PHYSICAL REVIEW B VOLUME 59, NUMBER 4 15 JANUARY 1999-11

Energy bands and Fermi surface of SsRuO,
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A method combining the extended ekel theory and the tight-binding approximation is proposed to study
the electronic properties of the layered noncuprate supercondug®uSy. The band structure close to the
Fermi level is obtained by integrating out all low-lying oxygen degrees of freedom allowing the determination
of the energy spectra, the Fermi surface, and the total density of states. The results reproduces the main features
of local-density approximation calculations near the Fermi energy. As an application of the approach here
proposed, we have calculated the temperature dependence of the in-plane Hall coefficient considering the effect
of the curvature of the Fermi surfadé&s0163-182¢09)11903-9

I. INTRODUCTION Hall coefficient exhibits a complicated temperature
behavior*! it is negative at very low temperatures, it changes
One of the common features in cuprate highsupercon-  sign at temperatures approximately above 30 K and shows a
ducting oxidegHTS) is that all of them have a layered per- return to negative values above approximately 130 K. As far
ovskite structure with Cu9conducting planes. In spite of as resistivity is concernéd;*®in contrast with the metallic
great efforts, noncuprate superconducting oxides with layin-plane resistivityp,y,, the out-of-plane resistivity,. takes
ered perovskite structure have not been found until recentlya maximum at about 130 K and changes to nonmetallic tem-
The discovery of superconductivity at.~1 K in noncu- perature dependence at higher temperatures. Therefore
prate compound SRuO, by Maenoet al.! has generated a 3d-2d crossover of metallic conduction occurs. Below ap-
lot of interest in this material chiefly because of its similari- proximately 25 K bothp,, and p. exhibit a T?> power-law
ties to HTS. It has crystal structure similar to the cupratebehavior quite accurately. Theaxis magnetoresistantes
superconductor (La,S5LuQy, it is near a magnetic instabil- large and positive and varies linearly with the applied mag-
ity and it was thought to b&guite) strongly correlated. How- netic field; with the increase of temperature it falls sharply
ever, a closer inspection reveals some differences from cuecoming negative above 75 K. The in-plane magnetoresis-
prates. Among the differences we mention: the density ofance is positive and large at low temperatures, then de-
states at the Fermi levél; is about twice that of HTS; the creases a$ is raised up to 80 K. For other electronic trans-
antibonding orbitals aEr are derived fromd,,, d,,, and  port properties, the Seebeck coefficient has been reported by
dy, orbital combinations rather than tligz_,2 orbital as in ~ Yoshinoet all* and the electronic Raman scattering by Ya-
HTS; there are three sheets forming the Fermi surf&@  manakaet all®
rather than one as in HTS; the critical temperature is two The integrated ultraviolet photoemission spectra by Inoue
orders of magnitude smaller than in HTS and it is superconet al® reveal states reminiscent of the lower Hubbard band.
ductor without doping. Finally, it has been recently sug-An on-site Coulomb repulsion of 2.4 eV is estimated from
gested that the superconductivity in,BuQ, could be of the spectra and in conjunction with the one-particle band-
p-wave typé~* and thus very different from the HTS cu- width of 1.4 eV gives a ratio ob)/W= 1.7, which indicates
prates. that SpRUQ, is a less strongly correlated system compared
Band structure calculations independently carried out byo HTS. This implies that the band structure ofBu0, as
Oguchi? Singh® and MacMullan, Ray, and Needdshow the  obtained from local-density approximatiqghDA) calcula-
coexistence of three partially filled two dimensional bandstions as well as from the tight-binding approach, where cor-
one hole type and two electron type. Mackeneieal® and  relation effects are neglected, gives some insights on the ef-
Yoshidaet al. ® have confirmed the image of the one hole fective band spectra of the ruthenate superconductor.
and two electron bands observing three fundamental frequen- In this paper we calculate the electronic band structure
cies in de Haas—van AlphddHvA) oscillations. In particu- and the FS of SRuQ, using a method that combines the
lar, the FS consists of three corrugated cylinders and correextended Hakel approximation and the tight-binding ap-
sponds to four electrons in the Brillouin zone according toproach. It is worth stressing that even if LDA calculations
the prediction of Luttinger’s theorem that the Fermi volumeare available, they are rather complicated and are not deliv-
is conserved even in presence of strong electron interactionsred in a form useful as the single-particle term of a corre-
Nevertheless it seems that there is disagreement betwedated model Hamiltonian that describes the low-energy exci-
dHVA results and angle-resolved photoemission spectrodations. As a result, for instance for HTS, most theorists
copy (ARPES measurement?. Indeed ARPES studies of neglect the LDA band structure, or at least its nontrivial de-
Sr,RuQ, show a FS consisting of two small hole sheets andails, and use the simplest possible Cu-Cu one-band two-
one electronlike Fermi surface. center orthogonal tight-binding model with hopping integrals
Concerning the low-temperature transport propertiespetween only nearest and next-nearest neightjors.
some interesting results have recently been obtained. The Based on the analysis of the LDA bands fosu0,, we
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derive a simple tight-binding model with an analytical ex- binding model for the ruthenate superconductor.

pression for band dispersion ndaf together with the deter- Let us now briefly summarize the EHT. The starting point

mination of FS. This result turns out to be readily used inis the local combination of atomic orbitals expansion:

calculating physical quantities dependent on the explicit

form of the energy spectrum as well as on the real shape of

FS. As an example, and for realistic temperature law for the

relaxation rate, we have computed the in-plane Hall coeffi-

cient. The task is to find the coefficiefit,} in Eq. (1), {¢,} being
Besides, it is our hope that the model will be used in thethe atomic orbitals. The substitution of E¢l) into the

future for the single-particle term in more sophisticatedSchralinger equatiorH ¢y=E leads to

Hamiltonians containing for instance Coulomb correlations

as well as.the Hund coupliﬁﬁ. ' . 2 co(H—E)g,=0 )
We notice that some preliminary results on this type of n

calculation have already been preserifeevertheless, it is . . . . .

worth stressing that in that paper a two-dimensional analysignd' if we multiply Fh's equation by e.ach of the basis fuqc-

of electronic spectra has been considered, neglecting.the tion ¢, on turn and mte_grate, we obtain the secular equation,

dispersion of the bands and putting the bare energy orderin%ne for each value aft

of d orbitals by hand in order to fit the LDA curves, without

any physical motivation. Indeed, the energydyf andd,, E ch(Hmn—ESyn)=0. 3

Ru orbitals was assumed 'éo be the same and, according to n

linear muffin tin calculations,the energy ofd,, orbital was [ [ %

supposed lower than the energy of the ottherbitals. Here Hmn=J ¢mH @ndV and Spo=J ¢iend V.
The combined extended ‘idkel theory—tight-binding

method here presented overcomes this difficulty: the ex

tended Hakel approach gives information about the order-

ing in energy of the molecular orbitals and their composition

and thus the tight-binding calculation allows us the epr|C|tintegrals S, are assumed to be zero whereas the off-

determlr_1§1t|on of energy spectra as well as the_ FS. From thSiagonal integralsH,,,, the so-called resonance integrals,
composition of molecular orbitals we also obtain the overlap,

between the orbitals belonging to different atoms and this i are equal o a constaiit andHy,, the Coulomb integrals,

i . : . re written as constant. In EHT the Coulomb integrals are
turn gives so_me_mformat_mn on the strength of hopping term%)iven fixed values that have been assigned using spectro-
in the tight-binding Hamiltonian.

The paper is organized as follows: in the next section th scopic data. The resonance integrals are calculated from the

method employed to calculate the energy bands and FS Tgllowmg formula:

(//:; Chén- 1)

The energies of the orbitals are obtained by equating the
secular determinant to zero and each valueEdhat is a
solution to this equation can be substituted back into(Ey.
to obtain the coefficientsc,}, apart from a normalizing fac-
tor. In standard Hckel theory, all the nondiagonal overlap

presented while in Sec. Il it is applied to,®uO, and the Kk
results are discussed. Section 1V is devoted to the conclu- ﬁnmzz(an"_ &m)Snm» 4
sions.

wherek is an adjustable parameter taken for instance in the
Il. METHOD OF CALCULATION Hoffmann apprqacgr’r to have the value 1.75 an%= Hon- .
The overlap integral§,,, are calculated and included in
The crystal structure of SRuQ, is the body-centered the secular Eq(3) so that allS,,, and hences,, both be-
tetragonal KNiF, type with thel4/mmmspace group. The tween orbitals on neighboring atoms and between orbitals on
Ru atom and the two plane [@(1)] atoms are coplanar and non-neighboring atoms, are included in the calculation. The
form a two-dimensional square lattice. The Ru atom iscalculation can be carried out for a fixed geometry or the
coordinated above and below by the apicdlOatoms in  geometry can be varied to determine the molecular configu-
the double SrO rocksalt layers. The Sr atoms lie above andation with the minimum energy. It is worth mentioning that
below the hollow spaces in the centers of squares forme&#HT has been recently used to analyze the electronic struc-
by Ru atoms. The fractional atomic coordinates are givertiure of two families of HTS superconductors, namely
by Sr[0,0z(Sn]; Ru (0,0,1/2); 0(1) (0,1/2,0); TIBa,Ca,_1Cu,05,,3 and ThBa,Ca, 1Cu,0,,,4 for n
0O(2) [0,0z(0)] and the lattice constants and the param-=1,2,3,4%%
eters area=3.8603 A, c=12.729 A, z(Sr)=0.3524(3) Using the crystal parameters previously reported we
andz(0)=0.163%3), atT=100 K.2° have applied EHT to SRuQ,. The results are summarized
The in-plane Ru-Ql) distance is 1.9301 A which is less in Table I, where only the MO with energy near &
than the sum of Ri" and G~ ionic radii, suggesting the are reported. In the table are indicated, for each MO
possibility of significant hybridization between these two at-(column 1, the corresponding energycolumn 2, the
oms, whereas the apical oxygeriZDheight is 2.06 A, i.e., atomic orbitals involved(column 3, the corresponding
larger than the sum of ionic radii. composition in percentagdcolumn 4 and finally the
The present energy band calculation is performed in twghase factors of the atomic orbitgtsolumn 5. The oxygen
steps. First we apply the extended dRel theory(EHT) to  atoms (01{a,0,0}],02[{0,,0}]) and (03{0,0c}],
Sr,RuQ, determining the energy of molecular orbitals O4[{0,0,—c}]) denote the planar and the apical ones, re-
(MO's) and their composition, and then we introduce a tight-spectively. From the data reported in this table some consid-
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TABLE I. EHT results for MO near the Fermi level. In the first
column is reported the number of the corresponding MO; in the
second colunm is reported the corresponding energy value; column
3 contains the atomic orbitals contributing the to MO, together with
the percentagécolumn 4 and the phase factgcolumn 5. O1 and
02 denote the oxygen orbitals aloagandb axis, respectively; O3
and O4 indicates the apical oxygen orbitals aboveatteplane and
below it, respectively. The energies of MO are measured with re-
spect to MO 3.

MO Energy(eV) Orbitals % Phase factor

1 0.55 Rud,, 42 +
Rud,, 42 -
Olp, 4 -
O2p, 4 +
03 py 2 - . . -
03p 5 n I_:IG. 1. Orbitals producing the hyb_rldlzed _bands. The cerﬁral
04 py 5 N orbital corresponqls to one of thlgg_orbltals Y\Ihl|§ the surrounding
X ones are the orbitals. The following notation is adopted;; de-
04 p, 2 + notes one of thel, orbitals,ij ={(xy),(x2),(y2)}, andp; ,p; refer
2 0.55 Rud,, 42 + to oxygen orbitals.
Ru dy, 42 +
O1p; 4 - energy levels produced in this way. We have to observe that
02p, 4 B the planar oxygen, as in the layered cuprates, has significant
O3 py 2 - open shell character so that the ionic picture is only approxi-
O3 py 2 - mately correct; this implies that the results obtained in accor-
04 p, 2 + dance with CFT cannot be considered satisfactory when the
O4p, 2 + bond between the central atom and the ligands is far from
3 0 Rud,y 84 + being ionic. The strictest approach to the problem of the
Olp, 8 - nature of the bond in complex compounds is to use the

02 py 8 - method of molecular orbitals, although this involves much
greater difficulties than the crystal-field approach. The EHT,
taking into account the overlap integras,,, as well as the
erations are in order. All the orbitals have predominantly Ru€sonance integrals, gives a result more accurate than the one
4d character, with an orbital composition of 84% Rd 4nd derived from the CFT. The result we obtain agrees with the
16% O 2p. This result agrees quite well with the near-edge-DA conclusion that afi™ point the band originating from
x-ray-absorption and valence-band photoemission spectroSxy Orbital is lower in energy than the other two bands, and
copy experimental datathat estimate the orbital contripu- this in turn implies that the barg,, energy can be assumed
tion atEr as 80% Ru 4 and 20% O p. For completeness Smaller than the bard,-d,, energy.

we mention that HTS exhibit a composition of orbitals as L€t us now introduce a tight-binding model for,&u0, .
20% Cu and 80% O R at E-. The MO 3 is planar in the The releva_nt o_rbltals producing the hybridizeebands
sense that it is composed by orbitals that lie indhle plane &€ reported in Fig. 1. We adopt for the phase factors the
and the orbitals entering its composition decouple comStandard convention, i.e., the lobes of the orbitals have
pletely from Ru 41 and O 2 orbitals that give rise to MO 1 jL/— according to the sign of the corresponding wave func-
and 2. Finally we notice that from EHT analysis we find that!!On-

the MO 3 has the lowest energy compared to MO 1 and 2

that are degenerate. A. d.. band
. .o . T Xy
In a tetragonal complex theorbitals divide into two sets ) )
due to the ligand field splitting. The twey orbitals lie above Taking advantage of EHT results we assume that this

the threet,, orbitals; thet, orbitals also split into two sets band contains only Rdyy and O1 , and O2 D orbitals

with d, d,, orbitals below thed,, orbital. Thus, as a con- 2longa andb axes, respectively. If we assume that only the
sequence of the crystal-field theof@FT), the energies of NONZero hopping integrals between neighboring Ru and O
t,4 d orbitals lie in the orded,,=d,,<d,,. Nevertheless in orbitals and those between two neighboring O are important,

this approach the complex is modeled as a central ion suriI is straightforward to show that the low-energy excitation of

rounded by ligands that act only as a source of electric pogleptrons is described by the following tight-binding Hamil-

tential. In other words, they are not regarded as supplyindP™an-

atomic orbitals from which molecular orbitals spreading over

the entire complex may be formed. The ligands produce a Exy ity(k) ity (k)
potential that removes the degeneracy of the orbitals of the _ i s

central ion, and the structure of the complex can be discussed /™= ; D (k) e k) D, (§

in terms of the building-up principle applied to the set of —ityy (k) ta(k) €p
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whereD "= (d,,p], ,pl,) are the electron creation operators 0 ]
in the k space corresponding to the above three orbitals, spe- 7
cifically, pl. (pl,) refers to the creation of electrons on I /
1y \P2x —2/ \
r z X r =z

E(eV)

2py (2py) orbital located at 0X02) and d;[y creates elec-
trons ond,, orbital; €,, and €, are the energy ofl,, andp
states, respectively. The off-diagonal matrix elements in )
ny are ty;(K)=—2t;;sink/2) (i=x,y) and ty(k)= FIG. 2. Calculated energy band structure along high-symmetry
—4t25in(kx/2)sin0<y/2), wherety; is the hopping integral be- lines (thin lines, near the Fermi leve(dashed ling The energy
tweend,, and p; states p;=pyy, Pa=Pa) andt, is the band structure calculated within the LDA method by SiiBkf. 6

Xy i y X

R is also presente@ashed lines In this latter case only the bands
hopping integral betweep,, and p,, states. close toE, are reported.

B. d, band
2 Danas the hole band ;) and the composition of MO is the same

The orbitals contributing to these bands aredhg dy,,  as deduced from EHT, i.e., the relative values of the strength
and 2p, belonging to the Ru and O atoms in the plane, re-of hopping parameters are fixed by the composition of MO.
spectively, and the & , of the O atoms out of plane. As for Besides, the LDA resultq—e,=1.5 eV is used to fix the
Xy band, we assume only the hopping integrals between Rgverall energy scale. The parameters we obtained with the
and O orbitals and those between two neighboring O ar@hove fitting procedure arety(t,tstststs)=(1.1,—0.52,
nonvanishing. Under these assumptions the tight-binding.1,0.025,0.85,0.35 eV and €p1€xy €9)=(—2.4-1.9,
Hamiltonian is —0.9 eV.

Figure 2 shows the energy dispersighin lines for the

€@ 0 —iee 0 —ige 0 above three bands along a few high-symmetry lines. The
0 €4 0 —ify 0 —igy bands structure near and beld&y is strongly anisotropic
ie 0 —ib 0 and all the bands show a very little dispersion alongkhe
K €p ag 1Dy . i i R .
HZZE ct ] . , axis, as is evident from the small dispersion along the short
K 0 if & €p 0 —icy I'-Z direction. It is worth mentioning tha (k) is k, disper-
igy O iby 0 €p 0 sionless by construction.

We want to stress that our simple calculations reproduce
©6) the main features of LDA band structure, i.B4 (k) bands
are degenerate &t point, the band maxima locate 4tpoint
where C'=(df,.d],.p],.pl,.pi..p,) are the creation for all three bands ands(k) is more dispersive. This is
operators in th& space corresponding to the above six or-evident from the same Fig. 2 where the band structure near
bitals. In particularpl, (p},) denotes the creation operator E¢ obtained by Singhis reported(thick lines. The agree-
of electrons on P, orbital alonga (b) axis andpgx (p;y) ment between LDA computations and our calculations gives
refers to the creation operator of electrons on apicaponfidence that our simplified model captures the essential
2p, (2p,) orbital at the O3 siteey and e, are the energies Physics of SRUG, at least neaEr . _
of dy, d,,, andp, , states, respectively. The off-diagonal Fermll sur_face is shown in Fig. 3. It consists of three al-
elements of H, are: a,=—4tscosk/2)cosk,/2); b,  MOSt cylindrical sheets: two of such sheets are large electron-
=4t c0skd2)sink/2);  C=4tscosk/2)sin(kl/2); e like cylinders centered af' point and the last surface is
=2t5sin(kd2); f=2tssin(k,/2); gx=2tesin(ak/2). Heret, hole-like cylinder centered af point. In particular, the sur-
is the hopping integral between two @ planar orbitals,  face associated with the Rd, state forms a cylindrical
is the hopping integral between apicalpg, , and planar O  sheet showing no dispersion along thedirection while the
P12 ts (1) is the hopping integral betweety,, d,,, and othgr_ two bands give rise to corrugated cylinders. It is wqrth
P12 (Paxy) States and finally is the ratio of the distances noticing that very recent angular dependent dHvA oscilla-
Ru-O1 and Ru-03. tions experimentsshow three almost cylindrical branches,
As previously pointed out there are three bands crossingg[ little corrugated. In our calculations the bands originating
Er. The energy dispersion of these three bands can be of0m Ru d,,-dy, agree in the shape with the experimental
tained by integrating out all low-lying O degrees of free- results, but that produced by Ri}, shows no modulation
dom using the [wdin down-folding procedur& The along thek, axis for symmetry reasons. Of course a more
energy-band dispersions we obtain &g, k), where _detalled analysis needs to explain the expenm_ental data. For
E, Ak) andE,(k) denote the bands derived from a combi- instance, exchange terms between electrons inzh&u d
nation of Rud,, dy, and from Rud,, orbitals, respectively. Orbitals connecting in an indirect way tiog, orbital to api-
The explicit expression of these energies are reported in thgal oxygen orbitals producelg dependence of the, band.

0 ng 0 iCk 0 €p

Appendix. Calculations in this direction are in progress as well as a
detailed study of the Yamaji effect in SRuQ,.
IIl. RESULTS AND DISCUSSION The Fermi-surface topology obtained here, i.e., two elec-

tronlike sheets centered at thepoint and one holelike sheet
We fix the parameters iH,, andH, by requiring that the centered at th& point, is different from that deduced from
volumes enclosed by the three bands coincide with thoSARPES experiment¥ In these measurements the Fermi sur-
measured in guantum oscillations, i.e., 0.475 and 0.667 folace seems to be composed by two hole-like sheets and one
the electron bandsE, and E;, respectively and 0.108 for electronlike sheet. Moreover, in both cases the electron count
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FIG. 3. Calculated Fermi surfaces in the Brillouin zone. Per-
spective view of the hole and electron sheets of the Fermi surface :
derived from the hybridized Rdl,,, d,,, andd,, bands in the 0 ‘ 7/‘4 :

Brillouin zone. The largest electronlike Fermi surface corresponds 0.2 -0.15 0.1 ~0.05 0 0.05
to the hybridized! d,, band. The center of this Brillouin zone is the Energy(Rydberg)
I" point.

FIG. 4. Total density of states. The Fermi level is denoted by the
is the same. According to the results reporte@ifithe dis-  vertical dashed line.

crepancy between the Fermi surface topology observed in

the photoemission experiments and in LDA calculations and The total density of states is plotted in Fig. 4. At first
dHVA measurements, as well as in the results of this papegight, one can observe three peaks well separated which are
could be related to the fact that dHvA and band structurey,e to \Van Hove singularitie®/HS’s) present in each band
computations yield the bulk electronic structure offIO;  that are related to the almost dispersionless character of the
while ARPES results reflect the surface structure. It is alsgyands along thé, direction. The position oE¢ (dot line)
worth noticing that ARPES Fermi surfaces would yield fa)|s on the low-energy side of the sharp peak that occurs
dHvA frequencies of 3, 8.7, and 10.8 KRef. 2§ instead of  5pproximately at 0.1 eV abové and is related to the first
measured values of 3.05, 12.7, and 18.5 kT, each of whickyqs, This VHS is due to the change in Fermi surface topol-
number is accurate to 1%. We want to stress that the dHVAqgy that happens rigidly shifting the lower of the two bands
identification of one small hole pocket and two e|eCtr°”crossingEF along the long-Z direction, in a way that the
pockets is also consistent with the negative sign of the Hall,aximum gets close to the singularity. It is worth pointing

coefficient at low temperatures. out that the realization, if it is possible, of removing about
The values of the average Fermi wave vectors of the threg 1 (2) atoms per cell would position thgg at this VHS
sheets and the total density of stat@0S) at the Fermi gjying insight on the effect on superconductivity of the en-

energy are summarized in Table Il where the experimentgfgncement of the DOS & . The upper of the two bands
and LDA averaged Fermi wave vectors are also reportedeads to a second VHS close to the band edge at 0.28 eV
From an inspection of this table we can observe a quite goog,nroximately abov& , while the holelike band presents a
agreement between experimental results and the data 0Bparp peak close to the bottom of the DOS at approximately
tained in the present paper. 1 eV belowEg. The value of the density of states at the
TABLE Il. Fermi parameters for the three bands. In the first F€rmi energy isp(Eg) =57 states/Ry, which is in good
column is reported the MO; column 2 contains the Fermi waveagreement with the LDA estimate of 56.2 States?RWe _
vector (kz) here calculated; in columns 3 and 4 are reported thepresenip(Eg) value gives a temperature linear coefficient in
experimental and LDA . Column 5 refers to the density of states the specific heat of 9.88 mJ?Knol and Pauli paramagnetic

atEg. susceptibility of 1.3%10 % emu/mol which are smaller
with respect to the observed results on the normal state prop-
ke ke (LDA) ke (expt.) p(Eg) erties, nflmely,yexp=39 mJ/K mol and yey,=9.7x10™*
_1 1 _1 emu/mol.
Band A A states/Ry The explicit knowledge of the energy spectrum gets also
E, 0.766 0.732 0.75 30.8 possible the calculation of several transport properties. As an
E, 0.312 0.319 0.302 3.6 application, here we will determine the temperature depen-
Es 0.618 0.638 0.621 22.6 dence of the Hall coefficierRy .

As referred to in the IntroductiorRy has a complicated
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temperature dependence behavior as might be expected for
material with electronlike and holelike carriers. Assuming
that the three sheets of the FS are circular and the mean free g5 . i
path | is isotropic and the same for all the pockets, T —
Mackenzie et al!! obtained a prediction ofRy=—0.9 N T Laa

X 10" 1% m3/C that compares well with the measured value A A
of —1.15x10 Y m3/C. This result is improved whehis
the same for the two electron pockets but different for the 5, |
hole onet!

We report therein the theoretical calculationRyf for two

types of carriers using the explicit expression for the energy
spectrum obtained in the previous section. The in-plane Hall &
coefficient is given by the following formula:

O-Xy ‘; !
>

Boyy

oy and o, are the in-plane and theaxis conductivities, -1 .

respectively, and is the external applied magnetic field. To £

computeo,, and oy, we use the Jones-Zener expansion of ~

the distribution functiorg(k) which determines the density

currentJ through the formula

-1.4 ! L 1 1 I
0 25 50 75 100 125 150

T

J=

j d®ku(k)g(k),

FIG. 5. Temperature dependence of the in-plane Hall coefficient
Ry . Ry is measured in 10'° m®/C. The triangles denote the ex-
perimental data taken from Ref. 10.

(2m)®

wherev (k) =1/ Ve (k) is the velocity of the particle irk
space. Sincg(k) is a function of the band energy spectrum
we can calculat&Ry, using the actual energy banfg(k). S ol
The x axis and in-plane conductivity for the band at T
lowest order can be expressed as follows: Ry=

BY (ol))?

0. 2e J el = 20 [ B 2
UXX_W ~ k) T gk, The low-temperature behavior &, is plotted in Fig. 5.
The curve has been obtained using for the electronlike bands
the samer, with A=1.13 andB=0.0023, whileA=1 and
B=0.0016 have been used for the holelike band. In the same
3 figure the experimental data reported(Ref. 11 are repre-
2e’B f 3 (_ i) T_<(7_Ei) sented by triangles. We can see that we reproduce the sign
IE;] "'\ aky change from negative to positive value at low temperatures
but the actual variation dR,; with temperature is more com-
plex. Indeed, our results reproduce with quite good accuracy
the trend of experimental data only for temperatures less than
40 K. This discrepancy may be related to the assumption
. ) . . . . made for the relaxation rates. Both the in-plang and out
Heref is the Fermi function and is the relaxation time ¢ plane p, resistivity vary asT?, to high accuracy, only
related to the band;(k). To calculate explicitlyRy we  pejow 25 K. Above this temperaturp,, raises monotoni-
suppose that; is |7sotr_op|c, i.e.k independent and varies as c4|ly and it can be modeled well with a weighted sumTof
T .for each bané‘_. This assumptlon is based on the hypoth- 5,472 contributions, with a sharfd component, whereas,
esis of a scattering dominated by the electron-electron angy s a pronounced peak at about 13¢%# This behavior
hole-hole interaction and this in turn implies that the resisyqgits in a change of the temperature dependence of the

i i 1 2 1 - - g . . - -
tivity varies asT*, as experimentally observed at low scattering amplitude probability implying a deviation from a
temperature$>3 Therefore, it is natural to assume for each T2 power law forz.

band

and

o= —

Xy (277)371,4

EHE R

Xl | 117~
aky dky\ "ok ) kg Ky y

2 . IV. CONCLUSIONS
7i=A+BT* (i=1,2,3),
The electronic energy band structure ofuQ, has been
whereA; andB; are ad hoc constants. Generalizing the ex-calculated by using a simple combined EHT—tight-binding

pression ofRy, for a multiband system we hatfe method. Our calculations reproduce with good accuracy
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LDA results, showing almost dispersionless Fermi surfaces ACKNOWLEDGMENTS
alongk, direction and thus supporting the quasi two dimen- It is a pleasure to thank Professor A. Mackenzie, Dr. T.

sional nature of SRUG,. Xiang, Professor A. Olesand Professor P. Horsch for help-
We have derived an appropriate tight-binding Hamil—fH| di%cussions and coriments. ' P

tonian, as well as analytical expressions for energy bands an
for the constant-energy contour near the Fermi surface. We APPENDIX

point out that the analytical formula for energy bands of .

electrons around the Fermi level here presented can be !N the following for completeness we report the expres-
readily used to analyze physical quantities in which the toSion of hopping parameters introduced in Sec. II:

pology of the Fermi surface is important as well as the pos- t;(k)=—2tysinki/2  (i=x,y), (A1)
sibility of superconducting instability within the standard

broken-symmetry Hartree-Fock scheme. In this respect, we to(k) = — 4tzsin(k,/2)sin(k,/2),

have computed the temperature dependence of the Hall co-

efficient assuming that the main contribution to scattering of ay= —A4tscogk,/2)cogky/2),

carriers is electron-electron or hole-hole interaction and var-

ies with aT2 power law. This model can reproduce the sign b =4tscodk2)sin(akyf2),

changes oRy but not the behavior above 70 K, where the ci=4t,cogk,/2)sin ak,/2),
Hall coefficient starts to decrease. A more sophisticated

model including the temperature dependence of the chemical e =2t5sin(k,/2),
potential as well as th& dependence of and a different

temperature law for the relaxation rate needs to explain the fr=2tssin(k,/2),

temperature behavior dRy and is currently being devel- — ot -sin ak./2
oped. Calculations in this direction are in progress and will 9= 2tesin(ak,/2).
be presented in a forthcoming publication. Using these quantities tHe; band reads as follows:

_ [Sxy((sp_ M)Z_t§)+ﬂtlx2+ 2tztlxtly+ Mtiy_ 8p(tix+tiy)]
[(ep—w)?~13]

3

By mean of Egs.Al) and the definitions below one can N1=bﬁsd(CkJrSp—M)(Ck—8p+M)+(8p—M)
write the hybridizedg; , bands in the following way: X )
X{ay(—eqept i)

E;=3[an+agt V(a;—azy?+4[a;)?]
' 2 2
+(ck—ep)(Cktep)(€—egepT0i)

Eo=3[an+az— V(an—ax) +4/a)’], +[2egep+eq(ag+ci—3e2) + 28,08 1
where —(eﬁ—3sd8p+ 9p) u?—equ’},
A=, No=bi(ckea—[ 7=+ eqep—m)1(ep 1)
—{ai(—gi+ea(sp—p)
—] g (17— 02+ elep— w))(eg— w)} (= 1),
N3=au(ibigx+eep—u))(epfr—icig—fiu),
3122331:331 D=[bk(—C§+(sp—,u,)2)
with +(ep—w)A(—ag—ci+ep—2eput u?)].
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