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Statistical properties of spectra of the Heisenberg Hamiltonian
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Spectra of several types of finite Heisenberg lattices have been studied using methods of statistical spec-
troscopy. In particular, spectral density distributions, discrete spectra generated from the spectral density
distribution moments, and the distributions of spacings between the neighboring energy levels have been
analyzed. The densities have been shown to be nearly Gaussian and the spectra generated from their several-
moment Gram-Charlier approximations are in a good agreement with the exact ones, except for several
extreme energy levels. Spacings between the neighboring levels exhibit clustering of the energy levels stronger
than that given by the Poisson distribution, showing an essential influence of the point-group symmetries of the
lattices.@S0163-1829~99!11303-1#
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I. INTRODUCTION

The most common approach to studies of the spectrum
a Hamiltonian defined in a finite-dimensional model spac
based on a diagonalization of the corresponding matrix an
subsequent analysis of the eigenvalues. Another appro
often referred to asstatistical spectroscopy,1–3 focuses on
properties of the entire spectrum rather than of the individ
energy levels. The set of energy levels is treated as a st
tical ensamble. The statistical description, on one ha
brings some new information about structure of the spect
and, on the other, is applicable in the cases when the tr
tional approach is prohibitively inefficient~as, for example,
when the number of the energy levels of interest is v
large!. Statistical theories of spectra have been develo
starting from several, rather diverse, motivations. Their o
gin may be traced back to the early works of Bethe.4 During
decades they were mainly applied in nuclear physics wh
not exactly known character of the interparticle interactio
supplied the main motivation for using the language of s
tistics and stimulated the development of the so calledran-
dom matrix theory.2,5 It was noticed that very useful infor
mation about some global properties of spectra may
derived by applying methods of statistical spectroscopy
systems for which the Hamiltonian matrix does not cont
any randomness. This gave a motivation to the developm
of the statistical theory of atomic spectra.6–11Statistical stud-
ies of molecular spectra were initiated by Halleret al.12 They
were mainly concentrated on understanding relationships
tween classical chaotic systems and their quan
analogs.13–17 However they also were applied to a determ
nation of the effects of molecular complexity on the structu
of vibrational spectra18 or to studies of the relations betwee
the dynamical symmetries and spacings of the neighbo
vibrational levels.16 Another application of statistical spec
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of
is
a

ch,

l
is-
d,
m
i-

y
d

i-

re
s
-

e
o
n
nt

e-
m

e

g

troscopy is directed towards a determination of the envelo
of spectral bands in complex atomic22 and molecular23,24

spectra.
Usually the information about the global character

spectra is derived from a knowledge of the spectral den
distribution moments, closely related to the traces of pow
of the Hamiltonian matrix2,3,19. Spectral density distribution
moments are invariant with respect to the unitary transf
mations of the basis in the model space. Therefore they
independent of the selection of a specific basis and can
determineda priori, without anyN-particle matrix element
evaluation.19 The results always correspond to the compl
N-particle model space. In spectroscopy most interesting
plications are connected with deriving detailed properties
spectra~e.g., the Hamiltonian eigenvalues! from the spectral
density distributions, i.e., from the correspondin
moments9,20,21,25. Their development may result in new
methods of approximating the eigenvalues by quanti
whose evaluation is not limited by dimensions of the ma
ces. This approach is relatively common in predicting str
ture of the nuclear spectra,2,3 however, only some pilot stud
ies have been performed in the case of many-elec
systems.9,10,21,25

In this paper statistical properties of spectra of the Heis
berg Hamiltonian are studied. The spectra have been fo
to be Gaussian-like and are well approximated by seve
term Gram-Charlier expansions.26 The exact spectra~ob-
tained by diagonalizations of the Hamiltonian matrices! are
compared with the ones derived from the moment-genera
spectral density distributions. This approximation gives
very good description of the spectrum in its central pa
however, as one should expect, deteriorates at the extre
Relations between the exact and the moment-generated s
tra are analyzed for several kinds of the lattices as a func
of the number of moments. It has been observed that
2676 ©1999 The American Physical Society
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PRB 59 2677STATISTICAL PROPERTIES OF SPECTRA OF THE . . .
quality of the statistical description improves with an i
crease of the dimension of the problem and with a lower
of the symmetry of the lattice.

II. THE HEISENBERG HAMILTONIAN

The Heisenberg Hamiltonian for anN-electron system, or
rather for a system ofN spins, may be written as27–29

Ĥ5(
i , j

N

Ji j S 1

2
12sW i

ˆ sW j
ˆ D , ~1!

where Ji j are the exchange parameters andsW i
ˆ is the one-

electron spin operator of thei th electron. The Hamiltonian is
defined in a complete antisymmetric and spin-adapted sp
of covalent structures corresponding to a single electro
configuration in which all the orbitals are singly occupie
The dimension of this model space is equal to27

f ~S,N!5
2S11

N11 S N11
N/22SD , ~2!

whereS is the quantum number corresponding to the to
spin operatorŜ2.

Spectral density distribution moments are defined as

mq5
1

f ~S,N!
TrĤq. ~3!

They may be expressed in the form25

mq5(
i

l ~q!

Tq~ i !Rq~ i !, ~4!

where l (1)51,l (2)53,l (3)58, . . . . The elementsTq( i )
are linear combinations of the normalized irreducible ch
acters ofSN ~which may be expressed as rational functio
of N and S), and the elementsRq( i ) are combinations of
products of the exchange parameters. Explicit formulas
given in Refs. 19, 25, 30. The coefficientsRq( i ) carry all the
information about the topology of the molecule. They d
scribe specific features of the molecule and may be de
mined from knowledge of the molecular graph. They a
referred to as thetopological invariantsof the molecule. The
coefficientsTq( i ) express the way in which these speci
features propagate whenN andSchange. Therefore they ar
calledpropagation coefficients.2

III. STATISTICAL DESCRIPTION OF THE SPECTRUM

Let us consider a discrete spectrumE1<E2<•••<ED
with the eigenvalues treated as a statistical ensamble.
density of the energy level distribution is described by
following frequency function:

r~E!5
1

D(
i 51

D

d~E2Ei !. ~5!

It is normalized

E
2`

`

r~E!dE51 ~6!
g
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and itsqth moment is equal to

mq@r#5E
2`

`

Eqr~E!dE. ~7!

Using Eq.~5! we get

mq@r#5
1

D(
i 51

D

Ei
q . ~8!

Particularly, for the Heisenberg Hamiltonian the mome
may be expressed as in Eq.~4!.

The normalized moments are defined as

m̃q@r#5E
2`

` S E2m1

s D q

r~E!dE5sE
2`

`

Eqr~sE1m1!dE,

~9!

where s5Am22m1
2 is the dispersion or the width of th

spectrum. In particular,m̃150 andm̃251. The departure of a
given distribution from the Gaussian one is frequently m
sured by the values of two parameters: the skewnessg1

5m̃3 and the excessg25m̃423 ~for the Gaussian distribu
tion g15g250).

According to the so calledprinciple of moments26 we ex-
pect that two distribution functions containing some adju
able parameters may be brought to an approximate iden
by selecting the parameters so that several lowest mom
of these distributions become equal. Then, ifp moments of
the exact distributionr are known, we may approximate th
distribution by ap-parameter trial functionr̄p . These param-
eters have to be determined so that the lowestp moments
calculated usingr̄p are equal to the exact ones. The conv
gence pattern of this approximation strongly depends u
the choice of the trial function.23,24 Most commonly the fre-
quency function is approximated by the Gram-Charl
expansion9,20,21,26~identified hereafter by a superscriptG):

r̄`
G~E!5(

j 50

`

cj8H j~E!a8~E!, ~10!

whereH j (E) are the Hermite polynomials,

a8~E!5
1

A2p
exp~2E2/2! ~11!

and

cq85
1

q! Fmq
G2

q[2]

21!
mq22

G 1
q[4]

222!
mq24

G 2•••G ~12!

with

q[n]5q~q21!~q22!•••~q2n11!.

The qth moment of the Gram-Charlier distribution is

mq
G[mq@ r̄`

G#5E
2`

`

Eqr̄`
G~E!dE. ~13!
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2678 PRB 59BIELIŃSKA-WA̧Ż, FLOCKE, AND KARWOWSKI
The second-, third-, and fourth-moment Gram-Charlier
pansions transformed so that their first and second mom
are equal, respectively, to 0 and to 1 are given by the follo
ing equations:26

r̄2
G~E!5

1

A2p
expS 2

1

2
E2D ,

r̄3
G~E!5

1

A2p
expS 2

1

2
E2D F11

m̃3

6
~E323E!G ,

r̄4
G~E!5

1

A2p
expS 2

1

2
E2D F11

m̃3

6
~E323E!

1
1

24
~m̃423!~E426E213!G .

If we assume that

m̃q@r#5m̃q@ r̄p
G# ~14!

for q51,2, . . . ,p, then the Gram-Charlier expansionr̄p
G

constitutes ap-moment approximation to the exact frequen
function.

The normalized distribution function corresponding to t
frequency functionr̄p is defined as

F̄p~E!5E
2`

E

r̄p~x!dx. ~15!

According to Ratcliff20 the discrete energy values may b
derived fromF̄p(E) as a set of valuesEi which satisfy the
relation

F̄p~Ei !5
1

DS i 2
1

2D ~16!

for i 51,2, . . . ,D. A comparison of the real energy leve
and those derived from the spectral density distribution m
ments leads to notions of the secular eigenvalue density
of fluctuations.2,3,20The secular density is defined by a sm
number of moments. Usually three or four moments are s
ficient to obtain a correct secular density.2,21 If the secular
density is accurate enough, then the fluctuations are sm
energy independent, and nonsensitive to increasing the n
ber of moments used to describe the spectrum.

Another quantity characterizing statistical behavior o
spectrum is the distribution of the adjacent lev
spacings.2,5,6,17,21The energy level spacings are defined a

dj5Ej 112Ej . ~17!

Their mean value

d̄5
1

D21 (
j 51

D21

dj ~18!

is referred to as the mean level spacing. The normalized l
spacings are given by
-
ts
-

-
nd
l
f-

ll,
m-

l

el

xj5
dj

d̄
. ~19!

As it is known ~see, e.g., Ref. 17!, the distribution of nor-
malized spacings between uncorrelated~randomly sprinkled
over an interval! energy levels is Poissonian:

P̄0~x!5exp~2x!. ~20!

This distribution is peaked atx50. Then, if the distribution
of the adjacent level spacings is Poissonian, the energy le
have a tendency to cluster. If the Hamiltonian matrix is co
posed of several blocks corresponding to different symme
species, the eigenvalues associated with different symme
are not correlated and degeneracies or near degeneracie
frequent. In this case the level spacing distribution
Poisson-like. The level spacings behave entirely differen
if all the energy levels correspond to the same symmetry~to
the same set of values of all constants of the motion!. Due to
the ‘‘level repulsion,’’ the probability of degeneracies is ve
small and the nearest-neighbor spacing distribution is
proximately of the Wigner type

P̄W~x!5
p

2
x expS 2

p

4
x2D . ~21!

A very important observation allows us to link the form
the distribution of the adjacent level spacings in a quant
system with either periodic or chaotic behavior of its clas
cal couterpart: the Poisson-type distributions appear in c
sically periodic~integrable! systems while the Wigner-like
distributions characterize classically chaotic systems.17,31 A
more general distribution containing the Wigner and t
Poisson ones as special cases has been introduced by
and Robnik.32 In order to desribe the behavior of the lev
spacings in spectra of the Heisenberg lattices, we introd
another, more general, distribution function:

P̄D~x!5Axaexp$2xb%, x>0, ~22!

FIG. 1. Types of Heisenberg ladders.
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where A is the normalization constant whilea and b are
adjustable parameters. The distribution moments corresp
ing to P̄D(x) are equal to

mq@P̄D#5E
0

`

P̄D~x!xqdx5GS a1q11

b DGS a11

b D 21

.

~23!

The constants defining this distribution function may
evaluated using the method of moments, i.e., imposing
condition thatmq@P̄D#, for q51,2, are equal to the corre
sponding moments of the exact distribution.

IV. RESULTS AND DISCUSSION

Calculations have been performed onS50 and onS51
states of two-dimensional isotropic 23L Heisenberg lattices
with L56 up toL58 ~i.e., with N512 up toN516). The

TABLE I. The first two moments of spectral density distrib
tions.

S50 S51
q L Open Periodic Open Periodic

1 6 5.818 6.545 6.303 7.091
2 6 46.424 56.727 51.448 63.151
1 7 7.308 8.077 7.725 8.538
2 7 68.301 81.503 73.827 88.301
1 8 8.800 9.600 9.167 10.000
2 8 94.646 110.769 100.564 117.846
d-

e

exchange parameter has been put equal to 1 for the ne
neighbors and 0 otherwise. Three types of boundary co
tions have been chosen: an open ladder~designated hereafte
O!, a periodic ladder~designatedP!, and a Möbius-type
chain~designatedM!—see Fig. 1. Note that all open ladde
are nonfrustrated, whereas the periodic and the Mo¨bius ones
are frustrated forL odd and even, respectively. The dime
sions of the Hamiltonian matrices for singlets are 132~if N
512) up to 1430~if N516) and for triplets 297~if N
512) up to 3432~if N516). The exact spectra have bee
obtained by solving the full eigenvalue problem using t
symmetric group approachimplemented to treat the Heisen
berg Hamiltonian eigenequation.33,34

The spectral density distribution moments may be eva
ated using the method derived in Ref. 25. In particular,
first moment is equal to

m15
X1L~L22!

L~2L21!
~3L2a!, ~24!

TABLE II. Standard deviations between spectra of open a
periodic ~O-P!, open and Mo¨bius ~O-M!, and periodic and Mo¨bius
~P-M! Heisenberg lattices calculated using unnormalized (DLS)
spectra and the normalized ones (dLS).

DLS dLS

L,S D O-P O-M P-M O-P O-M P-M

6,0 132 0.7801 0.7842 0.3135 0.0597 0.0637 0.08
6,1 297 0.8159 0.8151 0.1751 0.0382 0.0368 0.04
7,0 429 0.7979 0.7966 0.1777 0.0309 0.0286 0.04
7,1 1001 0.8317 0.8321 0.0854 0.0167 0.0178 0.02
FIG. 2. Unnormalized~a! and normalized~b! spectra~consecutive energy levelsEi plotted versusi 51,2, . . . ,D) of the Heisenberg
Hamiltonians describing the open~solid line!, periodic~dashed line!, and Möbius ~dotted line! ladders forN514 andS50. The unnormal-
ized energy is measured in units of the exchange parameterJ; the normalized energy is measured with respect tom1 in units of s. In the
second-row figures magnifications of parts of the spectra are displayed.
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TABLE III. The normalized momentsm̃q@r#.

N512, S50 N514, S50
q Open Periodic Mo¨bius Open Periodic Mo¨bius

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.00
2 1.0000 1.0000 1.0000 1.0000 1.0000 1.00
3 20.2620 20.2525 20.2525 20.2377 20.2291 20.2291
4 2.8465 2.8049 2.8049 2.8565 2.8339 2.83
5 22.3584 22.2536 22.2536 22.1379 22.0491 22.0491
6 13.7157 13.1967 12.9066 13.4876 13.1389 13.13
7 221.4516 220.7972 219.0952 219.6378 218.4070 218.5961
8 92.4592 88.4496 80.0287 90.9729 85.3752 86.88
9 2202.9063 2199.0681 2165.2016 2198.2364 2177.4582 2186.5217
10 751.4143 722.8082 592.7546 788.0126 699.3857 743.5
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whereX5S(S11) and

a5H 2 for open ladder,

0 for periodic and Mo¨bius lattices.

Asymptotically, forN@1

m1
P2m1

O.11
X

L2
, ~25!

where the superscriptsP and O refer, respectively, to the
periodic and open ladders. The corresponding express
for higher moments are given by rather lengthy polynomi
in L andX. For N@1,

m2
P2m2

O.3LS 11
X

L2D 2

. ~26!

Then, for givenL andS, the average energy and the width
the spectrum of a periodic ladder are larger than those o
open one. The numerical values of the first two moments
the cases studied in this paper are collected in Table I.
the periodic and for the Mo¨bius-type lattices the first mo
ments are the same. In fact, one can easily demonstrate u
results of Ref. 25 that the firstL21 moments of the periodic
ladder and of the Mo¨bius-type chain are the same. Therefo
one should expect that also the corresponding spectra
similar and that the similarity increases with an increasingL.
In order to study this subject in more detail we evaluated
standard deviationsDA-B

LS between spectra of latticesA andB,
whereA,B5O,P,M :

DA-B
LS 5A1

D (
n51

D

~En
A2En

B!2, ~27!

whereEn
A/En

B stands for thenth energy level in the spectrum
of the latticeA/B composed ofL segments, i.e.,N52L spins
coupled to the total spinS. The values ofD are displayed in
Table II. As one can see,

DP-M!DO-P'DO-M ~28!

and

DP-M
7S !DP-M

6S , ~29!
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in full agreement with these expectations. This feature of
spectra may be seen even better in Fig. 2~a!, where the con-
secutive energy levelsEn are plotted versusn. Since mq

P

5mq
M for q51,2, . . . ,L21, the differences between spect

of the periodic and Mo¨bius-type lattices are due to the hig
(q>L) moments only. Therefore these differences may
taken as a measure of the upper limit of the accuracy wh
can be achieved within a low-moment approximation in ge
eration of spectra from the spectral density distributions.

The distribution of the energy level density may be re
sonably well approximated by a Gaussian distribution~the
density is small at the ends of the spectrum and reach
single maximum in the middle!. In order to compare the
‘‘beyond Gaussian’’ contributions to different spectra, it
convenient to normalize the spectra so thatm150 andm2
51 @it is equivalent to shifting the origin of the energy sca
to the average energy and measuring energy in units of
dispersion, cf. Eq.~9!#. The standard deviations between t
normalized spectra associated with latticesA andB, denoted
dA-B

LS , are displayed in Table II. The normalized spectra
plotted in Fig. 2~b!. The results are rather surprising: in mo
cases, contrary to the expectations based on an naive a
cation of the principle of moments, the difference betwe
the energy level densities of theM- and theP-type lattices
are larger than the corresponding differences between
spectral densities of eitherM andO or P andO type lattices.
In fact, differences between all three spectra are very sm
they fall within limits of accuracy of a statistical descriptio

FIG. 3. Exact density distributions of the triplet energy levels
the open-chain Heisenberg Hamiltonians~histograms! compared
with the corresponding second- and fifth-moment Gram-Char
expansions~dashed lines and solid lines, respectively!. The energy
is measured with respect tom1 in units of s.



PRB 59 2681STATISTICAL PROPERTIES OF SPECTRA OF THE . . .
FIG. 4. Differences between the exact energy levels and the energy levels derived from second-, third-, and tenth-moment~designated as
2 M, 3 M, and 10 M, respectively! Gram-Charlier expansions as functions of the normalized energy for the Mo¨bius case. All spectra are
normalized so thatm150 andm251.
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The spectral density distribution moments of the normaliz
spectra are collected in Table III. The values of the cor
sponding moments for all the cases displayed are similar.
conclude that the exact equality of the higher moments in
case of the periodic and Mo¨bius lattices is not essential fo
the structure of the corresponding spectra. One may say
the density distributions of the normalized spectra of all th
kinds of lattices are not distinguishable on the grounds
statistical spectroscopy.

The histograms of the exact spectral density distributi
are compared with the second- and fifth-moment Gra
Charlier approximations in Fig. 3. The Gauss-like shape
increasing accuracy of the approximation with an increas
the lattice size is visible. The approximately Gaussian ch
d
-
e
e

at
e
f

s
-
d

of
r-

acter of the distributions seen in the plots is confirmed by
analysis of the data in Table III. The spectral density
nearly symmetric relative to the mean. The skewness par
eter g1 is small: it varies between20.26 and20.23. The
odd moments are all negative. This means that the spec
extends more towards the small eigenvalues than towards
large ones. The ‘‘symmetric part’’ of the distribution i
nearly Gaussian: the moments of the normalized Gauss
tribution for q54,6,8,10 are, respectively, equal
3,15,105,945, i.e., they are quite close to the correspond
values in Table III and the excess parameterg2 varies be-
tween20.20 and20.15.

The quality of the moment-generated spectra is analy
in Figs. 4 and 5. In Fig. 4 differences between the ex
ber of
FIG. 5. Standard deviationsd ~in units ofs) between the exact and the moment generated singlet spectra as functions of the num
momentsp in the corresponding Gram-Charlier expansions forN512 ~solid lines!, N514 ~dashed lines!, and N516 ~dotted lines!.
Designations~a! O, ~b! P, and~c! M refer, respectively, to the open, periodic, and Mo¨bius-type lattices.
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FIG. 6. Nearest-neighbor spacing histogramsP(x) as functions of the normalized spacingx ~measured in units of the mean level spacin!

in the singlet spectra ofN514 ~a! open~O!, ~b! periodic~P!, and~c! Möbius ~M! lattices compared withP̄D(x) ~solid line!, Poisson~dotted
line!, and Wigner~dashed line! distribution functions.
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energy levels and the ones derived according to Eq.~16!
from the smooth~Gram-Charlier! density distribution func-
tion are displayed. In Fig. 5 standard deviations between
moment generated spectra and the exact ones are plotted
sus the number of moments used to generate the sm
density distributions. As one can see, the quality of
moment-generated spectra dramatically improves when
number of moments increases from 2 to 4. However, wit
further increase of the number of moments the quality of
corresponding spectra remains approximately constant.
same behavior of moment generated spectra was discov
earlier in the nuclear spectra2 and in the eigenvalues of th
Pariser-Parr-Pople Hamiltonian for many-electron system21

The present result confirms the assumption about a unive
character of this behavior of spectra of systems interac
with binary forces.

Figs. 4 and 5 exhibit several properties of the mome
generated spectra of the Heisenberg Hamiltonian.

~i! Quality of the moment-generated spectra is very go
in their central parts but strongly deteriorates towards
extremes. This behavior must be attributed to the form of
Gram-Charlier expansion which extends from1` to 2`
and does not reflect the fact that a spectrum of an oper
represented in a finite-dimensional model space extends
a finite range.25

~ii ! The quality of the smoothed spectrum~also in the
limit of a large number of moments! improves when the
dimension of the lattice increases. This result indicates
for very large lattices, when a diagonalization of the ene
matrix is not possible, the moment generated spectra
give a resonable approximation to the exact ones.

~iii ! The higher the symmetry, the lower is the quality
the moment-generated spectrum. This is because the h
the symmetry, the more frequent are clusters of the ene
levels in the corresponding spectra. The moment-gener
spectra, by construction, do not contain any clusters of
energy levels~unless the density distribution function
highly irregular!.

Similar properties were also found in spectra of man
electron systems modeled by the Pariser-Parr-Po
Hamiltonian,21 in atomic spectra,7 and in nuclear spectra.2

Therefore one may assume that they are universal, inde
dent of specific features of the Hamiltonian.

Another measure of the frequency of clusters of the
ergy levels in spectra is given by the distributions of sp
ings between neighboring levels. The corersponding hi
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grams forS50,N514 spectra are displayed in Fig. 6. In a
cases the histograms resemble the Poisson rather tha
Wigner-type distribution. This behavior should be expect
in all cases the lattices possess some ‘‘hidden’’ constant
the motion related to the spatial symmetries. However,
number of the symmetry operators is much smaller in
case of the open chain than in the cases of the periodic an
the Möbius lattices. Therefore the maximum atx50 is con-
siderably lower in spectrum of the open chain than in spe
of either periodic or Mo¨bius lattices. The maxima of the
distributions for small spacings are considerably larger th
1. This means that the tendency of the energy levels to c
ter is much stronger than that described by the Poisson
tribution. The parametersa andb of distributionP̄D defined
in Eq. ~22! have been obtained using the method of mome
and are collected in Table IV. They behave in a regular w
as functions ofL. Also differences between distributions o
spacings between neighboring eigenvalues of the Ham
nians corresponding to the open ladders and to the peri
or Möbius lattices are clearly seen:aO.aP'aM and bO

.bP'bM.

V. CONCLUSIONS

Spectra of the Heisenberg Hamiltonian describing fin
lattices exhibit statistical properties similar to those disco
ered earlier in the nuclear spectra and in spectra of mo
Hamiltonians modeling many-electron systems.2,21 To a
good approximation the spectral density distributions
Gaussian. The spectra, in their central parts, may be v
well approximated by several-moment Gram-Charlier exp
sions, however, at the limits~the lowest and the highest e
genvalues! the statistical description is poor. The quality

TABLE IV. Parameters defining distributions of the neighborin
energy levels~in all casesS50).

L Open Periodic Mo¨bius

a 6 20.155 20.254 20.372
7 20.280 20.381 20.347
8 20.252 20.374 20.388

b 6 1.04 0.93 0.83
7 0.97 0.91 0.94
8 1.07 0.93 0.94



th
th

ea
re
th
o

ha

ls

with
are

on

er

PRB 59 2683STATISTICAL PROPERTIES OF SPECTRA OF THE . . .
the statistical description improves with an increase of
number of nodes in the lattice and with the decrease of
spatial symmetry.

The principle of moments has to be used with a gr
caution. Its application in the case of the lattices conside
in this paper may lead to wrong conclusions: spectra of
lattices for which a considerable number of the lowest m
ments is the same, may differ more from each other t
spectra of lattices for which all moments are different.

Distributions of spacings between the neighboring leve
nd

F

ics

tt

s.

,

m

e
e

t
d
e
-
n

,

though they are peaked at 0 and monotonously decrease
increasing spacing, are essentially not Poissonian. They
rather well approximated by an exponential distributi
function assuming much larger values forx→0 than the
Poisson distribution.
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