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Frequency-dependent magnetotransport and particle dynamics in magnetic modulation systems
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~Received 10 August 1998!

We analyze the dynamics of a charged particle moving in the presence of spatially modulated magnetic
fields. From Poincare´ surfaces of section and Liapunov exponents for characteristic trajectories we find that the
fraction of pinned and runaway quasiperiodic orbits vs chaotic orbits depends strongly on the ratio of cyclotron
radius to the structure parameters, as well as on the amplitude of the modulated field. We present a complete
characterization of the dynamical behavior of such structures, and investigate the contribution to the magne-
toconductivity from all different orbits using a classical Kubo formula. Although the dc conductivity of the
system depends strongly on the pinned and runaway trajectories, the frequency response reflects the topology
of all different orbits, and even their unusual temporal behavior.@S0163-1829~99!01604-5#
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I. INTRODUCTION

In the last few years it has become possible to build hi
mobility heterojunctions with lateral surface superlattic
and ‘‘antidot’’ arrays. Depending on the strength of the u
form field and the energy, the system could be considere
the quantum or classical regime, while the strength of
local potential~magnetic or electrostatic! determines whethe
the classical trajectories will be regular or chaotic.1 As the
lattice spacing is made much larger than the Fermi wa
length, the electron dynamics reaches a semiclassical reg
In this limit, it turns out that a competition between the cla
sical cyclotron radius and the potential length scale~the lat-
tice period! determines a great deal of the dynamical beh
ior, as we will see below. Given the great flexibility i
system fabrication, it is now possible to study the full ran
of this problem experimentally: from the fully quantum r
gime to the semiclassical mechanics problem. An import
example is the dynamics of ballistic electrons in a spatia
modulated potential in a magnetic field, and their effect
magnetotransport.1–3

In the semiclassical regime, commensurability oscillatio
in the magnetoresistance of modulated two-dimensio
electron gases have attracted much attention recently.1 The
commensurability oscillations result from the competiti
between two length scales: the cyclotron radiusRc5v/vo

~wherev is the particle velocity,vo5eBo /mc, andBo is the
applied magnetic field!, and the period of the superstructu
a. The case where the potential barriers are defined by
electrostatic modulation has been studied intensively b
theoretically and experimentally.1,3 The low-field oscillations
in the magnetoresistance have been observed by se
groups and in different regimes. For low and moderate fie
~Fermi wavelengthlF!Rc), and in high-mobility samples
~mean free path!a), the Landau-level quantization can b
neglected and a classical approach for ballistic electron
indeed sufficient to describe the dynamics and the mag
totransport. In this regime, Wagenhuberet al. studied theo-
retically the electron dynamics in a square electrostatica
generated lattice and showed that the chaotic behavio
reflected in the low-frequency power spectrum of the syst
PRB 590163-1829/99/59~4!/2824~9!/$15.00
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giving rise to a peculiar type of anomalous partic
diffusion.4

The maxima in the diagonal elements of the magneto
sistance tensorr i i as a function of magnetic field have bee
attributed to the existence of pinned electron trajector
around a single maximum~or groups of them! in the poten-
tial landscape.1 This pinning leads to a reduction in magn
toconductances i i , with minima at fields such that 2Rc /a
5n21/4, wheren is an integer. At the same time, the s
called runaway orbits represent skipping orbits along
rows of the potential landscape, and contribute to enha
s i i . Fleischmann, Geisel, and Ketzmerick studied the c
for a square geometry by working the classical dynamics
the ~zero-frequency! dc transport numerically,3 and their re-
sults were in excellent agreement with experimental valu1

Schusteret al. showed experimentally that the asymmetry
rectangular antidot superlattices is reflected in the meas
dc transport, as the scattering with the antidots make
motion clearly more diffusive in one direction than th
other.5

In this paper we investigate a model where the sec
length scale in the problem, apart from the cyclotron rad
Rc , is defined through a periodic variation in the magne
field itself, instead of an additional electrostatic modulatio
This magnetically modulated system was introduced
Vasilopoulos and Peeters,6 and successfully implemented b
several groups.7 In this case, it has been shown that for
weak modulation similar minima ins i i occur here but are
shifted to 2Rc /a5n11/4.6 This phase shift has in fact bee
used to differentiate between these two effects
experiments,7 and has been shown to persist beyond
weak modulation regime.6,8

For the square geometry in the magnetic modulated s
tem, we have shown in an earlier paper that the chaotic or
are the ones that contribute the most to the dc conductiv9

and reproduced the experimental results for the comme
rability oscillations in the dc magnetoresistivity~similar re-
sults have been obtained by Schmidt10!. In the ~finite fre-
quency! ac transport we showed also that the quasiperio
~pinned! orbits give rise to resonance peaks at characteri
frequencies. In the magnetic square lattice the chaotic c
tribution to the ac conductivity is centered aroundvo , while
2824 ©1999 The American Physical Society
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PRB 59 2825FREQUENCY-DEPENDENT MAGNETOTRANSPORT AND . . .
the quasiperiodic trajectories give rise to features at the
quencies associated with the rate of precession of their o
and/or other characteristic frequencies of the motion.9 Simi-
lar qualitative behavior has been reported in experiments
Vasiliadou et al. in an electrostatic square antidot array11

They mapped experimentally the photoconductivity sign
vs the uniform field, and found a clear resonant signal rela
to quasiperiodic orbits around groups of~or single! antidots.
These experiments are performed at low magnetic field
with frequencies in the microwave regime. Vasiliadouet al.
found that the commensurability effects and modified cla
cal cyclotron resonances they observed are in agreement
model calculations based on the nonlinear dynamics
classical transport of the electron.3,11

For the more general magneticrectangular modulation,
one would expect that the quasiperiodic orbits would be a
reflected in the frequency-dependent magnetotransport,
reflect the system anisotropy. There are in fact three type
trajectories in this geometry: pinned and runawayquasiperi-
odic, as well as a type of runawaychaotic, as we will show
below. This classification refers to their spatial behavior
the dynamics progresses, and it has been used to intuiti
understand their contribution to the conductivity. Althou
the pinned quasiperiodic and runaway chaotic orbits exis
the square geometry,9 the runaway quasiperiodic trajectory
possible only in the asymmetric modulation of a rectangu
geometry, and in a regime of parameters such that the c
sical cyclotron orbit radius is comparable to the modulat
periods. This highlights another interesting point in the
systems. We show here that the electron dynamics dep
only on the ratios of cyclotron orbit radius to lattice perio
Rc /a, andRc /b, and to the ratio of magnetic modulation
uniform field componentr 5Bm/Bo . We can therefore say
that the chaotic character of the dynamics is controlled
only by the modulation amplitude, as one would expect,
by the size of the cyclotron orbit radius. This is somewh
different to the near independence on cyclotron radius
scribed by Wagenhuberet al. in the square lattice electro
static case.4

We also find, as will be discussed in Secs. III and
below, that the chaotic orbits in the rectangular lattice dif
markedly from the square lattice case, depending on
value of the ratiosRc /a and Rc /b. This leads to contribu-
tions to the ac conductivity much different than in the case
the square lattice, as unstable quasiperiodic orbits embe
in the dynamics dominates i i (v) even in a fully chaotic
regime. Finally, we show in this paper that there is a dir
correlation between the largest Liapunov exponent of
chaotic trajectory ands i i . The Liapunov exponent provide
a direct measure of the diffusion of the particle in the chao
orbits, even overwhelming the remnant impurity scatter
~which otherwise provides a low-frequency cutoff in th
power spectrum and yields normal particle diffusion!.

II. MODEL AND APPROACH

Consider a 2DEG in thexy plane with a spatially modu
lated magnetic field, giving rise to a smooth and infinite
extended ‘‘magnetic antidot potential.’’ Perhaps the simpl
form of this modulation can be described by the followi
e-
its
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expression~easily generalizable by adding more Fouri
components, for example!,

B5 ẑBoF11
r

2S cos
2px

a
1cos

2py

b D G , ~1!

wherer 5Bm /Bo is the ratio of modulation and uniform field
components (r<1), anda andb are the periods of modula
tion along the two directions. This system can be descri
by the HamiltonianH5@p1(e/c)A(r )#2/2m, wherem is the
electronic effective mass~in GaAs, for example, the system
of choice in typical experiments! andA is the vector poten-
tial. Choosing a symmetric gauge, this can be written as

A5S 2Bo

y

2
2

Bm

2ky
sinkyy,Bo

x

2
1

Bm

2kx
sinkxx,0D , ~2!

where kx52p/a, and ky52p/b. The trigonometric func-
tions in the Hamiltonian lead to a nonlinear coupling in t
classical equations of motion. This coupling is proportion
to the dimensionless quantityr, and no analytical solution
can be given in general. We study the dynamics of the s
tem by carrying out accurate numerical solutions of the eq
tions of motion, and use Liapunov exponents to characte
the type of trajectory and their contribution to the conduct
ity of the system. Although the resulting equations can
solved in a linearized form for smallr, this solution loses
validity rather quickly asr increases. Only the numerica
solutions are presented here.

In calculating the ac conductivity we use a classical v
sion of the linear response theory~Kubo formula!

s ij~v!}E
0

`

dte2t/t eivt ^Vi~ t !Vj~0!&, ~3!

where ^Vi(t)Vj (0)&5Nic
21( icVi(t)Vj (0) plays the role of

the velocity autocorrelation function, and the characteris
ensemble average has been substituted by an average
initial conditions (ic) in this four-dimensional phase spac

$rWo ,vW o%. @Since we are only interested in the frequency d
pendence and magnetic field features of the conductivity,
ignore an overall normalization prefactor in Eq.~3!.# Here,
Nic is the total number of initial conditions used, andt is a
phenomenological scattering time associated with the r
nant random impurity and alloy scattering in the re
system.12 We calculate the velocity correlation functio
^Vi(t)Vj(0)& by generating random sets of initial condition

$rWo ,vW o%, while keeping the energy constant. We can th
separate the initial conditions that yield pinned and runaw
orbits by using the Poincare´ surface section to classify tra
jectories for such energy. This is accomplished by introd
ing a ‘‘diffusion length,’’ d5@(xf2xo)21(yf2yo)2#1/2,
where (xo ,yo) is the initial position, and (xf ,yf) is the po-
sition at the end of the integration at timet f (@vo

21). The
orbit is classified as runaway ifd.qRc , for q.5, say. We
use these initial conditions to generate the Poincare´ surface
section anew and verify whether the trajectory is inde
runaway-chaotic or runaway-quasiperiodic, for example.
identifying the pinned vs runaway trajectories, we can th
directly and quantitatively correlate their characteristic f
quencies with their contribution to the total transport coe
cients, as we describe below. Clearly, the precise cu
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2826 PRB 59ESMAEL BADRAN AND SERGIO E. ULLOA
value ofq above would affect results, but only very slight
quantitatively, and not our conclusions.

Notice that in this Hamiltonian system the kinetic ener
is a constant of motion, since only magnetic fields are
plied. One can define the cyclotron radiusRc5v/vo

5Aẋ21 ẏ2/vo as an auxiliary length scale. Using this, th
classical equations of motion can be scaled in time
length by x/Rc→ x̃, y/Rc→ ỹ, and vot→ t̃ . The equations
then appear as those for two nonlinear coupled pendula

ẍ̃52 ẏ̃F11
r

2
~coskax̃1coskbỹ!G ,

ÿ̃51 ẋ̃F11
r

2
~coskax̃1coskbỹ!G , ~4!

whereẋ̃5dx̃/d t̃, etc.,ka52pRc /a, andkb52pRc /b. This
scaling shows the explicit dependence of the motion on o
three parameters:r ~magnetic field modulation amplitude!,
Rc /a, andRc /b, which then fully characterize the dynamic
as we will show in the next sections.

III. POINCARE´ SURFACES OF SECTION
AND LIAPUNOV EXPONENTS

Since energy is conserved in this system, the dynam
takes place on a three-dimensional ‘‘slice’’ of the pha
space available. We can fully characterize the types of
jectories by means of Poincare´ surfaces of section on thexy

plane for a given value of velocity~or ‘‘phase’’!, such asẋ
maximum~and ẏ50). Due to the translational symmetry o
the superstructure potential in thexy plane, we fold all Poin-
caré sections such that thex values lie in the interval
(2a/2,a/2), and they in (2b/2,b/2). The phase space tra
jectories are uniquely determined by points in the surface
section.

We calculate Liapunov exponents by using the method
Wolfe.13 We choose base 2 in calculating exponents, s
that the distance between two nearby trajectories isd(t)
5d02l i t, wherel i are the Liapunov exponents. For a Ham
tonian system,( il i50, since the volume in phase space
conserved by Liouville’s theorem.14 For a given set of pa-
rametersr, Rc /a, andRc /b, the type of trajectory depend
only on the initial conditions (rWo ,vW o), as described above.

For a certain modulation strengthr, we find that the frac-
tions of runaway chaotic, runaway quasiperiodic, and pin
quasiperiodic orbits in phase space depend only on the le
ratios Rc /a, and Rc /b, but not on the energy nor the un
form field individually. This dependence, consequence of
scaling shown in Eq.~4!, is reflected on the ac conductivit
as well. For example, in the case of a square lattice cas
Poincare´ surface section and three different traces ofsxx(v)
are shown in Fig. 1, wherer 50.6 and 2Rc /a51.4 are kept
constant. These traces were produced changing the en
such thatv50.7voa, while the corresponding uniform field
is given byvot51.5, 2.25, and 3.0 (t53310212 sec!. In
this situation, we find that the Poincare´ sections do not
change, and the traces of conductivity have the same
tures, except for a frequency shift towardsvo , and a differ-
ent amplitude. The horizontal shift in Fig. 1~b! is nothing but
-
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the scaling of the frequency~or time! by vo ~or vo
21). The

amplitude change can be understood if one analyzes the
pression for the conductivity in auniform field, giving the
classical Drude peak with half-width 1/t,

sxx~v!}
tv2

11~v2vo!2t2
. ~5!

It is clear from this expression that the conductivity amp
tude depends on the energy~via v2). In our case of a modu-
lated field,sxx(v) shows more structure, and it appears
the expense of the Drude peak. Rescaling of the frequenc
v/vo in each trace produces the nesting one would exp
from the scaling of Eq.~4!, as clearly shown in the inset o
Fig. 1~b!. As we will explore further in the next section, th
various features observed in these traces are contribut

FIG. 1. ~a! Poincare´ surface of section for square modulatio
with 2Rc /a52v/vo51.4 andr 50.6. ~b! sxx(v) for the same pa-
rameters but different energy (v) and magnetic field (vo). Fre-
quencyv in units of 1012 Hz. Inset: traces rescaled tov/vo show
perfect nesting.
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from the different quasiperiodic regions in the Poincare´ map,
while the contribution of the chaotic region is centered clo
to vo .9

As explained, the characteristic size of the cyclotron
bits with respect to the magnetic lattice dimensions de
mines the resulting dynamics and the overall properties
the trajectories for different initial conditions. We can th
consider different regimes:First, when 2Rc<a<b, most or-
bits are localized between or around modulation maxi
~single ‘‘antidots’’!, as the high magnetic field~and/or low
energy! effectively shrinks the electronic orbits to be ful
within a period of the modulation.Second, when a<2Rc
<b, the asymmetry of the potential landscape is expecte
be strongly reflected in the dynamics and transport, since
length scales are comparable and their competition prod
strong changes in the dynamics.Third, for low magnetic
fields ~and/or high energies!, when a<b<2Rc , the lattice
asymmetry becomes less and less important, as the traj
ries extend over several periods of the potential landsc
Here, the particle motion effectively performs a se
averaging of the different magnetic field amplitudes, wh
cancels the asymmetry of the system, and yields a relati
large dc conductance and a featureless and broad freque
dependents(v).

For thefirst regime, consider 2Rc /a53/8 andb/a51,2.
Since 2Rc is much smaller thana andb, the electron is able
to trace out periodic and quasiperiodic orbits which rem
basically pinned about a lattice position, even for a h
modulationr. These orbits show a variety of frequencies th
can be seen in the structure of the Poincare´ section. For
example, whenb/a51, r 50.6, the Poincare´ section is
mostly dominated by large sectors of quasiperiodic orb
even though the nonlinear coupling~via r ) is somewhat high.
We show in Fig. 2~a! that two different regions of pinned
orbits exist in this portrait, surrounded by Kolmogoro
Arnold-Moser~KAM ! islands of stability,14 and a small cha-
otic region showing diffusion along both directions. For t
chaotic orbit in this case we calculate the largest Liapun
exponent to bel50.85 ~while for the quasiperiodic orbits
l i'0 — this is the same for all the cases below, as ant
pated, so that we will only quote the largest Liapunov exp
nent in the chaotic orbit from here on!. The quasiperiodic
structures in the Poincare´ map, as we will see later, will give
rise to resonance peaks in the ac conductivity.

Figure 2~b! shows a Poincare´ section whereb52a and
r 50.6. In this case, phase space has more structure du
the asymmetry of the potential landscape, KAM islands
still well developed, and the chaotic region is larger. In t
case, the largest Liapunov exponent isl50.91, indicating
that the motion in the chaotic regime has become more
fusive ~and still two dimensional!.

In the second regime, we consider as examples 2Rc /a
51.2, andb/a>3 ~smaller values ofb/a yield results quite
similar to the square geometry discussed before9!. Since 2Rc
is between botha andb, there is a preferred direction to th
electron motion, in this case thex direction. We have shown
in previous work that in the square geometry, when 2Rc
'a5b, the electron dynamics shows a great deal of cha
behavioreven when the modulation constant ris small.9 This
can be understood as being due to the fact that the electr
more likely to ‘‘collide’’ in this regime with the maxima in
e
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the modulation landscape. These collisions allow the part
to access stronger nonlinear terms in the equation of mot
which in turn produces a more critical dependence to ini
conditions and then chaotic dynamics.15

For b/a*3, as we turn on the modulation, we notice t
appearance of two kinds of quasiperiodic orbits~pinned and
runaway!, even forr &0.35. The runaway quasiperiodic o
bits result from the strongx-y asymmetry of the potential
which forces the electron to move preferentially along thx
direction ~smaller period!. However, the modulation field is
not sufficiently strong to make the electron motion chao
and the runaway orbits are nearly free in the preferred dir
tion. As r increases to'0.4, the chaotic orbits start to oc
cupy a non-negligible volume in phase space, and the lar
Liapunov exponent becomes positive. In Fig. 3 we sh
Poincare´ sections for 2Rc /a51.2 andb/a54, for both r
50.45 andr 50.85. In Fig. 3~a!, r smaller, we see three
types of trajectories: two quasiperiodic~one pinned and one
runaway or open!, and a chaotic runaway. Notice that th
chaotic trajectories are confined between two sets of qu
periodic runaway orbits and yield then particle diffusiononly
along one dimension.In this case, the chaotic trajectorie

FIG. 2. Poincare´ surfaces of section for the same energy, w
2Rc /a53/8 andr 50.6. In ~a! b5a, while in ~b! b52a.
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have a single characteristic frequency aroundvo , with larg-
est Liapunov exponentl50.98. In Fig. 3~b!, as r is nearly
doubled, we see that there are two small regions of pin
quasiperiodic orbits with Liapunov exponents converging
zero individually, while the rest of phase space is filled b
chaotic orbit with largest Liapunov exponentl51.1, which
clearly shows diffusion in two dimensions. The modulati
is so strong that there are no remnants of the runaway
siperiodic trajectories. Thisy-axis ‘‘delocalization’’ is simi-
lar to the energy dependence described by Wagenh
et al.4 for a symmetric electrostatic modulation case. Not
here, moreover, that energy is kept constant, via 2Rc /a, and
that the transition is produced then by the stronger mod
tion amplitude.

We find furthermore that the chaotic trajectories are qu
tatively different in this second regime from those in the fi
high-field regime. In the latter, when 2Rc<a<b, the char-
acteristic frequency of the chaotic trajectory is always n
vo , as the trajectory effectively samples a significant ran
of field values during its two-dimensional diffusion and se

FIG. 3. Poincare´ surfaces of section for the same energy, a
2Rc /a51.2, andb54a. For ~a! r 50.45 and~b! r 50.85. Notice
x-direction one-dimensional diffusion of chaotic orbits in~a!
evolves into two-dimensional diffusive motion in~b!.
d
o
a

a-

er
e

a-

i-
t

r
e

averages tovo . In the second regime, however, we find th
it is typical to find two characteristic frequencies embedd
in the chaotic orbit atv6'vo6d, where d increases as
eitherb/a or r increase. This type of remnant two-frequen
trajectory is produced by the asymmetry of the potential, a
one can clearly see this effect in the special cases wh
2Rc'a!b, for example. These dimensions create a la
scape where the electron can move for a relatively long t
in the x direction in a region of fields lower thanBo ~in
essence a diffusive motion of its precession center!, corre-
sponding to a frequencyv2'vo2d. When the motion
drifts in they direction, the electron faces a wall of maxim
separated by a distancea'2Rc, which often confines the
trajectory to a region of higher fields between two maxim
and pins the particle to precess for a time with characteri
frequency motion ofv1'vo1d, until it escapes again to a
lower field region in the potential. The persistence of the
characteristic frequencies embedded in the chaotic mo
provides a uniques i i (v), as we will see in the next section

Another form of exploring this intermittence effect is b
analyzing the field experienced by the particle along its c
otic trajectory. In Fig. 4 we show the ‘‘instantaneous fr
quency,’’ f 5eB(r )/mc, which the electron experiences i
the magnetic potential landscape as it moves through p
tions r (t). When a5b, Fig. 4~a! shows that this instanta
neous frequencyf varies aroundvo(51.2531012 Hz here!
nearly uniformly. In the second plot, Fig. 4~b!, the particle’s
instantaneous frequency spends a significant amount of
at values averaging clearly higher thanvo , and then, in the
next segment of the time series, its average is lower thanvo .
This persistent intermittent switching behavior, which co
tinues for as long as we have run the simulations, indica
that the particle is metastably trapped in the different regi
of the periodic potential, even though the trajectory is clea
chaotic, as judged by the corresponding Poincare´ phase por-

FIG. 4. Time series of the ‘‘instantaneous frequency’’f
5eB(r )/mc that particle experiences in a chaotic trajectory. He
vo51.25 (31012 Hz!, while 2Rc /a51.2 and r 50.85. In ~a! a
5b, while in ~b! b54a. Time axis is labeled by the integratio
step index.
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trait. We will show in the next section that this kind of tra
jectory will give rise to two prominent peaks in the ac co
ductivity, even though its Poincare´ map shows a typica
chaotic trajectory, and one would naively expect a featu
lesss(v) ~which is the case for 2Rc /a@a,b, for example!.
Therefore, the peculiar metastable character of the ne
trapped sections embedded in this chaotic trajectory sh
clearly in the frequency dependent conductivity.

Finally, for the low-field third regime, we consider
2Rc /a56, b/a52, andr 50.56. Since 2Rc@a,b, the elec-
tron is more likely to collide with potential maxima here tha
in the previous two cases, as discussed earlier, and h
chaotic orbits occupy most of phase space even for
tremely low modulation~not shown!. In all these cases, th
chaotic orbits have an average characteristic frequencyv
'vo , but with a rather broad distribution, as we will se
below. Moreover, the largest Liapunov exponent for the c
otic orbits isl51.14, the largest exponent we ever obtain
in all cases, indicating that the motion is indeed fully diff
sive in two dimensions. This behavior will be clearly r
flected on the magnetotransport described in the next sec

IV. MAGNETOTRANSPORT

A quantitative theory of magnetotransport requires
tailed consideration of regular and/or quasiperiodic~pinned
or runaway! and chaotic~runaway! trajectories arising from
modulation scattering. In Hamiltonian systems, where
volume in phase space is conserved, the conductivity te
s is obtained from the sum of the individual contributions
trajectories weighted by their volume in phase space.
have shown in previous work that the contribution of pinn
orbits to the dc conductivity is negligibly small, in agreeme
with previous work,3 while they are closely related to peak
in the ac conductivity. We assume here that the proportio
pinned to runaway orbits does not change qualitatively e
after the inclusion of impurity scattering, which should n
be far from being the case if mobility in the unmodulat
system is high.12

For the calculations of the ac conductivity we used ra
dom sets of initial conditions~typically a few thousands!,
and classified the orbits by inspecting the correspond
Poincare´ sections, as described above. We are then abl
separate the initial conditions that give rise to pinned or c
otic orbits, and clearly identify their different contribution
to s andr. When the modulation strengthr is zero, the ac
conductivity yields the classical Drude peak, as the cha
experiences a uniform field and only impurity scattering,
cluded here throught @see Eq.~5!#. Once the magnetic
modulation is turned on, however, the Drude peak rema
centered aroundv5vo , for small r, but the conductivity
begins to acquire a nonhomogeneous broadening,
sxx(v) and syy(v) start deviating from each other ifb
Þa, in general. This inhomogeneous broadening appearsbe-
fore the chaotic orbits appear (r small!, i.e., when the Poin-
carésections show only quasiperiodic orbits. This broad
ing is then clearly associated with the fact that most of
electron trajectories have still the characteristic freque
vo . However, due to the small modulation, the electron
bits precess with characteristic frequencies which app
close to or far fromvo , depending on structural paramete
-
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By increasing the modulation strength, additional featu
appear ins(v) at the same time that chaos and KAM islan
appear in the Poincare´ surface section. Moreover, an offset
zero frequency appears in bothsxx(0) andsyy(0) due to the
onset of chaotic orbits and associated particle diffusion.
increasing portion of chaotic trajectories asr increases makes
the zero offset increase at the expense of the reson
peaks. This signals the increase in dc conductance and
in resistance produced by the magnetic modulation wh
has been measured in experiments on these and re
systems.1,7 We should also mention that the dc magneto
sistance calculated here shows the well-known Weiss os
lations seen recently for magnetic modulation,7 as we have
shown in Ref. 9.

In this section, we discuss the magnetoconductivity
the same three regimes ofRc /a, Rc /b, andr parameter val-
ues reviewed in the previous section. We discuss the ca
lated conductivity tensor components, and their relation
features of the corresponding Poincare´ section for those pa-
rameter values. For thefirst regime, where 2Rc,a<b, we
have used the same initial conditions and parameters we
to generate the Poincare´ surface of section in Fig. 2~a!. Fig-
ure 5 shows the ac conductivity for bothb5a andb52a. In
Fig. 5~a!, sincea5b, we obviously findsxx(v)5syy(v).
Thesxx(v) curve has two main features aroundvo , related
to the two regions of quasiperiodic trajectories in the Po
carésurface of section in Fig. 2~a! which dominate the phas

FIG. 5. Frequency-dependent conductivities,s(v). Parameters
in ~a! are 2Rc /a50.4, b/a51, andr 50.6, andsxx5syy . In ~b!
same parameters, except forb/a52. Here, solid ~dashed! line
showssxx (syy).
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space. The central feature with frequencyv'vo is enhanced
by the contribution of the small chaotic region which pr
vides frequencies closely peaked at aroundvo . Since
2Rc /a53/8 here, we see that the effect of the modulation
s(v) is relatively minor, even for the not so smallr 50.6,
producing particle precession around the minima a
maxima of the modulation landscape, in addition to so
higher frequency trajectories associated with pinning n
maxima.

In Fig. 5~b! we use the same parameter set used to g
erate the Poincare´ section in Fig. 2~b!. Since hereaÞb, the
symmetry is broken and it is the case thatsxx(v)
Þsyy(v). By comparing the Poincare´ sections in Figs. 2~a!
and 2~b! we see that most of the quasiperiodic orbits in t
central section survive, which in Fig. 5~b! produce the per-
sistence of the feature insxx(v) andsyy(v) at v'1.4vo .
On the other hand, the other sector of quasiperiodic or
does shrink and becomes surrounded by KAM islands in F
2~b!. Correspondingly, we see that the conductivity feature
v'0.8vo becomes smaller, due to the shrinking of pha
space volume occupied by these trajectories, and move
lower frequencies ('0.6vo). Meanwhile, the contribution o
the KAM islands in Fig. 2~b! gives rise to large amplitudes a
various frequenciesv.vo . Finally, in this regime we see
that as the symmetry breaks, the zero frequency offset v
of sxx becomes larger than that ofsyy , indicating that the
electron motion becomes more diffusive in thex direction
than they direction. This is expected, as theb52a geometry
produces open ‘‘channels’’ along thex direction which fa-
cilitate diffusion, even in this first regime.

For thesecond regime, take 2Rc /a51.2, b/a.2, andr
50.85. We will focus on the contribution of the chaotic o
bits discussed in the previous section, in connection with F
4. In this range of parameters, most of phase space volum
occupied by chaotic trajectories. In Fig. 6~a!, we show sev-
eral traces ofsxx(v), keeping 2Rc51.2a and r constants,
while changingb/a as indicated there. For 1,b/a<2, we
should mention that there is no appreciable difference fr
the case of a square geometry, probably due to the fact
as 2Rc is comparable to the lattice parametersa and b, the
electron scatters more frequently and symmetrically, prod
ing chaotic orbits with characteristic frequency se
averaging tovo . When b/a grows, the asymmetry in the
lattice structure increases, andb is less comparable to 2Rc ,
so that the electron dynamics changes substantially
shown in Fig. 6~a!. We see here that largeb/a values pro-
duce two prominent features insxx at v'vo6d, which
become increasingly apart in frequency for largerb/a. The
existence of characteristic frequencies different fromvo ,
even when the trajectories are fully chaotic@see Fig. 3~b!#,
are due to the long-term metastability of the nearly-pinn
orbits discussed in relation with Fig. 4~b!. It is then interest-
ing to see that even though the Poincare´ section shows a
chaotic map,s(v) is able to exhibit this unusual metastab
behavior arising from~and made stronger by! the asymmetry
in the magnetic modulation landscape. We should stress
even in the case of a rather shortt (53310212 sec in this
figure!, the metastability is not ‘‘erased’’ by the impurit
scattering, and is clearly visible insxx .

In Fig. 6~b!, we keep 2Rc /a51.2 and b54a, while
changingr as indicated in the graph@in this figure, and to
n
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contrast with Fig. 6~a!, we uset515310212 sec, three times
longer than before#. For weak modulation,r ,0.5, the run-
away quasiperiodic trajectories and KAM tori do survive a
the chaotic trajectories do not cross the wall of maxima
the y direction, as shown earlier in Fig. 3~a!. Moreover, the
corresponding chaotic trajectory extended along only thx
direction will self-average to a frequencyv'vo . This can
clearly be seen insxx(v) curves which show only a broad
ening similar to a Drude peak for a uniform field~except for
a larger width and flatter top produced by the intrinsic diff
sive behavior of the trajectories!. As the modulation in-
creases tor>0.5, we start seeing the singles peak split into
a double peak aboutvo . At r 50.85, where most of the
phase space is occupied by a chaotic trajectory, the do
peak is clearly developed~in addition to a low-frequency
remnant structure from the small quasiperiodic orbits!. We
should also notice that in this regime the zero frequen
offset ofsxx is always larger than that ofsyy ~not shown!, in
agreement with the intuitive notion that the runaway orb
along thex direction contribute more to the dc conductivit
even when the diffusion is fully two dimensional.

In order to further identify the different contributions t
the conductivity in this regime, we now calculate the spe
trum for a single-orbit,Sxx(v). This quantity is the contri-
bution to sxx coming from a single trajectory~i.e., the ve-
locity autocorrelation function for that trajectory!. Figure 7
showsSxx for the samechaotic orbit but starting at two dif-

FIG. 6. ~a! sxx(v) for 2Rc /a51.2, r 50.85,t53310212 sec,
and b/a52,3,4,8 as shown.~b! sxx(v) shown for 2Rc /a51.2,
b/a54, t three times longer, andr 50.25, 0.5, and 0.85, as shown
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ferent points on the trajectory. The first trace, appearing s
and with a peak atv'0.9vo , is obtained when we integrat
the dynamics starting at a point in the magnetic landsc
identified as a ‘‘channel’’ of minima, i.e., the electron m
tion is mostly diffusive along thex direction ~an integration
over a 5t interval is presented!. The second curve, dashe
and with a peak atv'1.3vo , was obtained when the inte
gration starts at a point between two nearest antid
~maxima! in the x direction. Notice that here the electro
motion was drifting to cross the magnetic barrier in they
direction and formed a short-lived metastable quasiperio
orbit. It is then further verification that as the particle e
ecutes the chaotic trajectory, it is being trapped along ch
nels formed by nearest-neighbor maxima or antidots. T
effect is carried through to the frequency-dependent cond
tivity, even for the shortt used (53310212 sec!.

For thethird regimeof large cyclotron orbits, let us con
sider 2Rc /a56, b/a52, andr 50.56. As mentioned in the
previous section, the phase space in all these cases is
pletely occupied by a single chaotic trajectory, even for we
magnetic modulation strengthr, and shows no signs of meta
stability. One typically findsl51.14, the largest Liapunov
exponent we found for this regime. We show in Fig. 8 t
conductivity curves ofsxx(v) andsxy(v) for the case men-
tioned. In this example, even thoughaÞb, we obtain
sxx(v)5syy(v) due to the strong scattering produced
the modulation, since on the scale of the cyclotron radius
lattice appears basically symmetric. Consequently, the c
otic trajectory averages over all directions, producing
single but much broadened peak atv5vo and with a large

FIG. 7. Single-orbit spectrumSxx(v) for the same chaotic tra
jectory with 2Rc /a51.2, b/a54, andr 50.85, but starting at dif-
ferent points. Solid trace reflects motion alongx channels; dashed
trace that between nearest antidots.
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id
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zero-frequency offset, showing indeed that the motion
fully diffusive in both directions.

V. CONCLUSIONS

We have studied the frequency-dependent magnetotr
port in a two-dimensional magnetic field modulation in
rectangular lattice symmetry for various parameter regim
This study has revealed that a class of resonances exist i
ac conductivity, reflecting the different character of the va
ous electron trajectories, and the degree of integrability~or
non-! of these systems. In all cases, we have found a co
lation between the dc conductivitys i i (0) and the value of
the largest positive Liapunov exponentl. As l increases,
the zero-frequency offset increases, indicating that the c
otic trajectories become more and more diffusive, ev
changing diffusive character from one to two dimensional,
the modulation increases. The study of different profiles
magnetic field modulation and even different lattice stru
tures, both theoretically and experimentally, should give
better insights into the microscopic character of the elect
trajectories in different regimes. The possible screening
fects which would mask some of the frequency depende
discussed here~so-called magnetoplasmon effects16,17! are
being studied and will be presented elsewhere. It is, ho
ever, anticipated that the single-particle features discus
here would persist even when plasmon effects are taken
consideration, as the experiments in Ref. 11 have shown
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FIG. 8. sxx(v) ~solid trace! and sxy(v) ~dashed! for 2Rc

56a, b52a, andr 50.56.xx andyy components are identical.
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