitat@egis due
length hierarchy. >1>\¢, as well as Eq(5.6), are crudely to the fact that in thin enough wires the screening is not
achieved® A practical realization of such an experiment efficient, so the current is determined by the gradient of the
might prove to be difficult, though, because of the high meafull electrochemical potentiap=® + Au/e, rather than by
surement frequencies involvedell in the optical range ®=Aq,/Cy alone. In other words, additional charging of
In order to implement, say,/\~0.1, the thickness of an the wire increases not only its electrostatic energ§ %),
|nSb |a.yer Should be Sma"er than 1 nm, L.e., a feW atomeut also its internal energw(cgl), because of the neces-
layers, so that our continuous model is at the border of itgary rise in the Fermi level. In 2D conductors, E§.12)
validity. Moreover, in the casé <\, our model is strictly  reduces to the well-known restitfor the two-dimensional
valid only if the scatterers in the dirty conductor are neutralg|ectron gas. The effects of “electrochemical capacitances”
(€.g., dipole scatterexsThis is because the Coulombic po- simjlar to C4 on the emittance of ballistic structures were
tential of charged impurities would not be screened in thissydied in Ref. 19. There is also a very interesting analogy
case and therefore the scattering would not be short-rangefetween Eq(5.12 and the expressiohy *=A/4m\? (Ref.

as assumed in Sec. Il. , _ _ 39) for the specific kinetic inductance of a superconductor
To summarize, the implementation of the ratiov~1 in (in this case\ is London’s penetration depth

the sandwich geometry seems possible in some special ma- \y/hen C.<C,, the high-frequency ¢7=>1) conduc-
terial systems. For lower ratios our continuous model isgnce is given by

hardly adequate, at least for the materials we are aware of.

For this reason, we will not discuss the sandwich model in 1 L

the concluding Sec. Vi(note that the above discussion does Y(w)= = —, (5.14
not apply to the ground-plane mogleWe have extended R2\iD/w

Vo
~ Cet- (5.13

+—
2
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the absolute value of which is just the dc conductance of a
conductor of the same conductivity, but with length equal

to twice the diffusion distance in time @/ Thus, carriers &2
injected at each of the electrodes are diffusing in and out of - 80
the conductor, without reaching the opposite electrode, ancS, 60 \\\;\\\‘\\\x\\lﬁx\
without affecting it by electric field$the suppression of the 40 . .
longitudinal electric fields is the only role of the ground
plane in this limij.

1000
100

10 Frequency
(1/mr)

C. Equilibrium noise—Both models

Spectral Density

Equilibrium thermal noise is related to the conductance by
the fluctuation-dissipation theoretwe assumd > # w)

Position (L)

S w)=4T R Y(w)]. (5.15

However, sinceY(x,w) gives the current response to the
externalvoltage, the local nois&’{x,w) is not directly re-
lated to it, and must be calculated independently.

At zero voltage, the average distribution function in the
conductor is the Fermi-Dirac distribution given by Eg.
(2.16). Using this distribution in Eq(2.15 gives

S§=20T (5.16

. 100
for the correlator of the Langevin sources. The spectral den- oE ] 10 Frequency

sity for the equilibrium noise is thus found from E@.15), Position (L) : (1/77)

Spectral Density (2el)
(]

AT (L2
SAx,w)= =T |K(x,X";w)]?dx’; (5.17 FIG. 6. Position and frequency dependence of the current noise
—Li2

intensity inside the conductafa) Equilibrium noise(b) Shot noise.
rl,|-|ereL/)\= L/Ne=10, but the general features of this figure are not

this equation in fact expresses the fluctuation-dissipatio iy X .
sensitive to the screening properties.

theorem for both the local and external fluctuations.
At zero frequency Eq(4.12) gives VI. RESULTS: NONEQUILIBRIUM NOISE
SYx,0) = AT (5.18 In this section we will present the results on nonequilib-
MY R ' rium noise for the ground-plane model; these results are also

i ) _ - applicable for the sandwich model in the regim@ .>L. In
as expected. At high frequencie® {wrr>1), the equilib- e opposite limit §,\.<L) the noise in the sandwich

rium noise inside the conductor is given by model is white and is equal to the zero-frequency noise in the
ground-plane modéf In contrast to the case of equilibrium
e 2T — noise, the shot noise is very sensitive to the strength of
S,“(x,w)zﬁ\/er/2[f(x)+f(—x)] (|x|<L/2) ' y g

electron-electron interaction in the conductor, so we analyze
(5.19  this noise in the two limits of weak and strong e-e scattering.
with
oL ot kx L A. Weak electron-electron scattering(L <19
f(x)=2e"""|cosiu— xx)|"[e*+—e™""] (5.20 WhenL<l,, the electron distribution function is found
and with k;=Re(), S0 kL= wr/2. f(x)=1/2 through- as a steady-state solution of EQ.6). Under the condition
out the conductor, except at a narrow layer of widtk,1/ (2.12 and for current perpendicular to the interfaces, it
near the edges, where it approaches its limiting valuegeads
f(—L/2)=0, f(L/2)=2. The position and frequency depen-
dence ofS;is shown in Fig. 6a) for the caseL/A=L/\e T (E x)= EJF PR Eev) +(E_ i)fO(E_ Eev).
—10. The general features here do not depend on screening.” 2 L 2 2 L 2
The method presented here for calculating the conduc- (6.2
tance does not depend on the form of the distribution funcgquation (4.15 together with Egs(2.15 and (2.16 now

tion [other than the diffusion approximation, E@Q.D].  give a general expression for the nonequilibrium noise,
Therefore the results apply also to the case when strong

fo

(le<L, with I, the electron-electron scattering length 2 (2 . 5 12
electron-electron scattering is present in the conductor. The Si(X,w)= a7 7L/2dX IK(x,x"; »)] SetS-T17
equilibrium noise is also not affected by the e-e processes 6.2

since this scattering does not affect the equilibrium Fermi-
Dirac distribution, which is the input in Eq2.15. with
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T T T At strictly zero temperature, Eq6.6) gives the high-
] frequency result presented (Ref. 13:

_ (b) | S(w)=el. (6.7)
wTp=0 —

ol B 20 At finite temperatures, an additional crossover appears at
& %%k g0 wrr~(eVIT)?/2, above which the equilibrium noise domi-
Rl L < lee L& lge 100 --- ] nates[Fig. 7(a)]. At any frequency, Eq(6.6) shows that
G 03t ' ' ' e T noise growdinearly with the temperature, Fig.().
g vt 10 100 1e0 00102 08 04 05 The frequency dependence of the zero-temperature noise
5 ' ' A4 in the conductor is the same as that of the finite-temperature
el ) , NS p i noise[compare Eq(6.6) with Eq. (6.4)]. Therefore, one can
é’ 08 1 © 1 . 7 (@ i assign an effective position-dependent temperature to the

o7 r 7 10 7 = 01 distribution function(6.1):

0.6 pee ey 1t - WTTo4

e ° 33 1 §§ ] _ev(,_4¢

04 | L>lee 03 - qF L>> lee 100 -1 TerX)= 2\ ©.8

03 Lt 1 1 I T R T T R TR R R

31 10 100 0 01 02 03 04 05 Note, however, that this distribution function does not have
Frequency (1/7r) T/ev the Fermi-Dirac form.

FIG. 7. Frequency and temperature dependence of the spectral )
density of the nonequilibrium noise in the limits of wegk,(b) and B. Strong electron-electron scattering(L > o)
strong(c),(d) electron-electron scattering. We now consider the case when electron-electron scatter-

ing is so strong that the scattering lengthis much smaller

thanL (though still larger tham), but is weak enough so the

single-particle Boltzmann equation is still valide&N\g).

Its solution is then given by the local-equilibrium distribu-
Figure @b) shows the spatial and frequency dependencé&on

of the shot noise for the cade>\,\, and T<<eV. It is

remarkable that inside the conductor the high-frequency F(E,x)= 1

noise is large even at zero temperature: ' 1+eXF{E—M(x)

Te(x
el [orr 4x2 o)
Se)=5 \ 5 |1~ 77

This rise is due to the highly nonequilibrium distribution of X
carriers, Eq(6.1). Specifically, at any frequenay the cur- p(X)=p—rev (6.10
rent fluctuations at positiom are due only to electrons at ) ) o
distances~D/w from x. The smaller this range, the and V\{Ithf(l)|00a| electron temperatufg which satisfies the
smaller is the smoothing of the singularity in the energyequat'Oﬁ’
distribution of the electrons in the range, and the larger is the
noise.

The noise in the external electrodes is found by using the
external response functidd®(x’; w) in Eqg. (6.2). Whenever
KE(x";w)=1, i.e., at low frequencies, or when\ . <L in
the sandwich model, Eq6.2) reduces to

eV eV
Si(T,V)=Tt7 cth( ﬁ) (6.3

(6.9

(orr>1). (6.4  with

d? 6(eV)?
WT?\(X): Ty (6.1

under the boundary conditiodg=T atx=*L/2. The elec-
tron temperature is thus given by

4l2 1 oV Te(X)=TV1+ £ 1—(2x/L)?] (6.12
S|(a))—§ §T+ geV cth >T (6.5 with
as was found by Nagaé\However, in the general case, the V3eV
noise in the electrodes exhibits strong frequency dependence &= oa T (6.13

on a frequency scale of the order of the inverse effective

Thouless time X, which is also affected by the screening This distribution was also found in Ref. 5 by separating the
lengths\,\ .2 Figures 7a) and 1b) show the dependence conductor into coupled phase-coherent conductors of length
of the noise on frequency and temperature in the ground..

plane model. Atwr>1, With this distribution, the current correlatdf.15 be-
comes
2T eV 1
S(w)=—=(Jor/2—1)+el cth =—=| +0O| —|. S(X)=20T(X) (6.19
R 2T Jo

(6.6 so the nonequilibrium noise in the system is
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4 (L2 ,
Sl(x""):ﬁjﬁL/ZdX/|K(X'X/;“’)| Te(x'). (6.195

and the transition tas*? dependence at high enough tem-
perature or frequency are shown in Figc)7 The low-
temperature behavior of the high-frequency noise can be un-

In what follows, we will concentrate on the current noise derstood by comparing the noise correlatSrin Egs. (6.2)

present in the electrodes. In all cases for whikt(x'; w)
=1 (i.e., o7r<<1 or L>\,\, in the sandwich modgl the
result obtained in Ref. 5 is recovered:

1+

&+ -

3
At high temperatures4<1), Eq. (6.16 gives the regular
equilibrium noiseS;(w)=4T/R. At low temperatures the
well-known resuft:1°

S(w)= g arctanié) |. (6.16

Si(w)= (6.17

v3el
2
is obtained.

All the above results are very close to those o6&l .
However, thehigh-frequencybehavior of nonequilibrium
noise in a system with > 1. is radically different from that
in a system withL <| 4.

Figures 7c) and 7d) show the spectral densif(w) as a

and (6.14): The response functioK®(x’;w) [Eg. (4.10] is
significant only for sources at’ within a distanceyD’'/w
from the interfaces with the electrodes. Therefore, the cor-
relator (6.14), which drops more gradually near=*1L/2
than the correlator in E(6.2), produces noise in the elec-
trodes, which grows faster with frequency.

The transition to thermal noise at low temperature now
occurs atwrr~(eVIT)#/20 (i.e., at higher frequencies than
for the caselz>L). Below this crossover Eq(6.20D is
valid, and the thermal term is noguadraticin T, Fig. 7(d).
These two results, namely, the unbound increase of the noise
with frequency atT=0 and theT? correction to the shot
noise, are unique to systems with strong e-e interaction, and
can serve as a clear experimental identification of such inter-
actions.

VIl. DISCUSSION AND CONCLUSIONS

We believe that our work has produced two major results
of general importance. First, the high-frequency noise of

function of frequency and temperature for the ground-plangMall diffusive conductors is considerably affected by

model (or, equivalently, the sandwich model with
<\,\g), with the response functiof4.10. In the high-
frequency limit, Eq.(6.15 yields

T 1
S,(w)=§wTTJ et~ {1+ £2(1—y?)dy.
0

(6.18

The characteristic parameter of this integral is the ratio

. 282 3(eV)?
O Jor 2 2w w12

At small and large values of this ratio, E(.18 gives,
respectively,

(6.19

2

2T (w?T>1’2 3R(el)?

Si(w)="= 5 [eV=T(wm)™,

(6.203

2 w?l' 3/4 T2 3 w?l' 1/4
S(w)= T(T) Rl * z(7) !
[eVe>T(wr) Y. (6.20b

At high temperatures Eq6.203 is always valid. The
leading term inw 7y is the same as fdr<l... However, in
contrast to Eq(6.6), the nonequilibrium correction to this
noise has auadraticdependence on the current

More interesting is the low-temperature limg>1. As
long as the frequency is not very higk,>1, the nonequi-
librium term is linear inel, as usual. However, even &t
—0 the noise grows withw indefinitely as 77)Y* [as op-
posed to the case 0f>L, see Eq(6.7)]. This dependence

screening in the conductor, the electrodes leading to the con-
ductor, and the surrounding media. Screening also has a
measurable effect on the ac conductance of the system. The
“external screening” is in fact an intrinsic part of the prob-
lem. For example, the effects of screening on the dynamic
properties are very different for our two model geometries,
which basically differ only in their external electromagnetic
environment.

In particular, with due account of screening, the noise
spectrum isnot white even at frequencies for which quantum
fluctuations are negligible and the Drude conductance is
frequency-independer(i.e., o<eV/%,1/7). This result is
due to the fact that at frequencies higher than the inverse
Thouless time, the current in the electrodes may be respond-
ing only to fluctuations in the conductor which are within a
distance I#<L from the interfaces with the electrodgsee
Eqg. (4.10]. In these regions the distribution function is
nearly equilibrium, and therefore the noise is strongly sup-
pressed: its effective temperatuf@ T=0) is eV/kL, Eq.
(6.8). However, in order to satisfy the basic relatigh13),
the external response to fluctuations in those regions must be
very large, K&(x";w)=«L/2 [see also Eq(4.10]. Thus,
each interface can be viewed as a fundamental noise source
of temperatureeV/2, which is just the effective temperature
of the classical Schottky noise. Since the two sources are not
correlated, the total noise in the electrode is 1/2 of the
Schottky value, Eq(6.7). [In the sandwich model, the above
description holds only for the cage<\,\. In the opposite
limit, the strong screening allows the current in the elec-
trodes to respond uniformly to all fluctuations in the conduc-
tor, thus retaining the 1/3 suppression factor, &qg5)].

The reason for the peculiarity of the ground-plane model
is now apparent. Here, charge fluctuations in the conductor
are screened by the close ground plane. Therefore, high-
frequency fluctuations inside the conductor are not felt by the
electrodes even if screening is strong in the conductor and
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the electrodes. Thus, the frequency dispersion of the noise iise. For example, regular “diffusion noise” in semicon-
obtained in this model even ¥,\<L. ductors(see, e.g., Ref. 2&8lecreasesvith frequency with the
Notice that the result3.22, and therefore Eq(6.7), is  same characteristic frequencyri/as in the present work.
exactly valid only for the case in which the voltage drop, andHowever, this type of noise is very different from the one
the ground plane, are symmetric with respect to the length oftudied here: classical diffusion noise is modulation noise,
the conductor. If, for instance, the ground plane is coupled.e., noise due to the change in the conductance when elec-
much more strongly to the right electrode, then the currentrons are diffusing in and out of the sample. It is a second-
through the electrodes would be the same as the current atder effect proportional tt?, unlike the shot noise which is
the left conductor-electrode interface, and the noise valugroportional tol. Our arguments shojsee Egs(2.9 and
would be 1. Thus, Eq.(6.7) is not universal in the sense (2.12)] that modulation noise is negligible in the degenerate
that by changing the geometry of the system any noise valusystem we are studying if the density fluctuations are much
betweenel and 21 can be obtained. smaller than the average electron density. This condition is
The effect of screening on noise discussed in this work islearly fulfilled in our system.
very different from the effect it has on classical shot noise in  Generally, in any semiclassical theory noise must eventu-
vacuum diodes. In the latter caSethe low-frequency noise ally decrease with frequency. In our case, this happens at
is suppressed when the space-charge in the diade thus frequencies higher than the inverse elastic scattering time
the screeninpis large. This is due to the fact that, say, an1/7, as can be concluded from E@.4b): at o> 1/7 fluctua-
upward instantaneous fluctuation of electron emission resultsons of f,, and thus of the current, are proportional ta 1/
in an increase of negative space charge and hence the potdim this limit the Langevin source to be added to E2.4b
tial barrier near the emitter, so that not all excess electronwould also depend on frequency, since the scattering events
arrive at the collector. Since the thermionic current dependare correlated at times shorter than At w<1/7, however,
exponentially on the barrier height, this negative feedback ié is only f (i.e., the density and notf,, which is directly
very effective, and the shot noise may be considerably lowedependent on frequeng¢gee Eqs(2.4)]. The reason why this
than the Schottky value. In our case, however, this is notlependence does not necessarily imply a decrease of the cur-
true. Since the Fermi level is higher than the electrostaticent fluctuations with frequency is evident from the simple
potential, electron potential fluctuations throughout the dediscussion of Sec. IIl A.
vice hardly affect the current. In recent years there has been a growing experimental
Our second major result is that the high-frequency noisénterest in the dynamic properties of diffusive mesoscopic
in diffusive conductors is strongly dependent upon thestructures. While the results presented here are consistent
strength of the short-range electron-electron scatteringwith the results of all the relevant published experiments of
When such scattering is strong, the nonequilibrium noise isvhich we are aware, none of those experiments explore the
not only nonwhite, but does not even saturate at high freregions where we predict deviations from previous theories.
guencies, and can in fact be larger than the classical noisehe ac conductance of diffusive samples was measured at
value 21. The quadratic dependence of the noise on temmicrowave frequencies with the motivation of comparison
perature for this case, as opposed to the linear dependenceviith weak localization theories:3%4*°Thus, in all those ex-
the case of weak e-e scatterisge Fig. 7, indicates that the periments the samples were very much longer than the
sources of the two types of noise, namely the thermal andcreening length, and a ground plane was not available.
shot noise, are coupled whdre1,,, but are independent Noise measurements also did not reach the frequency range
(and thus additivein the opposite limitL <. In addition  of interest. In Refs. 41-43, the observation frequencies were
to the basic significance of this result, the different functionald00 KHz (or lesg. In Ref. 44, the noise was measured at
dependence can serve as an experimental diagnostic tool fislequencies up to 20 GHz, but the sample was made of rela-
the determination of the rati@=L/l.. in a given sample. tively well-conducting gold, with an inverse Thouless time
Other quantities which are sensitive to this ratio are usuallyf about 100 GHz. Nevertheless, we see that the experimen-
due to phase coherence of the electr@msd its absence at tal parameters are quite close to those studied in this work.
B>1) such as the corrections to the conductance due to Due to the reasons discussed in the end of Sec. V A, it
weak localizatio?? (as noted above, the regular, semiclassi-seems that the experimental verification of the results pre-
cal conductance is not sensitive to e-e scatteritig our  sented in this work should be mainly feasible using thin con-
case, however, the strong dependenceg3dr purely semi- ductors located very close to a ground pldgate. In many
classical, as it is due to the difference between the distribuexperiments this geometry is a natural chdies., when the
tion functions at different values ¢. conductor is two-dimensionaldue to its simple fabrication
The large value of noise at high frequencies is due to thgrocedure. This geometry also presents the possibility of
forms of the nonequilibrium distribution function and the controlling the conductor’s parameters with gate voltage, cf.
response function, as was explained in Sec. VI B. UltimatelyRef. 41. For typical experimental paramet&rsD’ ~D
it originates from screening which relates the measured cur=10® cn?/s and L~10 um, the expected crossover fre-
rent fluctuations in the electrodes to the scatteringnafly  quency in this geometry is 30#21~5 GHz, i.e., within the
electrons in the conductor, all behaving collectively. Thus, itrange currently available for accurate noise measurements
should not be too surprising that at some particular situation&cf. Refs. 44 and 46
correlations are such that the measured noise is larger than Compared to the measurements of the noise in the elec-
the single-particle classical shot noise valuel.2The same trodes, measurements of the local ndiBigs. §a) and Gb)]
is true for the increase of noise with frequency, which isseem much more difficult. Nevertheless, one can think of
quite different from the usual behavior of high-frequencynovel techniques to measure this quantity. For instance, a
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