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Second-harmonic generation and birefringence of some ternary pnictide semiconductors
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~Received 30 July 1998!

A first-principles study of the birefringence and the frequency-dependent second-harmonic generation
~SHG! coefficients of the ternary pnictide semiconductors with formulaABC2 (A5Zn, Cd; B5Si, Ge; C
5As, P! with the chalcopyrite structures was carried out. The zero-frequency limits ofx123

(2) were found to be
in reasonable agreement with available experimental data for all the considered materials. We found that
substitution of P by As, Si by Ge, and Zn by Cd is favorable to get a higher value ofx (2)(0). An analysis of
the different contributions shows that the anomalously high value of the zero-frequency SHG in CdGeAs2

appears as a result of a very small interband term in the zero-frequency limit which, contrary to most of the
other materials of this class, does not compensate the large intraband contribution. Simple inverse power
scaling laws between gaps andx (2) values are not supported by our results. We find that the~001! oriented
111 superlattice structure has significantly lower gaps than the chalcopyrite and correspondingly higherx (2).
However, this smaller gap structure is characterized by a large alternatingly compressive and tensile lateral
strain in the layers, which makes it unfavorable. The calculated values of the birefringence for ZnGeP2 and
CdGeAs2 are in fair agreement~discrepancies being rather constant and of the order of 10%! with experiment
in the frequency range corresponding to the middle of the gap.@S0163-1829~99!14503-X#
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I. INTRODUCTION

Ternary chalcopyrites are promising for optical frequen
conversion applications in solid state laser systems, suc
optic parametric oscillators~OPO’s! and frequency doubling
devices.1 Zinc germanium diphosphide (ZnGeP2) is an ex-
cellent nonlinear optical material that exhibits good opti
transparency over the 0.7–12mm wavelength region. This
uniaxial crystal has positive birefringence, and its conv
tional conversion efficiency, or figure of merit@FOM
5(x (2))2/4n3 wheren is the index of refraction# exceeds that
of LiNbO3, a presently commonly used material, by an ord
of magnitide. It is therefore a very good candidate to prod
ing tunable laser output in the near infrared.2–6 CdGeAs2 has
even largerx (2) and FOM. To the best of our knowledg
this material has the highest nonlinear optical coefficien
the class of phase-matchable compounds.7–10 Recent crystal
growth technologies have made great progress tow
growth of large crystals of both ZnGeP2 and CdGeAs2 with
improved optical quality. These two materials, however,
part of a larger family of II-IV-V2 compounds and althoug
the crystal growth perfection of these has not been purs
to the extent of the above two, it is of interest to ask whet
other materials in this class, or alloys between them, m
offer increased flexibility in terms of combining highx (2)

with other ranges of transparency and/or noncritical ph
matching. More generally, it is of interest to understand
origin of the highx (2) and the degree of birefringence
these materials as well as to study the trends within
family of compounds.

In the present paper we systematically study the electro
structure and optical properties of a class of ternary pnicti
with formula ABC2 (A5Zn, Cd; B5Si, Ge; C5As, P!
that are crystallizing in the chalcopyrite structure. The m
sured SHG coefficients have been reported for some of th
PRB 590163-1829/99/59~4!/2737~12!/$15.00
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materials, and their values are generally rather high~at least
not much lower than the SHG in GaAs!.10,11 Our main pur-
pose is to understand the trends in this family of mater
and to check whether simple schemes for extrapolation~e.g.,
based on inverse power relations to the band gap! to other
compounds in this family are valid. The choice ofA, B, and
C atoms allows us to consider the trends in the group
group-IV, and group-V atoms separately in this class of m
terials that has the general formula II-IV-V2 . We also note
that some of these materials have direct gaps while oth
have indirect or pseudodirect gaps. Thus, we can investi
whether there is any relation between the type of the gap
the x (2) values. In fact, we find little evidence for such
correlation. This result could be expected from the fact t
x (2) depends on a Brillouin zone average of interband ve
cal optical transitions and is, therefore, little affected by t
bands at a few particulark points determining the band
edges.

Typically, one indeed finds smaller band gap materials
have higherx (2).12 It is expected from the basic expressio
for the NLO response functions13,14 and from empirical ob-
servations that NLO susceptibilities scale roughly invers
with some power of the interband energy differences, a
therefore, with the minimum gaps if these dominate the
sponse. However, we show that the situation is not t
straightforward, and the real value of the zero-frequen
limit of SHG is a result of a very delicate balance betwe
different contributions to nonlinear optical response, e.g.,
intraband and interband contributions. It turns out th
CdGeAs2 is a rather exceptional material in this context.

A second purpose is to investigate whether or not
chalcopyrite structure plays a special role in leading to h
x (2) values. We can test the effect of crystal structure at le
qualitatively by considering an alternative crystal structu
corresponding to the same overall chemical formula or s
ichiometry. To this end we consider a~001! oriented 111
2737 ©1999 The American Physical Society
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2738 PRB 59RASHKEEV, LIMPIJUMNONG, AND LAMBRECHT
superlattice structure and compare its band structure,
energy, andx (2) with that of chalcopyrite for ZnGeP2. We
note that this particular structure still maintains the local t
rahedral environment of the chalcopyrite corresponding
each anion being surrounded by two cations of each ty
Our results show that the alternative structure conside
generally has a much lower band gap and hence higherx (2).
However, we find that this is related to the occurence
alternatingly compressive and tensile biaxial strain in
layers which make the structure unstable. Thus, we do
think that this alternative structure gives a promise for f
ther increases ofx (2).

The chalcopyrite structure is typically accompanied by
distortion from the idealc/a ratio one would obtain by sim
ply substituting II and IV atoms in the cubic zinc-blend
structure in the appropriate ordering. It is thus also of inter
to investigate whether this has an important effect onx (2).
We find that these effects are significantly larger for the
than for the Zn compounds, which are closer to the id
structure. While the gaps are generally increased and, he
both intraband and interband contributions are significan
decreased, the net value ofx (2) is only slightly changed as a
result of the compensation noted above.

The computational approach used in the present inve
gation was described in our previous paper15 and success
fully applied to SiC polytypes16 and GaN/AlN
superlattices.17

The rest of the paper is organized as follows. In Sec. II
describe briefly the necessary details of our computatio
approach. In Sec. III we present our calculated results for
electronic band structures, static second-harmonic genera
coefficients, and birefringence and address the various q
tions raised in this introduction. We analyze the results
terms of the decomposition of the frequency-depend
Imx (2)(22v,v,v) function on intraband and interban
terms as defined in Refs. 13 and 14. A summary of the m
conclusions of this work is given in Sec. IV.

II. COMPUTATIONAL METHOD

Our calculations are based on the linear muffin-tin orbit
~LMTO! method18,19within the atomic sphere approximatio
~ASA!. This method is quite efficient mainly because it e
ploys a rather small basis set. It allows us to easily deal w
systems containing a large number of atoms per unit
while maintaining a sufficiently large number ofk points so
as to ensure converged Brillouin zone~BZ! integrations. Ex-
tensive checks performed in our previous paper15 demon-
strated that our ASA-LMTO–based approach yields res
for the second-order response functions of accuracy com
rable to that of the full-potential linear augmented plan
wave method~FLAPW! method.20,21The formulas used her
to calculatex (2) were given in a previous publication15. They
are based on the so-called ‘‘length-gauge’’ formalism of S
and Ghahramani,13 and Aversa and Sipe.14 This formalism
uses the independent particle approximation and is prese
restricted to undoped semiconductors. Also, it does not
clude the local field effects. This method has several ap
ent advantages, e.g., the manifest absence of unphysica
gularities of nonlinear optical responses in the ze
tal
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frequency limit and the explicit satisfaction of the Kleinma
relations.22

The self-consistent LMTO electronic structure calcu
tions were carried out within the framework of the local de
sity approximation~LDA ! in the density functional theory
The exchange-correlation potential has been taken in
form of Hedin and Lundqvist.23 One of the central problem
in calculation of optical response functions in semicond
tors is the problem of the gap corrections in the LDA~Refs.
15,20,21,24,25!, which appears from the fact that respon
functions have to deal with the actual quasiparticle exc
tions rather than the Kohn-Sham eigenstates. The prese
most accurate approach, theGW method, is unfortunately
rather computationally demanding because it needs calc
tions of matrix elements of the nonlocal self-energy opera
in terms of the one particle Green’s function and t
screened Coulomb interaction, which itself requires calcu
tion of the inverse dielectric response function including
cal field effects.26 In practice, a simplified approach, the s
called ‘‘scissors operator’’ is often used. It assumes the ri
shift in energyD of the conduction band with subseque
renormalization of the velocity~momentum! operator matrix
elements~see, e.g., Refs. 15, 20, and 24 for details!. In our
previous paper15 we noted that this approach is not entire
satisfactory because it breaks the consistency between
eigenvectors and eigenvalues of the one-particle Ham
tonian. This manifests itself rather clearly when applying t
approach to the calculation of effective masses. In a ri
shift, the masses should not change, but applying the ‘‘s
sors’’ renormalization to the momentum matrix elements a
using the well-knownk•p expression for the inverse mass
we see that the effective mass decreases.

We proposed an alternative approach, which consists
adding semiempirical corrections to the diagonal element
the LMTO. In some sense, it is an attempt of describing
scissor’s operator(ckDckuck&^cku, in which uck& are the
conduction-band states andDck their shifts, explicitly at the
level of the Hamiltonian. The approach is based on the
servation that the states at the bottom of the conduction b
in tetrahedrally bonded semiconductors have a character
predominance of certain LMTO basis orbitals in their wa
functions: e.g., cations at G and a mixture of cations and
empty spheres orbitals at theX point of the zinc-blende BZ.
Therefore, by shifting theses orbitals, one shifts the corre
sponding states. The states atL typically behave intermedi-
ately between those atG and X. Thus, an advantage is tha
one can includek-dependent shifts if these are known. Th
alternative approach is closely related to the one sugge
by Christensen27 in which it is further used that onlys states
are sensitive to sharply localizedd-function-like potentials.
In our previous paper15 we showed that better results for th
frequency-dependent SHG~at least for GaAs and GaP! can
be obtained in this way. However, this procedure allows
only to shift the lowest conduction bands while for som
materials the shift of the whole set of conduction bands i
better approximation~e.g., for SiC, see Ref.16 for details!. In
other words, it is a reasonable approach only if one is in
ested in the highest valence band and the lowest conduc
band exclusively. Its success for GaAs and GaP observe
our previous work is thus based on the fact that these ba
tend to dominate the second-order response functions in
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material but this is not a general fact for all semiconducto
In the present study, in order to study trends, it is imp

tant to follow a systematic and consistent treatment for
the compounds, including those for which detailed band-
information at differentk points is not available. Therefore
the bulk of our results was obtained using the simple ‘‘sc
sors operator’’ approach. Unfortunately, we cannot use
approach directly for the case of CdGeAs2 ~where LDA does
not give any gap at all!. As a result, the bands in CdGeAs2
have a completely changed topology near the ‘‘overlap’’
the valence and conduction bands atG. To deal with this
case we first applied a shift of the Hamiltonians states to get
some ‘‘bare minimum’’ gap of at least 0.3 eV and subs
quently applied the usual scissors operator to obtain the
perimental gap values.

We emphasize that the primary purpose of this paper i
study the chemical and structural effects on the electro
structure andx (2) functions. The above-described problem
with the gap corrections, although not handled to our en
satisfaction, are expected to only have a minor effect on
main conclusions of our work as long as a consistent tr
ment is followed.

The detailed description of the procedure for calculat
the linear response and frequency dependent SHG has
described elsewhere~see, e.g., Ref. 15!. The real part of the
frequency dependent response functions has been obta
from the imaginary part by using the the Kramers-Kron
transformation. For the zero-frequency limit of SHG we u
the simplified and computationally more convenient form
las. It avoids the need for calculation of the response fu
tion in a wide frequency region required for an accurate
plication of the Kramers-Kronig transformation and is le
singular as regardsk-point summations, so it can be con
verged with fewer terms. Thek-space integration may b
limited to the irreducible wedge of the Brillouin zone b
performing a prior symmetrization of the product of the thr
momentum matrix elements over all the transformation
the point group of the crystal.

For the frequency-dependent SHG, we use the usual
rahedron scheme of the integration with linear interpolat
of the band energies and the products of the matrix eleme
For the zero-frequency limit on the other hand, we emplo
semianalytical linear interpolation that is more efficient a
produces a smaller error.15

III. RESULTS

A. Crystal structure and electronic bands

The chalcopyriteABC2 materials~with chemical compo-
sitions II-IV-V2 and I-III-VI2) can be obtained from III-V
compounds and II-VI compounds, respectively, by replac
every two group III~II ! atoms per cell by a II and IV~I and
III ! atom. For example, from GaP we derive ZnGeP2 by this
chemical substitution. Their crystal structure is a bod
centered tetragonal lattice that has eight atoms per unit
It can be thought of as a tetragonally distortedA2B2 ~or 2
12) face-centered-cubic~fcc! superlattice in the$201% direc-
tion of the cationsA andB with an interpenetrating fcc lattice
of common anionsC displaced by (1/4,1/4,u). The structural
parameters are the lattice constanta, which corresponds to
the cubic lattice constant of the zinc-blende structure fr
.
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which the chalcopyrite structure is derived, the ratioh
5c/a, and the internal displacement parameteru. In the
ideal structureh52 andu51/4. The nonideal value ofu is
due to the distortion of the anion sublattice involving a sh
by each anion away from one neighboring cation in the
rection of the another cation~of different sort!. It was shown
that such a shift of anions is a consequence of ato
sizes.28–30 Usually the column-II atom is larger than th
column-IV one, and the anions are closer toB than to A
atoms.

In principle, one can obtain thea, h, andu parameters by
total-energy minimization. It was shown in a previous pap
by one of the authors that such a relaxation can significa
affect the band structure.31 We did not do such a relaxatio
in the present work but preferred to use the available exp
mental values of these structural parameters. Some com
sons to the ideal structure were also carried out. Tab
shows experimental values of the lattice parametersa, h,
and u for several chalcopyritesABC2 from the considered
group. The most complete set of parameters can be foun
Refs. 32 and 33. The early measurements of Ref. 32 did
pay too much attention to detailed measurements of the
rameteru but the measured values of the parametersa andh
are very close in both of the references. Below we show t
the distortions from the ideal chalcopyrite structureh
52, u51/4) can be neglected only when they are sm
Otherwise, they can change significantly the value of
gaps and the SHG. It would be interesting to mention that
substitution of phosphorus by arsenicum increases the la
constanta by the factor of 3.5–4 % while the value ofh
5c/a changes by less than 1%. The substitution of Ge by
does not change eithera or h by more than 1.5%.

Table II shows the experimental values of the minimu
band gaps in these materials from Ref. 33 compared to

TABLE I. Experimental values of lattice parametersa, h, and
u used in the present calculations.

Compound a ~a.u.! h u Reference

ZnGeP2 10.317 1.970 32
10.324 1.965 0.2582 33

ZnGeAs2 10.716 1.966 0.2585 33

ZnSiP2 10.200 1.934 32
10.204 1.933 0.2691 33

ZnSiAs2 10.598 1.941 32
10.593 1.940 0.2658 33

CdGeP2 10.843 1.878 32
10.847 1.878 0.2819 33

CdGeAs2 11.229 1.889 0.285 32
11.230 1.888 0.279 33

CdSiP2 10.731 1.836 0.2967 33

CdSiAs2 11.121 1.849 0.2893 33
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TABLE II. Experimental~Ref.33! and LDA values of the energy gap (Eg
expt andEg

LDA), their difference
(D), calculated and measured values of the staticx (2), and its decomposition in interband and intraba
contributions for different ternary semiconductorsABC2 ~in pm/V!. The values ofx (2) are compared with
experimental data from Refs. 10 and 11. We use the symbols (d), (pd) and~i! for direct, pseudodirect, and
indirect gaps, respectively.

Compound Eg
expt ~eV! Eg

LDA ~eV! D ~eV! x total
(2) x inter

(2) x intra
(2) x (2) ~Ref.11! x (2) ~Ref.10!

ZnGeP2 2.05 (pd) 1.16~i! 0.89 102 2231 333 111 150

ZnGeAs2 1.15~d! 0.13~d! 1.02 185 2328 513

ZnSiP2 2.07 (pd) 1.22 (pd) 0.85 61 2220 281

ZnSiAs2 1.74 (pd) 0.91~d! 0.83 105 2210 315 109 146

CdGeP2 1.72~d! 0.75~d! 0.97 127 2151 278 162 218

CdGeAs2 0.57~d! 20.44~d! 1.01 506 22 508 351 472

CdSiP2 2.2–2.45 (pd) 1.19 (pd) 1.01 73 2139 212

CdSiAs2 1.55~d! 0.42~d! 1.13 139 221 159
h
t
ll

ic
be
n

o
e
e

-
th

e

to
io
-

op

rg
er
ul

ri-
s
i

th

nts

We
s
.1

n, a
at

ing
her

the
odi-

le-
of
to

his

her
nd
ly.
e-
LDA gaps and their difference in the first three columns. T
nature of the band gaps varies from direct to pseudodirec
indirect. By pseudodirect is meant that the gap is nomina
direct but corresponds to a weak, almost forbidden, opt
transition. In the chalcopyrites, this situation can occur
cause the zone edge states of the parent III-V zinc-ble
compound atXzb are folded onto theG point in the chalcopy-
rite structure. Thus, when the zinc-blendeX1c state is lower
than the direct gap atG ~which happens in GaP!, a pseudo-
direct gap is expected in a chalcopyrite corresponding t
small perturbation from GaP. The correspondence betw
states in chalcopyrite notation and the states in zinc blend
as follows: the conduction band minimum atX, X1c

zb°G3 ,
the next higher state atX, X3c

zb°G2 andG1c
zb°G1 . The lat-

ter is predominantlys like while the other two have impor
tantp contributions. The optical matrix elements between
crystal-field splitted valence-band maximaG4 or G5 , which
are bothp like, and theG1 conduction-band state are larg
while those withG3 andG2 are small. By inspection of the
band dispersion, or the matrix elements, or the eigenvec
one can easily identify the nature of the lowest conduct
band atG as beingG1 or G3 like. Our calculated gaps in
dicted as being pseudodirect in fact correspond to theG3
minimum while the direct ones correspond to aG1 minimum.
The experimental assignments are mainly based on the
cal absorption being weak or strong34 along with some gen-
eral theoretical considerations based on zone folding a
ments of the type explained above. Experimentally, it is v
difficult to distinguish between a pseudodirect and a tr
indirect gap.

Although all of the LDA gaps are lower than the expe
ment by approximately 1 eV, we note that the assignment
the direct or pseudodirect nature agree with experiment w
two exceptions. We find ZnGeP2 to be actually indirect with
a conduction-band minimum location at a point near to
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folded X point. This will be further discussed elsewhere35

and is still in agreement with the absorption measureme
indicating a weak transition. Also, we find ZnSiAs2 to be
direct while experiment indicates a pseudodirect gap.
note however, that in this case, theG3 pseudodirect gap a
well as the lowest indirect gap in our calculation are only 0
eV above the directG1 gap. Errors of the order of 0.1 eV in
the ordering of the conduction-band states are commo
well-known example being Ge, for which it was found th
subtle effects such as core polarization36 need to be included
to obtain the correct ordering.

We note that if we order these semiconductors accord
to increasing gap, the lower gap ones are direct, the hig
gap ones are pseudodirect~or indirect! with the crossing tak-
ing place at about 1.7 eV, i.e., CdGeP2 and ZnSiAs2 being
borderline cases. From the above discussion relating
bands to those of the parent III-V compounds, the pseud
rect situation is clearly expected in ZnSiP2 , because Zn is in
the same row of the periodic table as Ga and the Sis states
occur higher than the Si-p states (G28.G15). Thus one ex-
pects theG1 state to be mainly Zn like, and a a small pertur-
bation from GaP is expected. In ZnGeAs2 , on the other
hand, we clearly expect a truly direct (G1-like! gap because
GaAs is direct. Next, we note that Cd, being a heavier e
ment, has lowers-like states than Zn and thus replacement
Zn by Cd will tend to make the gap direct as opposed
pseudodirect. Ge also has a lowerG1 state than Si. Thus
replacing Si by Ge will also tend to make the gap direct. T
is consistent with the borderline case CdGeP2 being direct.
Also, in ZnGeP2, we find theG1 state slightly below theG3
but nevertheless it is indirect with a minimum gap at anot
k point. Again, in this case the difference between direct a
indirect or pseudodirect gaps is of the order of 0.1 eV on
In conclusion, the nature of the gaps is generally well d
scribed by our LDA calculations.
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Next, we consider the gap correction from the LDA. W
note that both the Zn and Cd compounds have a gap co
tion D of about 1 eV (D varies from 0.83 eV for ZnSiAs2 to
1.13 eV for CdSiAs2). This is consistent with the gap co
rections of GaP~1.2 eV!,37 GaAs~Refs. 37 and 38! ~0.9 eV!,
and Zn-VI compounds39 ~1.2–1.6 eV!.

Other aspects of our band structures not discussed
are in general agreement with those of previo
studies,28–30,40for some of these compounds although the
are some differences in the location of the Zn3d band. Th
apart from the gap corrections, which for simplicity we ta
from experiment and apply as a ‘‘scissors’’ shift to all co
duction states, our band structures seem to describe the
tronic structure of these systems rather well. In any rate,
optical response functions considered in this paper are
very sensitive to the fine band structure details such
changes from direct to indirect at the level of 0.1 eV, beca
they are derived from integrals over the whole Brillou
zone. Also, the contributions of the Zn or Cdd bands in the
optical transitions determiningx (2) are quite negligible being
far too deep although they do have an indirect effect on
lattice constants and the states near the valence-band m
mum via their hybridisation with thed bands.

B. Linear optical response and birefringence

For practical applications in SHG and OPO’s an imp
tant quantity is the birefringence because it enters in
phase-matching condition. It can be calculated from the
ear response functions from which the anisotropy of the
dex of refraction is obtained. Figure 1 shows the imagin
part of the dielectric function~DF! «2(v) for ZnGeP2 and
CdGeAs2 in a wide energy region and for different ligh
polarizations. In this subsection we concentrate exclusiv
on these two materials because of recent experimental m
surements of high accuracy of frequency and tempera
dependence of birefringence.2,3,7 In general, the«2(v)’s are

FIG. 1. Calculated«2(v) for ZnGeP2 and CdGeAs2 ~shifted
down for convenience!. The solid line corresponds to the polariz
tion E ' c, the dotted line corresponds toE i c.
c-

re
s
e
s,

ec-
e
ot
s
e

e
xi-

-
e
-
-
y

ly
a-
re

rather similar in these materials, except for the difference
the gap value. It consists mostly of one broad hump wit
few additional fine structures that depend on the light po
ization.

The birefringence is the difference between the extrao
nary and ordinary refraction indices,Dn5ne2no , wherene
is the index of refraction for an electric field oriented alo
the c axis andno is the index of refraction for an electri
field perpendicular to thec axis. It is positive for both the
materials ZnGeP2 and CdGeAs2 . In the low energy region
(; 0.1 eV! phonon absorption is starting to play an impo
tant role, and this was clearly observed in the tempera
dependence of the birefringence in Refs. 2, 3, and 7.
cannot study the temperature dependence in the present
lication. However, when the temperature is changing
tween 14 K and 450 K, the change of the birefringence a
given frequency is not larger than 10–15 % of its value
room temperature, which is approximately the error of o
present estimation, which is limited in its accuracy amo
other things by the uncertainties in the gap corrections
by the neglect of local field effects.

Figure 2 showsDn in a wide energy region. Of course, i
practice the birefringence is important only in the nonabso
ing region, i.e., below the gap. The presense of an absorp
makes the use of the nonlinear crystal in OPO’s or freque
doubling device quite difficult or impossible. However, su
a curve is illustrative to show the general aspects of the
ference of the DF for different polarization. One may no
that the general shape of the curves for ZnGeP2 and
CdGeAs2 is rather similar, indicating the same frequen
regions where thee2(v) functions are enhanced or de
creased in one polarization or the other. This, of course
due to the similarities in their underlying band structures
the eV scale. Nevertheless, we can recognize a stro
negative peak around 2.5–3.0 eV in CdGeAs2 than in
ZnGeP2 and a higher positive value in the low energy regio

The birefringence of ZnGeP2 and CdGeAs2 in the nonab-
sorbing energy region together with experimental data
shown in Figs. 3 and 4. As one could expect the calcula
curve is growing quadratically with energy~in the experi-
ment Dn starts to grow again at low energies due to t
phonon absorption!. The curve is continuing to grow with
energy below the gap reaching a nonmonotonic beha
when the interband absorption processes start. For b
ZnGeP2 and CdGeAs2 we predict fairly accurate values o

FIG. 2. The calculatedDn for ZnGeP2 ~solid line! and CdGeAs2
~dotted line! in a wide energy region.
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2742 PRB 59RASHKEEV, LIMPIJUMNONG, AND LAMBRECHT
the birefringence to within about 10% in the middle of t
gap region. It correctly accounts for the fact that it is abo
twice as large in CdGeAs2 as in ZnGeP2. For ZnGeP2 the
numerical values are in quite reasonable agreement with
periment in all the nonabsorbing region. For CdGeAs2 the
agreement with measurements is good in a low-energy
gion ~0.1–0.3 eV! but at higher energies the experimen
curve starts to grow faster than the theoretical one. There
various possible reasons for this disagreement, e.g.:~i! the
measurements could be prepared on a crystal that is not
fect and contains impurities and cracks that increase the s
tering; ~ii ! the excitons~not included in our calculations!
could be important in this materials and give a significa
contribution in refraction index near the band-gap edge;~iii !
our calculations of the dielectric function for CdGeAs2 might
be not accurate enough. Therefore, our calculations of b
fringence should be considered as qualitative estimates o
Nevertheless, it is gratifying to see that even such an esti

FIG. 3. Calculated birefringence for ZnGeP2 ~solid line! to-
gether with experimental data of Ref. 3 at room temperature.
open circles and filled circles correspond to measurements on
different ZnGeP2 samples.

FIG. 4. Calculated birefringence for CdGeAs2 ~solid line! to-
gether with room temperature measurements of Ref. 7~filled
circles!.
t

x-

e-
l
re

er-
at-

t

e-
ly.
a-

tion exhibits the correct trends for the dependence of
birefringence on the chemical composition in these two ch
copyrites. This shows that our calculations will be predicti
for other chalcopyrites and may be used for preliminary
vestigations of the phase-matching conditions in these
related materials.

C. Static limit of SHG

In this section we focus on the results for the SHG co
ficients in the zero-frequency limit. For the material with th
point group 4̄2m there are only two independent compone
of the SHG tensor, namely, the 123 and 312 components~1,
2, and 3 refer to thex, y, andz axes, respectively, which ar
chosen along the cubic axes!. In the static limit, these two
components are becoming equal according to Kleinm
‘‘permutation’’ symmetry,22 which dictates additional rela
tions between tensorial components beyond the purely c
tallographic symmetry. For a nonideal chalcopyrite struct
~when u Þ 1/4! the point group symmetry is distorted an
some additional components of SHG~e.g., 311 or 131! ap-
pear. However, direct numerical calculations show that th
additional components are not larger than 3–5 % of the m
123 component for the values ofu corresponding to rea
chalcopyrites. Therefore, we ignore them in the bulk of o
results and make all the calculations for the 42̄m point group.
For the considered ternary chalcopyrite semiconductors
cluding the orbitals with angular momentsl max53 in the
basis set changes the results by the factor of 5–10 % only
most of our calculations we neglect them including orbit
with moments up tol max52.

In addition to the gaps discussed earlier, Table II sho
the values of the calculated and measured~where available!
SHG in the zero-frequency limit inABC2 compounds (A
5Zn, Cd; B5Ge, Si; C5As, P). We recall that all val-
ues were calculated using the ‘‘scissor’’ approach with
rigid shift of the conduction bands chosen such that the m
mum gap is adjusted to the experimental value.

First, we discuss the trends with the chemical eleme
One can see that substitution of P by As keeping the o
elements fixed increasesx (2) in all cases. This is also con
sistent with the values of GaAs~105 pm/V! and GaP~48
pm/V! calculated using the same approach~LDA1scissors!
in Ref. 15. Similarly, substitution of Si by Ge and Zn by C
increasesx (2). Second, one may notice that this is correlat
with the band gaps. Substitution of As by P, or Ge by Si,
Cd by Zn, each increase the gap and decreasex (2). However,
these qualitative trends cannot easily be turned into qua
tative scaling laws. If one more carefully considers the rat
of the gaps and the ratios ofx (2) for each of the above
substitutions, no inverse power law between gaps andx (2)

can be extracted in the remaining four element combinatio
For example, for substitution of As to P, the ratios of t
gaps for ZnGe, ZnSi, CdGe, and CdSi are 1.8, 1.2, 3.0,
1.4, respectively, but the inverse ratio of thex (2) ’s are 1.8,
1.7, 4.0, and 1.9. On the basis of the theoreti
expressions,15 one might have guessed a scaling with t
third power of the gap because three energy denomina
occur. Clearly, such a strong scaling with the gap is
present. The reason for this is that there are several te
with positive and negative contributions, which to a gre

e
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PRB 59 2743SECOND-HARMONIC GENERATION AND . . .
extent cancel each other and secondly, thex (2) is not domi-
nated by the terms involving the minimum gap but aris
from ak-point summation over the whole Brillouin zone an
a sum over several band-to-band terms. Thus, no simple
ing with the gaps emerge.

The smallest value of the gap occurs for CdGeAs2 which
also has the largestx (2). From the above discussion of th
trends, one can certainly say that CdGeAs2 has the mostly
favorable chemical combination of the elements among
class of chalcopyrites considered here. However, these a
ments do not suffice to explain why the second-harmo
generation coefficient in CdGeAs2 is so exceptionally large

Before doing a more detailed analysis of the frequen
dependentx (2) in the next section we first analyze the ne
two columns of the table where we put separately interb
versus intraband contributions in SHG. The meaning of th
terms needs perhaps some clarification. In general, the
mulas for second order response include many terms, an
division in several groups called intraband or interband
rather conventional and depends somewhat on the form
tion of the problem. For instance, it appears at first to
different in the formulas using the length-gauge and
momentum-gauge formulations. The most convincing
composition based on a careful analysis of the underly
time-dependent perturbation theory is the following:13–15 the
‘‘interband’’ contribution corresponds to a polarization loo
where all three Green’s function belong to different ele
tronic bands, while the ‘‘intraband’’ processes include t
modulation of the linear response by the intraband motion
well as the modification of the intraband motion by the
terband polarization processes.

Analysis of the intraband and interbandx (2) contributions
shows that,~i! for all the consideredABC2 compounds the
interband contribution is negative while intraband is positi
therefore, these two terms work in opposite directions;~ii !
for all of the materials except CdGeAs2 and CdSiAs2 both
absolute values of the intraband and interband terms
larger than the resulting total SHG;~iii ! the absolute value o
the intraband term is always larger than those of interba
i.e., the resulting total SHG is positive. We also notice t
CdGeAs2 and CdSiAs2 are exceptions that have an exce
tionally small value ofx inter

(2) , i.e., the intraband term is
dominating the SHG in the zero-frequency limit. This ter
for CdGeAs2 is nearly the same as in ZnGeAs2 . However,
there is no interband contribution to compensate it. This
plains why the second response function is so large in
material. The value ofx intra

(2) in CdSiAs2 is a few times
smaller than in CdGeAs2 because of differences in the valu
of the gap.

Another point of interest is a comparison with the pare
III-V compounds GaAs and GaP. The values obtained at
same level of calculation15 have already been given abov
Clearly, all phosphides considered here have a higher v
of x (2) than GaP. They also have consistently lower ga
For the arsenides, we also find thex (2) values to be consis
tently higher or equal in the chalcopyrites than in GaAs, a
to have lower gaps, except for ZnSiAs2, which has a slightly
higher gap and the same value ofx (2) as GaAs. The
chalcopyrite-type chemical substitution III-V to II-IV-V2
thus clearly appears to be favorable forx (2). In addition, and
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even more important in practice, the anisotropy of the ch
copyrite crystal structure allows for angular phase match
while this is not possible in the cubic zinc-blende crystals

The comparison of calculations with experiment is som
what complicated because the reported experimental re
for these materials differ considerably among each oth
The last two columns of Table II show experimental valu
of SHG from the two different handbooks~Refs. 11 and 10!.
The values from Ref. 10 are systematically higher than th
from Ref. 11 by a factor of 1.3–1.4. The reason of such
discrepancy is not completely clear. One possible expla
tion is that most of the original values of SHG were me
sured relatively to quartz, and the absolute value of seco
harmonic generation of pure quartz has been remeasur
few times~see Ref. 41 for more recently recommended va
of SHG in quartz!. For ZnGeP2,ZnSiAs2 , and CdGeP2 our
calculations are closer to Ref. 11 while for CdGeAs2 they
agree well with Ref. 10. In general, we know that the ‘‘sc
sors’’ corrected values are overcorrected, i.e., the ac
value of SHG has to be higher.15,16Such an overcorrection is
an intrinsic problem of the ‘‘scissors’’ approach. With the
cautions in mind, some of our values for the cases where
experimental values are available can be used as predict

D. Frequency dependent SHG

In order to better understand the origin of the relati
magnitudes of the intraband and interband contributions,
now consider the frequency-dependentx (2) functions, or,
more precisely, their imaginary part from which the real p
and in particular its static value can be obtained by
Kramers-Kronig transformation. Figures 5 and 6 show
imaginary part of the frequency dependentx (2)(v) for the
123 and 312 components in ZnGeP2 and CdGeAs2 . First, it
would be worth to mention that the SHG curves for 123 a
312 components look very similar being different just
fine-structure details. This is not very surprising because
the initial zinc-blende material that was used to derive
chalcopyrite material by chemical substitutions these t
components were equal at arbitrary frequency. The shap
the curves is also qualitatively very similar in the two ma
rials. It consists of a broad hump with positive SHG valu

FIG. 5. Calculated 123~solid line! and 312~dotted line! com-
ponents of the imaginary part of SHG for ZnGeP2 .
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2744 PRB 59RASHKEEV, LIMPIJUMNONG, AND LAMBRECHT
between the half of the band gap and 1.5–2 eV, the
changes sign and exhibits another broad dip between 2 a
eV. At energies higher than 4 eV the imaginary part of SH
drops to zero very fast. The curves at this energy reg
usually contain many features superimposed on the sm
background for both the DF and SHG. Sometimes it is h
to say if these features correspond to real interband tra
tions or appear as a result of insufficient accuracy of
tetrahedron scheme of integration. We do not address
the interpretation of these fine structures. In general, the c
sistency between the static limit of the SHG calculated fr
the direct formula and obtained from the Kramers-Kron
transformation~the sum rule! is fulfilled numerically within
5–10 % for these materials. Further details regarding
accuracy of our calculations can be found in Ref. 15. T
amplitudes of both broad features are somewhat highe
CdGeAs2 than in ZnGeP2. This is probably due to the
smaller value of the gap in the first material. Imx (2)(v) for
the other ternary pnictidesABC2 considered above are look
ing very similar, and we do not show them.

As we see, the analysis of Imx (2)(v) does not answer the
question concerning the origin of the extremely large va
of the zero frequency SHG in CdGeAs2 . To this end, it is
more useful to analyze different contributions to the to
SHG curves. Figures 7 and 8 show the intraband and in
band contribution separately. For ZnGeP2 both the interband
and intraband contributions in the most interesting ene
region below 4 eV~for the Kramers-Kronig integral which
gives the zero frequency value! do not change the sign~the
first is negative, the other is positive!. This means that both
the interband and intraband contributions to the static S
are large and have opposite signs. In CdGeAs2 the situation
is different. While the intraband term behaves in the sim
way to those in ZnGeP2 ~does not change the sign below
eV!, the interband term is positive between 0.3 and 1.1
and negative between 1.1 and 3 eV. Thus, the low-ene
region ~below 4 eV! of the interband term by itself alread
exhibits a good deal of compensation between positive
negative values when the integral appearing in the Kram
Kronig transformation is calculated. There is no simp
qualitative explanation of the fact why the resultin
Kramers-Kronig integral which gives the zero-frequen

FIG. 6. Calculated 123~solid line! and 312~dotted line! com-
ponents of the imaginary part of SHG for CdGeAs2 .
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value of the interband contribution to SHG is as small as
numerical calculations show: less than 0.5% of the intrab
term in our calculations, see the previous section!. This ap-
pears to be a rather coincidental interplay between differ
interband contributions. The important fact is that the con
butions from different groups of interband transitions in th
material have different sign, and they compensate each o
in the Kramers-Kronig integral.

This example shows that a small value of the gap may
favorable for but is clearly not sufficient or the domina
contributing factor to obtain a large value of SHG. The val
of the SHG results from a delicate balance between differ
contributions too complicated to capture in a simple scal
law with the gap. Unfortunately, we cannot presently furth
reduce this question to a simple explanation in terms of p
ticular band-to-band transitions. Nevertheless, it shows
the entire band structure matters, not simply the gaps. Th
fore, there appears to be, at least in principle, ample room
optimization of x (2) by band-structure engineering. O
course, we cannot control the signs of different interba
contributions in a definite bulk chemical compound at w
even with quite elaborate chemical substitutions. Howev
further opportunities to modify the band structures could

FIG. 7. Calculated interband~solid line! and intraband~dotted
line! contributions to Imx (2)(v) for ZnGeP2 ~123 component!.

FIG. 8. Calculated interband~solid line! and intraband~dotted
line! contributions to Imx (2)(v) for CdGeAs2 ~123 component!.
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PRB 59 2745SECOND-HARMONIC GENERATION AND . . .
ist for semiconducting heterostructures, such as mult
quantum wells, superlattices, layered materials, quan
dots, etc. In these structures the energies of the transit
between different levels and their matrix elements can
some extent be controlled by geometrical parameters of
structure. For example, it has already been shown that
asymmetric quantum wells can display very large values
second-order optical response~see, e.g., Refs. 42 and 43!.
However, the situation in these systems is complicated,
theoretical studies show that excitonic effects play an imp
tant role,44–46 in addition to the single-electron part consi
ered in our work. Nevertheless, the idea of parametric
controlled heterostructures with largex (2) is a challenging
task that we hope to pursue in future work because of
practical importance of obtaining materials with higherx (2)

values.

E. Structure dependence

As we already mentioned above, the distortions from
ideal chalcopyrite structure can be neglected in calculati
of optical spectra and SHG only if they are small enough
in the case of ZnGeP2. Figure 9 compares the electron
bands for ZnGeP2 along theZ-G andG-X lines calculated in
two different crystal structures, namely, the real experim
tal structure~with the parameters from Table I!, and the ideal
chalcopyrite structure with the same lattice constanta. The

FIG. 9. Electronic bands of ZnGeP2 along theZ-G and G-X
lines in the Brillouin zone@Z52p/ha•(0,0,1); G5(0,0,0); X
52p/a•(1/2,1/2,0)# for the experimental crystal structure~solid
lines! and for the ideal chalcopyrite structure (u51/4, h52) with
the same lattice constanta ~dotted lines!. Both the structures are
shown in LDA ~without gap corrections!. The energy in both case
is counted from the top of the valence band.
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band structures look very similar being different only
some fine details~e.g., the splitting of the upper valence ban
at theG point is different in the two cases due to differe
crystal fields!. Both crystals have indirect (G-X) band gaps
of nearly the same value. The zero-frequency SHG val
calculated in LDA are also very close~102 pm/V for the
experimental structure and 106 pm/V for ideal chalcopyr
i.e., the difference between them is only approximately 4%!.

In materials with larger distortions the situation is diffe
ent. One has to study how the deviations of both the par
etersh andu from those of the ideal chalcopyrite structu
(h52, u51/4) affect both the band structure and optic
constants. Figure 10 shows how the value of the parametu
affects the electronic bands in CdSiP2 ~this compound is the
most illustrative because the deviations of bothh andu are
the largest ones when compared with other materials of
considered group!. Except for some fine details, the effect
u can be considered as a rigid shift upwards~by about 0.4
eV! of the low conduction bands. The character of the g
~pseudodirect! does not change withu. The behavior of the
band structure is completely different when we change
parameterh ~Fig. 11!. Namely, when the value ofh is ap-
proaching 2, the two lowest conduction bands are chang
their positions, and the band gap is becoming direct as
posed to indirect. This illustrates the differences of the
havior of the electronic spectra with changes inh andu.

For the other materials the situation is quite similar. T
change ofu produces a nearly rigid shift of the few lowe
conduction bands while the changes of the parameterh can

FIG. 10. The LDA electronic bands of CdSiP2 for the experi-
mental crystal structure (h51.836, u50.2967, solid lines! com-
pared with bands for the structure with the samea andh but with
the value ofu for the ideal chalcopyrite structure (u51/4, dashed
lines!.
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2746 PRB 59RASHKEEV, LIMPIJUMNONG, AND LAMBRECHT
mix these bands and change the character of the band
Moreover, the value of the rigid shift is nearly linear in (u
21/4) and depends very weakly on the material. Thie me
that the deformation potential associated with this structu
change is almost constant in this class of compounds. W
this is so is presently not clear although it is not entire
unexpected since, in general, these materials are of cours
closely related to GaAs or GaP.

In order to study how these changes affect the opt
constants we calculated the zero-frequency SHG coeffici
at different values ofh and u. For the band structures o
CdSiP2 shown in Figs. 10 and 11 this calculation giv
x (2)573 pm/V for the real experimental structure,x (2)590
pm/V for h51.836 andu51/4, andx (2)5113 pm/V for the
ideal chalcopyrite structure. The value of the lattice const
a and the value of the gap correction used was the same i
the three cases. These calculations illustrate qualitativ
how SHG depends on distortions of the ideal chalcopy
structure. In the considered case both the deviations ofh and
u tend to decrease the value of SHG.

Another interesting question is to study whether or not
chalcopyrite type of ordering of the cations plays a spe
role in highx (2) values in these materials. For this purpo
we considered an alternative crystal structure, a~001! ori-
ented 111 superlatticeAC1BC, which still maintains the
local tetrahedral environment of the chalcopyrite where e
anion is surrounded by two cations of each type but wh
nevertheless exhibits a different ordering vector. This sup
lattice structure has the same overall chemical formula
stoichiometry as the chalcopyrite structure.

FIG. 11. The LDA electronic bands of CdSiP2 for the crystal
structure with (h52, u51/4, solid lines! compared with bands fo
the ideal chalcopyrite structure (h52, u51/4, dashed lines! with
the same lattice constanta.
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Figure 12 shows the LDA band structures of the
11 ZnGeP2 superlattice along the same directions of t
Brillouin zone as in Fig. 9. The real cell for the superlatti
is a tetrahedral one that is half the size of the cell for
chalcopyrite structure. We also calculated the electro
structure of 111 superlattices for otherABC2 materials con-
sidered before. However, in some materials that exhib
small LDA gap in the chalcopyrite structure, the gap for t
111 superlattice becomes negative. Here we show the
sults for ZnGeP2 only in order to illustrate how the ban
structure changes with modifications in the crystal structu
The gap is much smaller in the 111 structure (Eg

LDA

50.3 eV) than in the chalcopyrite (Eg
LDA51.16 eV). As a

result, the zero-frequency SHG is about 190 pm/V for t
superlattice, i.e., about twice as high as SHG in the ch
copyrite ZnGeP2 @we used the same value of the gap corre
tion (D50.89 eV) for the superlattice structure that h
been used before for the chalcopyrite ZnGeP2].

While this is at first sight promising for obtaining highe
x (2) we caution that this structure is unlikely to be stab
The atomic sizes of cations are different, and one can ex
an occurance of alternatingly compressive and tensile bia
strain in the cation layers. The calculations show that
difference of the total energy per chemical unit between
superlattice and the chalcopyrite structure isDEtot
50.204 eV, i.e., it is rather large. This confirms our hypo
esis that the alternative structure is not stable with respec
different structural rearrangements minimizing the total e
ergy.

IV. CONCLUSIONS

The linear and nonlinear optical properties f
important group of chalcopyritesABC2 (A5Zn, Cd;

FIG. 12. The LDA electronic bands for the 111 alternative
ZnGeP2 structure.
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B5Ge, Si; C5As, P! have been calculated over a wid
energy range. We studied any possible combination
A, B, and C. This allowed us to study the trends in th
second-order optical response with chemical composit
The results for the zero-frequency limit of SHG are in go
agreement with available experimental results. The ca
lated birefringence for ZnGeP2 and CdGeAs2 also shows a
fair agreement with recent experimental data in the ene
region corresponding to the middle of the gap. For all
considered compounds the second harmonic generation
efficient x (2) is of the order of 100–200 pm/V, i.e., of th
order of and in fact larger than the SHG in the initi
zincblende material~GaAs or GaP! from which these com-
pounds were created by chemical substitutions. The only
ception is CdGeAs2 , which has a much higher nonlinea
response (;500 pm/V) than all the other materials from
this group. This value of the SHG cannot be explained o
by a small value of the band gap. It appears as a result
very delicate balance between different terms that contrib
to the second-order response.

The results of the calculations are rather stable with
spect to small structural modifications. They do not chan
much with distortions of the ideal chalcopyrite structure
materials in whichh andu are close to those in ideal cha
copyrite structure. However, when these deviations are la
~as in CdSiP2) the gaps as well as SHG’s can be strong
affected by the values ofh andu chosen in calculations, an
the ideal structure does not describe a real experimental
ation correctly. The LDA calculations for the~001!-oriented
111 superlattice that has the same overall chemical form
and stoichiometry as the chalcopyrite structure exhibit
much smaller LDA band gap than the chalcopyrite struct
and larger values of the SHG coefficients. However, t
structure has a very high total energy which is probably
lated to large strains in the cation layers. These strains sh
make the structure unstable with respect to different str
tural rearrangements.

In conclusion, we can certainly say that a small value
s
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the gap is favorable for larger SHG. However, this is by
means sufficient for quantitative predictions of thex (2) val-
ues from the known values of the gaps. Within this family
compounds all calculated in essentially the same approxi
tion, no clear scaling of calculatedx (2) values with a power
law of the gap was obtained. Because of the experime
uncertainties in determiningx (2) values for compounds with
different degree of crystalline ideality and different optim
zation of phase-matching conditions, we consider this tes
be a more reliable test of such scaling laws than those ba
on experimental values. The origin ofx (2) in terms of the
underlying band structure is clearly too complex for such
simple minded extrapolation to be valid. One has to take i
account all the contributing terms and analyze them ca
fully. Even then, gaining understanding is far from easy a
we were only partially successful at unraveling the origin
the high value ofx (2) for CdGeAs2 . Nevertheless, we hop
that our present analysis in terms of the intraband and in
band terms provides at least a first step towards such un
standing. Both the intraband and interband terms are ge
ally found to be decreasing with increases of the gap beca
both term contain some power of the interband transit
energy in the denominator. Even, so, they do not sim
scale with the gap and their sum which is the total value
x (2) can either increase or decrease depending on the de
of compensation between the two contributions, which w
found to depend sensitively on details of the calculations,
example, the nonideality of the parameteru. Thus, only a
very complicated interplay between these different terms
forming the total value of the nonlinear optical respon
function. A detailed analysis of these contributions appe
to be necessary to understand and predict confidently
expected NLO response for new materials.
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