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Energy bands and Fermi surface of Sr2RuO4
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A method combining the extended Hu¨ckel theory and the tight-binding approximation is proposed to study
the electronic properties of the layered noncuprate superconductor Sr2RuO4 . The band structure close to the
Fermi level is obtained by integrating out all low-lying oxygen degrees of freedom allowing the determination
of the energy spectra, the Fermi surface, and the total density of states. The results reproduces the main features
of local-density approximation calculations near the Fermi energy. As an application of the approach here
proposed, we have calculated the temperature dependence of the in-plane Hall coefficient considering the effect
of the curvature of the Fermi surface.@S0163-1829~99!11903-9#
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I. INTRODUCTION

One of the common features in cuprate high-Tc supercon-
ducting oxides~HTS! is that all of them have a layered pe
ovskite structure with CuO2 conducting planes. In spite o
great efforts, noncuprate superconducting oxides with l
ered perovskite structure have not been found until recen
The discovery of superconductivity atTc;1 K in noncu-
prate compound Sr2RuO4 by Maenoet al.,1 has generated a
lot of interest in this material chiefly because of its simila
ties to HTS. It has crystal structure similar to the cupr
superconductor (La,Sr)2CuO4, it is near a magnetic instabil
ity and it was thought to be~quite! strongly correlated. How-
ever, a closer inspection reveals some differences from
prates. Among the differences we mention: the density
states at the Fermi levelEF is about twice that of HTS; the
antibonding orbitals atEF are derived fromdxy , dxz , and
dyz orbital combinations rather than thedx22y2 orbital as in
HTS; there are three sheets forming the Fermi surface~FS!
rather than one as in HTS; the critical temperature is t
orders of magnitude smaller than in HTS and it is superc
ductor without doping. Finally, it has been recently su
gested that the superconductivity in Sr2RuO4 could be of
p-wave type2–4 and thus very different from the HTS cu
prates.

Band structure calculations independently carried out
Oguchi,5 Singh,6 and MacMullan, Ray, and Needs7 show the
coexistence of three partially filled two dimensional ban
one hole type and two electron type. Mackenzieet al.8 and
Yoshidaet al. 9 have confirmed the image of the one ho
and two electron bands observing three fundamental freq
cies in de Haas–van Alphen~dHvA! oscillations. In particu-
lar, the FS consists of three corrugated cylinders and co
sponds to four electrons in the Brillouin zone according
the prediction of Luttinger’s theorem that the Fermi volum
is conserved even in presence of strong electron interacti

Nevertheless it seems that there is disagreement betw
dHvA results and angle-resolved photoemission spect
copy ~ARPES! measurements.10 Indeed ARPES studies o
Sr2RuO4 show a FS consisting of two small hole sheets a
one electronlike Fermi surface.

Concerning the low-temperature transport propert
some interesting results have recently been obtained.
PRB 590163-1829/99/59~4!/2659~8!/$15.00
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Hall coefficient exhibits a complicated temperatu
behavior:11 it is negative at very low temperatures, it chang
sign at temperatures approximately above 30 K and show
return to negative values above approximately 130 K. As
as resistivity is concerned,12,13 in contrast with the metallic
in-plane resistivityrab , the out-of-plane resistivityrc takes
a maximum at about 130 K and changes to nonmetallic te
perature dependence at higher temperatures. There
3d-2d crossover of metallic conduction occurs. Below a
proximately 25 K bothrab and rc exhibit a T2 power-law
behavior quite accurately. Thec-axis magnetoresistance13 is
large and positive and varies linearly with the applied ma
netic field; with the increase of temperature it falls sharp
becoming negative above 75 K. The in-plane magnetore
tance is positive and large at low temperatures, then
creases asT is raised up to 80 K. For other electronic tran
port properties, the Seebeck coefficient has been reporte
Yoshinoet al.14 and the electronic Raman scattering by Y
manakaet al.15

The integrated ultraviolet photoemission spectra by Ino
et al.16 reveal states reminiscent of the lower Hubbard ba
An on-site Coulomb repulsion of 2.4 eV is estimated fro
the spectra and in conjunction with the one-particle ba
width of 1.4 eV gives a ratio ofU/W51.7, which indicates
that Sr2RuO4 is a less strongly correlated system compa
to HTS. This implies that the band structure of Sr2RuO4 as
obtained from local-density approximation~LDA ! calcula-
tions as well as from the tight-binding approach, where c
relation effects are neglected, gives some insights on the
fective band spectra of the ruthenate superconductor.

In this paper we calculate the electronic band struct
and the FS of Sr2RuO4 using a method that combines th
extended Hu¨ckel approximation and the tight-binding ap
proach. It is worth stressing that even if LDA calculatio
are available, they are rather complicated and are not de
ered in a form useful as the single-particle term of a cor
lated model Hamiltonian that describes the low-energy ex
tations. As a result, for instance for HTS, most theori
neglect the LDA band structure, or at least its nontrivial d
tails, and use the simplest possible Cu-Cu one-band t
center orthogonal tight-binding model with hopping integra
between only nearest and next-nearest neighbors.17

Based on the analysis of the LDA bands for Sr2RuO4, we
2659 ©1999 The American Physical Society



x-
-
in

lic
e
th
ffi

th
ed
n

o

ys
e
ri
t

g

ex
er
ion
ici
t

la
i

m

th
S

cl

d
i

an
e
e

m

s

at

tw

ls
ht

int

c-
ion,

the

p
ff-

ls,
,

ctro-
the

the

n

on
he

the
gu-
at
ruc-
ly

we
d

O

re-
sid-

2660 PRB 59CANIO NOCE AND MARIO CUOCO
derive a simple tight-binding model with an analytical e
pression for band dispersion nearEF together with the deter
mination of FS. This result turns out to be readily used
calculating physical quantities dependent on the exp
form of the energy spectrum as well as on the real shap
FS. As an example, and for realistic temperature law for
relaxation rate, we have computed the in-plane Hall coe
cient.

Besides, it is our hope that the model will be used in
future for the single-particle term in more sophisticat
Hamiltonians containing for instance Coulomb correlatio
as well as the Hund coupling.18

We notice that some preliminary results on this type
calculation have already been presented.19 Nevertheless, it is
worth stressing that in that paper a two-dimensional anal
of electronic spectra has been considered, neglecting thkz
dispersion of the bands and putting the bare energy orde
of d orbitals by hand in order to fit the LDA curves, withou
any physical motivation. Indeed, the energy ofdxz and dyz
Ru orbitals was assumed to be the same and, accordin
linear muffin tin calculations,7 the energy ofdxy orbital was
supposed lower than the energy of the otherd orbitals.

The combined extended Hu¨ckel theory–tight-binding
method here presented overcomes this difficulty: the
tended Hu¨ckel approach gives information about the ord
ing in energy of the molecular orbitals and their composit
and thus the tight-binding calculation allows us the expl
determination of energy spectra as well as the FS. From
composition of molecular orbitals we also obtain the over
between the orbitals belonging to different atoms and this
turn gives some information on the strength of hopping ter
in the tight-binding Hamiltonian.

The paper is organized as follows: in the next section
method employed to calculate the energy bands and F
presented while in Sec. III it is applied to Sr2RuO4 and the
results are discussed. Section IV is devoted to the con
sions.

II. METHOD OF CALCULATION

The crystal structure of Sr2RuO4 is the body-centered
tetragonal K2NiF4 type with theI4/mmmspace group. The
Ru atom and the two plane O@O~1!# atoms are coplanar an
form a two-dimensional square lattice. The Ru atom
coordinated above and below by the apical O~2! atoms in
the double SrO rocksalt layers. The Sr atoms lie above
below the hollow spaces in the centers of squares form
by Ru atoms. The fractional atomic coordinates are giv
by Sr @0,0,z(Sr)#; Ru (0,0,1/2); O(1) (0,1/2,0);
O(2) @0,0,z(O)# and the lattice constants and the para
eters are a53.8603 Å, c512.729 Å, z(Sr)50.3524(3)
andz(O)50.1635(3), atT5100 K.20

The in-plane Ru-O~1! distance is 1.9301 Å which is les
than the sum of Ru41 and O22 ionic radii, suggesting the
possibility of significant hybridization between these two
oms, whereas the apical oxygen O~2! height is 2.06 Å, i.e.,
larger than the sum of ionic radii.

The present energy band calculation is performed in
steps. First we apply the extended Hu¨ckel theory~EHT! to
Sr2RuO4 determining the energy of molecular orbita
~MO’s! and their composition, and then we introduce a tig
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binding model for the ruthenate superconductor.
Let us now briefly summarize the EHT. The starting po

is the local combination of atomic orbitals expansion:

c5(
n

cnwn . ~1!

The task is to find the coefficient$cn% in Eq. ~1!, $wn% being
the atomic orbitals. The substitution of Eq.~1! into the
Schrödinger equationHc5Ec leads to

(
n

cn~H2E!wn50 ~2!

and, if we multiply this equation by each of the basis fun
tion wn on turn and integrate, we obtain the secular equat
one for each value ofm:

(
n

cn~Hmn2ESmn!50. ~3!

HereHmn5*wm* HwndV andSmn5*wm* wndV.
The energies of the orbitals are obtained by equating

secular determinant to zero and each value ofE that is a
solution to this equation can be substituted back into Eq.~2!
to obtain the coefficients$cn%, apart from a normalizing fac-
tor. In standard Hu¨ckel theory, all the nondiagonal overla
integrals Smn are assumed to be zero whereas the o
diagonal integralsHmn , the so-called resonance integra
are equal to a constantb and Hnn , the Coulomb integrals
are written as constanta. In EHT the Coulomb integrals are
given fixed values that have been assigned using spe
scopic data. The resonance integrals are calculated from
following formula:

bnm5
k

2
~an1am!Snm , ~4!

wherek is an adjustable parameter taken for instance in
Hoffmann approach21 to have the value 1.75 andan5Hnn .

The overlap integralsSnm are calculated and included i
the secular Eq.~3! so that allSnm and hencebnm both be-
tween orbitals on neighboring atoms and between orbitals
non-neighboring atoms, are included in the calculation. T
calculation can be carried out for a fixed geometry or
geometry can be varied to determine the molecular confi
ration with the minimum energy. It is worth mentioning th
EHT has been recently used to analyze the electronic st
ture of two families of HTS superconductors, name
TlBa2Can21CunO2n13 and Tl2Ba2Can21CunO2n14 for n
51,2,3,4.22

Using the crystal parameters previously reported
have applied EHT to Sr2RuO4. The results are summarize
in Table I, where only the MO with energy near toEF
are reported. In the table are indicated, for each M
~column 1!, the corresponding energy~column 2!, the
atomic orbitals involved~column 3!, the corresponding
composition in percentage~column 4! and finally the
phase factors of the atomic orbitals~column 5!. The oxygen
atoms (O1@$a,0,0%#,O2@$0,a,0%#) and (O3@$0,0,c%#,
O4@$0,0,2c%#) denote the planar and the apical ones,
spectively. From the data reported in this table some con
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PRB 59 2661ENERGY BANDS AND FERMI SURFACE OF Sr2RuO4
erations are in order. All the orbitals have predominantly
4d character, with an orbital composition of 84% Ru 4d and
16% O 2p. This result agrees quite well with the near-ed
x-ray-absorption and valence-band photoemission spec
copy experimental data23 that estimate the orbital contribu
tion at EF as 80% Ru 4d and 20% O 2p. For completeness
we mention that HTS exhibit a composition of orbitals
20% Cu and 80% O 2p at EF . The MO 3 is planar in the
sense that it is composed by orbitals that lie in thea-b plane
and the orbitals entering its composition decouple co
pletely from Ru 4d and O 2p orbitals that give rise to MO 1
and 2. Finally we notice that from EHT analysis we find th
the MO 3 has the lowest energy compared to MO 1 an
that are degenerate.

In a tetragonal complex thed orbitals divide into two sets
due to the ligand field splitting. The twoeg orbitals lie above
the threet2g orbitals; thet2g orbitals also split into two sets
with dxz ,dyz orbitals below thedxy orbital. Thus, as a con
sequence of the crystal-field theory~CFT!, the energies of
t2g d orbitals lie in the orderdxz5dyz,dxy . Nevertheless in
this approach the complex is modeled as a central ion
rounded by ligands that act only as a source of electric
tential. In other words, they are not regarded as supply
atomic orbitals from which molecular orbitals spreading ov
the entire complex may be formed. The ligands produc
potential that removes the degeneracy of the orbitals of
central ion, and the structure of the complex can be discus
in terms of the building-up principle applied to the set

TABLE I. EHT results for MO near the Fermi level. In the firs
column is reported the number of the corresponding MO; in
second colunm is reported the corresponding energy value; col
3 contains the atomic orbitals contributing the to MO, together w
the percentage~column 4! and the phase factor~column 5!. O1 and
O2 denote the oxygen orbitals alonga andb axis, respectively; O3
and O4 indicates the apical oxygen orbitals above thea-b plane and
below it, respectively. The energies of MO are measured with
spect to MO 3.

MO Energy~eV! Orbitals % Phase factor

1 0.55 Rudxz 42 1

Ru dyz 42 2

O1 pz 4 2

O2 pz 4 1

O3 px 2 2

O3 py 2 1

O4 px 2 1

O4 py 2 1

2 0.55 Rudxz 42 1

Ru dyz 42 1

O1 pz 4 2

O2 pz 4 2

O3 px 2 2

O3 py 2 2

O4 px 2 1

O4 py 2 1

3 0 Rudxy 84 1

O1 py 8 2

O2 px 8 2
u
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energy levels produced in this way. We have to observe
the planar oxygen, as in the layered cuprates, has signifi
open shell character so that the ionic picture is only appro
mately correct; this implies that the results obtained in acc
dance with CFT cannot be considered satisfactory when
bond between the central atom and the ligands is far fr
being ionic. The strictest approach to the problem of
nature of the bond in complex compounds is to use
method of molecular orbitals, although this involves mu
greater difficulties than the crystal-field approach. The EH
taking into account the overlap integralsSnm as well as the
resonance integrals, gives a result more accurate than the
derived from the CFT. The result we obtain agrees with
LDA conclusion that atG point the band originating from
dxy orbital is lower in energy than the other two bands, a
this in turn implies that the baredxy energy can be assume
smaller than the baredxz-dyz energy.

Let us now introduce a tight-binding model for Sr2RuO4.
The relevant orbitals producing the hybridizedd-bands

are reported in Fig. 1. We adopt for the phase factors
standard convention, i.e., the lobes of the orbitals h
1/2 according to the sign of the corresponding wave fun
tion.

A. dxy band

Taking advantage of EHT results we assume that
band contains only Rudxy and O1 2py and O2 2px orbitals
alonga andb axes, respectively. If we assume that only t
nonzero hopping integrals between neighboring Ru and
orbitals and those between two neighboring O are import
it is straightforward to show that the low-energy excitation
electrons is described by the following tight-binding Ham
tonian:

Hxy5(
k

D†S exy it 1x~k! i t 1y~k!

2 i t 1x~k! ep t2~k!

2 i t 1y~k! t2~k! ep

D D, ~5!

FIG. 1. Orbitals producing the hybridized bands. The centrad
orbital corresponds to one of thet2g orbitals while the surrounding
ones are thep orbitals. The following notation is adopted:di j de-
notes one of thede orbitals, i j 5$(xy),(xz),(yz)%, andpi ,pj refer
to oxygen orbitals.
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2662 PRB 59CANIO NOCE AND MARIO CUOCO
whereD†5(dxy
† ,p1y

† ,p2x
† ) are the electron creation operato

in thek space corresponding to the above three orbitals, s
cifically, p1y

† (p2x
† ) refers to the creation of electrons o

2py (2px) orbital located at O1~O2! and dxy
† creates elec-

trons ondxy orbital; exy andep are the energy ofdxy andp
states, respectively. The off-diagonal matrix elements
Hxy are t1i(k)522t1isin(ki/2) (i 5x,y) and t2(k)5
24t2sin(kx/2)sin(ky/2), wheret1i is the hopping integral be
tween dxy and pi states (p15p1y , p25p2x) and t2 is the
hopping integral betweenp1y andp2x states.

B. dz bands

The orbitals contributing to these bands are thedxz , dyz ,
and 2pz belonging to the Ru and O atoms in the plane,
spectively, and the 2px,y of the O atoms out of plane. As fo
xy band, we assume only the hopping integrals between
and O orbitals and those between two neighboring O
nonvanishing. Under these assumptions the tight-bind
Hamiltonian is

Hz5(
k

C†S ed 0 2 iek 0 2 igk 0

0 ed 0 2 i f k 0 2 igk

iek 0 ep ak 2 ibk 0

0 i f k ak ep 0 2 ick

igk 0 ibk 0 ep 0

0 igk 0 ick 0 ep

D C,

~6!

where C†5(dxz
† ,dyz

† ,p1z
† ,p2z

† ,p3x
† ,p3y

† ) are the creation
operators in thek space corresponding to the above six
bitals. In particular,p1z

† (p2z
† ) denotes the creation operat

of electrons on 2pz orbital alonga (b) axis andp3x
† (p3y

† )
refers to the creation operator of electrons on ap
2px (2py) orbital at the O3 site.ed andep are the energies
of dxz , dyz , andpx,y,z states, respectively. The off-diagon
elements of Hz are: ak524t3cos(kx/2)cos(ky/2); bk
54t4cos(kx/2)sin(kz/2); ck54t4cos(ky/2)sin(akz/2); ek
52t5sin(kx/2); f k52t5sin(ky/2); gk52t6sin(akz/2). Heret3
is the hopping integral between two Opz planar orbitals;t4
is the hopping integral between apical Op3x,y and planar O
p1,2z ; t5 (t6) is the hopping integral betweendxz , dyz , and
p1,2z (p3x,y) states and finallya is the ratio of the distance
Ru-O1 and Ru-O3.

As previously pointed out there are three bands cross
EF . The energy dispersion of these three bands can be
tained by integrating out all low-lying O 2p degrees of free-
dom using the Lo¨wdin down-folding procedure.24 The
energy-band dispersions we obtain areE1,2,3(k), where
E1,2(k) and E3(k) denote the bands derived from a comb
nation of Rudxz , dyz and from Rudxy orbitals, respectively.
The explicit expression of these energies are reported in
Appendix.

III. RESULTS AND DISCUSSION

We fix the parameters inHxy andHz by requiring that the
volumes enclosed by the three bands coincide with th
measured in quantum oscillations, i.e., 0.475 and 0.667
the electron bands (E2 and E3 , respectively! and 0.108 for
e-
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the hole band (E1) and the composition of MO is the sam
as deduced from EHT, i.e., the relative values of the stren
of hopping parameters are fixed by the composition of M
Besides, the LDA resulted2ep51.5 eV is used to fix the
overall energy scale. The parameters we obtained with
above fitting procedure are (t1,t2,t3,t4,t5,t6)5(1.1,20.52,
0.1,0.025,0.85,0.25! eV and (ep ,exy ,ed)5~22.4,21.9,
20.9! eV.

Figure 2 shows the energy dispersion~thin lines! for the
above three bands along a few high-symmetry lines. T
bands structure near and belowEF is strongly anisotropic
and all the bands show a very little dispersion along thekz
axis, as is evident from the small dispersion along the sh
G-Z direction. It is worth mentioning thatE3(k) is kz disper-
sionless by construction.

We want to stress that our simple calculations reprod
the main features of LDA band structure, i.e.,E1,2(k) bands
are degenerate atG point, the band maxima locate atX point
for all three bands andE3(k) is more dispersive. This is
evident from the same Fig. 2 where the band structure n
EF obtained by Singh6 is reported~thick lines!. The agree-
ment between LDA computations and our calculations gi
confidence that our simplified model captures the essen
physics of Sr2RuO4 at least nearEF .

Fermi surface is shown in Fig. 3. It consists of three
most cylindrical sheets: two of such sheets are large elect
like cylinders centered atG point and the last surface i
hole-like cylinder centered atX point. In particular, the sur-
face associated with the Rudxy state forms a cylindrical
sheet showing no dispersion along thekz direction while the
other two bands give rise to corrugated cylinders. It is wo
noticing that very recent angular dependent dHvA osci
tions experiments9 show three almost cylindrical branche
but little corrugated. In our calculations the bands originat
from Ru dxz-dyz agree in the shape with the experimen
results, but that produced by Rudxy shows no modulation
along thekz axis for symmetry reasons. Of course a mo
detailed analysis needs to explain the experimental data.
instance, exchange terms between electrons in thet2g Ru d
orbitals connecting in an indirect way thedxy orbital to api-
cal oxygen orbitals produce akz dependence of thedxy band.
Calculations in this direction are in progress as well a
detailed study of the Yamaji effect in Sr2RuO4.

The Fermi-surface topology obtained here, i.e., two el
tronlike sheets centered at theG point and one holelike shee
centered at theX point, is different from that deduced from
ARPES experiments.10 In these measurements the Fermi s
face seems to be composed by two hole-like sheets and
electronlike sheet. Moreover, in both cases the electron co

FIG. 2. Calculated energy band structure along high-symm
lines ~thin lines!, near the Fermi level~dashed line!. The energy
band structure calculated within the LDA method by Singh~Ref. 6!
is also presented~dashed lines!. In this latter case only the band
close toEF are reported.
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PRB 59 2663ENERGY BANDS AND FERMI SURFACE OF Sr2RuO4
is the same. According to the results reported in,25,3 the dis-
crepancy between the Fermi surface topology observe
the photoemission experiments and in LDA calculations a
dHvA measurements, as well as in the results of this pa
could be related to the fact that dHvA and band struct
computations yield the bulk electronic structure of Sr2RuO4
while ARPES results reflect the surface structure. It is a
worth noticing that ARPES Fermi surfaces would yie
dHvA frequencies of 3, 8.7, and 10.8 kT~Ref. 26! instead of
measured values of 3.05, 12.7, and 18.5 kT, each of wh
number is accurate to 1%. We want to stress that the dH
identification of one small hole pocket and two electr
pockets is also consistent with the negative sign of the H
coefficient at low temperatures.

The values of the average Fermi wave vectors of the th
sheets and the total density of states~DOS! at the Fermi
energy are summarized in Table II where the experime
and LDA averaged Fermi wave vectors are also repor
From an inspection of this table we can observe a quite g
agreement between experimental results and the data
tained in the present paper.

FIG. 3. Calculated Fermi surfaces in the Brillouin zone. P
spective view of the hole and electron sheets of the Fermi sur
derived from the hybridized Rudxz , dyz , and dxy bands in the
Brillouin zone. The largest electronlike Fermi surface correspo
to the hybridizedd dxy band. The center of this Brillouin zone is th
G point.

TABLE II. Fermi parameters for the three bands. In the fi
column is reported the MO; column 2 contains the Fermi wa
vector (kF) here calculated; in columns 3 and 4 are reported
experimental and LDAkF . Column 5 refers to the density of state
at EF .

Band

kF kF (LDA) kF (expt.) r(EF)

Å 21 Å 21 Å 21 states/Ry

E1 0.766 0.732 0.75 30.8
E2 0.312 0.319 0.302 3.6
E3 0.618 0.638 0.621 22.6
in
d
r,
e

o

h
A

ll

e

al
d.
d
b-

The total density of states is plotted in Fig. 4. At fir
sight, one can observe three peaks well separated which
due to Van Hove singularities~VHS’s! present in each band
that are related to the almost dispersionless character o
bands along thekz direction. The position ofEF ~dot line!
falls on the low-energy side of the sharp peak that occ
approximately at 0.1 eV aboveEF and is related to the firs
VHS. This VHS is due to the change in Fermi surface top
ogy that happens rigidly shifting the lower of the two ban
crossingEF along the longG-Z direction, in a way that the
maximum gets close to the singularity. It is worth pointin
out that the realization, if it is possible, of removing abo
0.1 O~2! atoms per cell would position theEF at this VHS,
giving insight on the effect on superconductivity of the e
hancement of the DOS atEF . The upper of the two band
leads to a second VHS close to the band edge at 0.28
approximately aboveEF , while the holelike band presents
sharp peak close to the bottom of the DOS at approxima
1 eV below EF . The value of the density of states at th
Fermi energy isr(EF)557 states/Ry, which is in good
agreement with the LDA estimate of 56.2 states/Ry.6 The
presentr(EF) value gives a temperature linear coefficient
the specific heat of 9.88 mJ/K2 mol and Pauli paramagneti
susceptibility of 1.3531024 emu/mol which are smalle
with respect to the observed results on the normal state p
erties, namely,gexp539 mJ/K2 mol and xexp59.731024

emu/mol.1

The explicit knowledge of the energy spectrum gets a
possible the calculation of several transport properties. As
application, here we will determine the temperature dep
dence of the Hall coefficientRH .

As referred to in the Introduction,RH has a complicated

-
ce

s

FIG. 4. Total density of states. The Fermi level is denoted by
vertical dashed line.
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2664 PRB 59CANIO NOCE AND MARIO CUOCO
temperature dependence behavior as might be expected
material with electronlike and holelike carriers. Assumi
that the three sheets of the FS are circular and the mean
path l is isotropic and the same for all the pocke
Mackenzie et al.11 obtained a prediction ofRH520.9
310210 m3/C that compares well with the measured val
of 21.15310210 m3/C. This result is improved whenl is
the same for the two electron pockets but different for
hole one.11

We report therein the theoretical calculation ofRH for two
types of carriers using the explicit expression for the ene
spectrum obtained in the previous section. The in-plane H
coefficient is given by the following formula:

RH5
sxy

Bsxx
2

.

sxy and sxx are the in-plane and thex-axis conductivities,
respectively, andB is the external applied magnetic field. T
computesxy and sxx we use the Jones-Zener expansion
the distribution functiong(k) which determines the densit
currentJW through the formula

JW5
2e

~2p!3E d3kvW ~k!g~k!,

where vW (k)51/\¹W «(k) is the velocity of the particle ink
space. Sinceg(k) is a function of the band energy spectru
we can calculateRH using the actual energy bandsEi(k).

The x axis and in-plane conductivity for thei band at
lowest order can be expressed as follows:

sxx
~ i !5

2e

~2p!3\2E d3kS 2
] f

]Ei
D t i S ]Ei

]kx
D 2

and

sxy
~ i !52

2e3B

~2p!3\4E d3kS 2
] f

]Ei
D t i S ]Ei

]kx
D

3F]Ei

]ky

]

]kx
S t i

]Ei

]ky
D2

]Ei

]kx

]

]ky
S t i

]Ei

]ky
D G .

Here f is the Fermi function andt i is the relaxation time
related to the bandEi(k). To calculate explicitlyRH we
suppose thatt i is isotropic, i.e.,k independent and varies a
T2 for each band.27 This assumption is based on the hypo
esis of a scattering dominated by the electron-electron
hole-hole interaction and this in turn implies that the res
tivity varies as T2, as experimentally observed at lo
temperatures.12,13 Therefore, it is natural to assume for ea
band

t i5Ai1BiT
2 ~ i 51,2,3!,

whereAi andBi are ad hoc constants. Generalizing the e
pression ofRH for a multiband system we have28
r a

ree
,

e

y
ll

f

-
d

-

-

RH5

(
i

sxy
~ i !

B(
i

~sxx
~ i !!2

.

The low-temperature behavior ofRH is plotted in Fig. 5.
The curve has been obtained using for the electronlike ba
the samet, with A51.13 andB50.0023, whileA51 and
B50.0016 have been used for the holelike band. In the sa
figure the experimental data reported in~Ref. 11! are repre-
sented by triangles. We can see that we reproduce the
change from negative to positive value at low temperatu
but the actual variation ofRH with temperature is more com
plex. Indeed, our results reproduce with quite good accur
the trend of experimental data only for temperatures less t
40 K. This discrepancy may be related to the assump
made for the relaxation rates. Both the in-planerab and out
of plane rc resistivity vary asT2, to high accuracy, only
below 25 K. Above this temperature,rab raises monotoni-
cally and it can be modeled well with a weighted sum ofT
andT2 contributions, with a sharpT component, whereasrc
shows a pronounced peak at about 130 K.12,13 This behavior
results in a change of the temperature dependence of
scattering amplitude probability implying a deviation from
T2 power law fort.

IV. CONCLUSIONS

The electronic energy band structure of Sr2RuO4 has been
calculated by using a simple combined EHT–tight-bindi
method. Our calculations reproduce with good accura

FIG. 5. Temperature dependence of the in-plane Hall coeffic
RH . RH is measured in 10210 m3/C. The triangles denote the ex
perimental data taken from Ref. 10.



ce
n

il-
a
W
o

to
os
rd
w

l c
o
a

gn
e
te
ic

th
-

i

T.
-

s-

PRB 59 2665ENERGY BANDS AND FERMI SURFACE OF Sr2RuO4
LDA results, showing almost dispersionless Fermi surfa
alongkz direction and thus supporting the quasi two dime
sional nature of Sr2RuO4.

We have derived an appropriate tight-binding Ham
tonian, as well as analytical expressions for energy bands
for the constant-energy contour near the Fermi surface.
point out that the analytical formula for energy bands
electrons around the Fermi level here presented can
readily used to analyze physical quantities in which the
pology of the Fermi surface is important as well as the p
sibility of superconducting instability within the standa
broken-symmetry Hartree-Fock scheme. In this respect,
have computed the temperature dependence of the Hal
efficient assuming that the main contribution to scattering
carriers is electron-electron or hole-hole interaction and v
ies with aT2 power law. This model can reproduce the si
changes ofRH but not the behavior above 70 K, where th
Hall coefficient starts to decrease. A more sophistica
model including the temperature dependence of the chem
potential as well as thek dependence oft and a different
temperature law for the relaxation rate needs to explain
temperature behavior ofRH and is currently being devel
oped. Calculations in this direction are in progress and w
be presented in a forthcoming publication.
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APPENDIX

In the following for completeness we report the expre
sion of hopping parameters introduced in Sec. II:

t1i~k!522t1isin~ki /2 ~ i 5x,y!, ~A1!

t2~k!524t2sin~kx/2!sin~ky/2!,

ak524t3cos~kx/2!cos~ky/2!,

bk54t4cos~kx/2!sin~akz/2!,

ck54t4cos~ky/2!sin~akz/2!,

ek52t5sin~kx/2!,

f k52t5sin~ky/2!,

gk52t6sin~akz/2!.

Using these quantities theE3 band reads as follows:
E35
@«xy„~«p2m!22t2

2
…1mt1x

212t2t1xt1y1mt1y
2 2«p~ t1x

2 1t1y
2 !#

@~«p2m!22t2
2#

.

By mean of Eqs.~A1! and the definitions below one ca
write the hybridizedE1,2 bands in the following way:

E15 1
2 @a111a221A~a112a22!

214ua12u2#,

E25 1
2 @a111a222A~a112a22!

214ua12u2#,

where

a115
N1

D
,

a225
N2

D
,

a125a21* 5
N3

D
,

with
N15bk
2«d~ck1«p2m!~ck2«p1m!1~«p2m!

3$ak
2~2«d«p1gk

2!

1~ck2«p!~ck1«p!~ek
22«d«p1gk

2!

1@2ek
2«p1«d~ak

21ck
223«p

2!12«pgk
2#m

2~ek
223«d«p1gk

2!m22«dm3%,

N25bk
2
„ck

2«d2@ f k
22gk

21«d~«p2m!#~«p2m!…

2$ak
2
„2gk

21«d~«p2m!…

1@ck
2«d2~ f k

22gk
21«d~«p2m!#~«p2m!%~«p2m!,

N35ak„ibkgk1ek~«p2m!…~«pf k2 ickgk2 f km!,

D5@bk„2ck
21~«p2m!2

…

1~«p2m!2~2ak
22ck

21«p
222«pm1m2!#.
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