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Statistical properties of spectra of the Heisenberg Hamiltonian
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Spectra of several types of finite Heisenberg lattices have been studied using methods of statistical spec-
troscopy. In particular, spectral density distributions, discrete spectra generated from the spectral density
distribution moments, and the distributions of spacings between the neighboring energy levels have been
analyzed. The densities have been shown to be nearly Gaussian and the spectra generated from their several-
moment Gram-Charlier approximations are in a good agreement with the exact ones, except for several
extreme energy levels. Spacings between the neighboring levels exhibit clustering of the energy levels stronger
than that given by the Poisson distribution, showing an essential influence of the point-group symmetries of the
lattices.[S0163-182609)11303-1

[. INTRODUCTION troscopy is directed towards a determination of the envelopes
of spectral bands in complex atorfficand moleculd&®?*
The most common approach to studies of the spectrum adpectra.

a Hamiltonian defined in a finite-dimensional model space is Usually the information about the global character of
based on a diagonalization of the corresponding matrix and spectra is derived from a knowledge of the spectral density
subsequent analysis of the eigenvalues. Another approactistribution moments, closely related to the traces of powers
often referred to astatistical spectroscop¥ > focuses on of the Hamiltonian matri%>*® Spectral density distribution
properties of the entire spectrum rather than of the individuamoments are invariant with respect to the unitary transfor-
energy levels. The set of energy levels is treated as a statisaations of the basis in the model space. Therefore they are
tical ensamble. The statistical description, on one handndependent of the selection of a specific basis and can be
brings some new information about structure of the spectrundetermineda priori, without anyN-particle matrix element
and, on the other, is applicable in the cases when the tradevaluation'® The results always correspond to the complete
tional approach is prohibitively inefficier{as, for example, N-particle model space. In spectroscopy most interesting ap-
when the number of the energy levels of interest is veryplications are connected with deriving detailed properties of
large). Statistical theories of spectra have been developedpectrale.g., the Hamiltonian eigenvaluesom the spectral
starting from several, rather diverse, motivations. Their ori-density distributions, i.e., from the corresponding
gin may be traced back to the early works of Bettizuring  moment$2°212° Their development may result in new
decades they were mainly applied in nuclear physics whermethods of approximating the eigenvalues by quantities
not exactly known character of the interparticle interactionsvhose evaluation is not limited by dimensions of the matri-
supplied the main motivation for using the language of staces. This approach is relatively common in predicting struc-
tistics and stimulated the development of the so called  ture of the nuclear spectfa however, only some pilot stud-
dom matrix theory™ It was noticed that very useful infor- ies have been performed in the case of many-electron
mation about some global properties of spectra may beystems:1%21:2
derived by applying methods of statistical spectroscopy to In this paper statistical properties of spectra of the Heisen-
systems for which the Hamiltonian matrix does not containberg Hamiltonian are studied. The spectra have been found
any randomness. This gave a motivation to the developmerit be Gaussian-like and are well approximated by several-
of the statistical theory of atomic specfrd? Statistical stud- term Gram-Charlier expansiof$.The exact spectrgob-
ies of molecular spectra were initiated by Hali¢ral1> They  tained by diagonalizations of the Hamiltonian matrijcase
were mainly concentrated on understanding relationships be&sompared with the ones derived from the moment-generated
tween classical chaotic systems and their quantunspectral density distributions. This approximation gives a
analogs:3~1” However they also were applied to a determi-very good description of the spectrum in its central part,
nation of the effects of molecular complexity on the structurehowever, as one should expect, deteriorates at the extremes.
of vibrational spectr® or to studies of the relations between Relations between the exact and the moment-generated spec-
the dynamical symmetries and spacings of the neighboringra are analyzed for several kinds of the lattices as a function
vibrational levelst® Another application of statistical spec- of the number of moments. It has been observed that the
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quality of the statistical description improves with an in- and itsqth moment is equal to
crease of the dimension of the problem and with a lowering
of the symmetry of the lattice. * g

polpl= | E%p(E)IE. W)
Il. THE HEISENBERG HAMILTONIAN

. I Using Eq.(5) we get
The Heisenberg Hamiltonian for aelectron system, or

rather for a system dfl spins, may be written 452° 1D
N 1 :Uvq[p] = 5;1 Eiq- 8
H:E \]” §+2§I§J)' (1)
1< Particularly, for the Heisenberg Hamiltonian the moments
= may be expressed as in Hd).
where J;; are the exchange parameters ands the one- The normalized moments are defined as
electron spin operator of thi¢h electron. The Hamiltonian is
defined in a complete antisymmetric and spin-adapted space ®

e E— )9 oc
of covalent structures corresponding to a single electronicuy[p]= 'ul) p(E)d E=af E%(0cE+ u)dE,
configuration in which all the orbitals are singly occupied. i ‘°°

The dimension of this model space is equaf to ©

where o= \/,uz—,uzl is the dispersion or the width of the

. (2 spectrum. In particulag.; =0 andu,= 1. The departure of a
given distribution from the Gaussian one is frequently mea-
where S is the quantum number corresponding to the totalsured by the values of two parameters: the skewngss

spin operatofS?. =73 and the excesy,=u,— 3 (for the Gaussian distribu-
Spectral density distribution moments are defined as  tion y;=y,=0).
According to the so callegrinciple of moment§ we ex-
pect that two distribution functions containing some adjust-
able parameters may be brought to an approximate identity
by selecting the parameters so that several lowest moments
of these distributions become equal. Thenp ilnoments of

25+1
N+1

N+1
N/2—S

f(S,N)=

1 .
qumTqu. (3)

They may be expressed in the fdtin

1(q) the exact distributiop are known, we may approximate this
Hg= E To(Ry(i), (4)  distribution by ap-parameter trial functioﬁp. These param-
: eters have to be determined so that the lowestoments
where 1(1)=1(2)=3,(3)=8, ... . TheelementsT(i) calculated usinng are equal to the exact ones. The conver-

are linear combinations of the normalized irreducible chargence pattern of this approximation strongly depends upon
acters ofSy (which may be expressed as rational functionsthe choice of the trial functioft** Most commonly the fre-

of N and S), and the element®,(i) are combinations of quency function is approximated by the Gram-Charlier
products of the exchange parameters. Explicit formulas areéxpansioft***?(identified hereafter by a superscri@):

given in Refs. 19, 25, 30. The coefficierRg(i) carry all the ~

information about the topology of the molecule. They de- —-= , ,

scribe specific features of the molecule and may be deter- Pw(E):ZO ¢j'Hj(E)e'(E), (10
mined from knowledge of the molecular graph. They are :

referred to as theopological invariantof the molecule. The whereH;(E) are the Hermite polynomials,

coefficientsT,(i) express the way in which these specific

features propagate whéhandS change. Therefore they are 1
called propagation coefficients a'(E)= —exp —E?/2) (11
N2
Il. STATISTICAL DESCRIPTION OF THE SPECTRUM and

Let us consider a discrete spectrdlR<E,<---<Ej

with the eigenvalues treated as a statistical ensamble. The e ﬂ G 4 q' G (12)
density of the energy level distribution is described by the Ca =qr| #a~ 20 Ha-2 o2o Ha-a" "
following frequency function:
with
D
= iZ S(E—E 5
P(E)=F2 i)- 5 q"=q(g—1)(q—2)---(q—n+1).

It is normalized The gth moment of the Gram-Charlier distribution is

f x@p(E)dE=1 (8) pg=ndpll= J :EQF&E)dE. (13
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The second-, third-, and fourth-moment Gram-Charlier ex- d:
pansions transformed so that their first and second moments X] =, (19
are equal, respectively, to 0 and to 1 are given by the follow- d
ing equationg® . o
As it is known (see, e.g., Ref. 17 the distribution of nor-

1 1 malized spacings between uncorrelatehdomly sprinkled
—- ) ; ) ) o
pz(E)=—exy{ - _E ) over an interval energy levels is Poissonian:
2T 2
L - PO(x)= expl—X). (20
Gy _tre2 M3 3
p3(E) /_ZWexr{ 2E ) 1+ 6 (E 3E)}’ This distribution is peaked at=0. Then, if the distribution

of the adjacent level spacings is Poissonian, the energy levels
~ have a tendency to cluster. If the Hamiltonian matrix is com-
1+ K3 (E3—3E) poseq of seve_ral blocks corresponding to djfferent symmet_ry
6 species, the eigenvalues associated with different symmetries
are not correlated and degeneracies or near degeneracies are
frequent. In this case the level spacing distribution is
: Poisson-like. The level spacings behave entirely differently
if all the energy levels correspond to the same symmigtry

1 1
PRT= 2
E)= ex E

+i(,7 —3)(E*—6E2+3)
2474

If we assume that the same set of values of all constants of the motibue to
~ 5 the “level repulsion,” the probability of degeneracies is very
Mq[p]zluq[;g'] (14  small and the nearest-neighbor spacing distribution is ap-

proximately of the Wigner type
for g=1,2,...p, then the Gram-Charlier expansiﬁ?

constitutes g-moment approximation to the exact frequency — T T,
function. PY(x)= EX exp — ZX . (21
The normalized distribution function corresponding to the
frequency functiorp,, is defined as A very important observation allows us to link the form of
the distribution of the adjacent level spacings in a quantum
= _ — system with either periodic or chaotic behavior of its classi-
Fo(E) J mpp(x)dx. (15 cal couterpart: the Poisson-type distributions appear in clas-

_ _ . sically periodic(integrable systems while the Wigner-like
According to Ratcliff® the discrete energy values may be distributions characterize classically chaotic systéfisA
derived fromF ,(E) as a set of valueg; which satisfy the ~more general distribution containing the Wigner and the

relation Poisson ones as special cases has been introduced by Berry
and Robnilk®? In order to desribe the behavior of the level
_ 1/ 1 spacings in spectra of the Heisenberg lattices, we introduce
Fo(Ep)= D=3 (16)  another, more general, distribution function:
fori=1,2,...D. A comparison of the real energy levels ED(X):AXanp{_XB}' x=0, (22)

and those derived from the spectral density distribution mo-
ments leads to notions of the secular eigenvalue density and
of fluctuations>>?°The secular density is defined by a small Open chain:
number of moments. Usually three or four moments are suf-
ficient to obtain a correct secular densi§. If the secular
density is accurate enough, then the fluctuations are small,
energy independent, and nonsensitive to increasing the num-
ber of moments used to describe the spectrum.
Another quantity characterizing statistical behavior of a Periodic: i I
spectrum is the distribution of the adjacent Ilevel
spacings:>%121The energy level spacings are defined as

dj:Ej+l_Ej. (17)
Their mean value

o 1 D-1 Mobius:
- m;l d, (18

is referred to as the mean level spacing. The normalized level
spacings are given by FIG. 1. Types of Heisenberg ladders.
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TABLE I. The first two moments of spectral density distribu- TABLE Il. Standard deviations between spectra of open and

tions. periodic (O-P), open and Mbius (O-M), and periodic and Muoius

(P-M) Heisenberg lattices calculated using unnormalized S|

S=0 S=1 spectra and the normalized one%¥).
q L Open Periodic Open Periodic
ALS 6LS

1 6 5.818 6.545 6.303 7090 s p oOP OM PM OP OM PM
2 6 46.424 56.727 51.448 63.151
1 7 7.308 8.077 7.725 8538 6,0 132 0.7801 0.7842 0.3135 0.0597 0.0637 0.0841
2 7 68.301 81.503 73.827 88.301 6.1 297 0.8159 0.8151 0.1751 0.0382 0.0368 0.0488
1 8 8.800 9.600 9.167 10.000 7.0 429 0.7979 0.7966 0.1777 0.0309 0.0286 0.0441
2 8 94.646 110.769 100.564 117.846 7,1 1001 0.8317 0.8321 0.0854 0.0167 0.0178 0.0218

. I . exchange parameter has been put equal to 1 for the nearest
where A is the normalization constant while and g8 are eichbors and 0 otherwise. Three tvbes of boundary condi-
adjustable parameters. The distribution moments correspond- 9 o ypes ry
. — lons have been chosen: an open Iaddeslgnated hereafter
ing to P~(x) are equal to 0), a periodic ladder(designatedP), and a Muius-type
chain(designated)—see Fig. 1. Note that all open ladders
are nonfrustrated, whereas the periodic and théikkones
are frustrated foL. odd and even, respectively. The dimen-
(23 sions of the Hamiltonian matrices for singlets are 182N
. . . =12) up to 1430(if N=16) and for triplets 297(if N
The constants defining this distribution function may be:12) up to 3432(f N=16). The exact spectra have been
evaluated using the method of moments, i.e., iImposing thgptained by solving the full eigenvalue problem using the

condition thatug[7°], for g=1,2, are equal to the corre- symmetric group approadmplemented to treat the Heisen-

a+1)7t

B

atqt+l
B

MQ[ED]=J:77D(X)qux=F(

sponding moments of the exact distribution. berg Hamiltonian eigenequatidf
The spectral density distribution moments may be evalu-
IV. RESULTS AND DISCUSSION ated using the method derived in Ref. 25. In particular, the

first moment is equal to
Calculations have been performed &0 and onS=1
states of two-dimensional isotropic<d. Heisenberg lattices _X+L(L-2)

with L=6 up toL=8 (i.e., withN=12 up toN=16). The = L(2L-1) (BL-a), 24

ENERGY IN UNITS OF J
NORMALIZED ENERGY

ENERGY IN UNITS OF J
NORMALIZED ENERGY

I I I 1 1 I I 1 I I
200 205 210 215 220 225 230 200 205 210 215 220 225 230

i i
FIG. 2. Unnormalizeda) and normalizedb) spectra(consecutive energy levels; plotted versus=1,2, ... D) of the Heisenberg
Hamiltonians describing the opésolid line), periodic(dashed ling and Mdius (dotted ling ladders forN=14 andS=0. The unnormal-

ized energy is measured in units of the exchange parardetee normalized energy is measured with respegt{adn units of o. In the
second-row figures magnifications of parts of the spectra are displayed.
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TABLE lll. The normalized momentgbq[p].

PRB 59

N=12,S=0 N=14,S=0
q Open Periodic Mbius Open Periodic Muius
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
3 —0.2620 —0.2525 —0.2525 —0.2377 —0.2291 —0.2291
4 2.8465 2.8049 2.8049 2.8565 2.8339 2.8339
5 —2.3584 —2.2536 —2.2536 —2.1379 —2.0491 —2.0491
6 13.7157 13.1967 12.9066 13.4876 13.1389 13.1389
7 —21.4516 —20.7972 —19.0952 —19.6378 —18.4070 —18.5961
8 92.4592 88.4496 80.0287 90.9729 85.3752 86.8885
9 —202.9063 —199.0681 —165.2016 —198.2364 —177.4582 —186.5217
10 751.4143 722.8082 592.7546 788.0126 699.3857 743.5555
whereX=5(S+1) and in full agreement with these expectations. This feature of the
spectra may be seen even better in Fig),2vhere the con-
|2 foropen ladder, secutive energy level§, are plotted versus. Since u§
~ |0 for periodic and Mbius lattices. =,ug" forg=1,2,... L—1, the differences between spectra
. of the periodic and Mbius-type lattices are due to the high
Asymptotically, forN>1 (g=L) moments only. Therefore these differences may be
X taken as a measure of the upper limit of the accuracy which
MT_#?:lJr =, (25) can _be achieved within a low-moment approximation in gen-
L? eration of spectra from the spectral density distributions.

The distribution of the energy level density may be rea-
sonably well approximated by a Gaussian distributitire
nsity is small at the ends of the spectrum and reaches a
ngle maximum in the midd)e In order to compare the
“beyond Gaussian” contributions to different spectra, it is
2 convenient to normalize the spectra so that=0 and u,
(26) =1 [it is equivalent to shifting the origin of the energy scale
to the average energy and measuring energy in units of the

) . dispersion, cf. Eq(9)]. The standard deviations between the
Then, for giverl ands, the average energy and the width of normalized spectra associated with latti¢eandB, denoted

the spectrum of a per!od|c ladder are Iarger than those of a k_ss, are displayed in Table Il. The normalized spectra are
open one. The numerical values of the first two moments for

the cases studied in this paper are collected in Table I. F(J?k)tted in Fig. Zb). The resuits are rather surprising: In most
o g ) , cases, contrary to the expectations based on an naive appli-
the periodic and for the Muaus-type lattices the first mo- : . :
.cation of the principle of moments, the difference between

ments are the same. In fact, one can easily demonstrate usitjg energy level densities of thé- and theP-type lattices

results of Ref. 25 tpa_t the flrﬁ—l_moments of the periodic are larger than the corresponding differences between the

ladder and of the Mbius-type chain are the same. ThereforeS ectral densities of eithdd andO or P andO type lattices

one should expect that also the corresponding spectra a[@ . o
n fact, differences between all three spectra are very small;

similar and that the similarity increases with an increading T e 7
In order to study this subject in more detail we evaluated théhey fall within limits of accuracy of a statistical description.

standard deviation&;3; between spectra of latticésandB,
whereA,B=0,P,M: T T T T T T T ;

1 D
AR%=Vp 2, (Ei-ED?

whereEﬁ/EE stands for theath energy level in the spectrum
of the latticeA/B composed of. segments, i.eN=2L spins
coupled to the total spis. The values ofA are displayed in 0
Table Il. As one can see,

where the superscript® and O refer, respectively, to the

periodic and open ladders. The corresponding expressio
for higher moments are given by rather lengthy polynomialsSi
in L andX. ForN>1,

X
1+

P o
MZ_M2:3L L2

<
=

(27)

02 | N=16 —

FREQUENCY FUNCTION
=<}
o

. 0 ! 1 -
-3 -1 1 3 -3 -1 1 3
NORMALIZED ENERGY NORMALIZED ENERGY

Ap <€A p~Aq.m (28 FIG. 3. Exact density distributions of the triplet energy levels of
the open-chain Heisenberg Hamiltoniattistogramg compared
and with the corresponding second- and fifth-moment Gram-Charlier
75 65 expansiongdashed lines and solid lines, respectiyeljhe energy
Apv<Apiy. (29 is measured with respect jo, in units of .
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FIG. 4. Differences between the exact energy levels and the energy levels derived from second-, third-, and tentlelesigreated as
2 M, 3 M, and 10 M, respectivelyGram-Charlier expansions as functions of the normalized energy for {ldusicase. All spectra are
normalized so that,;=0 andu,=1.

The spectral density distribution moments of the normalizedacter of the distributions seen in the plots is confirmed by an
spectra are collected in Table IIl. The values of the correanalysis of the data in Table Ill. The spectral density is
sponding moments for all the cases displayed are similar. Weearly symmetric relative to the mean. The skewness param-
conclude that the exact equality of the higher moments in theter vy, is small: it varies between-0.26 and—0.23. The
case of the periodic and Mus lattices is not essential for odd moments are all negative. This means that the spectrum
the structure of the corresponding spectra. One may say thaktends more towards the small eigenvalues than towards the
the density distributions of the normalized spectra of all thredarge ones. The “symmetric part” of the distribution is
kinds of lattices are not distinguishable on the grounds ohearly Gaussian: the moments of the normalized Gauss dis-
statistical spectroscopy. tribution for q=4,6,8,10 are, respectively, equal to
The histograms of the exact spectral density distributions$,15,105,945, i.e., they are quite close to the corresponding
are compared with the second- and fifth-moment Gramvalues in Table Il and the excess paramejgrvaries be-
Charlier approximations in Fig. 3. The Gauss-like shape andween—0.20 and—0.15.
increasing accuracy of the approximation with an increase of The quality of the moment-generated spectra is analyzed
the lattice size is visible. The approximately Gaussian charin Figs. 4 and 5. In Fig. 4 differences between the exact

0.1 T T T T T T T T T
<2
B
zZ
)
N
z
-~
1 1 1 1 1 1 1 1 1
2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
@ P () P P

FIG. 5. Standard deviation$ (in units of o) between the exact and the moment generated singlet spectra as functions of the number of

momentsp in the corresponding Gram-Charlier expansions Nbor 12 (solid lineg, N=14 (dashed lings and N=16 (dotted lines.
Designationga) O, (b) P, and(c) M refer, respectively, to the open, periodic, and diws-type lattices.
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DENSITY

0
0 1 2 3 4 5 6 0 1 2 3 4 5 6 3 4 5 6
(a) NORMALIZED SPACING (b) NORMALIZED SPACING (c) NORMALIZED SPACING

=]
—-
(S

FIG. 6. Nearest-neighbor spacing histograR{g) as functions of the normalized spacin¢gmeasured in units of the mean level spaging
in the singlet spectra il =14 (a) open(0), (b) periodic(P), and(c) Mobius (M) lattices compared wit#°(x) (solid line), Poisson(dotted
line), and Wigner(dashed lingdistribution functions.

energy levels and the ones derived according to #6) grams forS=0,N= 14 spectra are displayed in Fig. 6. In all
from the smooth(Gram-Charlier density distribution func- cases the histograms resemble the Poisson rather than the
tion are displayed. In Fig. 5 standard deviations between th@Vigner-type distribution. This behavior should be expected:
moment generated spectra and the exact ones are plotted ver-all cases the lattices possess some “hidden” constants of
sus the number of moments used to generate the smoothe motion related to the spatial symmetries. However, the
density distributions. As one can see, the quality of thenumber of the symmetry operators is much smaller in the
moment-generated spectra dramatically improves when thease of the open chain than in the cases of the periodic and of
number of moments increases from 2 to 4. However, with ahe Mabius lattices. Therefore the maximumyat 0 is con-
further increase of the number of moments the quality of thesiderably lower in spectrum of the open chain than in spectra
corresponding spectra remains approximately constant. Thef either periodic or Mbius lattices. The maxima of the
same behavior of moment generated spectra was discoveréitributions for small spacings are considerably larger than
earlier in the nuclear specfrand in the eigenvalues of the 1. This means that the tendency of the energy levels to clus-
Pariser-Parr-Pople Hamiltonian for many-electron syst&ms. ter is much stronger than that described by the Poisson dis-

The present result confirms the assumption about a universgipytion. The parameters and 3 of distribution?° defined
character of this behavior of spectra of systems interacting, Eq. (22) have been obtained using the method of moments

with binary forces. _ and are collected in Table IV. They behave in a regular way
Figs. 4 and 5 exhibit several properties of the momentzs functions ofL. Also differences between distributions of
generated spectra of the Heisenberg Hamiltonian. spacings between neighboring eigenvalues of the Hamilto-

~ (i) Quality of the moment-generated spectra is very goothians corresponding to the open ladders and to the periodic
in their central parts but strongly deteriorates towards thgy Mobius lattices are clearly seea®> o~ aM and B°

extremes. This behavior must be attributed to the form of the, gP~ g™

Gram-Charlier expansion which extends frofw to —x

and does not reflect the fact that a spectrum of an operator

represented in a finite-dimensional model space extends over V. CONCLUSIONS

- 5
a finite rangé. Spectra of the Heisenberg Hamiltonian describing finite

i (.”) ]:I'hel quality ofbthe ?moothed §pectru(alsoh|n thﬁ lattices exhibit statistical properties similar to those discov-
imit of a large number of momentsmproves when the ooy earlier in the nuclear spectra and in spectra of model

dimension of the lattice increases. This result indicates thaﬁamiltonians modeling many-electron systeis. To a
for very large lattices, when a diagonalization of the energy, ood approximation the spectral density distributions are

matrix is not possible, the moment generated spectra m aussian. The spectra, in their central parts, may be very

givgna rehsorrwlgbkl]e apr)]proximation tohth<|a exac_t orr:es. i fWeII approximated by several-moment Gram-Charlier expan-
(iii) The higher the symmetry, the lower is the quality of 55g "however, at the limitéhe lowest and the highest ei-

the moment-generated spectrum. This is because the highgg aiuex the statistical description is poor. The quality of
the symmetry, the more frequent are clusters of the energ

levels in the corresponding spectra. The moment-generated
spectra, by construction, do not contain any clusters of th%n
energy levels(unless the density distribution function is
highly irregula). L

TABLE IV. Parameters defining distributions of the neighboring
ergy leveldin all casesS=0).

A . ) Open Periodic Mbius
Similar properties were also found in spectra of many-
electron systems modeled by the Pariser-Parr-Pople 6 —0.155 —0.254 —-0.372
Hamiltonian?! in atomic spectrd,and in nuclear spectfa. 7 —0.280 -0.381 ~0.347
Therefore one may assume that they are universal, indepen- 8 —0.252 -0.374 —0.388
dent of specific features of the Hamiltonian. 6 1.04 0.93 0.83
Another measure of the frequency of clusters of the en- 7 0.97 0.91 0.94
ergy levels in spectra is given by the distributions of spac- 8 1.07 0.93 0.94

ings between neighboring levels. The corersponding histo:
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the statistical description improves with an increase of thehough they are peaked at 0 and monotonously decrease with

number of nodes in the lattice and with the decrease of théncreasing spacing, are essentially not Poissonian. They are

spatial symmetry. rather well approximated by an exponential distribution
The principle of moments has to be used with a greatunction assuming much larger values fe0 than the

caution. Its application in the case of the lattices considereéoisson distribution.

in this paper may lead to wrong conclusions: spectra of the

Iattices.for which a conside.rable number of the lowest mo- ACKNOWLEDGMENT
ments is the same, may differ more from each other than
spectra of lattices for which all moments are different. This work has been supported by the Polish KBN under

Distributions of spacings between the neighboring levelsProjects Nos. 2 PO3B 015 14 and 2 PO3B 126 14.
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