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Phase diagram of the two-chain Hubbard model
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We have calculated the charge gap and spin gap for the two-chain Hubbard model as a function of the
on-site Coulomb interaction and the interchain hopping amplitude. We used the density matrix renormalization
group method and developed a method to calculate separately the gaps numerically for the symmetric and
antisymmetric modes with respect to the exchange of the chain indices. We have found very different behav-
iors for the weak and strong interaction cases. Our calculated phase diagram is compared to the one obtained
by Balents and Fisher using the weak coupling renormalization group technique.@S0163-1829~99!05404-1#
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Although the Luttinger liquid behavior of the one
dimensional Hubbard model has been well understood,
two-dimensional Hubbard model, which is believed to
related to the understanding of the highTc
superconductivity,1 is not yet clear. As a crossover betwe
one and two dimensions, the two-chain Hubbard mode
certainly a good theoretical basis for the ladd
compounds.2,3 It is important to understand how two Lu
tinger liquid systems evolve to the ladder system as the
terchain coupling is introduced.

The Hamiltonian for the two-chain Hubbard model is

H52t uu (
l ,^ i , j &,s

~cli s
† cl j s1H.c.!

2t'(
i ,s

~c1is
† c2is1H.c.!1U(

l ,i
nli ,↑nli ,↓ , ~1!

where l is the chain indexl 51,2. We have the intrachai
hopping t uu term, the interchain hoppingt' term, and the
on-site Coulomb interactionU term. t uu51 in this paper.

Several authors have studied the phase diagram of
two-chain Hubbard model using the weak coupling ren
malization group method.4–6 At half filling the system is an
insulator with a spin gap. Upon light hole doping, for sm
t' the spin gap remains finite. For larget' the complete
separation between the bonding band and the antibon
band leads the system to a Luttinger liquid phase. Howe
it remains unclear for largeU case which is equivalent to th
t-J ladder.7–10 Balents and Fisher described the phase
terms of number of gapless charge and spin modes, w
they denoted by CnSm, wheren is the number of gaples
charge modes andm is the number of gapless spin mode6

For our work we also use this notation. Their phase diagr
is rather diverse in the hole-doped region. Interestingly, t
found phases such as C2S2 and C2S1 between the C
PRB 590163-1829/99/59~4!/2587~4!/$15.00
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Luttinger liquid phase and the spin-gapped C1S0 phase.
phase diagram is qualitatively the same for different elect
filling n, except for the cases of half filling, quarter filling
and a half-filled bonding band, where the umklapp proc
will be relevant.

Since most of the previous results done by the weak c
pling renormalization group method may be reliable only
theU→01 limit, the questions are whether it will be simila
for finite U and whether it will depend onU. Noack et al.
have studied the correlation functions and the gaps for fi
U using the density matrix renormalization group~DMRG!
method.11 They found the enhancement of thed-wave pair-
ing correlation function for the spin-gapped phase at a ra
anisotropic regimet'.t uu , though they cannot distinguis
the symmetric and antisymmetric modes. Hence it is diffic
to determine which CnSm phase it is. To understand th
phase diagram in detail and to make a comparison with
weak coupling result it is necessary to study the charge
spin excitations in different modes for finiteU.

In this paper we study the phase diagram of the two-ch
Hubbard model by calculations of the charge and spin g
for the symmetric mode and antisymmetric mode, resp
tively, for finite values ofU at a fixed electron fillingn
50.75. Using this result, we can easily understand the re
for other electron filling. For our study, we use the DMR
method12,13and develop a method to differentiate the mod

We take the transform ofc operators in terms of bonding
and antibonding forms

c6 is5
1

A2
~c1is6c2is!. ~2!

Then the Hamiltonian becomes
2587 ©1999 The American Physical Society
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H52t uu (
^ i , j &,s

~c1 is
† c1 j s1c2 is

† c2 j s1H.c.!

2t' (
i ,s

~c1 is
† c1 is2c2 is

† c2 is!

1
U

2 (
i

@~n1 i↑1n2 i↑!~n1 i↓1n2 i↓!

1c1 i↑
† c1 i↓

† c2 i↓c2 i↑1c2 i↑
† c2 i↓

† c1 i↓c1 i↑

1c1 i↑
† c2 i↓

† c1 i↓c2 i↑1c2 i↑
† c1 i↓

† c2 i↓c1 i↑#. ~3!

Besides the usual symmetry of the total spinS and Sz , the
translational symmetry along the chain direction, the Ham
tonian also has the symmetry of the exchange of the ch
indices. The symmetry of the total state under the excha
of two-chain indices depends on the symmetries of the w
function of each particle. It is decided by the number
particles on the odd chain of the newly transformed Ham
tonian since the evenness and oddness of the number of
ticles on the odd chain is not changed by the Hamiltonian
the number of particles on the odd chain is odd, the to
state is antisymmetric; if the number is even, the total stat
symmetric. In the DMRG calculation, we define the symm
try under the chain exchange of each base or sector in te
of the number of particles on the odd chain and so we h
the option to choose the symmetry and to be able to calcu
the ground state energy of a given symmetry. We also
the open boundary condition here, hence there is no tran
tional symmetry along the chain direction.

For a set of given values ofU, t' , and electron fillingn,
the charge gaps and spin gaps are defined as

Dc15
1

2
@E1~Q12,S5Sz50!

1E1~Q22,S5Sz50!22E1~Q,S5Sz50!#,

~4!

FIG. 1. Gaps versus 1/L to calculate the thermodynamic value
of gaps forU58 and t'51.7. We denote symmetric charge ga
with closed circles, antisymmetric charge gaps with diamonds, s
metric spin gaps with open circles, and antisymmetric spin g
with squares.
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Dc25E2~Q,S5Sz50!2E1~Q,S5Sz50!, ~5!

Ds15E1~Q,S5Sz51!2E1~Q,S5Sz50!, ~6!

Ds25E2~Q,S5Sz51!2E1~Q,S5Sz50!, ~7!

where 6 is the symmetric or antisymmetric mode and
energies are the lowest energy for each set of quantum n
bers. Here we assume the total number of the particle
even. In each iteration of the DMRG calculation, we typ
cally keepM5200 states for the block. We calculated ga
for various size of lattices with lengthL58, 12, 16, and 20
and extrapolated the thermodynamic values by 1/L polyno-
mial expansions. In the DMRG calculation, we only utiliz
the conservation ofSz , not the total spinS. To identify the
total spinS correctly it is necessary to checkS values of the
lowest energy state in each sector. For theSz50 sector with

-
s

FIG. 2. Spin gaps versust' for U58 for ~a! the symmetric
mode and~b! the antisymmetric mode. We denote values forL
58 with diamonds,L512 with squares,L516 with open circles,
andL5` extrapolated values with closed circles.
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a symmetric mode, the ground state is theS50 state. For the
Sz51 sector with a symmetric mode, the ground state iS
51 state and the same is true for theSz51 sector with an
antisymmetric mode. However, for theSz50 sector with an
antisymmetric mode, the ground state is theS51 state rather
thanS50, which implies thatDc2>Ds2 for finite size lat-
tices. Therefore, to calculate the antisymmetric charge
we need to find theS50 state, which is an excited state. W
find this state by calculating the expectation values ofS for a
few excited states.

Figure 1 shows the finite size extrapolation used to ob
the thermodynamic values of the gaps forU58 and t'
51.7. The symmetric charge gapDc1 and the symmetric
spin gapDs1 vanish. In particular, for the entire range ofU
and t' ,Dc1 always vanishes atn50.75. The antisymmetric
charge gapDc2 and the antisymmetric spin gapDs2 are
finite. Dc2 is larger thanDs2 for all sizes of lattices but for
the longer lattice the difference between them is smal
Since we take the ground state as the target state for
calculations of the density matrix in the DMRG method, t

FIG. 3. Same as Fig. 2 but forU51.
p
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accuracy of the excited states is not as high as that of
ground state and this is even more serious for longer latt
and for smallt' .

For a strong interactionU58, Ds1 andDs2 are plotted in
Fig. 2 as functions oft' for various sizes of lattices includ
ing L5` extrapolated values. For most values oft' we get
very good extrapolations for bothDs1 andDs2 with threeL
values: 8, 12, and 16. There are some points neart'51.0 for
which we are not able to get a good extrapolation. Ast'
decreases fromt'52.0,Ds2 decreases, but does not vani
until t'50.6, andDs1 opens up aroundt'51.5. Since we
always have one gapless symmetric charge mode, tha
Dc150 andDc2>Ds2 , the phase changes from the C1S
phase to the C1S0 phase aroundt'51.5. Between these two
phase we do not have phases such as C2S2 and C2S1, w
are found in the results forU→01 limit by Balents and
Fisher.6 We stop our calculations att'50.6 because the
DMRG calculation has poor accuracy for smallt' .

The vanishing ofDs2 at t'50.6 can be understood from
the t'50 limit. In this limit, two chains will be completely
decoupled to two one-dimensional chains, which is the L
tinger phase, and we will have the C2S2 phase with all g
less modes. So, ast' decreases all gaps will vanish one b
one and eventually we will have the C2S2 phase in thet'
50 limit. The linear behavior ofDs2 in the C1S1 phase
region fort'.1.5 can be understood in the limit of infinitel
larget' . In this limit, Ds2 measures the separation betwe
the bonding band and the empty antibonding band. In
physically interesting isotropic regiont'51.0, both spin
gaps are similar in magnitude but are finite, which is cons
tent with previous results.11 Also, they increase slowly ast'
increases. This is compatible with the results for thet-J lad-
der, which is the linear behavior of the spin gap inJ'(Ds

;J';t'
2 /U).7,9 The increasing behavior ofDs1 for t'

,0.7 is an artifact from the poor convergence of the DMR
method for smallt' .

Figure 3 shows the same figures as in Fig. 2 but for

FIG. 4. Phase diagram atn50.75. We denote the C1S1 phas
with open circles, C1S0 with squares, C2S2 with closed circles,
C2S1 with diamonds. We also show the phases for the noninte
ing case.
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weak interactionU51. Unlike theU58 case,Ds1 does not
open up andDs2 vanishes aroundt'51.7, whereDc2 also
vanishes so that we have a transition from the C1S1 phas
the C2S2 phase. Ast' decreases further, we have finite si
fluctuations so that we cannot calculateL5` gaps untilt'
50.8. Surprisingly, in a small region oft' ,0.6<t'<0.8,
there is little finite size fluctuation. We find that bothDs1

and Ds2 vanish. On the other hand,Dc2 is finite, but con-
sidering the overestimation ofDc2 because of the inaccurac
of the excited states and the system being two decou
Luttinger liquid systems for smallt' , presumably it also
vanishes and we have the C2S2 phase. If we smoothly
nect this region to the region witht'.1.7, it is plausible to
assume that the phase remains gapless. Therefore, in
weak interaction case, there will be only one transition fro
the C1S1 phase at larget' to the C2S2 phase at smallt' and
this is rather consistent with the noninteracting limit. In t
C1S1 phase, we also have the linear behavior ofDs2 with
smallerDs2 thanU58 case but with larger slope.

With calculations for other values ofU, we plot the phase
diagram in the space oft' andU at n50.75 in Fig. 4. It is
clear that the strong interaction case (U58) and the weak
interaction case (U51) are clearly different.U52 case is
the same as theU51 case andU54 seems to be similar to
to

ed

n-

his

the U58 case regardless of the existence of the finite s
fluctuations. The transition point oft' between two different
phases decreases fromt'.1.7 for the noninteracting case a
U increases. When we have differentn, the transition point
of t' will be changed because it is around the value of
noninteracting limitt'512cospn, just as in the weak cou
pling case.6 Therefore, for differentn the whole phase dia
gram will be shifted in thet' direction.

In conclusion, we have derived the phase diagram of
two-chain Hubbard model in terms of charge and spin ex
tations for both symmetric and antisymmetric modes at fix
electron filling. We have found very different behaviors f
the weak and strong interaction cases. The transition fr
the noninteracting limit to the interaction case seems to
rather gradual, and beyond a finite value ofU we have the
spin-gapped phase at the isotropic regiont'51.0, which is
consistent with the previous results for the strong interact
case and thet-J model.
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