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Phonon generation by current-carrying nanostructures
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We calculate the rate of acoustic phonon generation by a current-carrying, ballistic quantum channel, defined
in a two-dimensional electron gas by a split gate. Both uniform and nonuniform channels are considered. The
generation rate of acoustic phonons of a particular frequency and direction of propagation is a steplike function
of the applied bias voltage, with threshold voltages that are calculated in the paper. The emitted phonons have
a characteristic angular distribution, which changes significantly at the thresholds. The voltage dependence of
the generation rate is shown to be sensitive to the shape of the channel. Thus, the spectral and spatial
distributions of the emitted phonons bear information both on electron-phonon coupling in the vicinity of the
device and on characteristics of the electron spectrum.@S0163-1829~99!02904-5#
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I. INTRODUCTION

Electronic properties of nanostructures can be effectiv
investigated by making use of the interaction between e
trons and phonons. There has been done much experim
work on the response of nanostructures to nonequilibr
ballistic phonons and to surface acoustic waves. See for
ample, Refs. 1 and 2 and references therein. In this pa
however, we concentrate on the reverse effect, namely on
emission of acoustic phonons from a nanostructure carry
an electric current. The purpose of the paper is to investig
the spectral and spatial distribution of generated phonon
a function of the voltage across a one-dimensional~or quasi-
one-dimensional! channel. The concrete results are obtain
for the case of a channel defined in a two-dimensional e
tron gas~2DEG! at the interface of a semiconductor heter
structure by means of a split gate at negative potential. P
non emission from various nanostructures has b
extensively studied~see, e.g., Refs. 3 and 4 and referenc
therein!. However, we are not aware of any work on em
sion of acoustic phonons from a biased quantum wire.

Using the Landauer-Bu¨ttiker-Imry approach,5 we consider
a ballistic quantum channel that connects two thermal re
voirs, each being in an independent equilibrium state. As
recently shown,6 most of the heat from a current through th
channel is generated in the reservoirs.7 Nevertheless, becaus
of finite electron-phonon interaction inside the channel, p
of the heat should be generated by the nanostructure i
via emission of phonons. In the equilibrium there is a d
tailed balance between the emitted and absorbed phon
However, our situation is nonequilibrium, as the distributio
of electrons penetrating into a biased quantum channel f
the leads are characterized by different chemical potent
Therefore, the phonon emission prevails over the absorp
Such phonon emission results in nothing else than the af
PRB 590163-1829/99/59~4!/2833~8!/$15.00
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mentioned generation of heat inside a ballistic nanostruct
It is a complicated problem to calculate the electro

phonon coupling constant for a realistic nanostructure
cause of position-dependent screening~see discussion in Sec
III !. We do not attempt here to solve it and assume the c
pling constant to be known.

In Sec. II we consider phonons that are generated insid
long, uniform channel. The effects of smooth edges are c
sidered in Sec. III. As a result, one can describe the pho
emission from realistic quantum channels, which usua
contain a long uniform part with smoothly increasing wid
near the edges.

II. UNIFORM CHANNEL

In a uniform channel, the electron states can be rep
sented as

cnp~r !5L21/2xn~r'!exp~ ipx/\!,

where the normalization lengthL is assumed as the chann
length ~i.e., the distance over which the potential drops!, x
andr' are the longitudinal and transverse directions resp
tively, p is thex component of the electron quasimomentu
andxn(r') is the wave function of transverse quantizatio
the energy being

en~p!5en
01p2/2m.

Here m is the electron effective mass, anden
0[en(p50) is

the bottom of thenth transverse band. To be concrete, w
consider a channel defined by a split-gate in
GaAs-AlxGa12xAs heterostructure, and therefore, assu
the system to be mechanically uniform in the direction p
2833 ©1999 The American Physical Society
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pendicular to the interface. Consequently, we consider b
3D acoustic phonons with the displacement}exp(iq•r ).
This assumption should be modified in the case of acou
cally nonuniform quantum wires where confined modes
be present~see, e.g., Ref. 8!. However, the main features o
phonon generation remain similar. The matrix element
phonon-induced transitions is defined asCnn8(q')
5^xn8uexp(2iq'r')uxn&, whereq is the phonon wave vec
tor.

The number of phonons with wave vectorq, Nq(r ,t), is
given by the solution of the Boltzmann equation for phono
~see, e.g., Ref. 9!,

]Nq

]t
1s¹Nq5R.

The phonon generation is described by the collision oper
R5(]Nq /]t)coll , which can be written as6

R5
2

A (
nn8

E djpWquCnn8~q'!u2

3@ f n,p1\qx
~12 f n8p!~Nq11!2 f n8p~12 f n,p1\qx

!Nq#

3d@en~p1\qx!2en8~p!2\vq#. ~1!

Here s5]vq /]q is the group sound velocity,djp
5dp/2p\, A5V/L is the cross section of the channel (V
being its volume!, while the factor 2 comes from the sum
mation over electron spin~we assume all the transition prob
abilities to be spin-independent!. The coupling coefficient
Wq for the piezoelectric coupling is~cf. with Ref. 10! Wq
5(p/rvq)@ebq,lqn l(q,a)/eqqe0#2. Here e is the electron
charge,b i ,ln is the tensor of piezoelectric moduli, which
symmetric in the last two indices~see, e.g., Ref. 9!, e i l is the
tensor of dielectric susceptibility, andn(q,a) is the unit po-
larization vector of the phonon brancha with the wave vec-
tor q. The indexq indicates the projection of a tensor on th
q direction, whiler is the mass density. For the deformatio
potential interaction we haveWq5pL2q2/rvq , whereL is
the deformational-potential constant for the phonon bra
under consideration. Using the approximate values for G
(b50.16 C m22, e512, L58 eV, s5vq /q533105

cm/s), we find that the piezoelectric interaction is the dom
nating one for frequenciesvq&531011 s21.

Let us investigate the consequences of the energy
quasimomentum conservation,

en~p1\qx!2en8~p!2\vq50.

For the solution of this equationpnn8 one has

pnn85
m

cosu S s2
Dnn8
\q D2

\q cosu

2
, ~2!

wheres5vq /q, u is the angle betweenq and thex axis,
andDnn85en

02en8
0 . Consequently, the delta function in E

~1! representing the energy and quasimomentum conse
tion can be expressed as (m/\qu cosuu)d (p2pnn8).

Following the Landauer-Bu¨ttiker-Imry approach,5 we ex-
press the equilibrium distribution functions of the reservo
as f n

(0)(p)5 f (F)@en(p)2m (6)#, wheref (F) is the Fermi func-
tion, m (6)5m6eV/2, m is the quasi-Fermi level~depend-
lk
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ing on the gate voltage!, while V is the bias voltage. Conside
the transitions involving a phonon with a givenx component
of the wave vectorqx.0. Such a phonon can be emitted b
a transition from an electron state having positive initial m
mentump1\qx to a state with negative momentump ~see
Fig. 1!. As a result, one gets6

R5
mWq

pA\2qu cosuu
(
nn8

uCnn8~q'!u2

3„f ~F!@en~knn8!2m~1 !#$12 f ~F!@en8~pnn8!2m~2 !#%

3~Nq11!2 f ~F!@en8~pnn8!2m~2 !#

3$12 f ~F!@en~knn8!2m~1 !#%Nq…,

whereknn85pnn81\qx .

A. Intraband transitions

Let us start by considering transitions within the sam
subband. This is the dominating case for not too high pho
frequencies. Forn5n8, the solutionpnn8 of Eq. ~2! is n
independent and equal to

p15ms/cosu2~1/2! \q cosu. ~3!

Thus, then5n8 part of the collision operator can be rewri
ten as

R5
mWq

pA\2qu cosuu
(

n
uCnn~q'!u2

3@ f nk1
~12 f np1

!~Nq11!2 f np1
~12 f nk1

!Nq#, ~4!

wherek15p11hqx5ms/cosu1\qx/2.
Let us consider the caseT50 ~or, to be more specific

\vq@kBT). Then Eq.~4! yields

FIG. 1. Schematic representation of a transition from an elec
state of subbandn with energye and momentumknn8 to a state of
subbandn8 with energye2\v and momentumpnn85knn82\qx .
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R5
mWq

pA\2qucosuu
(

n
uCnn~q'!u2

3u@m~1 !2en~k1!#u@en~p1!2m~2 !#.

One can easily see that acurrent-carrying channel can gen
erate phonons. Sincep1 must be negative, Eq.~3! leads to
the inequality

cos2u.2ms2/\vq , ~5!

which defines an upper limit for the propagation angle. Sin
en(k1)2en(p1)5\vq , m (1)2m (2)5eV, and ucosuu<1,
the phonon generation is restricted to frequenciesvq satisfy-
ing the inequalities

2ms2,\vq,eV. ~6!

The condition\vq,eV has been indicated earlier for th
case of electrophonon resonance in nanostructures.11

The frequency region given by Eq.~6! is further restricted
by the Pauli principle via occupation numbers for the init
and final states. The latter depend on the position of
quasi-Fermi levelm, which in its turn is controlled by the
gate voltage. Let us consider intraband transitions wit
a given subbandn. The limitation is expressed by th
inequalities e11\vq2eV/2,m,e11eV/2, where e1
[en@p1(vq ,u)#. Consequently, if Eq.~5! is satisfied, then
phonons with frequencyvq and propagation directionu are
generated provided the bias voltage exceeds the thres
given by

eV.2max~m2e1 ,e11\vq2m!. ~7!

Let us investigate the frequency region in which phon
generation is possible at least at some angle for a givem
and V. If \vq.2ms2, then the function@p1(vq ,u)#2/2m
varies between the value (\vq22ms2)2/8ms2 and zero as
the angleu goes from zero to the upper limit from Eq.~5!.
We may thus summarize the above inequalities by sta
that phonon generation from transitions within the subbann
will take place~for at least some propagation angles! in the
frequency range

FIG. 2. Voltage dependencies of the normalized phon
generation rate for intraband transitionsn→n and different propa-
gation angles. 1,u50 °; 2, 30 °; 3, 50 °. The bias voltage is me
sured in units ofkBT/e. \vq /ms256, ms2/kBT55, m/en

0

51.
e
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e

n

old

n

g

2ms21A8ms2~m2eV/22en
0!Q~m2eV/22en

0!,\vq

,min~eV,m1eV/22en
0!.

In Fig. 2 the dependence of the phonon emission rateR
on the bias voltage is shown. Thresholds in the bias volt
are apparent. If the voltage is further increased, new s
bands will contribute to the phonon emission@see Eq.~7!#.
Consequently, the generation rate is a steplike function of
bias voltage. There will be equally high steps correspond
to intraband transitions, and a small modification from int
band transitions. The typical rate~corresponding to each
step! is R5(ms/\qucosuu)R0 with R05Wq /pA\s. As-
sumingb2/ee0rs25531023, \q/ms56, s533105 cm/s,
m50.07m0 , A510212 cm2, e512, we getR 0'1013

s21. We assume thatqd&1, whered is the width of the
channel. Thus,uCnn(q')u2'1, independently of the shape o
the channel.

Angular dependencies of the generation rate near the v
age threshold are shown in Fig. 3. It is seen that the chara
of the angular dependence is changed at the threshold. T
is a sharp cutoff at the upper-limiting angle corresponding
p1(vq ,u)50 @see Eq.~5!#. This cutoff could be made more
realistic ~that is, smoother! by taking into account the scat
tering of electrons by a short-range impurity potential.
was shown in Ref. 12, such a potential has the effect o
smearing of the momentum-conservation law. Furthermo
we have neglected the angular dependence of the coup
constantWq , which depends on the acoustic properties
the substrate. This additional dependence should be m
plied to obtain the observed angular dependence.

B. Interband transitions

The phonons can also be emitted by interband transitio
Below we consider transitions from states belonging to

-

FIG. 3. Angular dependencies of the phonon generation rate
intraband transitionsn→n and voltages near the threshold.
eV/kBT560; 2, 70; 3, 80. The upper-limiting angle corresponds
the conditionp1,0 @see Eq.~5!#. The rate is measured in units o
Wq /pA\s. Other values of the parameters are the same as in
2. We neglect the angular dependence of the coupling param
Wq .
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subbandn to states of a different subbandn8. The frequency
regions in which such processes may occur are diffe
from those for intraband transitions, although the inequa
\vq,eV remains. The possible propagation angles are

FIG. 4. The shaded region corresponds to the frequency re
defined by Eqs.~9!. There is no phonon generation for frequenc
in the unshaded region. The phonon frequency (vq) is measured in
units of ms2/\, the band gap (Dnn8) in units of ms2.
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ther restricted by the angular dependence of the fa
uCnn8(q')u2. Since we assume thatq'd&1 (d being the
channel width!, interband transitions are suppressed by t
factor for all directions. However, as will be shown, the
bear an additional information comparing to the intraba
transitions.

The final electron momentumpnn8 must be negative, as
before, but is now given by Eq.~2!. Furthermore, the initial
momentum knn85pnn81\q cosu must be positive. This
yields the condition

cos2u.~2ms2/\vq!u12Dnn8 /\vqu, ~8!

which replaces Eq.~5! for the upper-limiting propagation
angle. In addition there is a voltage threshold given by E
~7!, wheree1 now stands foren8@pnn8(vq ,u)#.

Phonon generation is only possible at frequencies
which the right-hand side of Eq.~8! is less than 1, which
occurs when

on
\vq.e112 if Dnn8,0,

\vq.e112 or e122.\vq.e211 if 0 ,Dnn8,ms2/2,

\vq.e211 if ms2/2,Dnn8 , ~9!
the
. For

e in

he
with e66656ms26Ams2(ms262Dnn8). This frequency
region corresponds to the shaded area in thevq–Dnn8 dia-
gram of Fig. 4. Since usuallyuDnn8u@ms2, phonon genera-
tion is restricted by the inequalities

A2ms2uDnn8u&\vq,eV.

In Fig. 5 one can see the angular dependencies of
generation rate for three different values of the applied v
age. They are not quite similar to the case of intraband tr
sitions. There is no phonon emission in the forward dir
tion, because the matrix elementCnn8(q') vanishes foru
50. The threshold values of voltage are shifted. Furth
more, the upper-limiting angle is in this case due to the c
dition that the initial momentumknn8(vq ,u) must be posi-
tive. The final momentump(vq ,u), on the other hand, is
negative for all angles, given these parameters.

III. NONUNIFORM CHANNEL

The edges of the channel play a specific role. Namely
the shape of the channel is smooth enough, as we ass
here, one can use the so-called adiabatic approach,13 i.e.,
describe the situation in terms of a position-dependent b
structure. We will show that the phonons with a given fr
quency and propagation direction can be generated only
specific points where the local energy and quasimomen
conservation laws are met. Consequently, the phonons e
ted from the edges bear information about the positi
dependent band gaps between the modes of transverse
tization.

Consider an adiabatic quantum channel with the wi
depending on coordinatex. The electron wave functions fo
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such channels can be subdivided into two categories—
propagating states and the reflected states on each side
the propagating state directed to the right (p.0), one has

c→~r !5U p

p~x!LU
1/2

xnx~r'!expF i

\E
x

p~x8!dx8G .

FIG. 5. Angular dependencies of the phonon generation rat
the interface plane for interband transitionsn→n85n21 and dif-
ferent voltages. 1,eV/kBT535; 2, 40; 3, 45. The upper-limiting
angle corresponds to the conditionknn8.0 @see Eq.~8!#. The rate is
measured in units of (qd)2Wq/103pA\s. Furthermore,Dnn8 /ms2

518, andm5en
02Dnn8/4. Other values of the parameters are t

same as in Fig. 3.
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In this expression, the transverse wave functionsxn as well
as the corresponding eigenvaluesen

0 are assumed to var
slowly with the longitudinal coordinatex. The longitudinal
quasimomentump(x)[pn(x;e) is defined by p(x)2/2m
1en

0(x)5e.max$en
0(x)%, while p[A2me is the value at in-

finity x→6`. Thus, en
0(x)[en(p50;x) is the local posi-

tion of the bottom of thenth 1D transverse band at the poi
x. We assume that the functionsen

0 decrease monotonicall
and symmetrically to zero in both directions from the ma
mum point atx50. The oppositely directed propagating sta
c← is defined in the same way, but with negative quasim
mentump(x).

For a totally reflected electron state on the left-hand s
of the channel,e,max$en

0(x)%5en
0(0), the wave function is

c
‚

~r !5U 2p

p~x!LU
1/2

xnx~r'!sinF 1

\Ext

x

p~x8!dx8G ,
xt being the classical turning point.14 A reflected state on the
right-hand side of the channel is denoted byc

�

. Below we
will characterize the electronic state by the combinationa
5$n,p% together with a subscripts5→,←,‚, or �.

As we are dealing with a nonuniform channel, we mu
take into account the effect of screening. The electrons in
wide regions of the channel are more mobile than those
the narrow regions. Therefore, the screening of the elect
phonon interaction, and thus the coupling strength, will
pend on the position. We may take this effect into accoun
multiplying the function exp(2iq•r ) in the transition ampli-
tudes by a dimensionless factorh(r ). This factor, which will
be less than 1, is determined by the screening of the pie
electric field or deformation potential field by the electro
inside the leads and the channel. In the 2D leads,h(r ) is
small because of the high conductance of the 2DEG. H
ever, if the channel width is of the order of the effective Bo
radiusee0\2/me2, then the screening inside the channel
not too strong. The screening of the effective field in realis
gated structures is far from being satisfactory understood
more so that we are actually dealing with a nonstation
effect. However, there are indications that the effective
tential is not much lower than the unscreened one~see, e.g.,
Ref. 15!, and we shall assume this throughout the paper.
narrow channel and atqL@1 ~here we denote byL the
effective length of the channel!, one can considerh(r ) as a
smooth functionh(x) inside the channel and rapidly de
creasing outside.

Another simplification that arises from the above inequ
ity is that one can employ thestationary-phase approxima
tion for estimation of the transition probabilities. For tw
propagating statesas5$n,pa%s and bs85$n8,pb%s8 , the
transition amplitude is

^bs8uh~x!exp~2 iq•r !uas&5E
2`

`

dx A~x!exp@ iw~x!#,

~10!

where A(x) is a result of the integration in the transver
directions, while thex-dependent part of the integrand
phase is given by
-

-

e

t
e

in
n-
-
y

o-

-
r

c
he
y
-

a

-

w~x![was,bs8~x!5\21Ex

@pa~x8!2pb~x8!#dx82qxx.

Here pa(x) is determined as the solutionp of the equation
en(p,x)5pa

2/2m(5ea). With one or both of the states bein
reflected ones, we get two or four terms in the transit
amplitude, respectively. Now the phasew(x) is expanded
around a stationary pointx* defined by the equation
dw/dx50,

w~x!5w~x* !1w9~x* !~x2x* !2/2. ~11!

If such a stationary pointx* exists for w, then the main
contribution to the integral is concentrated around this po
As the partA(x) of the integrand is assumed to vary slow
on the scale;A2/uw9(x* )u, one can substituteA(x) in the
integrand byA(x* ). If w has no stationary points, one a
sumes a rapidly oscillating phase everywhere, thus the t
contribution to the transition amplitude is much smaller th
above.

In this picture, the transitions are localized at the poi
x* wherew8(x* )50. In our case, the change in energyea
5e→eb5e2\vq due to emission of a phonon is accomp
nied by a quasimomentum transfer2\qx , i.e., at the point
of stationary phase one arrives at thelocal conservation con-
dition

pn~x* ;e!5pn8~x* ;e2\vq!1\qx . ~12!

We would like to emphasize once again that thelocal values
of quasimomentum entering Eq.~12!—rather than the
asymptotic valuesp—determine the conservation law.

The above approach has been employed to analyze
photoconductance16 and the acoustoconductance17 in an
adiabatic quantum channel.

A. Phonon generation

The transition amplitude of Eq.~10! is given by

^bs8uh~x!e2 iq•ruas&

5E
2`

`

dxCnn8~q' ,x!h̃as,bs8~x!exp@ iwas,bs8~x!#,

whereCnn8 depends~smoothly! on x through the transverse
functionsxnx , while

h̃as,bs8~x![h~x!jsjs8upapb /pa~x!pb~x!L 2u1/2.

The factorjs is 1 for propagating states,6 i /A2 for reflected
ones. In the stationary phase approximation, the functi
Cnn8(q' ,x) and h̃as,bs8(x) are replaced by their values a
the stationary pointxas,bs8

* . Writing

Fas,bs8[E
2`

`

exp@ iwas,bs8~x!#dx,

we get for the generation rate of the nonuniform channe
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R5~2Wq /V! (
as,bs8

uFas,bs8u
2uh̃as,bs8~xas,bs8

* !u2

3uCnn8~q' ,xas,bs8
* !u2@ f as~12 f bs8!~Nq11!

2 f bs8~12 f as!Nq#d~ea2eb2\vq!, ~13!

whereV is the interaction volume~which is not known pre-
cisely, but is of the order of the geometrical volume of t
channel!. The pointx* and the phasew(x) are dependent on
as and bs8 . However, to avoid excessive proliferation
indices we will often omit these indices.

Now assuming that the second-order term in the exp
sion ~11! of the phase grows faster to values of the orde
than the following terms@i.e., at uw-(x* )/w9(x* )3/2u!1#,
the factorFas,bs8 can be evaluated as

Fas,bs85u2p/w9~x* !u1/2

3exp@ iw~x* !1 i ~p/4! sgnw9~x* !#,

where sgnx5x/uxu. The quasimomentapa(x* ) andpb(x* )
at the transition point are fixed by the conditions

en
0~x* !1pa~x* !2/2m5en8

0
~x* !1pb~x* !2/2m1\vq ,

pa~x* !5pb~x* !1\qx .

They can be positive or negative. In the case of one or b
of the involved states being reflected ones, the transition
plitude falls into two or four parts, respectively, since a
flected state is a superposition of waves withp.0 and p
,0. However, ifn5n8, a stationary pointx* exists for at
most one of these terms, and we denote by1pa(b) the mo-
mentum with the corresponding sign.

B. Intraband transitions

For n5n8 we have

pa~x* !5k1[ms/cosu1\qx/2,

pb~x* !5p1[ms/cosu2\qx/2. ~14!

The quasimomenta at the transition point are the same a
the case of a uniform channel. However, the electron ene
ea is no longer fixed by the phonon (v,q), since there are
now different solutionsx* of Eqs. ~14! corresponding to
different energiesea5en

0(x* )1k1
2/2m.

Let us again assumeT50. Then the only possible
phonon-generating processes are the ones shown in Fi
and 7. Thus, in Eq.~13! we haves5→, while s85← @if

FIG. 6. Phonon emission in a nonuniform channel by a tran
tion from a propagating to a reflected electron state. The trans
is localized around the pointx* .
n-
1

th
-

-

in
y

. 6

ea2\vq.en
0(0)# or s85� @if ea2\vq,en

0(0)#. Introduc-
ing the density of statesg(e), we get

R5~2Wq /V!(
n
E deg~e!g~e2\vq!

3uFneu2uh̃ne~xne* !u2uCnn~q' ,xne* !u2

3Q~m~1 !2e!Q~e2\vq2m~2 !!, ~15!

where the following three restrictions are implied:~i! A tran-
sition point x* must really exist for the energye involved,
which is only the case whenk1

2/2m,e,k1
2/2m1en

0(0). ~ii !
The initial state must be propagating, thusen

0(0),e. ~iii ! For
a transition between propagating states~Fig. 7!, the final one
must be propagating to the left. This means thatp1,0,
which, as before, leads to Eq.~5!, and hence the condition
\vq.2ms2, for such transitions. However, for transitions
a nonpropagating state~Fig. 6!, there is no such restriction.

For a transition of the kind in Fig. 7, there will in fact b
two transition points, one on each side of the constriction~cf.
with Ref. 18!. The corresponding two parts of the transitio
amplitude give rise to the interference term 2$11sin@w(x* )
2w(2x* )#%.

If, as in the case of a parabolic or square-confining pot
tial, the transverse energy has the formen

0(x)
5an /d(x)2, d(x) being the width of the channel, then

w9~x* !5
pa8 ~x* !2pb8 ~x* !

\
5

2mqxen
0~x* !

p1k1

d8~x* !

d~x* !
.

Inserting these expressions andg(e)5LAm/hA2e into Eq.
~15!, we finally get

R5
mWq

pV\2qucosuu

3(
n
E de

h2~xne* !uCnn~q' ,xne* !u2d~xne* !

en
0~xne* !ud8~xne* !u

nn~e!,

~16!

where the integration goes from max„k1
2/2m,en

0(0),m (2)

1\vq… to min„k1
2/2m1en

0(0),m (1)
…, and nn(e) represents

the interference part. This function is given by

i-
n FIG. 7. Phonon emission in a nonuniform channel by a tran
tion between two oppositely directed propagating states. There
two transition points.
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nn~e!5H 11sinF2\21E
0

x*
dx@ upn~x;e!u

1upn~x;e2\vq!u2\qx#G J Q~\vqcos2u22ms2!

if e.en
0(0)1\vq , otherwisenn(e)51/4. As before, the

Fermi functionsf (F)(«)→Q(2«) in Eq. ~15! cause the con-
dition \vq,eV.

When the energye approachesk1
2/2m ~from above! or

en
0(0)1k1

2/2m ~from below!, the transition pointxne* ap-
proaches infinity or zero, respectively. At these energ
which correspond to regions where the stationary-phase
proximation is not valid,en

0(x* ) and d8(x* ), respectively,
approach zero, making the integrand in Eq.~16! diverge.
However, these energy regions make up only two narr
parts of the integration range, and the integral itself c
verges.

Figure 8 shows the dependence of the generation rat
the bias voltage for a set of typical parameters. The pho
generation sets on foreV5\vq and, in contrast to the cas
of a uniform channel, increases approximately linearly:
eV increases, more and more phonon-emitting transitions
come possible, since the energies of the involved electron
not fixed. Figure 9 shows the variation of the different
generation rate with the bias voltage. It is proportional to
integrand of Eq.~16! with e replaced bym (1). The slowly
varying part corresponds to transitions from propagating

FIG. 8. Dependence of the phonon generation rateR in a non-
uniform channel on the bias voltageV, corresponding to intraband
transitions of the zeroth subband (n50). Phonon generation sets o
wheneV exceeds\vq and increases approximately linearly, corr
sponding to transitions like the one in Fig. 6. In regions wh
transitions between propagating states are possible as well~Fig. 7!,
the generation rate increases nonlinearly, corresponding to th
terference connected with these processes. Whenm (1)5m1eV/2
becomes large enough, no further transitions are possible, an
generation rate stays constant until the onset of contributions f
the next subband~not shown!. Here, the channel width is assume
to vary asd(x)5d(11x2/a2) with a parabolic transverse confinin
potential. Thus,en

0(x)5e0
0(0)(2n11)(11x2/a2)22, with the ze-

roth transverse energy maximume0
0(0)5\2/2md2. The generation

rate is shown in units ofmWqh
2a/V\2q, the bias voltage in units

of e0
0(0)/e. The screening factorh is set constant for simplicity.

The quasi-Fermi levelm is chosen such thatm (1)5e0
0(0) when

eV5\vq . Furthermore,d50.08 mm, a56 mm, m50.07m0 , s
533105 cm/s, q56ms/\, andu50.
s,
p-

w
-

on
n

s
e-
is

l
e

o

reflected states, while the oscillating part corresponds to t
sitions between oppositely directed propagating states.

It is important to note that the two patterns of phon
generation considered in this paper are physically differe
The first one~Sec. II! involves transitions that take plac
homogeneously inside the whole channel~quantum wire!.
The pattern considered in this section, on the other ha
involves transitions only near the edges of the chann
where the conservation laws are local and thus different fr
the ones for the uniform part. As a result, phonons with\q
,2ms can be generated. Observations of such phonons
be an indication of the importance of the processes near
edges. An effective interaction length in this case isl (x* )
5ud(x* )/d8(x* )u. An estimate of the relative intensity o
those processes compared to uniform generation is give
min@l(x* )/L,1#, whereL is the approximate channel length

In this section, we have considered the case of intrab
transitions in a nonuniform channel. The calculations in
interband case (nÞn8) are similar, but more complicated
and will not be carried out here. However, the main effe
discussed above, i.e., interference and the possibility to
criminate between different kinds of transitions, are relev
to that case as well. Also, as in the case of interband tra
tions in a uniform channel~Sec. II B!, there are voltage
thresholds in the phonon-generation rate. Due to thex depen-
dence of the band gapDnn8(x), these thresholds are les
pronounced.

Phonon generation is accompanied by non-Ohmic beh
ior of the conductance. This was analyzed for optic
phonons in Ref. 11. For the case of acoustical phonon
needs both additional experimental and theoretical invest
tion.

We have discussed the generation of bulk phonons. H
ever, the same methods can be applied for the investiga
of the generation of elastic modes confined to the interfac

IV. CONCLUSION

We have calculated the rate of phonon generation b
current-carrying quantum channel. The generation rate
steplike function of the applied bias voltage. The thresh

e

in-

the
m

FIG. 9. Dependence of the differential generation rateR @shown
in units ofmWqeh2a/V \qe0

0(0)# on the gate voltageV @in units of
e0

0(0)/e#. The differential rate is not continuous at the points whe
the transitions change character. Furthermore, it diverges~in this
approximation! for m (1)→k1

2/2m1e0
0(0). The parameters are the

same as for Fig. 8.
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voltages are directly related to the band gaps between
modes of transverse quantization, while the generation r
at the plateaus are related to the electron-phonon coup
constant inside the channel. The emitted phonons hav
characteristic angular distribution with a cutoff at an upp
limiting angle. The rate corresponding to phonons that
generated near the edges has a characteristic voltage d
dence that is sensitive to the shape of the channel.

In conclusion, we shown that the spectral and spatial
tributions of emitted phonons as well as the dependenc
the generation rate on the bias voltage bear information b
r,

J
.

ev
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ng
ra
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es
ng

a
-
e
en-

s-
of
th

on electron-phonon coupling in the quantum channel and
characteristics of the electron spectrum.
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p. 101; M. Büttiker, Phys. Rev. Lett.57, 1761~1986!.

6V. L. Gurevich, Phys. Rev. B55, 4522~1997!.
7I. O. Kulik, R. I. Shekhter, and A. N. Omelyanchouk, Solid Sta

Commun.23, 301~1977!, pointed out that the processes leadi
to electric resistance and heat generation are spatially sepa
in a classical point contact.

8N. Nishiguchi, Y. Ando, and M. N. Wybourne, J. Phys. Conde
Matter 9, 5751~1997!.
.

.

ted

.

9V. L. Gurevich, Transport in Phonon Systems~North-Holland,
Amsterdam, 1986!.

10V. L. Gurevich, V. B. Pevzner, and G. J. Iafrate, Phys. Rev. L
77, 3881~1996!.

11V. L. Gurevich, V. B. Pevzner, and G. J. Iafrate, Phys. Rev. L
75, 1352~1995!; J. Phys. Condens. Matter7, L445 ~1995!.

12OØ. L. Boø , H. Totland, and Yu. Galperin, J. Phys.: Conde
Matter 9, 8381~1997!.

13L. I. Glazman, G. B. Lesovik, D. E. Khmel’nitskii, and R. I
Shekhter, Pis’ma Zh. Eksp. Teor. Fiz.48, 218 ~1988! @JETP
Lett. 48, 238 ~1988!#.

14We assume the amount ofpartially reflected states is small.
15A. Wixforth, J. Scriba, M. Wassermeier, J. P. Kotthaus,

Weimann, and W. Schlapp, Phys. Rev. B40, 7874~1989!.
16A. Grincwajg, L. Y. Gorelik, V. Z. Kleiner, and R. I. Shekhter

Phys. Rev. B52, 12 168~1995!.
17H. Totland, OØ. L. Boø, and Yu. M. Galperin, Phys. Rev. B56, 15

299 ~1997!.
18F. A. Maaoø and Y. M. Galperin, Phys. Rev. B56, 4028~1997!.


