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Phonon generation by current-carrying nanostructures
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We calculate the rate of acoustic phonon generation by a current-carrying, ballistic quantum channel, defined
in a two-dimensional electron gas by a split gate. Both uniform and nonuniform channels are considered. The
generation rate of acoustic phonons of a particular frequency and direction of propagation is a steplike function
of the applied bias voltage, with threshold voltages that are calculated in the paper. The emitted phonons have
a characteristic angular distribution, which changes significantly at the thresholds. The voltage dependence of
the generation rate is shown to be sensitive to the shape of the channel. Thus, the spectral and spatial
distributions of the emitted phonons bear information both on electron-phonon coupling in the vicinity of the
device and on characteristics of the electron spectf@®163-182609)02904-3

I. INTRODUCTION mentioned generation of heat inside a ballistic nanostructure.
It is a complicated problem to calculate the electron-
Electronic properties of nanostructures can be effectivelyphonon coupling constant for a realistic nanostructure be-
investigated by making use of the interaction between eleccause of position-dependent screenisge discussion in Sec.
trons and phonons. There has been done much experimenttl). We do not attempt here to solve it and assume the cou-
work on the response of nanostructures to nonequilibriunPling constant to be known. o
ballistic phonons and to surface acoustic waves. See for ex- /N Sec. Il we consider phonons that are generated inside a
ample, Refs. 1 and 2 and references therein. In this papelond, uniform channel. The effects of smooth edges are con-
however, we concentrate on the reverse effect, namely on tiidered in Sec. lll. As a result, one can describe the phonon
emission of acoustic phonons from a nanostructure carryin§Mission from realistic quantum channels, which usually
an electric current. The purpose of the paper is to investigate®ntain a long uniform part with smoothly increasing width
the spectral and spatial distribution of generated phonons d¥ar the edges.
a function of the voltage across a one-dimensigoauasi-
one-dimensionalchannel. The concrete results are obtained II. UNIFORM CHANNEL
for the case of a channel defined in a two-dimensional elec-
tron gas(2DEG) at the interface of a semiconductor hetero- In a uniform channel, the electron states can be repre-
structure by means of a split gate at negative potential. Ph¢gented as
non emission from various nanostructures has been

extensively studiedsee, e.g., Refs. 3 and 4 and references l/,np(r)zgflm S )expipx/f),
therein). However, we are not aware of any work on emis-
sion of acoustic phonons from a biased quantum wire. where the normalization length is assumed as the channel

Using the Landauer-Btiker-Imry approaci,we consider length (i.e., the distance over which the potential drgps
a ballistic quantum channel that connects two thermal reselynqy  are the longitudinal and transverse directions respec-

voirs, each being in an independent equilibrium state. As Wagyely, p is thex component of the electron quasimomentum,
recently ;howr‘?,most of the heat from a current through the 554’ (v ) is the wave function of transverse quantization,
channel is generated in the reservdit¢evertheless, because the energy being

of finite electron-phonon interaction inside the channel, part

of the heat should be generated by the nanostructure itself 0. 2

via emission of phonons. In the equilibrium there is a de- €n(P) =€yt p/2m.

tailed balance between the emitted and absorbed phonons.

However, our situation is nonequilibrium, as the distributionsHere m is the electron effective mass, aefi=e,(p=0) is

of electrons penetrating into a biased quantum channel frorthe bottom of thenth transverse band. To be concrete, we
the leads are characterized by different chemical potential€onsider a channel defined by a split-gate in a
Therefore, the phonon emission prevails over the absorptioraAs-ALGa, _,As heterostructure, and therefore, assume
Such phonon emission results in nothing else than the aforghe system to be mechanically uniform in the direction per-
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pendicular to the interface. Consequently, we consider bulk
3D acoustic phonons with the displacemenéxp(q-r).
This assumption should be modified in the case of acousti-
cally nonuniform quantum wires where confined modes can
be presentsee, e.g., Ref.)8 However, the main features of
phonon generation remain similar. The matrix element for
phonon-induced transitions is defined a€,,(q,)
={(xn’|€xp(=iq.r )| xn), Whereq is the phonon wave vec-
tor.

The number of phonons with wave vectpr  Ny(r,t), is
given by the solution of the Boltzmann equation for phonons
(see, e.g., Ref.)9

Mo, n=R

o TSVNg=R.

L . . Pun’ kyn’ p
The phonon generation is described by the collision operator
R=(INg/dt)con, Which can be written &s . hq,

2 2 FIG. 1. Schematic representation of a transition from an electron
R= A nEn, f déqu|Cnnr(qL)| state of subband with energye and momentunk,, to a state of
subbandh’ with energye—# o and momentunp,,,» =Ky — A0y -

X [fn,p+hqx(l_ fn’p)(Nq+ 1) - 1:n’p(:l-_ fn,p+th)Nq]

ing on the gate voltagewhile V is the bias voltage. Consider

X 8l en(p+h0x) — € (P) —frg]. (1) the transitions involving a phonon with a giv&rtomponent
Here s=dwq/dq is the group sound velocity,dé,  Of the wave vecton,>0. Such a phonon can be emitted by
=dp/l2mh, A=VIL is the cross section of the channal (& transition from an electron state having positive initial mo-
being its volum& while the factor 2 comes from the sum- mentump+7gy to a state with negative momentum(see
mation over electron spitwe assume all the transition prob- Fig. 1). As a result, one gets
abilities to be spin-independegntThe coupling coefficient

W, for the piezoelectric coupling icf. Wit_h Ref. 10 W, mW, )

= (mlpwy)[eBqiqvi(0,)/ €gq€0]®. Here e is the electron R=h2— 2 [Con(a))]

charge,B; |, is the tensor of piezoelectric moduli, which is mAh*q| cos6| nw

symmetric in the last two |n.d|_c.e(see, e.g., R_ef.)QeH is the X (F P en(Knn) — D HL—= FPLens (Pan) — )T}
tensor of dielectric susceptibility, angg,a) is the unit po-

larization vector of the phonon branetwith the wave vec- X (Ng+1) =Pl e (Pan) — ']

tor q. The indexq indicates the projection of a tensor on the ) +)

g direction, whilep is the mass density. For the deformation- X{1= 1 en(knn) =7 1iNg),

potential interaction we haw/,=7A2g%/ pw,, whereA is
the deformational-potential constant for the phonon branc
under consideration. Using the approximate values for GaAs

(8=0.16 Cm?, =12, A=8 eV, s=w4/q=3X10 A. Intraband transitions
cm/s), we find that the piezoelectric interaction is the domi-
nating one for frequencies;<5x 10" s™*.

Let us investigate the consequences of the energy a

guasimomentum conservation,

thereknn,:pnn,JrﬁqX.

Let us start by considering transitions within the same
subband. This is the dominating case for not too high phonon
equencies. Fon=n’, the solutionp,, of Eq. (2) is n
independent and equal to
e(p+ —€,(p)—hw,=0.
(P AG) ™ e (P) =g =0 p,=mg/cosd—(1/2) iq cosb. 3)
For the solution of this equatiop,,,, one has

Thus, then=n’ part of the collision operator can be rewrit-

m A\ fiqcosé
— _ _ ten as
Pan cosé’(S hq ) 2 @
wheres=w,/q, 6 is the angle betweeq and thex axis, mW, )
andAnn,zen_— 62, . Consequently, the (_:ielta function in Eq. R= w Ah?q| cosé| ; |CanlaL)
(1) representing the energy and quasimomentum conserva-
tion can be expressed asf.q| cosé])8(p—Pur)- X[Fak, (1= Fap )(Ng+1) = frp (1=Fri JNgl,  (4)

Following the Landauer-Btiker-Imry approach,we ex-
press the equilibrium distribution functions of the reservoirswherek, = p; + hq,=ms/ cos#+%aq,/2.
asfO(p) =P e (p) — u(*)], wheref () is the Fermi func- Let us consider the casE=0 (or, to be more specific,
tion, u()=p+eVi2, u is the quasi-Fermi leveldepend-  7iw,>kgT). Then Eq.(4) yields
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FIG. 2. Voltage dependencies of the normalized phonon- ]
generation rate for intraband transitioms>n and different propa-
gation angles. 16=0 °; 2, 30°; 3, 50 °. The bias voltage is mea- 0 P
sured in units ofkgT/e. fiwg/ms’=6, ms/kgT=5, ule) ‘
=1. Longitudinal direction
FIG. 3. Angular dependencies of the phonon generation rate for
R= qu 2 ICo )|2 intraband transition;m—n and voltages near the threshold. 1,
a wAﬁ2q|c050| = nn{dL eV/kgT=60; 2, 70; 3, 80. The upper-limiting angle corresponds to
the conditionp;<0 [see Eq(5)]. The rate is measured in units of
X O ') —en(ky)]6[ e —u]. W,/ mAhs. Other values of the parameters are the same as in Fig.
M nlKg n(P1) — M q

) ) 2. We neglect the angular dependence of the coupling parameter
One can easily see thatcarrent-carrying channel can gen- W, .

erate phononsSincep; must be negative, Eq3) leads to
the inequality oM+ \[BMS(u—eVi2— )0 (u—eVi2— ) <hwg

cog0>2me/fiwy, (5) <min(eV,u+eVi2—€d).

which defines an upper limit for the propagation angle. Since |, Fig. 2 the dependence of the phonon emission Tate
en(k) — €en(P) =fiwg, w(I—ulD=eV, and|cost<1,  on the bias voltage is shown. Thresholds in the bias voltage
the phonon generation is restricted to frequenaigsatisfy-  are apparent. If the voltage is further increased, new sub-
ing the inequalities bands will contribute to the phonon emissisee Eq.(7)].
Consequently, the generation rate is a steplike function of the
2m 52<ﬁwq< ev. (6)  pias voltage. There will be equally high steps corresponding
. - . to intraband transitions, and a small modification from inter-
The conditionfiw,<<eV has been indicated earlier for the band transitions. The typical ratorresponding to each

case of electrophonon resonance in nanostructdres. : :

= . ; step is R=(mgnq|cosd)Ry with Ro=W,/mAhs. As-
oy o ey o hen by £ 1 aer SUIe suming ¥ caps—5€10 . hgims=5, =310
Y ult principie vi upation nu N —0.0Mm,, A=10"12 cn?, €=12, we getR ,~101

and final states. The latter depend on the position of th%,l We assume thaqd=<1. whered is the width of the

guasi-Fermi levelu, which in its turn is controlled by the 2 1

gate voltage. Let us consider intraband transitions withirﬁ?:'gﬂzlr']gguﬂ'cnn(ql)| 1, independently of the shape of
ﬁ]egltjlzntiessbbargﬁ. Ih:v)lzrrltaion ise\c/aépres\iﬁgreby the Angular dependencies of the generation rate near the volt-
_ q 061 Cwq tIM .fsé ®) i ' tisfied tﬁl age threshold are shown in Fig. 3. It is seen that the character
= €[ Pa(wg,0)]. Consequently, if Eq(5) is satisfied, then of the angular dependence is changed at the threshold. There

phonons with frequencyy and propagation directiofi are is,a sharp cutoff at the upper-limiting angle corresponding to

ggnerated provided the bias voltage exceeds the thresho dl(wqye):O [see Eq/5)]. This cutoff could be made more
given by realistic (that is, smootherby taking into account the scat-
tering of electrons by a short-range impurity potential. As
was shown in Ref. 12, such a potential has the effect of a
smearing of the momentum-conservation law. Furthermore,
"we have neglected the angular dependence of the coupling
constantW,, which depends on the acoustic properties of
the substrate. This additional dependence should be multi-
plied to obtain the observed angular dependence.

eV>2max u— e, e, thwg—p). (7)

Let us investigate the frequency region in which phono
generation is possible at least at some angle for a given
and V. If iw,>2ms, then the function ps(w,,6)1%/2m
varies between the valuéi f,—2ms’)?/8ms* and zero as
the angled goes from zero to the upper limit from E).
We may thus summarize the above inequalities by stating
that phonon generation from transitions within the subband
will take place(for at least some propagation angl@s the The phonons can also be emitted by interband transitions.
frequency range Below we consider transitions from states belonging to a

B. Interband transitions
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ther restricted by the angular dependence of the factor
|Chnr(9,)]%. Since we assume thaf, d<1 (d being the
channel width, interband transitions are suppressed by this
factor for all directions. However, as will be shown, they
bear an additional information comparing to the intraband

Frequency

transitions.
—4 2 ' 2 4 The final electron momentum,,,, must be negative, as
Band gap before, but is now given by Ed2). Furthermore, the initial

_ ~ momentum Ky, =pnn +#g cosd must be positive. This
FIG. 4. The shaded region corresponds to the frequency regiodields the condition

defined by Eqs(9). There is no phonon generation for frequencies
in the unshaded region. The phonon frequensy)(is measured in cos6>(2m szlﬁwq)|1—Ann, Ih wq|, (8

units of ms*/#, the band gap&ny) in units of ms’. which replaces Eq(5) for the upper-limiting propagation

angle. In addition there is a voltage threshold given by Eqg.
subbanch to states of a different subband. The frequency (7), wheree; now stands fore,/[ pnn (wq, 60)].
regions in which such processes may occur are different Phonon generation is only possible at frequencies for
from those for intraband transitions, although the inequalitywhich the right-hand side of Eq8) is less than 1, which
fiwq<eV remains. The possible propagation angles are fureccurs when

hog>e€, if  Apy<0,
hwog>€e. OF €4 _>hog>e_ .y if  0<A,y<msi/2,
hwg>e_ if mSR2<An., 9)

with €. ..=*ms=m$(ms*=2A,,). This frequency such channels can be subdivided into two categories—the
region corresponds to the shaded area indheA,, dia- propagating states and the reflected states on each side. For
gram of Fig. 4. Since usualljA,,|>ms?, phonon genera- the propagating state directed to the right{0), one has

tion is restricted by the inequalities

p
2mS[A [ Stog<eV. V0=

In Fig. 5 one can see the angular dependencies of the 12
generation rate for three different values of the applied volt-
age. They are not quite similar to the case of intraband tran-
sitions. There is no phonon emission in the forward direc- 101 3

12 i rx
o1 [ o0

c
tion, because the matrix eleme@t,, (q,) vanishes foré L2
=0. The threshold values of voltage are shifted. Further- § g
more, the upper-limiting angle is in this case due to the con- ©
dition that the initial momentunk,, (wq,6) must be posi- g
tive. The final momentunp(wg,6), on the other hand, is g 6]
negative for all angles, given these parameters. %
- 2
IIl. NONUNIFORM CHANNEL
The edges of the channel play a specific role. Namely, if 2

the shape of the channel is smooth enough, as we assume
here, one can use the so-called adiabatic apprbatch,,
describe the situation in terms of a position-dependent band 0" 1 2 3 4 5
structure. We will show that the phonons with a given fre-
guency and propagation direction can be generated only near
specific points where the local energy and quasimomentum g, 5. Angular dependencies of the phonon generation rate in
conservation laws are met. Consequently, the phonons emife interface plane for interband transitioms>n’ =n—1 and dif-
ted from the edges bear information about the positionferent voltages. 1eV/kgT=35; 2, 40; 3, 45. The upper-limiting
dependent band gaps between the modes of transverse quafgle corresponds to the conditikg, >0 [see Eq(8)]. The rate is
tization. measured in units ofg(d)?W,/10°m.A%s. FurthermoreA,, /ms’
Consider an adiabatic quantum channel with the width=+8, andu=€2— A, /4. Other values of the parameters are the
depending on coordinate The electron wave functions for same as in Fig. 3.

Longitudinal direction
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In this expression, the transverse wave functigpsas well X
as the corresponding eigenvalue’s are assumed to vary ‘P(X)E%s,ﬁs’(x):ﬁ_lf [Pa(X") = Pp(x")]dX" = Gyx.
slowly with the longitudinal coordinat® The longitudinal
quasimomentump(x)=pn(x;€) is defined byp(x)?/2m  Herep,(x) is determined as the solutignof the equation
+ €n(x) = e>maxe)(X)}, while p=12me is the value atin-  ¢,(p,x) =p2/2m(=e,). With one or both of the states being
finity x— * o, Thus,eﬂ(x)zen(p=0;x) is the local posi- reflected ones, we get two or four terms in the transition
tion of the bottom of theath 1D transverse band at the point amplitude, respectively. Now the phag€x) is expanded
Xx. We assume that the functior&ﬁ decrease monotonically around a stationary poink* defined by the equation
and symmetrically to zero in both directions from the maxi-d¢/dx=0,
mum point atx=0. The oppositely directed propagating state
¢ is defined in the same way, but with negative quasimo- o(X)=@(xX*)+ " (X* ) (x—x*)2/2. (11
mentump(x).

For a totally reflected electron state on the left-hand sidef such a stationary poink* exists for ¢, then the main
of the channelg< maﬁeﬂ(x)}zeﬁ(O), the wave function is contribution to the integral is concentrated around this point.

As the partA(x) of the integrand is assumed to vary slowly

2p |12 1 (x on the scale~/2/|¢"(x*)|, one can substitut&(x) in the
wy(r)z‘m Xnx(T1)sin 7 p(x")dx’ |, integrand byA(x*). If ¢ has no stationary points, one as-
P %t sumes a rapidly oscillating phase everywhere, thus the total

contribution to the transition amplitude is much smaller than
x; being the classical turning poilttA reflected state on the apove.

right-hand side of the channel is denotediy . Below we In this picture, the transitions are localized at the points
will characterize the electronic state by the combination x* where ¢’ (x*)=0. In our case, the change in energy
={n,p} together with a subscrig=—,«, <, or —. = e— €5=e—Tiwg due to emission of a phonon is accompa-

As we are dealing with a nonuniform channel, we mustnied by a quasimomentum transferfiq,, i.e., at the point
take into account the effect of screening. The electrons in thef stationary phase one arrives at theal conservation con-
wide regions of the channel are more mobile than those ijition

the narrow regions. Therefore, the screening of the electron-
phonon interaction, and thus the coupling strength, will de-
pend on the position. We may take this effect into account by

multiplying the function expfig-r) in the transition ampli-  \ye would like to emphasize once again that liveal values
tudes by a dimensionless factg(r). This factor, whichwill ¢ quasimomentum entering Eq12—rather than the

be less than 1, is determined by the screening of the PieZQisymptotic valuep—determine the conservation law.

electric field or deformation potential field by the electrons The apove approach has been employed to analyze the

inside the leads and the channel. In the 2D leagls) is  photoconductand® and the acoustoconductadtein an
small because of the high conductance of the 2DEG. Howggiapatic quantum channel.

ever, if the channel width is of the order of the effective Bohr
radius eegh2/me?, then the screening inside the channel is
not too strong. The screening of the effective field in realistic
gated structures is far from being satisfactory understood, the The transition amplitude of Eq10) is given by
more so that we are actually dealing with a nonstationary
effect. However, there are indications that the effective po- —ig-r

. (Bs'|m(x)e |as)
tential is not much lower than the unscreened @e=, e.g.,
Ref. 19, and we shall assume this throughout the paper. In a o ~ i
narrow channel and aj£>1 (here we denote by the =Jlmdann/(ql X) s, ps' (X)XHT @us, ps (X) ],
effective length of the channelone can considen(r) as a

smooth functionz(x) inside the channel and rapidly de- \herec,, dependgsmoothly on x through the transverse

creasing outside. , , functions x4, while
Another simplification that arises from the above inequal-

ity is that one can employ thstationary-phase approxima-

Pn(X*;€)=pp (X*;e—frwg) +hQy. (12

A. Phonon generation

tion for estimation of the transition probabilities. For two Tas,ps ()= 1(X) EsEsr PP/ Pa(X)P(X) L 212,
propagating stateses={n,p,}s and By ={n’,pgz}s, the ] ) )
transition amplitude Sis { be #={N".Pgls The factoré is 1 for propagating states;i/+/2 for reflected
ones. In the stationary phase approximation, the functions
- Cn(q, ,x) and ZQS,BS,(X) are replaced by their values at
(Bs'| m(x)exp(—iq-r)|as)= fﬁwdx Ax)exdie(x)], the stationary poinx’;sﬁs, . Writing
(10

) ) o o ’Ef exdie /(X)]dX,
where A(x) is a result of the integration in the transverse as.B8 —® as,ps

directions, while thex-dependent part of the integrand’s
phase is given by we get for the generation rate of the nonuniform channel
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FIG. 6. Phonon emission in a nonuniform channel by a transi-
tion from a propagating to a reflected electron state. The transition F|G. 7. Phonon emission in a nonuniform channel by a transi-
is localized around the point*. tion between two oppositely directed propagating states. There are
two transition points.

R=(2W,/V D s g5 || Tus g (X o) |2 .
(2Wa )a&zﬁs,| 585 as g5 (Xag )| €,~hwg>ep(0)] ors' = [if €,~fiwg<en(0)]. Introduc-

ing the density of stateg(e), we get
X |Cnn’(qi 1XZS,BSI)|2[fas(1_ fﬁs’)(Nq+ 1)

— e (1—1,9)Ng] (e, — €g—Tiwvy), (13 R=(2Wq/V)E J'deg(e)g(e—ﬁwq)
whereV is the interaction voluméwhich is not known pre- n

cisely, but is of the order of the geometrical volume of the % 21T k(2 *\[2
channel. The pointx* and the phase(x) are dependent on |Pnel T 7neXae) [ Can(a X5
as and B, . However, to avoid excessive proliferation of x@(M("')_e)@(E_ﬁwq_M(—)), (15)

indices we will often omit these indices.

~ Now assuming that the second-order term in the expanyhere the following three restrictions are impligd: A tran-
sion (11) of the phase grows faster to values of the order lgjiion pointx* must really exist for the energy involved,

than the following termdi.e., at|¢”(x*)/@"(x*)*J<1],  \hich is only the case wheké/2m< e<kZ/2m+ €%(0). (ii)
the factord s 45 can be evaluated as The initial state must be propagating, tha$0)< e. (iii ) For

o =2 " (x*)| 2 a transition between propagating statesy. 7), the final one
as.ps ¢ must be propagating to the left. This means tpat0,
xexdie(x*)+i(m/4) sgne”(x*)], which, as before, leads to E¢), and hence the condition

hwg> 2m¢?, for such transitions. However, for transitions to
a nonpropagating stat€ig. 6), there is no such restriction.
For a transition of the kind in Fig. 7, there will in fact be
two transition points, one on each side of the constrictain
with Ref. 18. The corresponding two parts of the transition
amplitude give rise to the interference terfil2- sin ¢(x*)
Pa(X*)=pg(X*) +1i0y. — (=X
They can be positive or negative. In the case of one or both !f as in the case of a parabolic or square-confmmog poten-
of the involved states being reflected ones, the transition anfi@l, the transverse energy has the forna,(x)
plitude falls into two or four parts, respectively, since a re-=an/d(x)?, d(x) being the width of the channel, then
flected state is a superposition of waves witt)O and p

where sgx=x/|x|. The quasimomentp,(x*) andpg(x*)
at the transition point are fixed by the conditions

€0(X* )+ Pa(X*)22m= €0, (X* ) + p(x*)22m+fiwog,

<0. However, ifn=n’, a stationary poink* exists for at p;(x*)—p,’g(x*) 2queﬂ(x*) d’ (x*)
most one of these terms, and we denotetyy, s the mo- o"(x*)= 7 = K .
mentum with the corresponding sign. Pk d(x*)

B. Intraband transitions Inserting these expressions age) = £/m/hy2¢ into Eq.

15), we finally get
Forn=n’ we have (15 Y9

P.(X*) =k =mgcosf+1q,/2, mw,
R=— 4
2
Pg(x*)=p;=mscosh—Aq,/2. (14) mVh?q|cosd|
The quasimomenta at the transition point are the same as in s [ 72(XE)|Con(qL X5 |2d(XE,)
the case of a uniform channel. However, the electron energy =~ Ox* T )] vp(e),
n ne Ne

€, is no longer fixed by the phonorw(q), since there are
now different solutionsx* of Egs. (14) corresponding to (16)
different energies, = 2(x* )+ k2/2m.

Let us again assumd=0. Then the only possible where the integration goes from nfig/2m,en(0),u(”)
phonon-generating processes are the ones shown in Figs.46h o) to min(ki/2m+ eﬂ(O),M(+)), and v,(€) represents
and 7. Thus, in Eq(13) we haves=—, while s'=« [if the interference part. This function is given by
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Reduced phonon generation rate
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FIG. 8. Dependence of the phonon generation 7ate a non-
uniform channel on the bias voltad& corresponding to intraband
transitions of the zeroth subbanal=€ 0). Phonon generation sets on

wheneV exceedsi v, and increases approximately linearly, corre-
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Red. differential phonon generation rate
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FIG. 9. Dependence of the differential generation fateshown
in units omeqenZa/theg(O)] on the gate voltag¥ [in units of
eg(O)Ie]. The differential rate is not continuous at the points where
the transitions change character. Furthermore, it dive(geshis

sponding to transitions like the one in Fig. 6. In regions Whereapproximatiom for u(Y)—k2/2m+ €(0). The parameters are the

transitions between propagating states are possible asrigll7),

same as for Fig. 8.

the generation rate increases nonlinearly, corresponding to the in-

terference connected with these processes. WHeR= u+eV/2

becomes large enough, no further transitions are possible, and t

ﬁgflected states, while the oscillating part corresponds to tran-

generation rate stays constant until the onset of contributions fror1tiONS between oppositely directed propagating states.

the next subban¢hot shown. Here, the channel width is assumed
to vary asd(x) =d(1+x?/a?) with a parabolic transverse confining
potential. Thus,e2(x)=e€5(0)(2n+1)(1+x%a? 2, with the ze-
roth transverse energy maximwﬁ(0)=ﬁ2/2md2. The generation
rate is shown in units oranqr/Za/WLZq, the bias voltage in units
of eS(O)/e. The screening factoy is set constant for simplicity.
The quasi-Fermi level is chosen such thai(")=e€3(0) when
eV=fiwg. Furthermored=0.08 um, a=6 um, m=0.07ng, s
=3x10° cm/s,q=6mg#%, and#=0.

vn(€)=

1+sir{2ﬁ1j: dx(|pn(x;e€)|

+|pn(x;e—hwq)|—ﬁqx]”@(ﬁwqcosze— 2ms)

if e>eﬂ(0)+ﬁw , otherwise v,(e)=1/4. As before, the
Fermi functionsfgz)(s)ﬂ(—s) in Eq. (15) cause the con-
dition iw <eV.

When the energy approaches/2m (from abové or

€2(0)+k%/2m (from below), the transition pointx, ap-

It is important to note that the two patterns of phonon
generation considered in this paper are physically different.
The first one(Sec. I) involves transitions that take place
homogeneously inside the whole chanriguantum wirg.

The pattern considered in this section, on the other hand,
involves transitions only near the edges of the channel,
where the conservation laws are local and thus different from
the ones for the uniform part. As a result, phonons wiith
<2ms can be generated. Observations of such phonons can
be an indication of the importance of the processes near the
edges. An effective interaction length in this case (is")
=|d(x*)/d’(x*)|. An estimate of the relative intensity of
those processes compared to uniform generation is given by
min[1(x*)/£,1], where/L is the approximate channel length.

In this section, we have considered the case of intraband
transitions in a nonuniform channel. The calculations in the
interband casen(#n’) are similar, but more complicated,
and will not be carried out here. However, the main effects
discussed above, i.e., interference and the possibility to dis-
criminate between different kinds of transitions, are relevant
to that case as well. Also, as in the case of interband transi-
tions in a uniform channe(Sec. Il B, there are voltage

proaches infinity or zero, respectively. At these energiesthresholds in the phonon-generation rate. Due toxttiepen-
which correspond to regions where the stationary-phase aglence of the band gap,,(x), these thresholds are less

proximation is not valid,e2(x*) andd’(x*), respectively,
approach zero, making the integrand in E6) diverge.

pronounced.
Phonon generation is accompanied by non-Ohmic behav-

However, these energy regions make up only two narrowP’ of thg conductance. This was analyze;d for optlcal'

parts of the integration range, and the integral itself conPhonons in Ref. 11. For the case of acoustical phonons it

verges. needs both additional experimental and theoretical investiga-
Figure 8 shows the dependence of the generation rate den. i )

the bias voltage for a set of typical parameters. The phonon We have discussed the generation of bulk phonons. How-

generation sets on f@V=7w, and, in contrast to the case ever, the same methods can be applleq for the myestlgatlon

of a uniform channel, increases approximately linearly: AsOf the generation of elastic modes confined to the interfaces.

eVincreases, more and more phonon-emitting transitions be-
come possible, since the energies of the involved electrons is
not fixed. Figure 9 shows the variation of the differential

generation rate with the bias voltage. It is proportional to the We have calculated the rate of phonon generation by a
integrand of Eq(16) with e replaced byu ™). The slowly  current-carrying quantum channel. The generation rate is a
varying part corresponds to transitions from propagating testeplike function of the applied bias voltage. The threshold

IV. CONCLUSION
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voltages are directly related to the band gaps between then electron-phonon coupling in the quantum channel and on

modes of transverse quantization, while the generation ratesharacteristics of the electron spectrum.

at the plateaus are related to the electron-phonon coupling

constant inside the channel. The emitted phonons have a
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