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Frequency-dependent magnetotransport and particle dynamics in magnetic modulation systems
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We analyze the dynamics of a charged particle moving in the presence of spatially modulated magnetic
fields. From Poincarsurfaces of section and Liapunov exponents for characteristic trajectories we find that the
fraction of pinned and runaway quasiperiodic orbits vs chaotic orbits depends strongly on the ratio of cyclotron
radius to the structure parameters, as well as on the amplitude of the modulated field. We present a complete
characterization of the dynamical behavior of such structures, and investigate the contribution to the magne-
toconductivity from all different orbits using a classical Kubo formula. Although the dc conductivity of the
system depends strongly on the pinned and runaway trajectories, the frequency response reflects the topology
of all different orbits, and even their unusual temporal behay®80163-1829)01604-5

[. INTRODUCTION giving rise to a peculiar type of anomalous particle
diffusion*

In the last few years it has become possible to build high- The maxima in the diagonal elements of the magnetore-
mobility heterojunctions with lateral surface superlatticessistance tensas;; as a function of magnetic field have been
and “antidot” arrays. Depending on the strength of the uni-attributed to the existence of pinned electron trajectories
form field and the energy, the system could be considered iaround a single maximur¢or groups of themin the poten-
the quantum or classical regime, while the strength of thédial landscapé.This pinning leads to a reduction in magne-
local potentialmagnetic or electrostaticletermines whether toconductancer;;, with minima at fields such thatR;/a
the classical trajectories will be regular or chadtias the ~=Nn—1/4, wheren is an integer. At the same time, the so-
lattice spacing is made much larger than the Fermi wavecalled runaway orbits represent skipping orbits along the
length, the electron dynamics reaches a semiclassical regim@Ws Of the potential landscape, and contribute to enhance
In this limit, it turns out that a competition between the clas-“ii - Fléischmann, Geisel, and Ketzmerick studied the case

sical cyclotron radius and the potential length sgiie lat-  [OF @ Square geometry by working the classical dynamics and
tice period determines a great deal of the dynamical behav—the (zero-frgquencydc transport nurr}erlcallf/,e}nd their :ﬁ'
ior, as we will see below. Given the great flexibility in sults were in excellent agreement with experimental vatues.
system fabrication, it is now possible to study the full rangeSChUSte'et al. sr_\owed experim ent_ally that the_ asymmetry of

' rectangular antidot superlattices is reflected in the measured

OT this problem e_:xpen_mentally. frqm the fully quan_tum e dc transport, as the scattering with the antidots make the
gime to the semiclassical mechanics problem. An importanf, iion clearly more diffusive in one direction than the
example is the dynamics of ballistic electrons in a Spat'a”yother?
modulated potential in a magnetic field, and their effect on |4 this paper we investigate a model where the second
magnetotrans.poi‘r.?j _ 3 ~length scale in the problem, apart from the cyclotron radius
In the semiclassical regime, commensurability oscnlanonspc, is defined through a periodic variation in the magnetic
in the magnetoresistance of modulated two-dimensiongield itself, instead of an additional electrostatic modulation.
electron gases have attracted much attention receéfithe  This magnetically modulated system was introduced by
commensurability oscillations result from the competitionVasilopoulos and Peetetsind successfully implemented by
between two length scales: the cyclotron radRis=v/w,  several group$.In this case, it has been shown that for a
(wherev is the particle velocityw,=eB,/mc, andB, isthe  weak modulation similar minima imr;; occur here but are
applied magnetic field and the period of the superstructure shifted to R./a=n+ 1/4° This phase shift has in fact been
a. The case where the potential barriers are defined by ansed to differentiate between these two effects in
electrostatic modulation has been studied intensively botexperiments, and has been shown to persist beyond the
theoretically and experimentally? The low-field oscillations  weak modulation regim@®
in the magnetoresistance have been observed by several For the square geometry in the magnetic modulated sys-
groups and in different regimes. For low and moderate fieldséem, we have shown in an earlier paper that the chaotic orbits
(Fermi wavelengtihp<R_), and in high-mobility samples are the ones that contribute the most to the dc conducfivity,
(mean free path<a), the Landau-level quantization can be and reproduced the experimental results for the commensu-
neglected and a classical approach for ballistic electrons imbility oscillations in the dc magnetoresistivi(gimilar re-
indeed sufficient to describe the dynamics and the magnesults have been obtained by SchrifiltIn the (finite fre-
totransport. In this regime, Wagenhuhetral. studied theo- quency ac transport we showed also that the quasiperiodic
retically the electron dynamics in a square electrostatically{pinned orbits give rise to resonance peaks at characteristic
generated lattice and showed that the chaotic behavior sequencies. In the magnetic square lattice the chaotic con-
reflected in the low-frequency power spectrum of the systemtribution to the ac conductivity is centered aroungl, while
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the quasiperiodic trajectories give rise to features at the freexpression(easily generalizable by adding more Fourier
guencies associated with the rate of precession of their orbiomponents, for example
and/or other characteristic frequencies of the motiGimi-

lar qualitative behavior has been reported in experiments by B=2B |1+ r COS_wa +C08_27ry (1)
Vasiliadou et al. in an electrostatic square antidot arfay. ° 2 a b /]

They mapped experimentally the photoconductivity signal§ynerer =B, /B, is the ratio of modulation and uniform field
vs the uniform field, and found a clear resonant signal relateeomponents (<1), anda andb are the periods of modula-
to quasiperiodic orbits around groups(of singlg antidots.  tion along the two directions. This system can be described
These experiments are performed at low magnetic field angy the HamiltoniarH =[p+ (e/c)A(r)]%/2m, wheremis the
with frequencies in the microwave regime. Vasiliadetual. electronic effective mas@n GaAs, for example, the system
found that the commensurability effects and modified classiof choice in typical experimentsandA is the vector poten-
cal cyclotron resonances they observed are in agreement witfal. Choosing a symmetric gauge, this can be written as,
model calculations based on the nonlinear dynamics and
classical transport of the electron A
For the more general magnetiectangular modulation, -
one would expect that the quasiperiodic orbits would be also
reflected in the frequency-dependent magnetotransport, a
reflect the system anisotropy. There are in fact three types
trajectories in this geometry: pinned and runavwganasiperi-
odic, as well as a type of runawaghaotic as we will show
below. This classification refers to their spatial behavior a
the dynamics progresses, and it has been used to intuitive
understand their contribution to the conductivity. Although
the pinned quasiperiodic and runaway chaotic orbits exist i
the square geometRthe runaway quasiperiodic trajectory is

possible only in the asymmetric modulation of a rectangular™ "~ . . .
geometry, and in a regime of parameters such that the claél-al'd'.ty rather quickly asr increases. Only the numerical
) solutions are presented here.

sical cyclotron orbit radius is comparable to the modulation . . .
periods. This highlights another interesting point in these . in calculatlng the ac conductivity we use a classical ver-
systems. We show here that the electron dynamics depen&kon of the linear response theoigubo formulg

only on the ratios of cyclotron orbit radius to lattice periods x _

R./a, andR./b, and to the ratio of magnetic modulation to (rij(w)ocf dte V7 glet (Vi(t)V;(0)), (3)
uniform field component =B, /B,. We can therefore say 0

that the chaotic character of the dynamics is controlled ”OWhere(Vi(t)Vj(O))zNfclEiCVi(t)Vj(O) plays the role of

only by the modulation amplitude, as one would expect, buthe velocity autocorrelation function, and the characteristic
by the size of the cyclotron orbit radius. This is somewhatgnsemple average has been substituted by an average over
different to the near independence on cyclotron radius depjtial conditions (c) in this four-dimensional phase space
scribed by Wagenhubest al. in the square lattice electro- {F,,00). [Since we are only interested in the frequency de-

static casé. pendence and magnetic field features of the conductivity, we

We also find, as ‘.N'” b(_a d_|scussed in Secs. lll and_ v ignore an overall normalization prefactor in E®).] Here,
below, that the chaotic orbits in the rectangular lattice differ - o .
N;. is the total number of initial conditions used, ands a

markedly from _the square lattice case, depending on th([.%henomenological scattering time associated with the rem-
value of the ratiofR./a andR;/b. This leads to contribu- ant random impurity and alloy scattering in the real
tions to the ac conductivity much different than in the case OQ stemi?2 We calculate the velocity correlation function
Fhe square Iatyce, as qnstable quaS|per.|od|c orbits empedd? i(t)Vi(0)) by generating random sets of initial conditions
" t_he d;érjarnlcs dor?]matf&”(ﬁ) even Irr: 4 f#”y (_:hao;[jl_c Fo.U }l while keeping the energy constant. We can then
regime. Finally, we show in this paper that there is a direc/o:Vos> > K t , lant.

correlation between the largest Liapunov exponent of théeg)_arage the '”'t'ﬁl cgnqmpns tfhat yield pinned ‘I"‘”d runaway
chaotic trajectory and; . The Liapunov exponent provides O'Pits by using the Poincarsurface section to classify tra-

a direct measure of the diffusion of the particle in the chaotid®ctories for such energy.”Thls IS accomzphshed byzynl't/rzoduc-
orbits, even overwhelming the remnant impurity scatteringnd @ “diffusion length,” d=[(X;—Xo)"+ (Y= ¥o) 1"
(which otherwise provides a low-frequency cutoff in the Where &o.Yo) is the initial position, andx;,ys) is the po-

power spectrum and yields normal particle diffusion sition at the end of the integration at tine(>w, *). The
orbit is classified as runaway @>qR., for g>5, say. We

use these initial conditions to generate the Poinsairéace
Il. MODEL AND APPROACH section anew _and verify whether_ the tr_ajectory is indeed
runaway-chaotic or runaway-quasiperiodic, for example. By
Consider a 2DEG in they plane with a spatially modu- identifying the pinned vs runaway trajectories, we can then
lated magnetic field, giving rise to a smooth and infinitely directly and quantitatively correlate their characteristic fre-
extended “magnetic antidot potential.” Perhaps the simplestjuencies with their contribution to the total transport coeffi-
form of this modulation can be described by the following cients, as we describe below. Clearly, the precise cutoff

Y Bm_. X Bp
802 2kysmkyy,B02 + 2kXsmkxx,O , (2
erek,=2m/a, andk,=2m/b. The trigonometric func-
ns in the Hamiltonian lead to a nonlinear coupling in the
classical equations of motion. This coupling is proportional
to the dimensionless quantity and no analytical solution
gan be given in general. We study the dynamics of the sys-
m by carrying out accurate numerical solutions of the equa-
ons of motion, and use Liapunov exponents to characterize
rlihe type of trajectory and their contribution to the conductiv-
ity of the system. Although the resulting equations can be
olved in a linearized form for small, this solution loses
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value ofg above would affect results, but only very slightly (a)
guantitatively, and not our conclusions. 0.5
Notice that in this Hamiltonian system the kinetic energy .

is a constant of motion, since only magnetic fields are ap-

plied. One can define the cyclotron radil®.=v/w,

= Vx?+y?/w, as an auxiliary length scale. Using this, the

classical equations of motion can be scaled in time and

length by x/R.—X, Y/R.—Y, and w,t—1t. The equations > 0.0 &
then appear as those for two nonlinear coupled pendula,

= r ~ ~
X=—Yy| 1+ = (coKx+ coKgpy)

3 ,
A -05
y=+x 1+ E(coskax+coskby)}, (4) —05

wherex=dx/dt, etc. k,=27R./a, andk,=27R./b. This

scaling shows the explicit dependence of the motion on only

three parameters: (magnetic field modulation amplitugie

R./a, andR./b, which then fully characterize the dynamics, 0.16
as we will show in the next sections.

Ill. POINCARE SURFACES OF SECTION
AND LIAPUNOV EXPONENTS

TN

Since energy is conserved in this system, the dynamics \3/ 0.08
takes place on a three-dimensional ‘“slice” of the phase <
space available. We can fully characterize the types of tra-
jectories by means of Poincasarfaces of section on they

plane for a given value of velocitgor “phase”), such as«

maximum(andy=0). Due to the translational symmetry of
the superstructure potential in tkg plane, we fold all Poin- 0.00
care sections such that the values lie in the interval
(—al2,a/2), and they in (—b/2,b/2). The phase space tra-
jectories are uniquely determined by points in the surface of W
Se{\:,t\llcénéammate Liapunov exponents by using the method of . FIG. 1. (a) Poincaresurface of section for square modulation
Wolfel® We choose base 2 in calculating exponents, suct/th 2Rc/a=2v/we=1.4 andr =0.6. (b) o(w) for the same pa-
that the distance between two nearby trajectoriesl(ig rameters .bUt O.“ﬁerent zenergy’X ?nd magnetic field §,). Fre-
_ At . . guencyw in units of 132 Hz. Inset: traces rescaled & v, show
=dg2M', where\; are the Liapunov exponents. For a Hamil- :

) . . ._perfect nesting.
tonian systemX;\;=0, since the volume in phase space is
conserved by Liouville’s theoreM. For a given set of pa-
rametersr, R./a, andR./b, the type of trajectory depends the scaling of the frequencpr time) by w, (or wg'). The
only on the initial conditionsi(,,v,), as described above. ~amplitude change can be understood if one analyzes the ex-

For a certain modulation strengthwe find that the frac- Pression for the conductivity in aniform field, giving the
tions of runaway chaotic, runaway quasiperiodic, and pinne@lassical Drude peak with half-width 4/
quasiperiodic orbits in phase space depend only on the length
ratiosR./a, andR./b, but not on the energy nor the uni- )
form field individually. This dependence, consequence of the TV
scaling shown in Eq(4), is reflected on the ac conductivity O @) * —1+(w_w 1272 ®)
as well. For example, in the case of a square lattice case, a °
Poincaresurface section and three different tracesrf( )
are shown in Fig. 1, where=0.6 and R./a=1.4 are kept It is clear from this expression that the conductivity ampli-
constant. These traces were produced changing the energyde depends on the ener@ya v?). In our case of a modu-
such thaty =0.7w,a, while the corresponding uniform field lated field, o,,(w) shows more structure, and it appears at
is given byw,7=1.5, 2.25, and 3.04=3x10 % seq. In  the expense of the Drude peak. Rescaling of the frequency to
this situation, we find that the Poincasections do not w/w, in each trace produces the nesting one would expect
change, and the traces of conductivity have the same fedrom the scaling of Eq(4), as clearly shown in the inset of
tures, except for a frequency shift towards, and a differ-  Fig. 1(b). As we will explore further in the next section, the
ent amplitude. The horizontal shift in Fig(d is nothing but  various features observed in these traces are contributions
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from the different quasiperiodic regions in the Poincaap,
while the contribution of the chaotic region is centered close
10 w, 2

As explained, the characteristic size of the cyclotron or-
bits with respect to the magnetic lattice dimensions deter-
mines the resulting dynamics and the overall properties of
the trajectories for different initial conditions. We can then
consider different regimegirst, when R.<a=<h, most or-
bits are localized between or around modulation maxima
(single “antidots”), as the high magnetic fielthnd/or low
energy effectively shrinks the electronic orbits to be fully
within a period of the modulationSecond when a<2R,
<b, the asymmetry of the potential landscape is expected to
be strongly reflected in the dynamics and transport, since all
length scales are comparable and their competition produces
strong changes in the dynamicshird, for low magnetic
fields (and/or high energigswhena<b<2R., the lattice
asymmetry becomes less and less important, as the trajecto-
ries extend over several periods of the potential landscape.
Here, the particle motion effectively performs a self-
averaging of the different magnetic field amplitudes, which
cancels the asymmetry of the system, and yields a relatively
large dc conductance and a featureless and broad frequency-
dependentr(w).

For thefirst regime consider R./a=3/8 andb/a=1,2.
Since R, is much smaller thaa andb, the electron is able
to trace out periodic and quasiperiodic orbits which remain
basically pinned about a lattice position, even for a high
modulationr. These orbits show a variety of frequencies that
can be seen in the structure of the Poincaeetion. For
example, whenb/a=1, r=0.6, the Poincaresection is
mostly dominated by large sectors of quasiperiodic orbits,
even though the nonlinear couplifigar) is somewhat high.
We show in Fig. 2a) that two different regions of pinned
orbits exist in this portrait, surrounded by Kolmogorov- x/o
Arnold-Moser(KAM ) islands of stability:* and a small cha-
otic region showing diffusion along both directions. For the FIG. 2. Poincaresurfaces of section for the same energy, with
chaotic orbit in this case we calculate the largest Liapunow2R./a=3/8 andr=0.6. In(a) b=a, while in (b) b=2a.
exponent to bex =0.85 (while for the quasiperiodic orbits
\i=0 — this is the same for all the cases below, as anticithe modulation landscape. These collisions allow the particle
pated, so that we will only quote the largest Liapunov expo+to access stronger nonlinear terms in the equation of maotion,
nent in the chaotic orbit from here pnThe quasiperiodic which in turn produces a more critical dependence to initial
structures in the Poincaraap, as we will see later, will give conditions and then chaotic dynamics.
rise to resonance peaks in the ac conductivity. For b/a=3, as we turn on the modulation, we notice the

Figure 2b) shows a Poincarsection wheréb=2a and  appearance of two kinds of quasiperiodic orl§ji;ined and
r=0.6. In this case, phase space has more structure due tonaway, even forr=<0.35. The runaway quasiperiodic or-
the asymmetry of the potential landscape, KAM islands areits result from the strong-y asymmetry of the potential,
still well developed, and the chaotic region is larger. In thiswhich forces the electron to move preferentially alongthe

0'5 '

0.0 0.5

case, the largest Liapunov exponenthis0.91, indicating

direction (smaller periogl However, the modulation field is

that the motion in the chaotic regime has become more difnot sufficiently strong to make the electron motion chaotic,

fusive (and still two dimensional

In the second regimewe consider as examplesRg/a
=1.2, andb/a=3 (smaller values ob/a yield results quite
similar to the square geometry discussed b&joince R,
is between botla andb, there is a preferred direction to the
electron motion, in this case thedirection. We have shown
in previous work that in the square geometry, wheR; 2

and the runaway orbits are nearly free in the preferred direc-
tion. Asr increases to=0.4, the chaotic orbits start to oc-
cupy a non-negligible volume in phase space, and the largest
Liapunov exponent becomes positive. In Fig. 3 we show
Poincaresections for R./a=1.2 andb/a=4, for bothr
=0.45 andr=0.85. In Fig. 3a), r smaller, we see three
types of trajectories: two quasiperiodiene pinned and one

~a=b, the electron dynamics shows a great deal of chaoticunaway or open and a chaotic runaway. Notice that the

behavioreven when the modulation constaris small? This

chaotic trajectories are confined between two sets of quasi-

can be understood as being due to the fact that the electron periodic runaway orbits and yield then particle diffusimly

more likely to “collide” in this regime with the maxima in

along one dimensionin this case, the chaotic trajectories
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2 251 500

time

0.5 B FIG. 4. Time series of the “instantaneous frequency”
=eB(r)/mc that particle experiences in a chaotic trajectory. Here,
wo,=1.25 (X102 Hz), while 2R./a=1.2 andr=0.85. In (a) a
=b, while in (b) b=4a. Time axis is labeled by the integration
step index.

0.0

y/b

averages ta, . In the second regime, however, we find that
it is typical to findtwo characteristic frequencies embedded
in the chaotic orbit atw.~w,* 5, where § increases as
eitherb/a or r increase. This type of remnant two-frequency
trajectory is produced by the asymmetry of the potential, and

=051 one can clearly see this effect in the special cases where

2R .~a<b, for example. These dimensions create a land-

-0.5 0.0 0.5 scape where the electron can move for a relatively long time
X/O in the x direction in a region of fields lower thaB, (in

) essence a diffusive motion of its precession centerre-
FIG. 3. Poincaresurfaces of section for the same energy, andsponding to a frequencyw _~w,— 8. When the motion
2R;/a=1.2, andb=4a. For (a) r=0.45 and(b) r=0.85. Notice  (rifts in they direction, the electron faces a wall of maxima
x—directiqn one-dir_nensipnal d_iffus_ion of _chaotic orbits (i) separated by a distan@e~2R., which often confines the
evolves into two-dimensional diffusive motion ib). trajectory to a region of higher fields between two maxima
and pins the particle to precess for a time with characteristic
have a single characteristic frequency around with larg-  frequency motion ot , ~ w,+ 6, until it escapes again to a
est Liapunov exponent=0.98. In Fig. 3b), asr is nearly lower field region in the potential. The persistence of these
doubled, we see that there are two small regions of pinnedharacteristic frequencies embedded in the chaotic motion
guasiperiodic orbits with Liapunov exponents converging toprovides a uniquer;; (w), as we will see in the next section.
zero individually, while the rest of phase space is filled by a Another form of exploring this intermittence effect is by
chaotic orbit with largest Liapunov exponext=1.1, which  analyzing the field experienced by the particle along its cha-
clearly shows diffusion in two dimensions. The modulationotic trajectory. In Fig. 4 we show the “instantaneous fre-
is so strong that there are no remnants of the runaway quauency,” f=eB(r)/mc, which the electron experiences in
siperiodic trajectories. Thig-axis “delocalization” is simi- the magnetic potential landscape as it moves through posi-
lar to the energy dependence described by Wagenhubéons r(t). Whena=Db, Fig. 4& shows that this instanta-
et al for a symmetric electrostatic modulation case. Noticeneous frequency varies aroundo,(=1.25x 102 Hz here
here, moreover, that energy is kept constant, Ba/a, and  nearly uniformly. In the second plot, Fig(k), the particle’s
that the transition is produced then by the stronger modulainstantaneous frequency spends a significant amount of time
tion amplitude. at values averaging clearly higher thag, and then, in the
We find furthermore that the chaotic trajectories are qualinext segment of the time series, its average is lower &han
tatively different in this second regime from those in the firstThis persistent intermittent switching behavior, which con-
high-field regime. In the latter, whenRR<a<b, the char- tinues for as long as we have run the simulations, indicates
acteristic frequency of the chaotic trajectory is always neathat the particle is metastably trapped in the different regions
w,, as the trajectory effectively samples a significant rangef the periodic potential, even though the trajectory is clearly
of field values during its two-dimensional diffusion and self- chaotic, as judged by the corresponding Poingdrase por-
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trait. We will show in the next section that this kind of tra- (a)
jectory will give rise to two prominent peaks in the ac con- 0.2
ductivity, even though its Poincarmap shows a typical

chaotic trajectory, and one would naively expect a feature-

lesso(w) (which is the case forR./a>a,b, for example.

Therefore, the peculiar metastable character of the nearly =

trapped sections embedded in this chaotic trajectory shows \% 0.1r .
clearly in the frequency dependent conductivity. Sy

Finally, for the low-field third regime we consider
2R./a=6, b/a=2, andr=0.56. Since R.>a,b, the elec-
tron is more likely to collide with potential maxima here than
in the previous two cases, as discussed earlier, and hence 0.0 .
chaotic orbits occupy most of phase space even for ex- 0 1 2
tremely low modulationnot shown. In all these cases, the w/w,
chaotic orbits have an average characteristic frequenay at
~w,, but with a rather broad distribution, as we will see (b)
below. Moreover, the largest Liapunov exponent for the cha- 0.2 '
otic orbits isA =1.14, the largest exponent we ever obtained
in all cases, indicating that the motion is indeed fully diffu-
sive in two dimensions. This behavior will be clearly re-
flected on the magnetotransport described in the next section. —~

IV. MAGNETOTRANSPORT

A quantitative theory of magnetotransport requires de-
tailed consideration of regular and/or quasiperiogizined
or runaway and chaotiqrunaway trajectories arising from
modulation scattering. In Hamiltonian systems, where the
volume in phase space is conserved, the conductivity tensor W/ wg
o is obtained from the sum of the individual contributions of I
trajectories weighted by their volume in phase space. We FIG. 5. Frequency-dependent conductlvme@ul Parameters
have shown in previous work that the contribution of pinned"” (@) are R,/a=0.4, b/a= lf fmfrzo's’ andffl.xé_d‘”{q' |n|_(b)
orbits to the dc conductivity is negligibly small, in agreementSame parameters, except fofa=2. Here, solid (dashed line

. . . showsoyy (ayy)-
with previous work® while they are closely related to peaks vy
in the ac conductivity. We assume here that the proportion oBy increasing the modulation strength, additional features
pinned to runaway orbits does not change qualitatively evemppear ino(w) at the same time that chaos and KAM islands
after the inclusion of impurity scattering, which should not appear in the Poincasurface section. Moreover, an offset at
be far from being the case if mobility in the unmodulatedzero frequency appears in baif),(0) ando,(0) due to the
system is high? onset of chaotic orbits and associated particle diffusion. An

For the calculations of the ac conductivity we used ran-increasing portion of chaotic trajectoriesrascreases makes
dom sets of initial conditiongtypically a few thousands the zero offset increase at the expense of the resonance
and classified the orbits by inspecting the correspondingeaks. This signals the increase in dc conductance and drop
Poincaresections, as described above. We are then able i resistance produced by the magnetic modulation which
separate the initial conditions that give rise to pinned or chahas been measured in experiments on these and related
otic orbits, and clearly identify their different contributions systems-’ We should also mention that the dc magnetore-
to o andp. When the modulation strengthis zero, the ac sistance calculated here shows the well-known Weiss oscil-
conductivity yields the classical Drude peak, as the chargéations seen recently for magnetic modulatioas we have
experiences a uniform field and only impurity scattering, in-shown in Ref. 9.
cluded here throughr [see Eq.(5)]. Once the magnetic In this section, we discuss the magnetoconductivity for
modulation is turned on, however, the Drude peak remainghe same three regimes Bf./a, R./b, andr parameter val-
centered around=w,, for smallr, but the conductivity ues reviewed in the previous section. We discuss the calcu-
begins to acquire a nonhomogeneous broadening, arldted conductivity tensor components, and their relation to
oy () and oy (w) start deviating from each other i features of the corresponding Poincaeetion for those pa-
#a, in general. This inhomogeneous broadening appsars rameter values. For thiirst regime where R.<a<b, we
fore the chaotic orbits appear Gmall, i.e., when the Poin- have used the same initial conditions and parameters we used
caresections show only quasiperiodic orbits. This broadento generate the Poincasarface of section in Fig.(d). Fig-
ing is then clearly associated with the fact that most of theure 5 shows the ac conductivity for bdtl=a andb=2a. In
electron trajectories have still the characteristic frequencyig. 5a), sincea=b, we obviously findo(w)= oy (o).
w,. However, due to the small modulation, the electron or-The o,,(w) curve has two main features arouang, related
bits precess with characteristic frequencies which appean the two regions of quasiperiodic trajectories in the Poin-
close to or far fromw,, depending on structural parameters. caresurface of section in Fig.(8) which dominate the phase
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space. The central feature with frequeney o, is enhanced
by the contribution of the small chaotic region which pro- 0.50
vides frequencies closely peaked at arouag. Since
2R./a=3/8 here, we see that the effect of the modulation on
o(w) is relatively minor, even for the not so smak=0.6,
producing particle precession around the minima and
maxima of the modulation landscape, in addition to some
higher frequency trajectories associated with pinning near
maxima.

In Fig. 5(b) we use the same parameter set used to gen-
erate the Poincarsection in Fig. 2b). Since herea#b, the
symmetry is broken and it is the case that,(w)

# oyy(w). By comparing the Poincarsections in Figs. @)

and Zb) we see that most of the quasiperiodic orbits in the
central section survive, which in Fig(ty produce the per-
sistence of the feature im,,(w) and oy (o) at w~1.4w,.

On the other hand, the other sector of quasiperiodic orbits
does shrink and becomes surrounded by KAM islands in Fig.
2(b). Correspondingly, we see that the conductivity feature at
w~0.80w, becomes smaller, due to the shrinking of phase
space volume occupied by these trajectories, and moves to
lower frequencies<0.6w,). Meanwhile, the contribution of
the KAM islands in Fig. 2b) gives rise to large amplitudes at
various frequencies> w,. Finally, in this regime we see
that as the symmetry breaks, the zero frequency offset value
of oy, becomes larger than that of,,, indicating that the
electron motion becomes more diffusive in thedirection
than they direction. This is expected, as the=2a geometry
produces open ‘“channels” along thedirection which fa-
cilitate diffusion, even in this first regime.

For thesecond regimetake R./a=1.2, b/a>2, andr FIG. 6. (@) 0,,(w) for 2R./a=1.2,r=0.85,7=3x10 ** sec,
=0.85. We will focus on the contribution of the chaotic or- @nd b/a=2,3,4,8 as shown(b) o,,(w) shown for R./a=1.2,
bits discussed in the previous section, in connection with FigP/a=4. 7 three times longer, and=0.25, 0.5, and 0.85, as shown.
4. In this range of parameters, most of phase space volume is
occupied by chaotic trajectories. In Figla we show sev-  contrast with Fig. 6a), we user=15x 10" *? sec, three times
eral traces ofo,y(w), keeping R.=1.2a andr constants, longer than before For weak modulation; <0.5, the run-
while changingb/a as indicated there. For<db/a<2, we away quasiperiodic trajectories and KAM tori do survive and
should mention that there is no appreciable difference fromhe chaotic trajectories do not cross the wall of maxima in
the case of a square geometry, probably due to the fact th#te y direction, as shown earlier in Fig(&8. Moreover, the
as R, is comparable to the lattice parametarandb, the  corresponding chaotic trajectory extended along onlyxhe
electron scatters more frequently and symmetrically, producdirection will self-average to a frequeney~ w,. This can
ing chaotic orbits with characteristic frequency self- clearly be seen imr,,(w) curves which show only a broad-
averaging tow,. Whenb/a grows, the asymmetry in the ening similar to a Drude peak for a uniform figleixcept for
lattice structure increases, ahds less comparable toR., a larger width and flatter top produced by the intrinsic diffu-
so that the electron dynamics changes substantially, asive behavior of the trajectoriesAs the modulation in-
shown in Fig. §a). We see here that larg®a values pro- creases to=0.5, we start seeing the singlepeak split into
duce two prominent features o, at w~w,* 3, which  a double peak aboub,. At r=0.85, where most of the
become increasingly apart in frequency for largéa. The  phase space is occupied by a chaotic trajectory, the double
existence of characteristic frequencies different frary, peak is clearly developedn addition to a low-frequency
even when the trajectories are fully chaofsee Fig. 8)], remnant structure from the small quasiperiodic ojbitwe
are due to the long-term metastability of the nearly-pinnedshould also notice that in this regime the zero frequency
orbits discussed in relation with Fig(B). It is then interest-  offset of o, is always larger than that ef,, (not shown, in
ing to see that even though the Poincaeztion shows a agreement with the intuitive notion that the runaway orbits
chaotic mapg(w) is able to exhibit this unusual metastable along thex direction contribute more to the dc conductivity,
behavior arising fronfand made stronger byhe asymmetry even when the diffusion is fully two dimensional.
in the magnetic modulation landscape. We should stress that In order to further identify the different contributions to
even in the case of a rather shaer{=3x10 12 sec in this  the conductivity in this regime, we now calculate the spec-
figure), the metastability is not “erased” by the impurity trum for a single-orbitS,,(w). This quantity is the contri-
scattering, and is clearly visible in,, . bution to oy, coming from a single trajectoryi.e., the ve-

In Fig. 6b), we keep R./a=1.2 andb=4a, while locity autocorrelation function for that trajectoryFigure 7
changingr as indicated in the graphn this figure, and to showsS,, for the samechaotic orbit but starting at two dif-

0.(@)
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FIG. 7. Single-orbit spectrurg,,(w) for the same chaotic tra- FIG. 8. o4(w) (solid tracg and o,y(w) (dashedl for 2R,
jectory with 2R./a=1.2,b/a=4, andr=0.85, but starting at dif- =6a, b=2a, andr=0.56.xx andyy components are identical.
ferent points. Solid trace reflects motion aloxghannels; dashed

trace that between nearest antidots. zero-frequency offset, showing indeed that the motion is

fully diffusive in both directions.

V. CONCLUSIONS
ferent points on the trajectory. The first trace, appearing solid )
and with a peak ab~0.9w,, is obtained when we integrate W€ have studied the frequency-dependent magnetotrans-
the dynamics starting at a point in the magnetic landscapBO't in @ two-dimensional magnetic field modulation in a
identified as a “channel” of minima, i.e., the electron mo- fectangular lattice symmetry for various parameter regimes.
tion is mostly diffusive along the direction (an integration This study ha_ls reveale'd that a (;Iass of resonances exist |n.the
over a 5r interval is presented The second curve, dashed &€ conductivity, reflecting the different character of the vari-
and with a peak ab~1.30,, was obtained when the inte- ous electron trajectories, and the degree of integrakitity
gration starts at a point between two nearest antidot§on Of these systems. In all cases, we have found a corre-
(maxima in the x direction. Notice that here the electron 'ation between the dc conductivity;; (0) and the value of
motion was drifting to cross the magnetic barrier in the (he largest positive Liapunov exponekt As A increases,
direction and formed a short-lived metastable quasiperiodié® Zero-frequency offset increases, indicating that the cha-
orbit. It is then further verification that as the particle ex-©tic trajectories become more and more diffusive, even
ecutes the chaotic trajectory, it is being trapped along charfnanging diffusive character from one to two dimensional, as
nels formed by nearest-neighbor maxima or antidots. Thidhe modulation increases. The study of different profiles of

effect is carried through to the frequency-dependent condudh@gnetic field modulation and even different lattice struc-
tivity, even for the short- used (3% 1012 seo. tures, both theoretically and experimentally, should give us

For thethird regimeof large cyclotron orbits, let us con- better insights into the microscopic character of the electron

sider R./a=6, b/a=2, andr =0.56. As mentioned in the trajectories in different regimes. The possible screening ef-

previous section, the phase space in all these cases is coff¢ts Which would mask some of the frequency dependence

pletely occupied by a single chaotic trajectory, even for Wea;lggll;cussed heréso-called magnetoplasmon effe€ts) are
magnetic modulation strengthand shows no signs of meta- P€iNg stu.d!ed and will be p.resented .elsewhere. It is, how-
stability. One typically finds\ =1.14, the largest Liapunov ever, ant|C|pateq that the single-particle features dlscus_sed
exponent we found for this regime. We show in Fig. 8 thehere 'WOU|C'1 persist even Wh_en plasmon effects are taken into
conductivity curves ofry,(@) anday,(w) for the case men- consideration, as the experiments in Ref. 11 have shown.
tioned. In this example, even though#b, we obtain
oy(w)=0oy(w) due to the strong scattering produced by
the modulation, since on the scale of the cyclotron radius the We are thankful for discussions with J. Thomas, R. Roll-
lattice appears basically symmetric. Consequently, the chadns, and P. Jung. This work has been partially supported by
otic trajectory averages over all directions, producing aDOE Grant No. DE-F02-91ER45334. S.E.U. acknowledges
single but much broadened peakasit w, and with a large  support by the AvH Foundation.
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