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Phase diagram of the two-chain Hubbard model
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We have calculated the charge gap and spin gap for the two-chain Hubbard model as a function of the
on-site Coulomb interaction and the interchain hopping amplitude. We used the density matrix renormalization
group method and developed a method to calculate separately the gaps numerically for the symmetric and
antisymmetric modes with respect to the exchange of the chain indices. We have found very different behav-
iors for the weak and strong interaction cases. Our calculated phase diagram is compared to the one obtained
by Balents and Fisher using the weak coupling renormalization group techh®(63-18209)05404-1

Although the Luttinger liquid behavior of the one- Luttinger liquid phase and the spin-gapped C1S0 phase. The
dimensional Hubbard model has been well understood, thphase diagram is gqualitatively the same for different electron
two-dimensional Hubbard model, which is believed to befilling n, except for the cases of half filling, quarter filling,
related to the understanding of the highT,  and a half-filled bonding band, where the umklapp process
superconductivity, is not yet clear. As a crossover between will be relevant.
one and two dimensions, the two-chain Hubbard model is  since most of the previous results done by the weak cou-
certainly a good theoretical basis for the ladderpjing renormalization group method may be reliable only in
c_ompom_md_§: It is important to understand how two Lut- they—.0* Iimit, the questions are whether it will be similar
tinger liquid systems evolve to the ladder system as the infy; finite U and whether it will depend ob). Noacket al.
terchain cou.plmg is introduced. . . have studied the correlation functions and the gaps for finite

The Hamiltonian for the two-chain Hubbard model is U using the density matrix renormalization gro(PMRG)

method!! They found the enhancement of tHevave pair-
H=—t, Z (cﬁ ,CljotH.C) ing correl_ation function for the spin-gapped phase e}t a r.ather
LGy anisotropic regimet, >t;, though they cannot distinguish
the symmetric and antisymmetric modes. Hence it is difficult
—HE (el Coipt H.c.)+U2 ni My, (1) 1O determine which @Sm phase it is. To unde.rstand_the
o Li phase diagram in detail and to make a comparison with the
) o _ ~weak coupling result it is necessary to study the charge and
wherel is the chain indeX=1,2. We have the intrachain gpin excitations in different modes for finite.
hopping t term, the interchain hopping term, and the In this paper we study the phase diagram of the two-chain
on-site Coulomb interactiob) term.t)=1 in this paper. Hubbard model by calculations of the charge and spin gaps

Several authors have studied the phase diagram of thgr the symmetric mode and antisymmetric mode, respec-
two-chain Hubbard model using the weak coupling renor+jvely, for finite values ofU at a fixed electron fillingn
malization group methoff:° At half filling the system is an  —0.75. Using this result, we can easily understand the result
insulator with a spin gap. Upon light hole doping, for small for other electron filling. For our study, we use the DMRG
t, the spin gap remains finite. For large the complete method®**and develop a method to differentiate the modes.
separation between the bonding band and the antibonding e take the transform af operators in terms of bonding
band leads the system to a Luttinger liquid phase. Howeveizng antibonding forms
it remains unclear for large case which is equivalent to the
t-J ladder’~1° Balents and Fisher described the phase in
terms of number of gapless charge and spin modes, which
they denoted by CnSm, whereis the number of gapless
charge modes anah is the number of gapless spin modes.
For our work we also use this notation. Their phase diagram
is rather diverse in the hole-doped region. Interestingly, they
found phases such as C2S2 and C2S1 between the C1S1Then the Hamiltonian becomes

1
Cii(r:E(Cli(riCZi(r)- (2)
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FIG. 1. Gaps versus lL/to calculate the thermodynamic values
of gaps forU=8 andt, =1.7. We denote symmetric charge gaps (b)
with closed circles, antisymmetric charge gaps with diamonds, sym-
metric spin gaps with open circles, and antisymmetric spin gaps
with squares.
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Besides the usual symmetry of the total sfimndS,, the
translational symmetry along the chain direction, the Hamil-
tonian also has the symmetry of the exchange of the chain
indices. The symmetry of the total state under the exchange
of two-chain indices depends on the symmetries of the wave FIG. 2. Spin gaps versus for U=8 for (a) the symmetric
function of each particle. It is decided by the number ofmode and(b) the antisymmetric mode. We denote values for
particles on the odd chain of the newly transformed Hamil-=8 with diamonds) =12 with squares|. =16 with open circles,
tonian since the evenness and oddness of the number of pa@ndL =2 extrapolated values with closed circles.

ticles on the odd chain is not changed by the Hamiltonian. If

the number of particles on the odd chain is odd, the total A._=E_(Q,S=S,=0)—-E (Q,S=S5,=0), (5)
state is antisymmetric; if the number is even, the total state is
symmetric. In the DMRG calculation, we define the symme- A, =E.(Q,5=S,=/1)—-E, (Q,S=S5,=0), (6)

try under the chain exchange of each base or sector in terms

of the number of particles on the odd chain and so we have A,_=E_(Q,S=S,=1)-E.(Q,S=S,=0), 7

the option to choose the symmetry and to be able to calculate ) ) ) ]

the ground state energy of a given symmetry. We also us&here = is the symmetric or antisymmetric mode and all
the open boundary condition here, hence there is no transignergies are the lowest energy for each set of quantum num-

tional symmetry along the chain direction. bers. Here we assume the total number of the particles is
For a set of given values &f, t, , and electron fillingn, even. In each iteration of the DMRG calculation, we typi-
the charge gaps and spin gaps are defined as cally keepM =200 states for the block. We calculated gaps

for various size of lattices with length=8, 12, 16, and 20
and extrapolated the thermodynamic values ly gélyno-
mial expansions. In the DMRG calculation, we only utilize
e e the conservation 08,, not the total spirS. To identify the
TE+(Q=25=5,=0)-2E.(Q,5=5,=0)], total spinS correctly it is necessary to che&values of the
(4) lowest energy state in each sector. For $e 0 sector with

Ac+:%[E+(Q+2:S:Sz:O)
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FIG. 3. Same as Fig. 2 but fas=1.

a symmetric mode, the ground state is 80 state. For the
S,=1 sector with a symmetric mode, the ground stat§ is
=1 state and the same is true for tBg=1 sector with an
antisymmetric mode. However, for tf&=0 sector with an
antisymmetric mode, the ground state is 8wl state rather
than S=0, which implies thatA._=A_ for finite size lat-
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FIG. 4. Phase diagram at=0.75. We denote the C1S1 phase
with open circles, C1S0 with squares, C2S2 with closed circles, and
C2S1 with diamonds. We also show the phases for the noninteract-
ing case.

accuracy of the excited states is not as high as that of the
ground state and this is even more serious for longer lattices
and for smallt, .

For a strong interactiod =8, A;, andA;_ are plotted in
Fig. 2 as functions of, for various sizes of lattices includ-
ing L= extrapolated values. For most valuest pfwe get
very good extrapolations for bothg, andAg_ with threeL
values: 8, 12, and 16. There are some points hearl.0 for
which we are not able to get a good extrapolation. tAs
decreases from, =2.0,A5_ decreases, but does not vanish
until t, =0.6, andA, opens up around, =1.5. Since we
always have one gapless symmetric charge mode, that is,
A.,=0 andA._=A,_, the phase changes from the C1S1
phase to the C1S0 phase aroune 1.5. Between these two
phase we do not have phases such as C2S2 and C2S1, which
are found in the results fo —0* limit by Balents and
Fisher® We stop our calculations at, =0.6 because the
DMRG calculation has poor accuracy for smagll.

The vanishing ofA;_ att, =0.6 can be understood from
thet, =0 limit. In this limit, two chains will be completely
decoupled to two one-dimensional chains, which is the Lut-
tinger phase, and we will have the C2S2 phase with all gap-
less modes. So, a&s decreases all gaps will vanish one by

tices. Therefore, to calculate the antisymmetric charge gapne and eventually we will have the C2S2 phase intthe
we need to find th&=0 state, which is an excited state. We =0 limit. The linear behavior ofA;_ in the C1S1 phase

find this state by calculating the expectation valueS fur a
few excited states.

region fort, >1.5 can be understood in the limit of infinitely
larget, . In this limit, A,_ measures the separation between

Figure 1 shows the finite size extrapolation used to obtairthe bonding band and the empty antibonding band. In the

the thermodynamic values of the gaps fd=8 andt;
=1.7. The symmetric charge gap,, and the symmetric
spin gapAg, vanish. In particular, for the entire range 0f
andt, ,A., always vanishes at=0.75. The antisymmetric
charge gapA._ and the antisymmetric spin gaps_ are
finite. A._ is larger thamA,_ for all sizes of lattices but for

physically interesting isotropic regioh, =1.0, both spin
gaps are similar in magnitude but are finite, which is consis-
tent with previous results: Also, they increase slowly as
increases. This is compatible with the results for tttielad-
der, which is the linear behavior of the spin gapJin(As
~J, ~t2/U)."® The increasing behavior oA, for t,

the longer lattice the difference between them is smaller<0.7 is an artifact from the poor convergence of the DMRG
Since we take the ground state as the target state for thethod for smalt, .

calculations of the density matrix in the DMRG method, the

Figure 3 shows the same figures as in Fig. 2 but for the
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weak interactiorlJ = 1. Unlike theU =8 caseA4, does not the U=8 case regardless of the existence of the finite size
open up and\,_ vanishes arountl =1.7, whereA._ also fluctuations. The transition point ¢f between two different
vanishes so that we have a transition from the C1S1 phase fithases decreases frd= 1.7 for the noninteracting case as
the C2S2 phase. As decreases further, we have finite size U increases. When we have differemtthe transition point
fluctuations so that we cannot calculdte- gaps untilt, of t, will be changed because it is around the value of the
=0.8. Surprisingly, in a small region df ,0.6<t, <0.8, n(_)ninteracting |imil‘[J_=1—C(_)87TI’], just as in the weak cou-
there is little finite size fluctuation. We find that both,,  Pling casé’ Therefore, for differenn the whole phase dia-
andA,_ vanish. On the other hand._ is finite, but con- 9ram will be shifted in the, direction. _

sidering the overestimation af,  because of the inaccuracy !N conclusion, we have derived the phase diagram of the

of the excited states and the system being two decoupletw"t.o'Cha;'n It—)lutt;1bard motdgl In éermtg of chatrge ancé splnt ?XCB
Luttinger liquid systems for small, , presumably it also ations for both Symmetric and antisymmetric modes at fixe

vanishes and we have the C2S2 phase. If we smoothly Coﬁectronglllmg. Vt\/e ha\_/et four;_d Very dlffe[rehnt E{)eha\_{tl_ors ;‘or
nect this region to the region with =1.7, it is plausible to € weax and strong Interaction cases. the fransition from

assume that the phase remains gapless. Therefore, in tﬁ@e noninteracting limit to the interaction case seems to be
weak interaction case, there will be only one transition fromrather gradual, and beyond a finite valuelbfwe have the

the C1S1 phase at large to the C2S2 phase at small and spin-_gapped_ phase at t_he isotropic regiorr 1.0, WhiCh is .
this is rather consistent with the noninteracting limit. In the consistent with the previous results for the strong interaction
C1S1 phase, we also have the linear behavioA gf with case and the-) model.

smallerA;_ thanU=8 case but with larger slope.

With calculations for other values &f, we plot the phase
diagram in the space @af andU atn=0.75 in Fig. 4. It is
clear that the strong interaction cadg=8) and the weak
interaction casel{=1) are clearly differentU=2 case is
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the same as thg=1 case andJ =4 seems to be similar to

016.

1p. W. AndersonThe Theory of Superconductivity in the High-
Cuprates(Princeton University Press, Princeton, 1897

2E. Dagotto and T. M. Rice, Scien@¥1, 618 (1996.

3D. J. Scalapino, Physica 282, 157 (1997).

4M. Fabrizio, A. Parola, and E. Tosatti, Phys. Rev4B 3159
(1992.

5D. V. Khveshchenko and T. M. Rice, Phys. Rev.3B, 252
(19949.

5L. Balents and M. P. A. Fisher, Phys. Rev5B, 12 133(1996;
H. H. Lin, L. Balents, and M. P. A. Fisheibid. 56, 6569
(1999.

"E. Dagotto, J. Riera, and D. Scalapino, Phys. RevisB5744
(1992.

8M. Sigrist, T. M. Rice, and F. C. Zhang, Phys. Rev4§ 12 058
(1994).

9H. Tsunetsugu, M. Troyer, and T. M. Rice, Phys. Rev4® 16
078 (1994.

%D, Poilblanc, H. Tsunetsugu, and T. M. Rice, Phys. Re\6@®
6511(19949; D. Pailblanc, D. J. Scalapino, and W. Hankeid.
52, 6796(1995.

1R, M. Noack, S. R. White, and D. J. Scalapino, Physica70,
281(1996; R. M. Noack, N. Bulut, D. J. Scalapino, and M. G.
Zacher, Phys. Rev. B6, 7162(1997).

125 R. White, Phys. Rev. Let69, 2863(1992; Phys. Rev. B48,
10 345(1993.

133, Liang and H. Pang, Phys. Rev.4B, 9214(1994; 51, 10 287
(1995.



