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Second-harmonic generation and birefringence of some ternary pnictide semiconductors
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A first-principles study of the birefringence and the frequency-dependent second-harmonic generation
(SHG) coefficients of the ternary pnictide semiconductors with formdBC, (A=Zn, Cd; B=Si, Ge;C
=As, P) with the chalcopyrite structures was carried out. The zero-frequency Iimﬁ%@ﬂvere found to be
in reasonable agreement with available experimental data for all the considered materials. We found that
substitution of P by As, Si by Ge, and Zn by Cd is favorable to get a higher valy&\¢D). An analysis of
the different contributions shows that the anomalously high value of the zero-frequency SHG in GdGeAs
appears as a result of a very small interband term in the zero-frequency limit which, contrary to most of the
other materials of this class, does not compensate the large intraband contribution. Simple inverse power
scaling laws between gaps agtf) values are not supported by our results. We find that(@@4) oriented
1+ 1 superlattice structure has significantly lower gaps than the chalcopyrite and correspondinglyffgher
However, this smaller gap structure is characterized by a large alternatingly compressive and tensile lateral
strain in the layers, which makes it unfavorable. The calculated values of the birefringence for,ZateP
CdGeAs are in fair agreemenrtliscrepancies being rather constant and of the order of) 10& experiment
in the frequency range corresponding to the middle of the [a@163-18289)14503-X]

I. INTRODUCTION materials, and their values are generally rather fagHeast
not much lower than the SHG in Gap¥'! Our main pur-
Ternary chalcopyrites are promising for optical frequencypose is to understand the trends in this family of materials
conversion applications in solid state laser systems, such ##d to check whether simple schemes for extrapoldgog,
optic parametric oscillator€©PO’9 and frequency doubling based on inverse power relations to the band) gapther
devices! Zinc germanium diphosphide (ZnGgPis an ex- compounds in this family are valid. The choicg/b,f B, and
cellent nonlinear optical material that exhibits good opticalC atoms allows us to consider the trends in the group-ll,

transparency over the 0.7—%2m wavelength region. This group-1V, and group-V atoms separately in this class of ma-

uniaxial crystal has positive birefringence, and its convenl€rals that has the general formula II-IV;V'We also note

tional conversion efficiency, or figure of merFOM that some of these materials have direct gaps while others

= (x®)2/4n3 wheren is the index of refractiohexceeds that have indirect or pseudodirect gaps. Thus, we can investigate

of LINbOs, a presently commonly used material, by an OrderWhether there is any relation between the type of the gap and

(2) ind i i
of magnitide. It is therefore a very good candidate to producthe x " values. In fact, we find little evidence for such a

ing tunable | out in th nfrafel CdGeAs h correlation. This result could be expected from the fact that
Ing tunable ag)er output in the near infra €A3NAS (@) depends on a Brillouin zone average of interband verti-
even largery'“’ and FOM. To the best of our knowledge

' - - . : ~ ' cal optical transitions and is, therefore, little affected by the
this material has the highest nonlinear optical coefficient iny3ngs at a few particulak points determining the band

the class of phase-matchable compoufid8Recent crystal  eqges.
growth technologies have made great progress towards Typically, one indeed finds smaller band gap materials to
growth of large crystals of both ZnGgRnd CdGeAswith  have highen(?.? It is expected from the basic expressions
improved optical quality. These two materials, however, argor the NLO response functiofs** and from empirical ob-
part of a larger family of 1I-IV-\, compounds and although servations that NLO susceptibilities scale roughly inversely
the crystal growth perfection of these has not been pursuedith some power of the interband energy differences, and,
to the extent of the above two, it is of interest to ask whethetherefore, with the minimum gaps if these dominate the re-
other materials in this class, or alloys between them, mightponse. However, we show that the situation is not that
offer increased flexibility in terms of combining high®  straightforward, and the real value of the zero-frequency
with other ranges of transparency and/or noncritical phasémit of SHG is a result of a very delicate balance between
matching. More generally, it is of interest to understand thalifferent contributions to nonlinear optical response, e.g., the
origin of the high x(®* and the degree of birefringence in intraband and interband contributions. It turns out that
these materials as well as to study the trends within thi€©dGeAs is a rather exceptional material in this context.
family of compounds. A second purpose is to investigate whether or not the
In the present paper we systematically study the electronichalcopyrite structure plays a special role in leading to high
structure and optical properties of a class of ternary pnictideg(® values. We can test the effect of crystal structure at least
with formula ABC, (A=Zn, Cd; B=Si, Ge; C=As, P) qualitatively by considering an alternative crystal structure
that are crystallizing in the chalcopyrite structure. The meacorresponding to the same overall chemical formula or sto-
sured SHG coefficients have been reported for some of thesehiometry. To this end we consider(801) oriented -1
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superlattice structure and compare its band structure, totéilequency limit and the explicit satisfaction of the Kleinman
energy, andy® with that of chalcopyrite for ZnGeP We  relations?
note that this particular structure still maintains the local tet- The self-consistent LMTO electronic structure calcula-
rahedral environment of the chalcopyrite corresponding tdions were carried out within the framework of the local den-
each anion being surrounded by two cations of each typesity approximation(LDA) in the density functional theory.
Our results show that the alternative structure consideredhe exchange-correlation potential has been taken in the
generally has a much lower band gap and hence higffér ~ form of Hedin and Lundgvist® One of the central problems
However, we find that this is related to the occurence ofin calculation of optical response functions in semiconduc-
alternatingly compressive and tensile biaxial strain in thetors is the problem of the gap corrections in the LTRefs.
layers which make the structure unstable. Thus, we do not5,20,21,24,2F which appears from the fact that response
think that this alternative structure gives a promise for fur-functions have to deal with the actual quasiparticle excita-
ther increases 0*(2)_ tions rather than the Kohn-Sham eigenstates. The presently

The chalcopyrite structure is typically accompanied by amost accurate approach, ti@W method, is unfortunately
distortion from the ideat/a ratio one would obtain by sim- rather computationally demanding because it needs calcula-
ply substituting Il and IV atoms in the cubic zinc-blende tions of matrix elements of the nonlocal self-energy operator
structure in the appropriate ordering. It is thus also of interestn terms of the one particle Green's function and the
to investigate whether this has an important effectyéf. screened Coulomb interaction, which itself requires calcula-
We find that these effects are significantly larger for the Cdtion of the inverse dielectric response function including lo-
than for the Zn compounds, which are closer to the ideafal field effects® In practice, a simplified approach, the so-
structure. While the gaps are generally increased and, hencélled “scissors operator” is often used. It assumes the rigid
both intraband and interband contributions are significantlyshift in energyA of the conduction band with subsequent
decreased’ the net Va'ue?‘fz) is On|y S||ght|y Changed as a renormalization of the Ve|OCit9I’nomentuml Opel’atOI‘ matrix
result of the compensation noted above. elements(see, e.g., Refs. 15, 20, and 24 for dejaila our

The computational approach used in the present investPrevious papef we noted that this approach is not entirely
gation was described in our previous pdpand success- Satisfactory because it breaks the consistency between the
fully applied to SiC polytype¥ and GaN/AIN  €igenvectors and eigenvalues of the one-particle Hamil-
superlattices’ tonian. This manifests itself rather clearly when applying this

The rest of the paper is organized as follows. In Sec. Il weaPproach to the calculation of effective masses. In a rigid
describe briefly the necessary details of our computationathift, the masses should not change, but applying the “scis-
approach. In Sec. Il we present our calculated results for th€0rs” renormalization to the momentum matrix elements and
electronic band structures, static second-harmonic generatidt$ing the well-knowrk - p expression for the inverse masses
coefficients, and birefringence and address the various que¥e see that the effective mass decreases.
tions raised in this introduction. We analyze the results in We proposed an alternative approach, which consists of
terms of the decomposition of the frequency-dependengdding semiempirical correc_tic_)ns to the diagonal ele_m_ents of
Imy®@(-2w,w,w) function on intraband and interband thg LMTO. In some sense, it is an attempt of describing the
terms as defined in Refs. 13 and 14. A summary of the maiiCissor's operato Acck)(ck|, in which |ck) are the

conclusions of this work is given in Sec. IV. conduction-band states arq, their shifts, explicitly at the
level of the Hamiltonian. The approach is based on the ob-

servation that the states at the bottom of the conduction band
in tetrahedrally bonded semiconductors have a characteristic
predominance of certain LMTO basis orbitals in their wave
Our calculations are based on the linear muffin-tin orbitalsunctions: e.g., catiors at I' and a mixture of catiors and
(LMTO) method®*°within the atomic sphere approximation empty sphere orbitals at thex point of the zinc-blende BZ.
(ASA). This method is quite efficient mainly because it em-Therefore, by shifting thess orbitals, one shifts the corre-
ploys a rather small basis set. It allows us to easily deal wittsponding states. The stateslatypically behave intermedi-
systems containing a large number of atoms per unit celately between those &t and X. Thus, an advantage is that
while maintaining a sufficiently large number bfpoints so  one can includé-dependent shifts if these are known. This
as to ensure converged Brillouin zof®7) integrations. Ex-  alternative approach is closely related to the one suggested
tensive checks performed in our previous papelemon- by Christenseff in which it is further used that only states
strated that our ASA-LMTO-based approach yields resultare sensitive to sharply localize#tfunction-like potentials.
for the second-order response functions of accuracy compan our previous papet we showed that better results for the
rable to that of the full-potential linear augmented plane-frequency-dependent SH@t least for GaAs and Gakran
wave methodFLAPW) method?®?* The formulas used here be obtained in this way. However, this procedure allows us
to calculatey(® were given in a previous publicatibhThey  only to shift the lowest conduction bands while for some
are based on the so-called “length-gauge” formalism of Sipematerials the shift of the whole set of conduction bands is a
and Ghahramartf and Aversa and Sip¥. This formalism  better approximatiofe.g., for SiC, see Ref.16 for detail$n
uses the independent particle approximation and is presenthyther words, it is a reasonable approach only if one is inter-
restricted to undoped semiconductors. Also, it does not inested in the highest valence band and the lowest conduction
clude the local field effects. This method has several appamband exclusively. Its success for GaAs and GaP observed in
ent advantages, e.g., the manifest absence of unphysical siodr previous work is thus based on the fact that these bands
gularities of nonlinear optical responses in the zerotend to dominate the second-order response functions in that

1. COMPUTATIONAL METHOD
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material but this is not a general fact for all semiconductors. TABLE I. Experimental values of lattice parametexrs #, and
In the present study, in order to study trends, it is impor-u used in the present calculations.

tant to follow a systematic and consistent treatment for alf

the compounds, including those for which detailed band-gap Compound a(a.u) n u Reference

information at differenk points is not available. Therefore,

. . . ] ZnGeR 10.317 1.970 32

the bulk of our results was obtained using the simple “scis- 10324 1.965 0.2582 13
sors operator” approach. Unfortunately, we cannot use that ' ' '
approach directly for the case of CdGeAwhere LDA does
not give any gap at all As a result, the bands in CdGeAs ZnGeAs 10.716 1.966 0.2585 33
have a completely changed topology near the “overlap” of .
the valence and conduction bandslat To deal with this ZnSik, 10.200 1.934 32
case we first applied a shift of the Hamiltoniastates to get 10.204 1.933 0.2691 33
some ‘“bare minimum” gap of at least 0.3 eV and subse- )
quently applied the usual scissors operator to obtain the ex- £NSIAS 10.598  1.941 32
perimental gap values. 10.593 1.940  0.2658 33

We emphasize that the primary purpose of this paper is to
study the chemical and structural effects on the electronic CdGeR 10.843 1.878 32
structure andy(?) functions. The above-described problems 10.847 1878  0.2819 33
with the gap corrections, although not handled to our entire
satisfaction, are expected to only have a minor effect on the CdGeAs 11.229 1.889 0.285 32
main conclusions of our work as long as a consistent treat- 11.230 1.888 0.279 33
ment is followed.

The detailed description of the procedure for calculating CdsSik, 10.731 1.836 0.2967 33
the linear response and frequency dependent SHG has been
described elsewher@ee, e.g., Ref. 25The real part of the CdSiAs, 11.121 1.849 0.2893 33

frequency dependent response functions has been obtained

from the imaginary part by using the the Kramers-Kronig

transformation. For the zero-frequency limit of SHG we usewhich the chalcopyrite structure is derived, the ratjo
the simplified and computationally more convenient formu-=¢/a, and the internal displacement parameterin the

las. It avoids the need for calculation of the response funcigeal structurep=2 andu= 1/4. The nonideal value aof is

tion in a wide frequency region required for an accurate apgye to the distortion of the anion sublattice involving a shift
plication of the Kramers-Kronig transformation and is lesspy each anion away from one neighboring cation in the di-
singular as regardg-point summations, so it can be con- rection of the another catiofof different sorj. It was shown
verged with fewer terms. Thi-space integration may be that such a shift of anions is a consequence of atomic

performing a prior symmetrization of the product of the threecolumn-IV one, and the anions are closerBothan to A
momentum matrix elements over all the transformation ofztoms.
the point group of the crystal. In principle, one can obtain the 7, andu parameters by

For the frequency-dependent SHG, we use the usual tefptal-energy minimization. It was shown in a previous paper
rahedron scheme of the integration with linear interpolatioryy one of the authors that such a relaxation can significantly
of the band energies and the products of the matrix elementgffect the band structuf®.We did not do such a relaxation
For the zero-frequency limit on the other hand, we employ an, the present work but preferred to use the available experi-
semianalytical linear interpolation that is more efficient andmental values of these structural parameters. Some compari-

produces a smaller error. sons to the ideal structure were also carried out. Table |
shows experimental values of the lattice parametersy,
. RESULTS and u for several chalcopyrite&BC, from the considered

group. The most complete set of parameters can be found in
Refs. 32 and 33. The early measurements of Ref. 32 did not
The chalcopyriteAB C, materials(with chemical compo- pay too much attention to detailed measurements of the pa-
sitions 1I-IV-V, and I-1lI-VI,) can be obtained from IlI-V rameteru but the measured values of the parameseaisd 7
compounds and II-VI compounds, respectively, by replacingare very close in both of the references. Below we show that
every two group llI(II) atoms per cell by a Il and IVl and  the distortions from the ideal chalcopyrite structurg (
[11) atom. For example, from GaP we derive ZnGél this =2, u=1/4) can be neglected only when they are small.
chemical substitution. Their crystal structure is a body-Otherwise, they can change significantly the value of the
centered tetragonal lattice that has eight atoms per unit celjaps and the SHG. It would be interesting to mention that the
It can be thought of as a tetragonally distor#&gB, (or 2  substitution of phosphorus by arsenicum increases the lattice
+2) face-centered-cubidcc) superlattice in th¢201 direc-  constanta by the factor of 3.5—-4 % while the value of
tion of the cationsA andB with an interpenetrating fcc lattice = c/a changes by less than 1%. The substitution of Ge by Si
of common anion€ displaced by (1/4,1/4). The structural does not change eitharor » by more than 1.5%.
parameters are the lattice constantwhich corresponds to Table 1l shows the experimental values of the minimum
the cubic lattice constant of the zinc-blende structure fronband gaps in these materials from Ref. 33 compared to our

A. Crystal structure and electronic bands
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TABLE Il. Experimental(Ref.33 and LDA values of the energy gafE§** andE¢"*), their difference
(A), calculated and measured values of the staff¢, and its decomposition in interband and intraband
contributions for different ternary semiconduct@8C, (in pm/V). The values ofy(® are compared with
experimental data from Refs. 10 and 11. We use the symb|s (pd) and(i) for direct, pseudodirect, and
indirect gaps, respectively.

Compound Eg*P'(eV)  E;®* (V) A @V) xPa xPer x@Ba x? (Ref1d) x® (Ref.10

total

ZnGeR 2.05 (pd) 1.16(i) 0.89 102 —231 333 111 150
ZnGeAs  1.15(d) 0.13(d)  1.02 185 —328 513
ZnSip, 2.07 (pd) 122(d) 085 61 -220 281
ZnSiAs, 1.74 (pd) 0.91(d) 0.83 105 —-210 315 109 146
CdGeR 1.72(d) 0.75(d) 097 127 —151 278 162 218
CdGeAs  0.57(d) -0.44(d)  1.01 506 —2 508 351 472

CdSiB  2.2-245pd) 1.19(pd) 101 73 —139 212

CdSiAs 1.55(d) 0.42(d) 1.13 139 —-21 159

LDA gaps and their difference in the first three columns. Thefolded X point. This will be further discussed elsewh&re
nature of the band gaps varies from direct to pseudodirect aind is still in agreement with the absorption measurements
indirect. By pseudodirect is meant that the gap is nominallyindicating a weak transition. Also, we find ZnSiA$o be
direct but corresponds to a weak, almost forbidden, opticadiirect while experiment indicates a pseudodirect gap. We
transition. In the chalcopyrites, this situation can occur benote however, that in this case, thg pseudodirect gap as
cause the zone edge states of the parent Ill-V zinc-blendgell as the lowest indirect gap in our calculation are only 0.1
compound aX?" are folded onto thé& point in the chalcopy- eV above the direcE; gap. Errors of the order of 0.1 eV in
rite structure. Thus, when the zinc-blendg; state is lower the ordering of the conduction-band states are common, a
than the direct gap dt (which happens in GaPa pseudo- well-known example being Ge, for which it was found that
direct gap is expected in a chalcopyrite corresponding to 8ubtle effects such as core polarizaffoneed to be included
small perturbation from GaP. The correspondence betweet obtain the correct ordering.
states in chalcopyrite notation and the states in zinc blende is \We note that if we order these semiconductors according
as follows: the conduction band minimumt X%—>T'3,  to increasing gap, the lower gap ones are direct, the higher
the next higher state &, X33—T', andT'2%—T';. The lat-  gap ones are pseudodiréot indirec} with the crossing tak-
ter is predominanthys like while the other two have impor- ing place at about 1.7 eV, i.e., CdGe&nd ZnSiAs being
tantp contributions. The optical matrix elements between theborderline cases. From the above discussion relating the
crystal-field splitted valence-band maxirfig or I's, which ~ bands to those of the parent 1lI-V compounds, the pseudodi-
are bothp like, and thel'; conduction-band state are large rect situation is clearly expected in ZngiFbecause Zn is in
while those withI'; andI', are small. By inspection of the the same row of the periodic table as Ga and the Sates
band dispersion, or the matrix elements, or the eigenvectorgccur higher than the Si-states [',,>I";5). Thus one ex-
one can easily identify the nature of the lowest conductiorpects thd’; state to be mainly Zn like, @ha a small pertur-
band atl’ as beingI’; or I'; like. Our calculated gaps in- bation from GaP is expected. In ZnGeAson the other
dicted as being pseudodirect in fact correspond tolthe hand, we clearly expect a truly diredf {-like) gap because
minimum while the direct ones correspond tb aminimum.  GaAs is direct. Next, we note that Cd, being a heavier ele-
The experimental assignments are mainly based on the optirent, has lowes-like states than Zn and thus replacement of
cal absorption being weak or strafigilong with some gen- Zn by Cd will tend to make the gap direct as opposed to
eral theoretical considerations based on zone folding argysseudodirect. Ge also has a lowléy state than Si. Thus
ments of the type explained above. Experimentally, it is veryreplacing Si by Ge will also tend to make the gap direct. This
difficult to distinguish between a pseudodirect and a trulyis consistent with the borderline case CdgdRing direct.
indirect gap. Also, in ZnGeB, we find thel'; state slightly below thé';
Although all of the LDA gaps are lower than the experi- but nevertheless it is indirect with a minimum gap at another
ment by approximately 1 eV, we note that the assignments df point. Again, in this case the difference between direct and
the direct or pseudodirect nature agree with experiment witlindirect or pseudodirect gaps is of the order of 0.1 eV only.
two exceptions. We find ZnGgRo be actually indirect with  In conclusion, the nature of the gaps is generally well de-
a conduction-band minimum location at a point near to thescribed by our LDA calculations.
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Energy (eV)

FIG. 2. The calculated n for ZnGeR (solid line) and CdGeAs
(dotted ling in a wide energy region.

rather similar in these materials, except for the difference in
the gap value. It consists mostly of one broad hump with a
0 2 4 6 8 10 few additional fine structures that depend on the light polar-
Energy (eV) ization.
FIG. 1. Calculatedk,(w) for ZnGeR and CdGeAs (shifted The blrefn_ngence is the dl_ffe_rence_between the extraordi-
: — - nary and ordinary refraction indiceAn=n,—n,, wheren,
down for conveniende The solid line corresponds to the polariza- . the ind f refraction f lectric field oriented al
tion E L ¢, the dotted line corresponds Bo| c. is the index of refraction for an electric field oriented along

the ¢ axis andn, is the index of refraction for an electric

Next, we consider the gap correction from the LDA. We field perpendicular to the axis. It is positive for both 'Fhe
note that both the Zn and Cd compounds have a gap corre naterials ZnGepand CdGe_A§._ In the_ low energy region
tion A of about 1 eV @ varies from 0.83 eV for ZnSiAsto ~ 0.1 eV) phonon absorption is starting to play an impor-
1.13 eV for CdSiAg). This is consistent with the gap cor- tant role, and this was clearly observed in the temperature

rections of GaR1.2 eV),¥’ GaAs(Refs. 37 and 38(0.9 eV) dependence of the birefringence in Refs. 2, 3, and 7. We
and Zn-Vi compc.)undg(l.Z—l.G ev. ' | " cannot study the temperature dependence in the present pub-

|j8ation. However, when the temperature is changing be-

Other aspects of our band structures not discussed he S
are in general agreement with those of previoustween 14 K and 450 K, the change of the birefringence at a

studie®~3°for some of these compounds although therediven frequency is not Iarger than ;0—15% of its value at
Joom temperature, which is approximately the error of our

apart from the gap corrections, which for simplicity we take Present estimation, which IS I_|m|t_ed In its accuracy among
from experiment and apply as a “scissors” shift to all con- other things by the uncertainties in the gap corrections and
duction states, our band structures seem to describe the el&y 'Ehe negzlecr:]t ofSLocql f'eld. deffects. ion. Of :
tronic structure of these systems rather well. In any rate, the Igure = Showsin In a wide energy region. i course, in
optical response functions considered in this paper are ndtactice the birefringence is important only in the nonabsorb-
very sensitive to the fine band structure details such al'd region, i.e., below the gap. The presense of an absorption

changes from direct to indirect at the level of 0.1 eV, becaus%mkt()elfS thg use of the r:jq#llinclaar crystal inb(leO’s or frequenrc]:y
they are derived from integrals over the whole Brillouin d0UPling device quite difficult or impossible. However, suc

sone. Also. the contributions of the Zn or @ands in the & CUrve is illustrative to show the general aspects of the dif-
optical transitions determining® are quite negligible being ference of the DF for different polarization. One may note

far too deep although they do have an indirect effect on thd1at the general shape of the curves for Zngefnd

lattice constants and the states near the valence-band maﬁ-d_GeAsl is rather similar, |nd_|cat|ng the same frequency
mum via their hybridisation with the bands. regions where thee,(w) functions are enhanced or de-
creased in one polarization or the other. This, of course, is

due to the similarities in their underlying band structures at

the eV scale. Nevertheless, we can recognize a stronger
For practical applications in SHG and OPQO'’s an impor-negative peak around 2.5-3.0 eV in CdGeAban in

tant quantity is the birefringence because it enters in th&nGeR and a higher positive value in the low energy region.

phase-matching condition. It can be calculated from the lin- The birefringence of ZnGePand CdGeAs in the nonab-

ear response functions from which the anisotropy of the insorbing energy region together with experimental data is

dex of refraction is obtained. Figure 1 shows the imaginaryshown in Figs. 3 and 4. As one could expect the calculated

part of the dielectric functioDF) e,(w) for ZnGeR and  curve is growing quadratically with enerdgyn the experi-

CdGeAs in a wide energy region and for different light ment An starts to grow again at low energies due to the

polarizations. In this subsection we concentrate exclusivelyphonon absorption The curve is continuing to grow with

on these two materials because of recent experimental meanergy below the gap reaching a nonmonotonic behavior

surements of high accuracy of frequency and temperatur@hen the interband absorption processes start. For both

dependence of birefringenéé:’ In general, thes,(w)’s are ZnGeR and CdGeAs we predict fairly accurate values of

B. Linear optical response and birefringence
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" " " tion exhibits the correct trends for the dependence of the
birefringence on the chemical composition in these two chal-
copyrites. This shows that our calculations will be predictive

for other chalcopyrites and may be used for preliminary in-

vestigations of the phase-matching conditions in these and
related materials.

0.08

0.06

An

o
0.04 [ Nuppmens 00 s0 ©© *° ° 1 C. Static limit of SHG

In this section we focus on the results for the SHG coef-
ficients in the zero-frequency limit. For the material with the
point group 2m there are only two independent component
of the SHG tensor, namely, the 123 and 312 compon@nts
2, and 3 refer to theg, y, andz axes, respectively, which are
0.0 0.5 To 15 chosen along the cubic axedn the static limit, these two

Energy (eV) components are becoming equal according to Kleinman
“permutation” symmetry??> which dictates additional rela-

FIG. 3. Calculated birefringence for ZnGeRsolid ling) to-  tions between tensorial components beyond the purely crys-
gether yvith experi_menta_l data of Ref. 3 at room temperature. Th@allographic symmetry. For a nonideal chalcopyrite structure
open circles and filled circles correspond to measurements on tWRNhen u # 1/4) the point group symmetry is distorted and
different ZnGeR samples. some additional components of SH&.g., 311 or 13)Lap-

pear. However, direct numerical calculations show that these
the birefringence to within about 10% in the middle of the additional components are not larger than 3—5 % of the main
gap region. It correctly accounts for the fact that it is aboutl23 component for the values of corresponding to real
twice as large in CdGeAsas in ZnGePR. For ZnGeR the  chalcopyrites. Therefore, we ignore them in the bulk of our
numerical values are in quite reasonable agreement with exesults and make all the calculations for ti#grdpoint group.
periment in all the nonabsorbing region. For CdGe#lse  For the considered ternary chalcopyrite semiconductors in-
agreement with measurements is good in a low-energy resluding the orbitals with angular momenitg,,=3 in the
gion (0.1-0.3 eV but at higher energies the experimental basis set changes the results by the factor of 5—-10 % only. In
curve starts to grow faster than the theoretical one. There amost of our calculations we neglect them including orbitals
various possible reasons for this disagreement, @)gthe  with moments up td .= 2.
measurements could be prepared on a crystal that is not per- In addition to the gaps discussed earlier, Table Il shows
fect and contains impurities and cracks that increase the scahe values of the calculated and measunetere available
tering; (ii) the excitons(not included in our calculations SHG in the zero-frequency limit iBC, compounds A
could be important in this materials and give a significant=2Zn, Cd; B=Ge, Si; C=As, P). We recall that all val-
contribution in refraction index near the band-gap ed@e; ues were calculated using the ‘“scissor” approach with a
our calculations of the dielectric function for CdGeAright  rigid shift of the conduction bands chosen such that the mini-
be not accurate enough. Therefore, our calculations of biremum gap is adjusted to the experimental value.
fringence should be considered as qualitative estimates only. First, we discuss the trends with the chemical element.
Nevertheless, it is gratifying to see that even such an estim@ne can see that substitution of P by As keeping the other
elements fixed increaseg? in all cases. This is also con-
y y Y sistent with the values of GaAd05 pm/V) and GaP(48
pm/V) calculated using the same approdtbA +scissor$
in Ref. 15. Similarly, substitution of Si by Ge and Zn by Cd
increasex(?). Second, one may notice that this is correlated
with the band gaps. Substitution of As by P, or Ge by Si, or
Cd by Zn, each increase the gap and decrg&e However,
these qualitative trends cannot easily be turned into quanti-
tative scaling laws. If one more carefully considers the ratios
of the gaps and the ratios gf(?) for each of the above
substitutions, no inverse power law between gaps @it
can be extracted in the remaining four element combinations.
For example, for substitution of As to P, the ratios of the
gaps for ZnGe, ZnSi, CdGe, and CdSi are 1.8, 1.2, 3.0, and
1.4, respectively, but the inverse ratio of the) 's are 1.8,
L L 1.7, 40, and 1.9. On the basis of the theoretical
0.0 0.2 0.4 0.6 >t : i :
Energy (eV) expressmn%, one might have guessed a scaling W|tr_1 the
third power of the gap because three energy denominators

FIG. 4. Calculated birefringence for CdGeAssolid line) to-  occur. Clearly, such a strong scaling with the gap is not
gether with room temperature measurements of Ref(filled present. The reason for this is that there are several terms
circles. with positive and negative contributions, which to a great

0.02 4
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extent cancel each other and secondly, ¢ is not domi- 3 T T y
nated by the terms involving the minimum gap but arises
from ak-point summation over the whole Brillouin zone and >
a sum over several band-to-band terms. Thus, no simple scal-
ing with the gaps emerge.
The smallest value of the gap occurs for CdGedich
also has the largest®. From the above discussion of the
trends, one can certainly say that CdGgAsis the mostly B
favorable chemical combination of the elements among the &,
class of chalcopyrites considered here. However, these argu- €
ments do not suffice to explain why the second-harmonic
generation coefficient in CdGeAss so exceptionally large.
Before doing a more detailed analysis of the frequency- 2
dependeny(® in the next section we first analyze the next
two columns of the table where we put separately interband
versus intraband contributions in SHG. The meaning of these F|G. 5. Calculated 123solid line) and 312(dotted lind com-
terms needs perhaps some clarification. In general, the foponents of the imaginary part of SHG for ZnGeP
mulas for second order response include many terms, and its

division in sev.eral groups called intraband or interband iSsyen more important in practice, the anisotropy of the chal-
rather conventional and depends somewhat on the formulgs,hyrite crystal structure allows for angular phase matching
tion of the problem. For instance, it appears at first t0 b&ypjle this is not possible in the cubic zinc-blende crystals.
different in the formulas using the length-gauge and the 1ne comparison of calculations with experiment is some-
momentum-gauge formulations. The most convincing deyyhat complicated because the reported experimental results
composition based on a careful analysis of the underlyingor these materials differ considerably among each other.
time-dependent perturbation theory is the followtig:°the  The |ast two columns of Table Il show experimental values
“interband” contribution corresponds to a polarization 100p ot SHG from the two different handbookRefs. 11 and 10
where all three Green's function belong to different elec-te yajues from Ref. 10 are systematically higher than those
tronic bands, while the “intraband” processes include thegqqm Ref. 11 by a factor of 1.3—1.4. The reason of such a
modulation of the linear response by the intraband motion agjscrepancy is not completely clear. One possible explana-
well as the modification of the intraband motion by the in-4i51 is that most of the original values of SHG were mea-
terband polarization processes. ) o sured relatively to quartz, and the absolute value of second-
Analysis of the intraband and interbagéf’ contributions  harmonic generation of pure quartz has been remeasured a
shows that (i) for all the consideredABC, compounds the = fe\y times(see Ref. 41 for more recently recommended value
interband contribution is negative while intraband is positive,gf SHG in quartz. For ZnGeR,ZnSiAs,, and CdGep our
therefore, these two terms work in opposite directioiy;  ca|culations are closer to Ref. 11 while for CdGgAbey
for all of the materials except CdGeAand CdSiAs both  55ree well with Ref. 10. In general, we know that the “scis-
absolute values of the intraband and interband terms argyrs” corrected values are overcorrected, i.e., the actual
larger than the resulting total SH@ij ) the absolute value of yajye of SHG has to be high&26 Such an overcorrection is
the intraband term is always larger than those of interbandyy, jntrinsic problem of the “scissors” approach. With these
i.e., the resulting total SHG is positive. We also notice thalcaytions in mind, some of our values for the cases where no
CdGeAs and CdSiAg are exceptions that have an excep-experimental values are available can be used as predictions.
tionally small value of)(i(m)e,, i.e., the intraband term is

dominating the SHG in the zero-frequency limit. This term
for CdGeAs is nearly the same as in ZnGeAsHowever, D. Frequency dependent SHG
there is no interband contribution to compensate it. This ex- |n order to better understand the origin of the relative
plains why the second response function is so large in thigyagnitudes of the intraband and interband contributions, we
material. The value ofy{3), in CdSiAs is a few times now consider the frequency-dependey® functions, or,
smaller than in CdGeAsbecause of differences in the value more precisely, their imaginary part from which the real part
of the gap. and in particular its static value can be obtained by a
Another point of interest is a comparison with the parentkramers-Kronig transformation. Figures 5 and 6 show the
I1I-V compounds GaAs and GaP. The values obtained at th@naginary part of the frequency dependent)(w) for the
same level of calculatidi have already been given above. 123 and 312 components in ZnGedhd CdGeAs. First, it
Clearly, all phosphides considered here have a higher valugould be worth to mention that the SHG curves for 123 and
of x® than GaP. They also have consistently lower gaps312 components look very similar being different just in
For the arsenides, we also find ty€) values to be consis- fine-structure details. This is not very surprising because in
tently higher or equal in the chalcopyrites than in GaAs, andhe initial zinc-blende material that was used to derive the
to have lower gaps, except for ZnSiAsvhich has a slightly  chalcopyrite material by chemical substitutions these two
higher gap and the same value gf? as GaAs. The components were equal at arbitrary frequency. The shape of
chalcopyrite-type chemical substitution IlI-V to 1l-IV-¥ the curves is also qualitatively very similar in the two mate-
thus clearly appears to be favorable §¢f). In addition, and rials. It consists of a broad hump with positive SHG values
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FIG. 6. Calculated 123solid line) and 312(dotted ling com- FIG. 7. Calculated interbangolid line) and intrabanddotted
ponents of the imaginary part of SHG for CdGeAs line) contributions to Imy?(w) for ZnGeR (123 component

between the half of the band gap and 1.5-2 eV, then ivalue of the interband contribution to SHG is as small as the
changes sign and exhibits another broad dip between 2 andrgimerical calculations show: less than 0.5% of the intraband
eV. At energies higher than 4 eV the imaginary part of SHGterm in our calculations, see the previous seqtidiis ap-
drops to zero very fast. The curves at this energy regiomears to be a rather coincidental interplay between different
usually contain many features superimposed on the smoothterband contributions. The important fact is that the contri-
background for both the DF and SHG. Sometimes it is hardutions from different groups of interband transitions in this
to say if these features correspond to real interband transmaterial have different sign, and they compensate each other
tions or appear as a result of insufficient accuracy of thdn the Kramers-Kronig integral.
tetrahedron scheme of integration. We do not address here This example shows that a small value of the gap may be
the interpretation of these fine structures. In general, the corfavorable for but is clearly not sufficient or the dominant
sistency between the static limit of the SHG calculated fromcontributing factor to obtain a large value of SHG. The value
the direct formula and obtained from the Kramers-Kronigof the SHG results from a delicate balance between different
transformation(the sum rulg is fulfilled numerically within ~ contributions too complicated to capture in a simple scaling
5-10 % for these materials. Further details regarding théaw with the gap. Unfortunately, we cannot presently further
accuracy of our calculations can be found in Ref. 15. Thgeduce this question to a simple explanation in terms of par-
amplitudes of both broad features are somewhat higher iticular band-to-band transitions. Nevertheless, it shows that
CdGeAs than in ZnGeR. This is probably due to the the entire band structure matters, not simply the gaps. There-
smaller value of the gap in the first material. #¥)(w) for ~ fore, there appears to be, at least in principle, ample room for
the other ternary pnictide&BC, considered above are look- optimization of x{* by band-structure engineering. Of
ing very similar, and we do not show them. course, we cannot control the signs of different interband
As we see, the analysis of g% (w) does not answer the contributions in a definite bulk chemical compound at will
question concerning the origin of the extremely large valueeven with quite elaborate chemical substitutions. However,
of the zero frequency SHG in CdGeAsTo this end, it is further opportunities to modify the band structures could ex-
more useful to analyze different contributions to the total

SHG curves. Figures 7 and 8 show the intraband and inter- 4 r T T
band contribution separately. For ZnGd#th the interband i CdGeAs

and intraband contributions in the most interesting energy A\A 2

region below 4 eV(for the Kramers-Kronig integral which 5| M\\:/ \

! _

N

gives the zero frequency valudo not change the sigfihe £
first is negative, the other is positiveThis means that both O
the interband and intraband contributions to the static SHG °©
are large and have opposite signs. In CdGethg situation %
NX
E

is different. While the intraband term behaves in the similar
way to those in ZnGeP(does not change the sign below 4
eV), the interband term is positive between 0.3 and 1.1 eV
and negative between 1.1 and 3 eV. Thus, the low-energy
region (below 4 eV} of the interband term by itself already
exhibits a good deal of compensation between positive and
negative values when the integral appearing in the Kramers-
Kronig transformation is calculated. There is no simple
qualitative explanation of the fact why the resulting FIG. 8. Calculated interbangsolid line) and intrabanddotted
Kramers-Kronig integral which gives the zero-frequencyline) contributions to Imy(®(w) for CdGeAs (123 component
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FIG. 9. Electronic bands of ZnGgRalong theZ-I" and I'-X
lines in the Brillouin zone[Z=2mx/7na-(0,0,1); I'=(0,0,0); X
=2mla-(1/2,1/2,0)] for the experimental crystal structufsolid
lines) and for the ideal chalcopyrite structure=¢ 1/4, »=2) with
the same lattice constaat (dotted line$. Both the structures are
shown in LDA (without gap corrections The energy in both cases
is counted from the top of the valence band.

FIG. 10. The LDA electronic bands of CdSifor the experi-
mental crystal structurez(=1.836, u=0.2967, solid lines com-
pared with bands for the structure with the samand » but with
the value ofu for the ideal chalcopyrite structurei€ 1/4, dashed
lines).

band structures look very similar being different only in
some fine detailge.g., the splitting of the upper valence band
ist for semiconducting heterostructures, such as multipleit theT" point is different in the two cases due to different
quantum wells, superlattices, layered materials, quanturgrystal field$. Both crystals have indirecf¢X) band gaps
dots, etc. In these structures the energies of the transitionsf nearly the same value. The zero-frequency SHG values
between different levels and their matrix elements can tqalculated in LDA are also very closd02 pm/V for the
some extent be controlled by geometrical parameters of thexperimental structure and 106 pm/V for ideal chalcopyrite,
structure. For example, it has already been shown that thige., the difference between them is only approximately.4%
asymmetric quantum wells can display very large values of |n materials with larger distortions the situation is differ-
second-order optical responggee, e.g., Refs. 42 and ¥3 ent. One has to study how the deviations of both the param-
However, the situation in these systems is complicated, angtersz andu from those of the ideal chalcopyrite structure
theoretical studies show that excitonic effects play an impor{,=2, u=1/4) affect both the band structure and optical
tant role3*~*°in addition to the single-electron part consid- constants. Figure 10 shows how the value of the pararneter
ered in our work. Nevertheless, the idea of parametricallysffects the electronic bands in CdSifhis compound is the
controlled heterostructures with largé?) is a challenging most illustrative because the deviations of betrandu are
task that we hope to pursue in future work because of theéne largest ones when compared with other materials of the
practical importance of obtaining materials with highé?)  considered group Except for some fine details, the effect of
values. u can be considered as a rigid shift upwafty about 0.4
eV) of the low conduction bands. The character of the gap
(pseudodiregtdoes not change with. The behavior of the
band structure is completely different when we change the
As we already mentioned above, the distortions from theparametery (Fig. 11). Namely, when the value of is ap-
ideal chalcopyrite structure can be neglected in calculationproaching 2, the two lowest conduction bands are changing
of optical spectra and SHG only if they are small enough asheir positions, and the band gap is becoming direct as op-
in the case of ZnGePR Figure 9 compares the electronic posed to indirect. This illustrates the differences of the be-
bands for ZnGepalong theZ-I" andI'-X lines calculated in  havior of the electronic spectra with changeszirand u.
two different crystal structures, namely, the real experimen- For the other materials the situation is quite similar. The
tal structurg(with the parameters from Tablg bnd the ideal change ofu produces a nearly rigid shift of the few lowest
chalcopyrite structure with the same lattice cons&@nthe conduction bands while the changes of the paramgtean

E. Structure dependence
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FIG. 11. The LDA electronic bands of CdSifor the crystal FIG. 12. The LDA electronic bands for the+1l alternative

structure with (=2, u=1/4, solid line$ compared with bands for ZnGeR structure.

the ideal chalcopyrite structurep&2, u=1/4, dashed lingswith

: Figure 12 shows the LDA band structures of the 1
the same lattice constaat

+1 ZnGeB superlattice along the same directions of the

. Brillouin zone as in Fig. 9. The real cell for the superlattice
mix these bands and change the character of the band 938 5 tetrahedral one that is half the size of the cell for the

Moreover, the value of the rigid shift is nearly linear i ( chalcopyrite structure. We also calculated the electronic

—1/4) and depends very weakly on the material. Thie meansy,cyre of 1+ 1 superlattices for othekBC, materials con-
that the deformation potential associated with this structuraliqered before. However. in some materials that exhibit a

change is almost constant in this class of compounds. Whymgj| LDA gap in the chalcopyrite structure, the gap for the
this is so is presently not clear although it is not entirely; 11 syperlattice becomes negative. Here we show the re-
unexpected since, in general, these materials are of course glljts for ZnGeR only in order to illustrate how the band

closely related to GaAs or GaP. structure changes with modifications in the crystal structure.

In order to study how these changes affect the opticairhe gap is much smaller in the+11 structure E.°*

constants we calculated the zero-frequency SHG coefficients 9.3 ev) than in the chalcopyriteEEPA=1.16 eV). ,%\s a

at different values ofp and u. For the band structures of result, the zero-frequency SHG is about 190 pm/V for the
CdSiR, shown in Figs. 10 and 11 this calculation gives superlattice, i.e., about twice as high as SHG in the chal-
xP=73 pm/V for the real experimental structup?=90  copyrite ZnGeR [we used the same value of the gap correc-
pm/V for »=1.836 andu=1/4, andy(®?=113 pm/V for the tion (A=0.89 eV) for the superlattice structure that has
ideal chalcopyrite structure. The value of the lattice constanbeen used before for the chalcopyrite ZngleP
a and the value of the gap correction used was the same in all While this is at first sight promising for obtaining higher
the three cases. These calculations illustrate qualitatively'®) we caution that this structure is unlikely to be stable.
how SHG depends on distortions of the ideal chalcopyritelhe atomic sizes of cations are different, and one can expect
structure. In the considered case both the deviationsaid  an occurance of alternatingly compressive and tensile biaxial
u tend to decrease the value of SHG. strain in the cation layers. The calculations show that the
Another interesting question is to study whether or not thedifference of the total energy per chemical unit between the
chalcopyrite type of ordering of the cations plays a speciafuperlattice and the chalcopyrite structure ISEq
role in high y® values in these materials. For this purpose— 0-204 €V, i.e,, itis rather large. This confirms our hypoth-
we considered an alternative crystal structurd0@l) ori- esis that the alternative structure is no_t ;tgb_le with respect to
ented 1+ 1 superlatticeAC+BC, which still maintains the different structural rearrangements minimizing the total en-
local tetrahedral environment of the chalcopyrite where eacfi'9:
anion is surrounded by two cations of each type but which
nevertheless exhibits a different ordering vector. This super-
lattice structure has the same overall chemical formula and The linear and nonlinear optical properties for
stoichiometry as the chalcopyrite structure. important group of chalcopyritesABC, (A=2Zn, Cd;

IV. CONCLUSIONS
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B=Ge, Si;C=As, P have been calculated over a wide the gap is favorable for larger SHG. However, this is by no
energy range. We studied any possible combination oMmeans sufficient for quantitative predictions of l;{j@) val-

A, B, and C. This allowed us to study the trends in the ues from the known values of the gaps. Within this family of
second-order optical response with chemical compositioncompounds all calculated in essent2|)ally the same approxima-
The results for the zero-frequency limit of SHG are in goodtion, no clear scaling of cglculated values with a power
agreement with available experimental results. The calcu@W of the gap was opta_une((zj). Because of the experimental
lated birefringence for ZnGePand CdGeAs also shows a Uncertainties in determining'®’ values for compounds with
fair agreement with recent experimental data in the energ{ifferent degree of crystalline ideality and different optimi-
region corresponding to the middle of the gap. For all th ation of phase-matching conditions, we consider this test to
considered compounds the second harmonic generation cBe a more reliable test of such s_callng Lav_vs than those based
efficient @ is of the order of 100200 pm/V, i.e., of the O €xperimental values. The origin qf*) in terms of the
order of and in fact larger than the SHG in the initial underlying band structure is clearly too complex for such a

zincblende materialGaAs or Galp from which these com- simple minded extrapolation to be valid. One has to take into
pounds were created by chemical substitutions. The only e account all the contr_lbutlng terms ‘r?md _analyze them care-
ception is CdGeAs which has a much higher nonlinear ully. Even then, gaining understanding is fa_r from easy and
response £500 pm/V) than all the other materials from we were only paru(ezl)lly successful at unraveling the origin of
this group. This value of the SHG cannot be explained onl)}he high value ofy fOI’. C.dGEASZ' Never;heless, we hope
by a small value of the band gap. It appears as a result Ofg\at our present _anaIyS|s in terms of the intraband and inter-
very delicate balance between different terms that contribut and terms prowde_s at least a flrs_t step towards such under-
to the second-order response. standing. Both the mtraband _angl interband terms are gener-
The results of the calculations are rather stable with re@!ly found to be decreasing with increases of the gap because

spect to small structural modifications. They do not changé’Oth term (;]ontgun some pOV\I'Eer of the |ﬂterb§1nd tran$|t|CJ|n
much with distortions of the ideal chalcopyrite structure in€Nergy In the enommatolr. ven, so, t ey do not simply
materials in whichy andu are close to those in ideal chal- scale with the gap and their sum which is the total value of

. oL (2) i i i
copyrite structure. However, when these deviations are larg&, = can €ither increase or decrease depending on the degree
(as in CdSiR) the gaps as well as SHG's can be stronegOf compensation between the two contributions, which was

affected by the values of andu chosen in calculations, and found to depend sensitively on details of the calculations, for

the ideal structure does not describe a real experimental Sit@_xample, the non?deality of the parameterThus, only a .
ation correctly. The LDA calculations for tH@01)-oriented V€Y complicated interplay between these different terms is

1+ 1 superlattice that has the same overall chemical formul prming the tOta_‘I value of_the nonlinear o_ptlc_al response
unction. A detailed analysis of these contributions appears

and stoichiometry as the chalcopyrite structure exhibits b ¢ derstand and dict fidently th
much smaller LDA band gap than the chalcopyrite structurd® D€ necessary to understand and predict confidently the
expected NLO response for new materials.

and larger values of the SHG coefficients. However, this
structure has a very high total energy which is probably re-
lated to large strains in the cation layers. These strains should
make the structure unstable with respect to different struc- We wish to thank Professor B. Segall for useful discus-
tural rearrangements. sions. This work was supported by N8Grant No. DMR95-

In conclusion, we can certainly say that a small value 0f29376.
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