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Noise properties and ac conductance of mesoscopic diffusive conductors with screening
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A theory of nonequilibrium~‘‘shot’’ ! noise and high-frequency conductance in diffusive mesoscopic con-
ductors with screening is presented. Detailed results are obtained for two simple geometries, for both large and
short electron-electron scattering lengthl ee, at frequencies of the order of the inverse Thouless time 1/tT . The
conductance and the noise are found to exhibit significant frequency dependence. ForL! l ee, the high-
frequency (vtT@1) shot-noise spectral densitySI(v) approaches a finite value between 2eI/3 and 2eI,
depending on the screening properties of the system, with temperature corrections toSI(v) being linear in T.
However, whenL@ l ee, SI(v) grows asv1/4 ~at T50), is not upper-bound by 2eI, and has a temperature-
dependent componentquadratic in T. As a result, measurements ofSI(v,T) can be utilized as a probe of the
strength of electron-electron scattering.@S0163-1829~98!05047-4#
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I. INTRODUCTION

Significant attention has recently been focused on the
namic electronic properties of mesoscopic systems. Th
properties include the ac conductance which gives the m
current response to applied ac voltage, and the noise, i.e.
deviations of the current from its average value. Due to
fluctuation-dissipation theorem, equilibrium Johnso
Nyquist noise, as measured in the external leads, does
convey any additional information to that obtained from t
ac conductance. This is not the case for nonequilibri
~‘‘shot’’ ! noise. Here, the current fluctuations are depend
upon the nonequilibrium distribution function, as well as
electron-electron correlations. Moreover, the shot noise m
be interpreted as an indication that the transport mechan
through the structure involves discrete transfer of charge
opposed to the continuous charge transfer that takes pla
macroscopic conductors.1

Earlier, shot noise in diffusive conductors was calcula
in the zero-frequency limit,2–6 with the conclusion that the
low-frequency spectral density equals 1/3 of the class
Schottky value 2eI, where I is the average~dc! current in
the system. This result was obtained in two very differe
theoretical frameworks, namely in a quantum-mechan
transmission approach2 which is generally based on th
quantum coherence of the different electron states, and
semiclassical approach,3 in which quantum coherence is ne
glected, and the only effects on the noise are due to
single-particle nonequilibrium distribution function of th
electrons. We believe that this surprising agreement betw
the two theories was adequately explained7 by showing that
the main ingredient in the quantum transmission approa
the bimodal distribution of transmission coefficients, is t
only distribution compatible with Ohm’s law, and thus ca
be asserted by semiclassical considerations alone.8 The 1/3
suppression result is strictly valid only in a noninteracti
electron picture. The electron-electron interaction slightly
creases the zero-frequency noise value, which reac
()/2)eI in the limit when the electrons are locall
thermalized.9,10

One of the most important characteristics of classical s
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noise is that it is white up to very high frequencies. In b
listic structures the noise is reduced only at frequencies
the order of the inverse time of flight of the electron acro
the device.11 In diffusive conductors, there are at least threea
priori candidates to the analog of this time constant:
elastic scattering timet, the ~much larger! ‘‘Thouless’’ time
tT of electron diffusion through the sample, and the Maxw
relaxation timee/4ps. In addition, quantum effects als
may be manifested by a frequency-dependent noise s
trum, increasing the noise atv.eV/\, whereV is the ap-
plied voltage.12 Recently we have shown13 that even at high
voltage, eV@\/tT , where quantum effects are negligibl
the shot noise in diffusive structures may exhibit consid
able frequency dependence at frequencies as low as 1/tT .14

In that work, however, only the zero-temperature case w
considered and the ac conductance and effects of elec
electron interaction were not explored.

The issue of high-frequency noise cannot be separa
from that of the ac conductance at the same frequency.
vious works studied the ac conductance in diffusive str
tures with ring15–18or linear19–21geometries. In the first case
noninteracting electrons were considered, and the freque
dependence of the ac conductance was found to be simil
the Drude dependence,16,17 i.e., appreciable only atv;1/t.
However, usual conductors~with electrodes! cannot be con-
sidered separately from their electrodynamic environme
For such conductors general expressions for the conduct
were obtained to linear order in the frequency.19–21 Under
the assumption of absolute local electroneutrality, it w
found that this linear correction~the ‘‘emittance’’! vanishes
and the conductance is again independent of the freque
up tov;1/t.21 Here we are interested in the case where
conductor’s lengthL or its thicknesst are comparable to the
screening lengthl, so local charge neutrality may no longe
be retained. While we confirm the previous results21 for L,t
@l, we show that observable deviations from them m
appear already atL/l;10 or t/l;10.

A vast amount of research has been dedicated to the
fects of weak localization on the dc conductance of mes
copic diffusive conductors.22 Its effect on the ac
conductance23,24 and the high-temperature noise (T.eV)
2848 ©1999 The American Physical Society
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~Ref. 25! led to corrections to these quantities which are
the order of the quantum unit of conductancee2/h ~times
some characteristic energy in the case of noise!. These cor-
rections will be neglected in this work, since we will co
sider the case of conductance much higher thane2/h, so that
deviations of the high-frequency conductance and the n
from their zero-frequency values are much larger than
weak localization corrections.

In the present work the noise properties and the ac c
ductance of diffusive conductors much shorter than
electron-phonon mean free path are calculated at frequen
comparable to 1/tT or 4ps/e, with account of screening.26

Throughout the work we assume that the electrons form
degenerate gas with Fermi wavelengthlF much smaller than
the elastic mean free pathl , while l !L,l. This allows us to
use the Boltzmann-Langevin approach introduced by Ko
and Shulman27 ~see also Ref. 28!, and study both the ac
conductance and the noise in a unified way. In Sec. II
analyze the Boltzmann-Langevin equation in a nonunifo
structure, obtain the boundary conditions for the distribut
function at the conductor-electrode interface, and deriv
‘‘drift-diffusion-Langevin’’ equation for the current. In Sec
III we apply this equation to two specific models of diffusiv
conductors~a ‘‘sandwich’’ and a conductor over a groun
plane!. In Sec. IV the kernels, which describe the response
the system to external voltage, and to the random Lange
sources, are found. Using these response functions we c
late the conductance and thermal noise~Sec. V!, and the
nonequilibrium shot noise~Sec. VI!. Section VII presents a
discussion of the results and conclusions.

II. BOLTZMANN-LANGEVIN-POISSON THEORY

In order to describe both the conductor and electrodes
need self-consistent equations for the current in a sys
which may be substantially nonuniform on a scaleDr @ l . In
the diffusion approximation the electron distribution functi
can be written as

f 5 f ~«,cosu,r ,t !5 f s~«,r ,t !1 f a~«,r ,t !cosu, ~2.1!

whereu f au; l /L!1 and« is the total electron energy,

«5«k1«c~r !2eF~r ,t ![«k1U~r ,t !. ~2.2!

Here«k is the kinetic energy of an electron with momentu
k while «c(r ) is the equilibrium local conduction-band edg
which includes possible band-bending due to mismatch
the local Fermi energies in the nonuniform conductor, a
hence describes the equilibrium~‘‘built-in’’ ! electric field
E052¹«c /e. u is the angle betweenk and the direction of
the current, andF(r ,t) is the time-dependent electric pote
tial, so thatU(r ,t) is the total instantaneous potential ener
of the electrons. In the above variables, the velocity of
particle is both position- and time-dependent,v5v(«,r ,t),
and the Boltzmann equation within the usual relaxation-ti
approximation looks like

] f

]t
1

] f

]«

]U

]t
2

] f

] cosu

] cosu

]k
•“U1“ f •v1

f acosu

t
50,

~2.3!
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wheret5t(r ) is the local elastic relaxation time. Note th
in the diffusion approximation the term proportional to“U
is usually neglected, since it is of the order off a

2 . However,
in our case this term may be linear inf a , because“U has
the component“«c even in the absence of current.

As usual,29 we proceed by separating Eq.~2.3! into its
symmetric and antisymmetric parts@see Eq.~2.1!# and in the
first order in f a we get

] f s

]t
1

] f s

]«

]U

]t
2 f a

] cosu

]k
•“U1“ f a•v cosu50,

~2.4a!

S ]

]t
1

1

t D f acosu1“ f s•v50. ~2.4b!

In this work we are interested only in the case of freque
cies much smaller than 1/t. In this case Eqs.~2.4! may be
combined to give

] f s

]t
1

] f s

]«

]U

]t
1“ f s•

vt

cosu

] cosu

]k
•“U2“~“ f s•vt!•v

50. ~2.5!

Integration of this equation over the directions ofk gives

«kl

D

] f s

]t
2“•@«kl“ f s#2

3

2
l“' f s•“'U50 ~2.6!

with D5D(r )5 l (r )vF(r )/3 andl 5 l (r )5t(r )vF(r ), vF be-
ing the Fermi velocity.“' denotes differentiation in the
plane perpendicular to the current directionx. Equation~2.6!
is a generalization of the regular diffusion equation for t
distribution function in the case when the potential or t
mean free path change substantially in space.

The random nature of the scattering in the conductor m
be described27,28 by a stochastic source termJs(r ,k,t), with
zero average, added to the right-hand side of Eq.~2.3!. Its
correlation function was found by Kogan and Shul’man27

assuming Poisson statistics of the scattering events, and
ing into account the Fermi correlations of the electrons. F
the case of strong isotropic impurity scattering (l !L) the
result reads

^Ja
s~r ,«,t !Ja

s~r 8,«8,t8!&5
6d~r2r 8!d~«2«8!d~ t2t8!

t~r !N~r !

3 f̄ s~«,r !@12 f̄ s~«,r !#, ~2.7!

whereJa
s is the antisymmetric component ofJs, N~r ! is the

local density of states at the Fermi level~excluding the spin
degeneracy!, and f̄ is the ensemble average of the distrib
tion function.

Equations for the current can be obtained by including
source termJs in Eqs.~2.4!, and then integrating them ove
the electrons’ momenta. It is convenient at this stage
change variables in Eqs.~2.4! from « to «k by using Eq.
~2.2!. Integrating Eq.~2.4a! over k, we get the continuity
equation
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]

]t
r~r ,t !1“• j ~r ,t !50 ~2.8!

with j (r ,t) the current density andr(r ,t) the excess electron
density, i.e., the total charge density minus its equilibriu
value r0(r ) ~which includes the possible charge trans
when two materials have been brought into contact!. The
Langevin term integrates out from this equation, as expec
for particle-conserving scattering processes.

If, before integration overk, we multiply Eq.~2.4b! ~in-
cluding the Langevin term! by v, it yields

j~r ,t !52D~r !“@r0~r !1r~r ,t !#

1@s~r !1ds~r ,t !#@E0~r !1E~r ,t !#1 j s~r ,t !

~2.9!

with s(r )5et(r )r0(r )/m(r ) and ds(r ,t)5et(r )r(r ,t)/
m(r ). Herem(r ) is the local effective mass~for simplicity,
the parabolic and isotropic dispersion relation was assum!,
and

j s~r ,t !5et~r !(
k

vkJ
s~r ,k,t !. ~2.10!

At equilibrium, and in the absence of external fluctuati
sources, the currentj (r ,t) should vanish. Thus, the built-in
electric field satisfies the equation

2D~r !“r0~r !1s~r !E0~r !50 ~2.11!

which may be interpreted as the constancy of the elec
chemical potential atV50 and j s50.

The terms proportional tods(r ,t) in Eq. ~2.9! are negli-
gible if

euF0~r !1F~r ,t !u!«F2«c~r ! ~2.12!

„where«F is the equilibrium Fermi energy@Fig. 1~a!#…, i.e., if
the band bending and the external potential are small c
pared to the local Fermi energy. Under the condition~2.12!,
Eq. ~2.9!, together with the constraint~2.11!, yield the
‘‘drift-diffusion-Langevin’’ equation

j ~r ,t !5s~r !E~r ,t !2D~r !“r~r ,t !1 j s~r ,t !, ~2.13!

FIG. 1. Schematic description of the geometries studied.~a! The
conduction band-edge profile in both models.~b! The sandwich
model.~c! The ground-plane model.
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where the variables include both the deterministic and s
chastic parts.

The correlation function of the current sourcesj s in any
directiona follows from Eqs.~2.7! and ~2.10!:

^ j a
s ~r ,t ! j a

s ~r 8,t8!&5d~r2r 8!d~ t2t8!S~r ! ~2.14!

with the correlator

S~r !5
2

3
e2t~r !N~r !vF

2~r !E
0

`

d« f̄ s~«,r !@12 f̄ s~«,r !#.

~2.15!

Now let us consider a system in which a homogene
conductor connects two homogeneous electrodes with in
faces at6L/2, with the only source of inhomogeneity bein
the band bending due to charge transfer between the ma
als @Fig. 1~a!#. Let the interfaces be normal to thex axis and
much sharper than the screening lengthsl,le in the conduc-
tor and the electrodes, respectively. We define the interf
regions to be the regions of width 2d around6L/2, with l
!d!l,le ,L. A major assumption of this work is that th
voltage in the system drops entirely in the bulk of the co
ductor, i.e., the resistances of the electrodes and
electrode-conductor interfaces are small compared to tha
the conductor. This is the natural situation when the el
trodes are of high conductivity and when the interfaces
smooth on the scale oflF , so no reflections of electron
occur at the interfaces.

Let us consider, for example, the interface atL/2 and
define f s

c5 f s(L/22d) and f s
e5 f s(L/21d). Since the volt-

age drop in the electrode is negligible,f s
e is just the equilib-

rium Fermi-Dirac distribution

f s
e5 f 0~«1eV/2!5

1

11expS «1eV/22m

T D , ~2.16!

where the chemical potentialm is defined as the average o
the chemical potentials in the two electrodes. Moreover,
fact that there is no voltage drop across the interface reg
implies thatf s

c is also given by Eq.~2.16!, f s
c5 f s

e . Integrat-
ing this equation over the electron’s momenta and using
relationN(r )5e/4pe2l2(r ) leads to the first boundary con
dition at the electrode-conductor interface,30

l2rc5le
2re ~2.17!

with rc[r(L/22d) andre[r(L/21d).
The second boundary condition is the continuity of t

current across the interface,

j x
c5 j x

e ~2.18!

with j x
c , j x

e the transverse current densities atL/22d, L/2
1d, respectively.31

If complemented with the Poisson equation

“•E~r ,t !5
4p

e~r !
r~r ,t !, ~2.19!
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wheree~r ! is the dielectric constant, Eqs.~2.8! and ~2.13!–
~2.19! form a closed system which is the basis for our cal
lations.

III. MODELS

A. The sandwich model

We study two analytically solvable models which differ
their assumed sample geometry, and hence
electrostatics.13 In our first, ‘‘sandwich’’ model, which is
schematically shown in Fig. 1~b!, a short conductor of length
L!t is sandwiched between two wide electrodes (t is the
smallest transverse dimension of the conductor!. Defining
the quantitiesFv(x), qv(x), Ev(x), I v(x), and I v

s (x) as
integrals over the sample’s cross section of the temp
Fourier components ofF(r ,t), r(r ,t), Ex(r ,t), Jx(r ,t), and
j x
s(r ,t), respectively, we get from Eqs.~2.8!, ~2.13!, and

~2.19!,

2 ivqv~x!1
dIv~x!

dx
50, ~3.1!

I v~x!5s~x!Ev~x!2D~x!
dq~x!

dx
1I v

s ~x!, ~3.2!

dEv~x!

dx
5

4p

e~x!
qv~x!. ~3.3!

@Deriving Eq.~3.3!, we have neglected the transverse deri
tives of E(r ,t), since, by Gauss’ theorem, they are prop
tional to the circumference of the cross section of the sam
while the derivative in thex direction is proportional to the
cross-section area.#

Integration of Eqs.~3.1! and~3.3! provides a simple rela
tion between the current and the electric field,

I v~x!5
ive~x!

4p
Ev~x!1I v

e . ~3.4!

The integration constantI v
e has the physical sense of th

current induced deep inside the electrodes~whereEv50). It
can be found from the condition that the current fluctuatio
do not affect the voltageVv applied to the structure:

E
2`

`

dx
4p

ive~x!
@ I v

e 2I v~x!#5Vv . ~3.5!

Inserting Eqs.~3.1! and~3.4! in Eq. ~3.2! we get the basic
equation of this model,

d2I v~x!

dx2 2k2~x,v!I v~x!5
iv

D~x!
I v

s ~x!2
1

l2~x!
I v

e ,

~3.6!

with

k2~x,v!5
1

l2~x!
2

iv

D~x!
, ~3.7!

and the static screening length is given byl(x)
5@e(x)D(x)/4ps(x)#1/2. Equation ~3.6! is valid for both
the conductor itself and the electrodes.
-

in

al

-
-
e,

s

B. The ground-plane model

In the second~‘‘ground plane’’! model we consider a long
and thin conductor close and parallel to a well-conduct
ground plane,L@t,d, where t is the thickness of the con
ductor andd is its distance from the ground plane—see F
1~c!. The width of the conductorW ~i.e., its second dimen-
sion, parallel to the ground plane! can be arbitrary. As we
will show below, this geometry is more promising for e
perimental observation of some of the effects studied in
work.

In the same way as for the previous model, Eqs.~2.8! and
~2.13! can be replaced with their 1D versions, i.e., Eqs.~3.1!
and~3.2!, respectively. The Poisson equation, however, le
to a different one-dimensional equation since in this mo
the gradient of the field in thex direction is much smaller
than the transverse gradients. In this case, the linearity of
Poisson equation leads to a linear dependence of the po
tial on the local charge, both integrated over the conducto
cross section:

Fv~x!5
Aqv~x!

C0
, ~3.8!

where A is the cross-sectional area andC0 is the specific
capacitance~per unit length!.

For a homogeneous cylindrical conductor of radiusR
5t/2 and distanceh5t/21d between its center and th
ground plane,C0 assumes the following limiting values: i
the conductor is thick (t@l),32

C05
em

2 cosh21~h/R!
~R@l!, ~3.9!

with em the dielectric constant of the medium between t
conductor and the ground plane. In the opposite limit,
cylinder is uniformly charged. Taking for simplicitye
5em , one finds

C05
2e

114 ln~h/R!14I ~h/R!
.

2e

114 ln~2h/R!
~R!l!,

~3.10!

with

I ~b![E
0

1

dx lnS 11A12
x

4b2D . ~3.11!

The dependences ofC0 on the ratioR/h are shown in Fig. 2.
If the conductor is a uniform strip of widthW@d,t, then

FIG. 2. The dependence ofC0 on R/h5t/(t12d) for a homo-
geneous cylindrical conductor close to a ground plane.
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C05
emW

4pd
~ t@l!, ~3.12a!

C05
eW

4p~d1t/3!
~ t!l!. ~3.12b!

In the quantum limit, with only the first quantum level pop
lated,C0 may still be presented with Eq.~3.12b!, though the
thicknesst must be replaced by an effective thicknessteff .
For a square well potential with infinite barriers the effecti
thickness is

teff5tS 11
3

4p2D.1.07t. ~3.13!

Combining Eq.~3.2! with Eq. ~3.8! provides a diffusion-
like relation between the current and the linear charge d
sity,

I v~x!52D8
dqv~x!

dx
1I s~x!, ~3.14!

with

D85D1
sA

C0
. ~3.15!

With the help of Eq.~3.1! we once again get a simple equ
tion for the current

d2I v~x!

dx2 2k̄2~v!I v~x!52k̄2~x,v!I v
s ~x! ~3.16!

with

k̄2~v!52
iv

D8
. ~3.17!

We now analyze the conditions under which Eq.~3.8! is
valid. Expanding Eq.~3.16! in spatial harmonics we see th
harmonics with wave numberkx@uk̄u5Av/D8 contribute
negligibly to the current fluctuationsI v . Thus, at frequencies
v& t̄T

21[D8/L2!D8/d2,D8/t2, we can consider only the
wave numberskx which are much smaller thand21,t21. For
these harmonics, the transversal gradients of the electric
dominate in the Poisson equation, justifying Eq.~3.8! at that
frequency range.

Equation~3.8! is not valid at distances comparable tod
from the interface with the electrodes. Equation~3.16!
should therefore be solved only inside the conductor, w
boundary conditions at6L8/256(L/22d), whered is now
some distance for whichd!d!L,1/uk̄u. To find these
boundary conditions we write down Eq.~3.2! ~which is valid
even near the interface! in the form

I v~x!52s
d

dx FFv~x!1
4p

e
l2qv~x!G . ~3.18!

@The sourcesI s(x) in the small interface region may be n
glected.# The values ofqv and Fv at the actual interface
x56L/2 are found from the boundary conditions Eqs.~2.17!
and~2.18!. First note that whileqv can be arbitrarily large on
the electrode side,leqv should remain finite, since it is equa
n-

ld

h

to the total interface charge in the electrode. In the case w
the screening length in the electrodesle is much shorter than
l, Eq. ~2.17! therefore gives~on the conductor side of the
interface!

qvS 6
L

2D50. ~3.19!

Since the voltage drop in the electrode vanishes, the c
straint of fixed voltage@i.e., the equivalent of Eq.~3.5!# in
this model becomes

FvS 6
L

2D57
VvA

2
. ~3.20!

Integration of Eq.~3.18! from 6L/2 to 6L8/2, and use of
Eq. ~3.8! at 6L8/2, now yields the required boundary con
ditions,

qvS 6
L8

2 D57
VvAs

2D8
. ~3.21!

In this ground-plane model, finite charge densities in
conductor create image charges on the ground plane. Thu
any finite frequencyv some parts of the interface curren
are responsible for periodic recharging of the ground pla
@see Fig. 1~c!#. Therefore, the currentI v

e measured in the
electrodes at a distance far from conductor-electrode in
face may be different from the current which flows throu
this interface~note also that the two interface currents are n
necessarily equal!. In an experimental scheme symmetr
with respect to the conductor, the currentI v

e flowing into the
external circuit is the symmetric component of the two c
rents:

I v
e 5

1

2 F I vS 2
L

2D1I vS L

2D G . ~3.22!

While the currentsI v(6L/2) in this expression are the cu
rents at the electrode side of the interfaces, due to Eq.~2.18!
they are equal toI v(6L8/2). Of course, if the leads connec
ing the sample to the measurement instrument have s
mutual capacitance, the current in the instrument will be l
than I e(v) given by Eq.~3.22!, but this loss factor may be
taken into account by the standard circuit theory method

IV. THE RESPONSE FUNCTIONS

From now on we will consider the most natural case
well-conducting electrodes of size much larger thanle , and
resistance negligible in comparison with the resistanceR
5L/sA of the conductor. We first show that the total noi
produced in the electrodes is negligible compared to t
originating in the conductor. For equilibrium noise, this is
direct consequence of the fluctuation-dissipation theor
The same is true for shot noise, because of the fact that
electron distribution function in the electrodes is almo
equilibrium. The electrode-conductor interface is also not
appreciable source of noise since, in the diffusion appro
mation studied here, the electron distribution at the cond
tor side of the interface is the same equilibrium Fermi dis
bution as in the electrode. Moreover, even deviations fr
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this approximation would result at the most in a few inelas
scattering events in the electrodes, leading to thermaliza
of hot electrons arriving from the conductor. As long asl
!L, the number of those events per transferred electro
much smaller than the number of elastic events@;(L/ l )2#
the electron experiences in the conductor, so the therma
tion process at the interface can also be neglected as a s
of noise.

In this situation, the solutions to Eqs.~3.6! and~3.16! can
thus be presented in the form

I v~x!5Y~x;v!Vv1
1

L E
2L/2

L/2

K~x,x8;v!I v
s ~x8!dx8.

~4.1!
wi
c
n

is

a-
rce

Equation~4.1! shows that the current at frequencyv at any
point x is composed of two components. The first is t
response to the applied voltage across the conductor, an
second is the response to the random Langevin cur
sources inside the conductor.

The response functionsY(x;v) andK(x,x8;v) are found
by solving the equations for the current withI v

s (x)50 and
Vv50, respectively. They can be presented in a comp
form by defining the following auxiliary functions, withh
5kl2/le , u5kL/2, sinch(u)5sinh(u)/u, V5ve/4ps,
andx5uxu2L/2:

D~v!5
1

cosh~u!1h sinh~u!
, ~4.2!
E6~x,v!5H u

12 iV
@sinh~u6kx!1h cosh~u6kx!# ~ uxu,L/2!,

u

12 iV
h exp~2kex! ~ uxu.L/2!,

~4.3!

F~x,v!5H 12 iVD~v!cosh~kx!

@12 iV#@12 iVD~v!sinch~u!#
~ uxu,L/2!,

12 iV@12hD~v!sinh~u!exp~2kex!#

@12 iV#@12 iVD~v!sinch~u!#
~ uxu.L/2!,

~4.4!

G6~x,v!5
iVE6~x,v!

sinh~u!1h cosh~u!
, ~4.5!

H6~x,v!5 iVD~v!@F~x,v!1E6~x,v!#. ~4.6!
se

ich
For the sandwich model, the response functions are

K~x,x8;v!5F~x,v!6G6~x,v!sinh~kx8!

2H6~x,v!cosh~kx8! ~4.7!

and

Y~x;v!5
12 iV

R
F~x,v!, ~4.8!

where, in Eq.~4.7!, the upper sign should be used forx8
.x and the lower sign forx8,x.

In the ground-plane model, the functionsK andY inside
the conductor are found to be the same as for the sand
model ~but with D→D8) in the limit of vanishing conduc-
tivity of the conductor, i.e., in the formal limith2;V→`
~which also impliesk5k̄):

K~x,x8;v!5cosh~ ū6k̄x!
cosh~ ū7k̄x8!

sinch~2ū!
~4.9!

with ū5k̄L/2 and with the upper sign used forx8.x and the
lower for x8,x. The response in the electrodesKe(x8;v) to
a fluctuation atx8 is obtained with the help of Eq.~3.22!,
ch

Ke~x8;v!5
cosh~ k̄x8!

sinch~ ū!
. ~4.10!

The response to voltageY(x,v) in this model is identical
to Ke(x;v)/R,

Y~x;v!5
1

R

cosh~ k̄x!

sinch~ ū!
. ~4.11!

At low frequencies, and in both models, the respon
functions tend to constant values:

K~x,x8;0!51, Y~x;0!5
1

R
. ~4.12!

Figure 3 shows the response functions for the sandw
model at intermediate and high frequencies. AtvtT@1, the
responses are exponentially close to the source, i.e., tox8 in
the case ofK(x,x8;v) and to6L/2 in the case ofY(x;v).
At any frequency and position, and for any value ofL/l,

1

L E
2L/2

L/2

K~x,x8;v!dx851. ~4.13!
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This general result is a manifestation of the constraintVv

50, as can be seen by assuming a uniform current sourc
Eq. ~4.1!. Then, the only solution of the problem whic
maintains the constraint of fixed voltage is a uniform curr
everywhere,I v(x)5I v

s , leading immediately to Eq.~4.13!.
The relation between the spectral density of the curr

noiseSI(x,v) and the response functionK(x,x8;v) is made
clear through the identity

SI~x,v!d~v!52^I v~x!I v* ~x!&. ~4.14!

With Eq. ~4.1!, and using the condition of fixed voltage an
the locality of the current correlator@Eq. ~2.14!#, this expres-
sion becomes

SI~x,v!5
2A

L2 E
2L/2

L/2

uK~x,x8;v!u2S~x8!dx8. ~4.15!

The noise power deep inside the electrodes is given by

SI~v![SI~`,v!. ~4.16!

The dynamic conductance is the response in the electrod
external voltage,

Y~v![Y~`,v!. ~4.17!

V. RESULTS: CONDUCTANCE
AND EQUILIBRIUM NOISE

A. Sandwich model

For the sandwich model we have from Eqs.~4.4!, ~4.8!,
and ~4.17!

Y~v!5
12 iV

R

1

12 iVD~v!sinch~u!
. ~5.1!

If the screening length in the electrodes is very small co
pared toL, thenhu@1, and we get

Y~v!5
12 iV

R
5R212 ivC, C5

eA

4pL
, ~5.2!

FIG. 3. Position dependence of the real~solid lines! and imagi-
nary ~dashed lines! parts of the response functions for the sandw
model at high frequencies, and for two values ofL/l. Re@Y(x;v)# is
in units of 1/R. Im@Y(x;v)# is in units of2V/R. x850.3 here.
in

t

t

to

-

for any frequencyv. Equation~5.2! allows a simple interpre-
tation: Y(v) is just the complex admittance of the condu
tanceR21 coupled in parallel to the capacitorC formed by
the two electrodes.

However, already atL/le510 the correction

F e~v!5
1

12 iVD~v!sinch~u!
~5.3!

to this simple result is significant. Figure 4 shows the r
and imaginary parts of this correction for different values
L/l, for the casel5le ~for example, the conductor and th
electrodes are made of the same material, but the electr
have much fewer impurities!. For L/le.1, the correction
term is insensitive to an increase ofl, so the appropriate
curves of Fig. 4 also correspond to the case of a low-den
conductor between metal electrodes. Figure 4~a! shows the
termD(v)sinch(u) which appears in the denominator of E
~5.1!. The low-frequency value of this term is equal to
2(4ps/e)RE(0), with E(0)[ idY/dvuv50 being the
‘‘emittance.’’ For a long conductor (L/l@1)

E~0!5
eA

4pL
5C. ~5.4!

As in Eq. ~5.2!, the emittance in this case can be viewed
the sum of the intrinsic emittance of the conductor and t
of the capacitor formed by the electrodes. Then, the to
emittance~5.4! is entirely due to the parallel-plate capac
tance, and the emittance of the ‘‘conductor itself’’ equa
zero, in agreement with the result of Ref. 21. However,
seen from Fig. 4~a!, this result does not hold for a relativel
short conductor, which means that the simple view of
additive emittance does not generally hold.

It is important to note that the calculations leading to E
~5.1! were not dependent on the distribution function of t
electrons. Therefore, the correction toY(v) is due only to
the screening properties of the system, and does not de
on thermalization or phase breaking of the electrons. Eq
tion ~5.1! is thus also valid if the inelastic scattering length

FIG. 4. The real and imaginary parts of the correction to
conductance of the sandwich model. The various curves are
different values ofL/l, and for le5l. ~a! D(v)sinch(u). The
low-frequency value of this quantity is equal to one plus the em
tance of the system.~b! F e(v)5Y(v)/@(12 iV)/R#.
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smaller thanL. Despite its mesoscopic nature@i.e., the fact
that Y(v) assumes its ordinary value Eq.~5.2! for large
enoughL#, the correction discussed here should not be c
fused with other mesoscopic corrections to the conducti
of diffusive wires.33

Let us now comment on the possibility of observing t
results depicted in Fig. 4. These results deviate from
standard theory only whenL is comparable tol and the
frequency is comparable to the crossover frequency 2s/e. In
order for the diffusion approximation used in Sec. II to app
to this regime, two conditions must be met:

kFl @2p ~5.5!

and

4p

e
st5

4kFl 2

3pa0
!1 ~5.6!

with a05e\2/me2 the effective Bohr radius. Combining th
two leads to the condition34

kFa0@
16p

3
. ~5.7!

The screening lengthl is given by

l5F e

4pe2NG1/2

5
1

2 S p

3 D 1/6

a0~a0n1/3!21/2. ~5.8!

Combining Eqs.~5.7! and~5.8!, we get the final criterion@in
addition to Eq.~5.5!# which should be met in order to ob
serve the results presented in this section:

a0@5l. ~5.9!

For example, inn-GaAs, a0'10 nm, while inn-InSb, a0
'60 nm. Therefore, samples withL/l;10 ~where we pre-
dict deviations of conductance by more than 15% from
results of the standard theory! can be implemented with no
fundamental difficulties. As an example consider
InSb sandwich layer of thicknessL560 nm with
n5831019 cm23 and l 58 nm. Then l'6 nm, lF
'4.7 nm, s'1015 Hz, andt'0.7 fs, so that the require
length hierarchyL@ l @lF , as well as Eq.~5.6!, are crudely
achieved.36 A practical realization of such an experime
might prove to be difficult, though, because of the high m
surement frequencies involved~well in the optical range!.

In order to implement, say,L/l;0.1, the thickness of an
InSb layer should be smaller than 1 nm, i.e., a few atom
layers, so that our continuous model is at the border of
validity. Moreover, in the caseL!l, our model is strictly
valid only if the scatterers in the dirty conductor are neut
~e.g., dipole scatterers!. This is because the Coulombic po
tential of charged impurities would not be screened in t
case and therefore the scattering would not be short-ran
as assumed in Sec. II.

To summarize, the implementation of the ratioL/l;1 in
the sandwich geometry seems possible in some special
terial systems. For lower ratios our continuous model
hardly adequate, at least for the materials we are aware
For this reason, we will not discuss the sandwich mode
the concluding Sec. VII~note that the above discussion do
not apply to the ground-plane model!. We have extended
-
y

e

e

-

c
ts

l

s
d,

a-
s
of.
n

Fig. 4 to lower values ofL/l only to provide a better under
standing of the effects of screening on the conductance
this conceptually simple system.

B. Ground-plane model

For the ground-plane model, Eqs.~3.22! and ~4.11! lead
to the following expression for the conductance of the s
tem:

Y~v!5
1

R S k̄
L

2D cthS k̄
L

2D . ~5.10!

This expression is identical to the conductance of a mac
scopic wire of resistanceR coupled to the ground plane vi
capacitance per unit length of

Ceff5S 1

C0
1

1

CS
D 21

, ~5.11!

with

CS5
eA

4pl2 . ~5.12!

The boundary conditions for this model, Eq.~3.21!, can also
be rewritten in terms ofCeff as

qvS 6
L8

2 D5
Vv

2
Ceff . ~5.13!

Thus, the ground-plane model can be described by
equivalent circuit shown in Fig. 5. The capacitanceCS is due
to the fact that in thin enough wires the screening is
efficient, so the current is determined by the gradient of
full electrochemical potentialw5F1Am/e, rather than by
F5Aqv /C0 alone. In other words, additional charging
the wire increases not only its electrostatic energy (}C0

21),
but also its internal energy (}CS

21), because of the neces
sary rise in the Fermi level. In 2D conductors, Eq.~5.12!
reduces to the well-known result37 for the two-dimensional
electron gas. The effects of ‘‘electrochemical capacitance
similar to CS on the emittance of ballistic structures we
studied in Ref. 19. There is also a very interesting analo
between Eq.~5.12! and the expressionL0

215A/4pl2 ~Ref.
38! for the specific kinetic inductance of a superconduc
~in this casel is London’s penetration depth!.

When Cs!C0 , the high-frequency (vt̄T@1) conduc-
tance is given by

Y~v!5
1

R

L

2AiD /v
, ~5.14!

FIG. 5. Equivalent circuit for the geometry of the ground-pla
model.
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the absolute value of which is just the dc conductance o
conductor of the same conductivitys, but with length equal
to twice the diffusion distance in time 1/v. Thus, carriers
injected at each of the electrodes are diffusing in and ou
the conductor, without reaching the opposite electrode,
without affecting it by electric fields~the suppression of the
longitudinal electric fields is the only role of the groun
plane in this limit!.

C. Equilibrium noise—Both models

Equilibrium thermal noise is related to the conductance
the fluctuation-dissipation theorem~we assumeT@\v)

SI
eq~v!54T Re@Y~v!#. ~5.15!

However, sinceY(x,v) gives the current response to th
externalvoltage, the local noiseSI

eq(x,v) is not directly re-
lated to it, and must be calculated independently.

At zero voltage, the average distribution function in t
conductor is the Fermi-Dirac distribution given by E
~2.16!. Using this distribution in Eq.~2.15! gives

S52sT ~5.16!

for the correlator of the Langevin sources. The spectral d
sity for the equilibrium noise is thus found from Eq.~4.15!,

SI
eq~x,v!5

4T

RL E
2L/2

L/2

uK~x,x8;v!u2dx8; ~5.17!

this equation in fact expresses the fluctuation-dissipa
theorem for both the local and external fluctuations.

At zero frequency Eq.~4.12! gives

SI
eq~x,0!5

4T

R
, ~5.18!

as expected. At high frequencies (V,vt̄T@1), the equilib-
rium noise inside the conductor is given by

SI
eq~x,v!5

2T

R
Avt̄T/2@ f ~x!1 f ~2x!# ~ uxu,L/2!

~5.19!

with

f ~x!52e2k1Lucosh~u2kx!u2@e2k1x2e2k1L# ~5.20!

and with k15Re(k), so k1L5Avt̄T/2. f (x)51/2 through-
out the conductor, except at a narrow layer of width 1/k1
near the edges, where it approaches its limiting val
f (2L/2)50, f (L/2)52. The position and frequency depe
dence ofSI

eq is shown in Fig. 6~a! for the caseL/l5L/le

510. The general features here do not depend on scree
The method presented here for calculating the cond

tance does not depend on the form of the distribution fu
tion @other than the diffusion approximation, Eq.~2.1!#.
Therefore the results apply also to the case when str
( l ee!L, with l ee the electron-electron scattering lengt!
electron-electron scattering is present in the conductor.
equilibrium noise is also not affected by the e-e proces
since this scattering does not affect the equilibrium Fer
Dirac distribution, which is the input in Eq.~2.15!.
a
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VI. RESULTS: NONEQUILIBRIUM NOISE

In this section we will present the results on nonequil
rium noise for the ground-plane model; these results are
applicable for the sandwich model in the regimel,le@L. In
the opposite limit (l,le!L) the noise in the sandwich
model is white and is equal to the zero-frequency noise in
ground-plane model.13 In contrast to the case of equilibrium
noise, the shot noise is very sensitive to the strength
electron-electron interaction in the conductor, so we anal
this noise in the two limits of weak and strong e-e scatteri

A. Weak electron-electron scattering„L ! l ee…

When L! l ee, the electron distribution function is foun
as a steady-state solution of Eq.~2.6!. Under the condition
~2.12! and for current perpendicular to the interfaces,
reads3

f̄ s~E,x!5S 1

2
1

x

L D f 0S E1
1

2
eVD1S 1

2
2

x

L D f 0S E2
1

2
eVD .

~6.1!
Equation ~4.15! together with Eqs.~2.15! and ~2.16! now
give a general expression for the nonequilibrium noise,

SI~x,v!5
2

RL E
2L/2

L/2

dx8uK~x,x8;v!u2FS11S2

4x82

L2 G
~6.2!

with

FIG. 6. Position and frequency dependence of the current n
intensity inside the conductor.~a! Equilibrium noise.~b! Shot noise.
HereL/l5L/le510, but the general features of this figure are n
sensitive to the screening properties.
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S6~T,V!5T6
eV

2
cthS eV

2TD . ~6.3!

Figure 6~b! shows the spatial and frequency depende
of the shot noise for the caseL@l,le and T!eV. It is
remarkable that inside the conductor the high-freque
noise is large even at zero temperature:

SI~x,v!5
eI

2
Avt̄T

2 S 12
4x2

L2 D ~vt̄T@1!. ~6.4!

This rise is due to the highly nonequilibrium distribution
carriers, Eq.~6.1!. Specifically, at any frequencyv the cur-
rent fluctuations at positionx are due only to electrons a
distances;AD/v from x. The smaller this range, th
smaller is the smoothing of the singularity in the ener
distribution of the electrons in the range, and the larger is
noise.

The noise in the external electrodes is found by using
external response functionKe(x8;v) in Eq. ~6.2!. Whenever
Ke(x8;v)51, i.e., at low frequencies, or whenl,le!L in
the sandwich model, Eq.~6.2! reduces to

SI~v!5
4

R F2

3
T1

1

6
eV cthS eV

2TD G ~6.5!

as was found by Nagaev.3 However, in the general case, th
noise in the electrodes exhibits strong frequency depend
on a frequency scale of the order of the inverse effec
Thouless time 1/t̄T , which is also affected by the screenin
lengthsl,le .13 Figures 7~a! and 7~b! show the dependenc
of the noise on frequency and temperature in the grou
plane model. Atvt̄T@1,

SI~v!5
2T

R
~Avt̄T/221!1eI cthS eV

2TD1OS 1

Av
D .

~6.6!

FIG. 7. Frequency and temperature dependence of the spe
density of the nonequilibrium noise in the limits of weak~a!,~b! and
strong~c!,~d! electron-electron scattering.
e

y

e

e

ce
e

d-

At strictly zero temperature, Eq.~6.6! gives the high-
frequency result presented in~Ref. 13!:

SI~v!5eI. ~6.7!

At finite temperatures, an additional crossover appears
vt̄T;(eV/T)2/2, above which the equilibrium noise dom
nates @Fig. 7~a!#. At any frequency, Eq.~6.6! shows that
noise growslinearly with the temperature, Fig. 7~b!.

The frequency dependence of the zero-temperature n
in the conductor is the same as that of the finite-tempera
noise@compare Eq.~6.6! with Eq. ~6.4!#. Therefore, one can
assign an effective position-dependent temperature to
distribution function~6.1!:

Teff~x!5
eV

4 S 12
4x2

L2 D . ~6.8!

Note, however, that this distribution function does not ha
the Fermi-Dirac form.

B. Strong electron-electron scattering„L @ l ee…

We now consider the case when electron-electron sca
ing is so strong that the scattering lengthl ee is much smaller
thanL ~though still larger thanl ), but is weak enough so th
single-particle Boltzmann equation is still valid (l ee@lF).
Its solution is then given by the local-equilibrium distribu
tion

f ~E,x!5
1

11expFE2m~x!

Te~x! G ~6.9!

with

m~x!5m2
x

L
eV ~6.10!

and with a local electron temperatureTe which satisfies the
equation9,10

d2

dx2 Te
2~x!52

6~eV!2

p2L2 ~6.11!

under the boundary conditionsTe5T at x56L/2. The elec-
tron temperature is thus given by

Te~x!5TA11j2@12~2x/L !2# ~6.12!

with

j5
)eV

2pT
. ~6.13!

This distribution was also found in Ref. 5 by separating t
conductor into coupled phase-coherent conductors of len
l ee.

With this distribution, the current correlator~2.15! be-
comes

S~x!52sTe~x! ~6.14!

so the nonequilibrium noise in the system is

tral
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SI~x,v!5
4

RL E
2L/2

L/2

dx8uK~x,x8;v!u2Te~x8!. ~6.15!

In what follows, we will concentrate on the current noi
present in the electrodes. In all cases for whichKe(x8;v)
51 ~i.e., vt̄T!1 or L@l,le in the sandwich model!, the
result obtained in Ref. 5 is recovered:

SI~v!5
2T

R F11S j1
1

j Darctan~j!G . ~6.16!

At high temperatures (j!1), Eq. ~6.16! gives the regular
equilibrium noiseSI(v)54T/R. At low temperatures the
well-known result5,9,10

SI~v!5
)eI

2
~6.17!

is obtained.
All the above results are very close to those forL! l ee.

However, thehigh-frequencybehavior of nonequilibrium
noise in a system withL@ l ee is radically different from that
in a system withL! l ee.

Figures 7~c! and 7~d! show the spectral densitySI(v) as a
function of frequency and temperature for the ground-pla
model ~or, equivalently, the sandwich model withL
!l,le), with the response function~4.10!. In the high-
frequency limit, Eq.~6.15! yields

SI~v!5
T

R
vt̄TE

0

1

ek1L~y21!A11j2~12y2!dy.

~6.18!

The characteristic parameter of this integral is the rati

j05
2j2

Avt̄T /2
5

3~eV!2

2p2T2Avt̄T /2
. ~6.19!

At small and large values of this ratio, Eq.~6.18! gives,
respectively,

SI~v!5
2T

R S vt̄T

2 D 1/2

1
3R~eI!2

2p2T
@eV!T~vt̄T!1/4#,

~6.20a!

SI~v!5A2p3

3 S vt̄T

2 D 3/4 T2

R2eI
1A 3

2p S vt̄T

2 D 1/4

I

@eV@T~vt̄T!1/4#. ~6.20b!

At high temperatures Eq.~6.20a! is always valid. The
leading term invt̄T is the same as forL! l ee. However, in
contrast to Eq.~6.6!, the nonequilibrium correction to thi
noise has aquadraticdependence on the currentI .

More interesting is the low-temperature limit,j@1. As
long as the frequency is not very high,j0.1, the nonequi-
librium term is linear ineI, as usual. However, even atT
→0 the noise grows withv indefinitely as (vt̄T)1/4 @as op-
posed to the case ofl ee@L, see Eq.~6.7!#. This dependence
e

and the transition tov1/2 dependence at high enough tem
perature or frequency are shown in Fig. 7~c!. The low-
temperature behavior of the high-frequency noise can be
derstood by comparing the noise correlatorsS in Eqs. ~6.2!
and ~6.14!: The response functionKe(x8;v) @Eq. ~4.10!# is
significant only for sources atx8 within a distanceAD8/v
from the interfaces with the electrodes. Therefore, the c
relator ~6.14!, which drops more gradually nearx56L/2
than the correlator in Eq.~6.2!, produces noise in the elec
trodes, which grows faster with frequency.

The transition to thermal noise at low temperature n
occurs atvt̄T;(eV/T)4/20 ~i.e., at higher frequencies tha
for the casel ee@L). Below this crossover Eq.~6.20b! is
valid, and the thermal term is nowquadratic in T, Fig. 7~d!.
These two results, namely, the unbound increase of the n
with frequency atT50 and theT2 correction to the shot
noise, are unique to systems with strong e-e interaction,
can serve as a clear experimental identification of such in
actions.

VII. DISCUSSION AND CONCLUSIONS

We believe that our work has produced two major resu
of general importance. First, the high-frequency noise
small diffusive conductors is considerably affected
screening in the conductor, the electrodes leading to the c
ductor, and the surrounding media. Screening also ha
measurable effect on the ac conductance of the system.
‘‘external screening’’ is in fact an intrinsic part of the prob
lem. For example, the effects of screening on the dyna
properties are very different for our two model geometri
which basically differ only in their external electromagne
environment.

In particular, with due account of screening, the no
spectrum isnot white even at frequencies for which quantu
fluctuations are negligible and the Drude conductance
frequency-independent~i.e., v!eV/\,1/t). This result is
due to the fact that at frequencies higher than the inve
Thouless time, the current in the electrodes may be respo
ing only to fluctuations in the conductor which are within
distance 1/k̄!L from the interfaces with the electrodes@see
Eq. ~4.10!#. In these regions the distribution function
nearly equilibrium, and therefore the noise is strongly su
pressed: its effective temperature~at T50) is eV/k̄L, Eq.
~6.8!. However, in order to satisfy the basic relation~4.13!,
the external response to fluctuations in those regions mus
very large, Ke(x8;v)5k̄L/2 @see also Eq.~4.10!#. Thus,
each interface can be viewed as a fundamental noise so
of temperatureeV/2, which is just the effective temperatur
of the classical Schottky noise. Since the two sources are
correlated, the total noise in the electrode is 1/2 of
Schottky value, Eq.~6.7!. @In the sandwich model, the abov
description holds only for the caseL!l,le . In the opposite
limit, the strong screening allows the current in the ele
trodes to respond uniformly to all fluctuations in the condu
tor, thus retaining the 1/3 suppression factor, Eq.~6.5!#.

The reason for the peculiarity of the ground-plane mo
is now apparent. Here, charge fluctuations in the condu
are screened by the close ground plane. Therefore, h
frequency fluctuations inside the conductor are not felt by
electrodes even if screening is strong in the conductor
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the electrodes. Thus, the frequency dispersion of the nois
obtained in this model even ifl,le!L.

Notice that the result~3.22!, and therefore Eq.~6.7!, is
exactly valid only for the case in which the voltage drop, a
the ground plane, are symmetric with respect to the lengt
the conductor. If, for instance, the ground plane is coup
much more strongly to the right electrode, then the curr
through the electrodes would be the same as the curre
the left conductor-electrode interface, and the noise va
would be 2eI. Thus, Eq.~6.7! is not universal in the sens
that by changing the geometry of the system any noise v
betweeneI and 2eI can be obtained.

The effect of screening on noise discussed in this wor
very different from the effect it has on classical shot noise
vacuum diodes. In the latter case,11 the low-frequency noise
is suppressed when the space-charge in the diode~and thus
the screening! is large. This is due to the fact that, say,
upward instantaneous fluctuation of electron emission res
in an increase of negative space charge and hence the p
tial barrier near the emitter, so that not all excess electr
arrive at the collector. Since the thermionic current depe
exponentially on the barrier height, this negative feedbac
very effective, and the shot noise may be considerably lo
than the Schottky value. In our case, however, this is
true. Since the Fermi level is higher than the electrost
potential, electron potential fluctuations throughout the
vice hardly affect the current.

Our second major result is that the high-frequency no
in diffusive conductors is strongly dependent upon
strength of the short-range electron-electron scatter
When such scattering is strong, the nonequilibrium nois
not only nonwhite, but does not even saturate at high
quencies, and can in fact be larger than the classical n
value 2eI. The quadratic dependence of the noise on te
perature for this case, as opposed to the linear dependen
the case of weak e-e scattering~see Fig. 7!, indicates that the
sources of the two types of noise, namely the thermal
shot noise, are coupled whenL@ l ee, but are independen
~and thus additive! in the opposite limit,L! l ee. In addition
to the basic significance of this result, the different functio
dependence can serve as an experimental diagnostic too
the determination of the ratiob5L/ l ee in a given sample.
Other quantities which are sensitive to this ratio are usu
due to phase coherence of the electrons~and its absence a
b@1) such as the corrections to the conductance due
weak localization22 ~as noted above, the regular, semiclas
cal conductance is not sensitive to e-e scattering!. In our
case, however, the strong dependence onb is purely semi-
classical, as it is due to the difference between the distr
tion functions at different values ofb.

The large value of noise at high frequencies is due to
forms of the nonequilibrium distribution function and th
response function, as was explained in Sec. VI B. Ultimate
it originates from screening which relates the measured
rent fluctuations in the electrodes to the scattering ofmany
electrons in the conductor, all behaving collectively. Thus
should not be too surprising that at some particular situati
correlations are such that the measured noise is larger
the single-particle classical shot noise value 2eI. The same
is true for the increase of noise with frequency, which
quite different from the usual behavior of high-frequen
is
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noise. For example, regular ‘‘diffusion noise’’ in semico
ductors~see, e.g., Ref. 28! decreaseswith frequency with the
same characteristic frequency 1/tT as in the present work
However, this type of noise is very different from the on
studied here: classical diffusion noise is modulation noi
i.e., noise due to the change in the conductance when e
trons are diffusing in and out of the sample. It is a seco
order effect proportional toI 2, unlike the shot noise which is
proportional toI . Our arguments show@see Eqs.~2.9! and
~2.12!# that modulation noise is negligible in the degener
system we are studying if the density fluctuations are m
smaller than the average electron density. This conditio
clearly fulfilled in our system.

Generally, in any semiclassical theory noise must even
ally decrease with frequency. In our case, this happen
frequencies higher than the inverse elastic scattering t
1/t, as can be concluded from Eq.~2.4b!: at v@1/t fluctua-
tions of f a , and thus of the current, are proportional to 1v
@in this limit the Langevin source to be added to Eq.~2.4b!
would also depend on frequency, since the scattering ev
are correlated at times shorter thant#. At v!1/t, however,
it is only f s ~i.e., the density!, and notf a , which is directly
dependent on frequency@see Eqs.~2.4!#. The reason why this
dependence does not necessarily imply a decrease of the
rent fluctuations with frequency is evident from the simp
discussion of Sec. III A.

In recent years there has been a growing experime
interest in the dynamic properties of diffusive mesosco
structures. While the results presented here are consis
with the results of all the relevant published experiments
which we are aware, none of those experiments explore
regions where we predict deviations from previous theor
The ac conductance of diffusive samples was measure
microwave frequencies with the motivation of comparis
with weak localization theories.23,39,40Thus, in all those ex-
periments the samples were very much longer than
screening length, and a ground plane was not availa
Noise measurements also did not reach the frequency ra
of interest. In Refs. 41–43, the observation frequencies w
400 KHz ~or less!. In Ref. 44, the noise was measured
frequencies up to 20 GHz, but the sample was made of r
tively well-conducting gold, with an inverse Thouless tim
of about 100 GHz. Nevertheless, we see that the experim
tal parameters are quite close to those studied in this wo

Due to the reasons discussed in the end of Sec. V A
seems that the experimental verification of the results p
sented in this work should be mainly feasible using thin co
ductors located very close to a ground plane~gate!. In many
experiments this geometry is a natural choice~e.g., when the
conductor is two-dimensional!, due to its simple fabrication
procedure. This geometry also presents the possibility
controlling the conductor’s parameters with gate voltage,
Ref. 41. For typical experimental parameters,41 D8;D
;103 cm2/s and L;10 mm, the expected crossover fre
quency in this geometry is 30/2pt̄T;5 GHz, i.e., within the
range currently available for accurate noise measurem
~cf. Refs. 44 and 45!.

Compared to the measurements of the noise in the e
trodes, measurements of the local noise@Figs. 6~a! and 6~b!#
seem much more difficult. Nevertheless, one can think
novel techniques to measure this quantity. For instanc
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measurement scheme of the local potential spectral den
which is directly related toSI(x,v) by the continuity equa-
tion, can be made possible by means of a capacitative
pling of some point in the conductor to an external sing
electron-transistor probe.46 The observation of this noise i
then facilitated by its very large magnitude~Fig. 6!.
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