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Density-functional approach to electron dynamics: Stable simulation under a self-consistent field
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We propose efficient and stable numerical methods for simulating the electron dynamics within the time-
dependent density-functional theory and the nonlocal pseudopotential. In this scheme, time evolution of the
wave function is followed by self-consistently solving the time-dependent Kohn-Sham equation using the
higher-order Suzuki-Trotter type split-operator method. To eliminate the numerical instability problem and
increase the time step for the integration, we introduce the railway curve scheme to interpolate the self-
consistent potential and the cutoff schemes to smooth the kinetic energy operator and the charge density.
Applying these techniques to the electron dynamics of an Al cluster and the electron-ion dynamics of an
excited K cluster, we found that they significantly improve the stability and efficiency. This opens the possi-
bility of performing subpicosecond-long simulations of the transient dynamics of electrons and ions for a
number of materiald.S0163-18209)14403-5

I. INTRODUCTION ally less serious when studying the collision of energetic
particles. Third, we can extract information regarding how
The transient dynamics of electrons and ions have becomfast and to which surface the electron jumps from the part of
the target of extensive research owing to the development dhe simulation done before the branching problem becomes
experimental techniques such as the use of pulsed thsersignificant.
Such research has led us to the discovery of details concern- Several numerical difficulties, however, appear when ex-
ing, for example, ultrafast chemical reactions triggered bytensively applying the TD-DFT. First, the time step for the
electron excitatior,or the transport and decay of carriers in integration,At, is several hundred times smaller than the one
bulk or nanostructures.Theoretically, these reactions and used by the Car-Parrinello type molecular dynanti®).'®
the transport and decay of carriers can be studied by explid=or example, for carbomit was taken as 6610 * fs or
itly integrating the time-dependent many-body Sclinger  0.027 a.u while At for the Car-Parrinello type MD is about
equation with respect to time, but this method of calculation? a.u.(Ref. 1. The number of operations thus differs by
is much less developed than time-independent methods. Resughly three orders of magnitude. With such a smdll it
cently, time-dependent density-functional the6fD-DFT)® is impractical to simulate for subpicosecond intervals, which
has attracted much attention because it offers a reasonabka typical time scale required to induce a chemical reaction.
level of simplicity and accuracy. There have been severabecond, the total energy, which is a constant of motion in our
applications of this theory concerning the tunneling of eleccase, tends to significantly drift unless a prohibitively smaller
trons in mesoscopic quantum structutedectron transfer in At is used(see Sec. Il below for examplesThe drift often
the collision of microcluster3,and the excitation spectra of grows exponentially, and serious numerical instability even-
molecule$ Most TD-DFT calculations simply adopt the tually occurs. This problem does not appear in one-body cal-
adiabatic density functional for the exchange-correlation eneulations, but appears when the self-consistent potential is
ergy, though it does not include the memory efféctWhen  used. Therefore this is a problem inherent to many-body cal-
calculated results have been compared with those of an exaetlations such as in DFT and probably Hartree-Fock calcu-
calculation on a two-electron system or with experimentalations.
results, however, a satisfactory description was found to have In this context, our aim is to show howt can be in-
been given for several problems. Tunneling coefficieatsl  creased while eliminating the numerical instability. We ap-
excitation energyare two such examples. ply several numerical techniques: use of a higher-order
Applying the TD-DFT to mixed electron-ion dynamics Suzuki-Trotter type split operattras is frequently used for
may not always be justified because of the well-knownquantum Monte Carlo simulation, cutoff of the kinetic and
branching problem®*but such simulation can yield impor- potential energy operators as is done for the Car-Parrifiello
tant information for carefully selected problems. The branchtype plane-wave calculations, and the application of the rail-
ing problem is known to be significant when electrons devi-way (RW) curve interpolatiof? to update the self-consistent
ate from the adiabatic surface and the Hellmann-Feynmapotential. In particular, the newly introduced RW scheme
forces derived from each constituting adiabatic surface beplays an important role in stabilizing the simulation. When
come different from each othé?!! Yet, there are ways to these techniques are combinekt, can be significantly in-
avoid this problem. First, by adopting the surface hoppingcreased without leading to numerical inaccuracy or instabil-
prescription:? we can continue a simulation after the branch-ity. For exampleAt for Al and K becomes 0.5-1.0 a.u. and
ing by letting the electrons return to one of the adiabaticthe number of operations becomes only about two orders of
surfaces. Such simulations have been done recently by semagnitude larger than that of the Car-Parrinello type MD.
eral authors3~1°Second, the effect of the branching is usu- Below, we provide detailed formulations in Sec. | within the
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TABLE I. Parameter set for the sixth- and eighth-order Suzuki-Trotter decomposition. The parameters
determined by Suzuki) satisfy|p;|<1 while those determined by Yoshida) do not.

@

6thq=14 (p;=pis-i) 8thg=15 (p;=Pue+i)
p1=p; 0.392256805387732 Py 0.210902950774054 Ps 0.769771783843536
P3=pPa4 0.01177866066796810 p, 0.835657990415923 Ps 0.199415314882502
Ps=Ps¢ —0.5888399920894384 p3 —0.658440728286576 p- 0.0363152045812476

Ps=Ps 0.06575931603419684 p, —0.0774373402366569 pg —0.0892171910150694
(b)
6thg=7 (pj=ps-j)

p1 0.784513610477560
P, 0.0235573213359357
p3 —1.17767998418887
[ 1.31518632068391

nonlocal pseudopotential scheme. In Sec. Il we demonstratdsing the second-order symmetric decomposit®{x),

the capabilities of these combined techniques by doing higher-order decompositions can be constructed: For ex-

subpicosecond simulation of simple molecules, ahd K;. ample, the fourth-order symmetric decomposition can be
written as

S4(X) = Sp(P1X) S2(P2X) Sp(P3X) Sp(P2X) S(P1X),  (3)

where the parametegsfollow the equations

Il. METHOD OF CALCULATION

A. Suzuki-Trotter type split-operator method
In integrating the time-dependent Sctimger (Kohn-

Sham equation, we use the Suzuki-Trotter type split- 2p;+2p,+p3=1,
operator method® The split-operator method was originally (4)
introduced by Feit and co-workéPsto approximate the ex- 2p3+2p3+p3=0.

ponential of the Hamiltonian as a product of the exponential _
of the kinetic energy operatdF and the potential energy The set of solutions
operatorV as

1
1 pP1= 92:4_—41,3,
exp{—i(T+V)At]:ex;{—§iTAt exd —iVAt] -
1 ps=1—4p;
X exp{ - EITA'[ ) @) is a special one that minimizes nifx|,|p.},|ps|]. The param-

eters obtained for the sixth- and eighth-order schemes are
The advantages of this method are as follows. First, since shown in Table (a). The parameterp; given by Suzuki
andV, respectively, are diagonal in reciprocal space and reaatisfy |p;|<1 for all j, while the parameters previously
space, the exponential can be directly calculated. Secondiven by Yoshid4® do not[see Table (b)]. Minimizing the
since it keeps the unitarity of the time evolution, the ortho-maximum [p;| is known to be very important for Monte
normality of the wave functions is guaranteed, allowing us toCarlo simulations where imaginary time is used, but we have
skip the time consuming orthonormalization operation. Thisfound this is also advantageous when using real time.
is particularly advantageous when using parallel computers. Suzukf* also extended this scheme to the case containing
Third, this scheme is unconditionally stabfe?in that the  time-dependent operatoréSee also Ref. 25.For example,
simulation does not show divergent behavior even whién the fourth-order decomposition can be written as
is too large. This is unlike other methods where the exponen-

tial is expanded into a series bffAt. - L [trat B _ .
Suzuki® generalized this method and provided higher- T/ &P ~1 | H(s)ds| | =Sx(p1X;t1) S(p2X;ta)
order schemes for decomposing operators that consisted of
componentsH=39_,A,. According to Suzuki’'s method, X Sy(P3X;t3) Sy(poX;ts)
the exponential oH up to the second order of iAt(=x) ) 5
can be approximated as X Sy(P1X;ts) + O(x°),
oXH g(XI2A16(XI2)As | | | a(X2)Aq_ 1XAqe(X/2)Aq—1 S,(x;t) =Rl g2A1) . gX/2)Aq-1(V

X . . . eX2Axg(XI2A X @A g(X2Aq-1() .. g(XIDA(Dg(XDAL (6

=S5(X). 2 ti=t+(py+pat - +pj_1+p;/2)At,
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Ps=P1:Pa= P2, tonian consists of the kinetic energy operator, the Hartree-
. exchange-correlation potential, and the pseudopotentials cen-
whereT is the time-ordering operator. tered on each atorR,,

When applying the split-operator method to the TD-DFT,
the Suzuki-Trotter decomposition is suitable for several rea-
sons. First, decomposition can be performed even for the H=T+Vidpl+ > VP (r-R,), )
nonlocal pseudopotential calculation where the Hamiltonian 7im
consists of many noncommutable potentials, the Hartree-
exchange-correlation potential/,., and the nonlocal wherel andm stand for the angular and azimuthal quantum
pseudopotential¥,,,. Second, since th¥,,. is expected to numbers, respectively. In the Kleinmann-Bylander féfm,
be strongly dependent on time, the variation of the Hamil-the nonlocal pseudopotential can be written as
tonian betweern andt+ At should be explicitly taken into
account unless a sufficiently smalt is used. Third, to pre-
vent a loss of phase information concerning the dynamics VP ()=
after a long simulation, numerical accuracy achieved by us- 7
ing a higher-order scheme is important.

VEIPAY i) (P Yim| Vi
(PaYiml VAP Yim)

®

whereP ,; stands for the radial atomic pseudowave function
for the rth atom, andv®’ stands for the radial pseudopoten-

We will briefly discuss the algorithm for the TD-DFT tial. Y|, is the spherical harmonics. Since a power product of
pseudopotential simulation. The electronic part of the Hamil\/®} (r) can be written as

B. TD-DFT pseudopotential theory

VEIP Y im) (P Yim VEVEIP 4 Y1) "™ NP Y im | VI

{Vom(n)}"= 9
; (PaY il VEIP A Yim)"
for n=1, the exponential o¥";,(r) can be analytically given as
PAYiml VEVRIP Y
VIIP A Yim) | ex X< Vi ViVt P Y =11 (PaYm| VB
i (PaYimlVAIP AYim) i
exd xVP (n]=1+ T (10)
(PaYiml VRVEIP 1Y m)
|
In applying this scheme, it is necessary to express the pro-
jectors, e.g.VP . |P,Y,n), and to compute the matrix ele- e 1
ments, €.9.{PY\m| V3P Y m), within the same represen- So(pAtD)=ex 2 ITpAL
tation, whether reciprocal space or real space, so that both ascendin
sides of Eq.(9) are numerically exactly equated. Otherwise, H 9 1 os
the unitarity and conservation of the total energy are badly X1 1L exp = SiVan(Dpat
affected. Note that the"’ are not commutable to each other
when the pseudopotentials belonging to different atoms over- XeX — 1V ux(t)pAt]
lap. The condition of nonoverlapping was previously consid- descending
ered necessary to apply the split-operator metfdait that % 1—[ oxd — Eivps (H)pAt
is not the case here. Tim 2! VrAm(UP
To summarize, the wave function &t At to thenth or-
der of At is 1
! xex;{—lepAt}, (11)

where the multiplication is done symmetrically by first ar-
w(t+At)=U(t+At,t)¢(t)={H Sz(piAt;ti)}'p(t)v ranging the pseudopotentials in ascending orderlof and
' then in descending order.
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Using the wave function, the charge densityt &tAt is _ ) . ) .
given as p(r,t)=—I; ‘Pn(rat)H(Pn(r:t)‘H; en(r,HHeyp (r,t)

=—i2 on(r,)T i To
D AD=S (4 AD 2 w2 12 R (rOTen(rD i en(r,OTER(r,D)

=21m 2 ¢n(r,HTen(r,t)|, (15
Generally, the Hartree-exchange-correlation potential n
Vixe(t+At) constructed from the charge density is not con-the derivative of the potential can be obtained as
sistent with the one used for the time evolution fEq.
(11)], in that they discontinuously match &t At. Thus, we : Nuxd p(r,0)].
reconstructed the potentials betwdeandt+ At so that they Vi 1) = Sp(r,t) p(r,b).
would be continuously matched &t At, and this procedure ) ) )

was repeated until the matching was realized self/AVéraging the interpolated potential betwden, andt;, we
consistently. For the electron-ion dynamics, the Hellmannobtain the value used fov(t;) in Eq. (11). As we will
Feynman force obtained by the self-consistently determine@hoW in the next section, the RW scheme prevents the total

wave functiony is used for the Newton equation of ions at €nergy from drifting, allowing us to use a much larger time
each time step. step than that allowed when using the PC scheme.

(16)

D. Cutoff

C. Railway curve interpolation scheme To further increase the time stég, we can smooth the

In the reconstruction of the potential, the selection of thecharge density and the kinetic energy by cutting off highly
interpolation scheme is an important decision. The usual presscillating components in real space to reduce the amplitude
dictor corrector(PC) scheme uses+ 1 past potentialsi(is  of high-frequency components in real time. This is based on
usually 1-3, and interpolation is done using arth-order  the close relationship between the real space and real time
polynomial as for the high-frequency components of the wave function,

which has the form

1 exfiGr—iw(G)t]. (17)
V(s)= > ) ci(S)V(t+iAt), (13)

In this equation,w is approximately equal to the Fourier
component of the diagonal part of the Hamiltonian, and is
) G?2/2 for particularly large values d&. Therefore the ampli-
where the parameters are determined so as to reproducede of high-frequency components in real time can be re-
the potentials at each time slice. This procedure breaks thgced by cutting off the larg& component.

time-reversal symmetry, except for the second-order scheme, High-frequency Fourier terms of the kinetic energy opera-
because a larger weight is put on the past. However, thgy are cut off by modifying as

time-reversal symmetry is known to be very important for

numerical stability??? and to keep the symmetry, we pro-

pose using the railway curve interpolation schéere, T(G)=min

GZ
7 ’ Eprec} . (18)

This is essentially the same as the preconditioning technique
_[s—t=At)? developed for the Car-Parrinello type MD Similarly, the
V(s)= At high-frequency component of the potential can be reduced in

magnitude by smoothing the charge density in reciprocal

x| V(1) + AtV(t) + S_A—:t[zvmwt\'/(t)]} space,
e p(G)=p(G)feulG), (19
+ F) {3V(t+m)—m\'/(t+m)
fou(G)= : 20
s—t : } u G) 1+exd B(GY2—E¢y] (20
— ——[2V(t+At) + AtV(t+AD)] (14)
At The potential, which is a function op, then becomes

smooth. This mimics the standard plane-wave scheme where

. . o the cutoff is introduced by the step function as
for s betweent andt+ At, whereV is the time derivative of

the potential. This reproduces the potential up to the first _ 2

time derivative att andt+ At, and is accurate to the third P(G):P(G)®( Ecu— 7) (21)
order of At. The time derivative of the potential can be ana-

lytically obtained if we use the TD Kohn-Sham equation asWe use a smooth function because, contrary to the plane-
follows. Using the derivative of the charge density, wave scheme formulated in reciprocal space only, our
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FIG. 1. Typical time evolution of the dipole moment, which is a (b)
superposition of the intra-atomic depolarization having a period of 0-0007
2.3 fs and the interatomic charge transfer having a period of 21 fs.
Parameters used in this calculation wexé=1.0 a.u., the RW
scheme, fourth-order Suzuki-Trotter decompositiBg..~=6 Ry,
andE. =20 Ry.
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scheme is formulated both in reciprocal spdf@ T) and
real spacgfor V). Such a dual-space treatment is required ~0.020-

by the split-operator scheme whefeandV are diagonal in
reciprocal space and real space, respectively. In that case, O

p(r) obtained by Fourier transforming(G) can become time (£5)
negative unless a smooth cutoff is introduced. We have

found that a suitable value for the smoothing facmris FIG. 2. Typical time evolution of the error in the total energy,
between 0.5 and 1.0 a.u which consists of very fast fluctuation and long time-scale drift. The

drift shows a superlinear dependence on tifae When the RW
scheme was usddee(a) and the solid line in(b)], the drift became
significantly smaller than that when the PC scheme was [l

In this section we evaluate the performance of the abovéhe broken line in(b)]. Parameters used in this calculg_tion were
techniques by applying them to a simple model of the eIec-At:l'O a.u., fourth-order Suzuki-Trotter decompositioBye.

tron dynamics of A} and a model of the electron-ion dynam- =6 Ry, andEq,=20 Ry. Note that the energy scale @ is
ics of K. much smaller than that db).

lll. RESULTS

1. Railway curve versus the conventional predictor corrector

A. Electron dynamics of Al, In this subsection we compare the results obtained using

In our first example, we located two aluminum atoms 6the railway curve interpolation scheme and those obtained
bohrs apart and keeping the interatomic distance constant wesing the conventional predictor corrector interpolation
followed the electronic motion for up to 720 fs, which cor- scheme. We have found that the difference mainly appears in
responds to 30 000 time steps whit=1 a.u. We started the conservation of the total energy. Figure 2 shows how the
the simulation slightly shifted from the ground state by ini- error in the total energyk,(t) — Ex(t=0), evolved with
tially applying a uniform electric field parallel to the molecu- time. Parameters used in this calculation wenst
lar axis. The electric field, whose strength was 0.5 eV/bohr=1.0 a.u., the RW scheme, fourth-order Suzuki-Trotter for-
was then suddenly switched off when starting the simulationmula,Ey.=6 Ry, andE.,~=20 Ry. The error consisted of
The electronic motion had two main degrees of freedom: théong time-scale drift and very short time-scale fluctuation.
interatomic charge transfer and the intraatomic depolarizafhe drift often increased exponentially as shown in Fig),2
tion associated with rehybridization of the and 3, orbit-  indicating that the quality of the simulation can quickly de-
als. Because of the large interatomic dista@dohrs, the teriorate over the simulation. After 600 fs, we found that the
two motions had different time constants, 21 fs and 2.3 fsdrift was about 5<10 * a.u. (=0.01 eV) when the RW
for the interatomic and intra-atomic motion, respectively.scheme was used, while it was 0.02 d4.0.54 eV} when
Because of this, the total dipole moment behaved as showtme PC scheme was usgzke Figs. &) and 2b)]. Since this
in Fig. 1. Such two-mode motion is generally considered toamount, 0.54 eV, is almost the same as the typical energy
appear, for example, in the transfer of electrons in the colliscale of these dynamics, the present simulation using the PC
sion of heavy molecules or in tunneling in nanostructuresscheme is meaningless except for the initial part.

We will now explain in detail how the above techniques Next we systematically investigated the drift by changing
improve the numerical stability and efficiency. In the follow- the time stepAt between 0.03 and 1.0 a.(Fig. 3. The

ing electron dynamics of Al the local pseudopotential of conservation of the total energy was roughly 100 times better
Pickett, Louie, and Cohéhwas used to reduce the CPU for the RW scheme. Since the computational time required
time. The smoothing factor for the cutoff functigh was  when using each scheme is almost the same, the relative
taken to be 1.0 a.u. merit of the RW scheme is obvious.
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FIG. 3. The error in the total energy &t 143 fs plotted against
At. The error for the RW scheme is approximately 100 times
smaller than that for the PC scheme. Parameters used in this calc
lation were the fourth-order Suzuki-Trotter decompositi@,e.
=6 Ry andE. ;=20 Ry.

FIG. 5. Typical time evolution of error in the dipole moment.
Parameters used in this calculation were the RW scheme, second-
Sider Suzuki-Trotter decompositionE,e=6 Ry, and Egy
=20 Ry.

When we used the fourth-order PC scheme instead of th8-0125 a.u. Parameters used in this calculation were the RW
third-order PC scheme used to obtain Figh)2though, the —scheme, second-order Suzuki-Trotter formig.=6 Ry,
conservation became worse. Since the asymmetry is larg@ndE.~=20 Ry. The deviation increased exponentially un-
for the fourth-order scheme, we believe the time-reversalil it became as large as the absolute dipole moment which
symmetry plays an important role in the drift of the total was roughly equal to 2 in our arbitrary unitsee Fig. 1
energy. This happened at about 20 fs fAt=0.2 a.u. and at about

Some additional remarks concerning the error of the totaf0 fs for At=0.05 a.u. The phase information regarding
energy: The fluctuation of the total energy was almost comintra-atomic motion was then obviously lost.
pletely independent of the interpolation scheme, but had In Fig. 6, we plotted the accumulation of the error for
large dependence on the order of the Suzuki-Trotter decon®f 0.05 or 0.2 a.u. and the second- and the fourth-order
position as is shown in Fig. 4. On the contrary, the drift wasSuzuki-Trotter decomposition. Compared with the simula-
almost insensitive to the order of the decomposition but wagion using the second-order Suzuki-Trotter decomposition
sensitive to the scheme of the interpolation. This means th&nd At=0.05 a.u., the simulation using the fourth-order
what was reduced by improving the Sctilmger equation Suzuki-Trotter decomposition andt=0.2 a.u. improved
solver was not the drift, which tends to induce numericalthe accuracy by two orders of magnitude without signifi-
instability, but the fluctuation, which does not induce insta-cantly increasing the computational time. Since the compu-
bility. tational time when going from the second- to the fourth-

order scheme with the samé of 0.05 a.u. is only a factor of
2. Lower order versus higher order 5, it is advantageous to use a fourth-order scheme.

We also investigated Suzuki-Trotter decompositions of One might considpr that using a stil h.igher—order scheme,
different orders, i.e., second-, fourth-, sixth-, and eighth-SUch as sixth and eighth order, would yield a more accurate
order schemes. We found that the difference mainly ap_5|mulat|on, but this was not true in our case. No improve-

peared in the time evolution of the dipole moment. In Fig. 5, €Nt in the accuracy was found. This was probably due to

we plotted the time evolution of the dipole moment referredthe Self-consistent fieldSCH potential whose accuracy is

to a result obtained using smallt which was equal to

. nd dt=0.2 o, 40" '\:ﬂ::x;,

L 107 @ 107 4 . — A

g = ././ A/‘/A

. 5 0] A 2nd dt=0.05

= < A
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FIG. 4. Fluctuation of the total energy curvetat 72 fs plotted FIG. 6. The error in the dipole moment &t 142 fs obtained

against the order of the Suzuki-Trotter decomposition. Parameterfor different At’s or orders of the Suzuki-Trotter decomposition.
used in this calculation werdt=1 a.u., the RW schemé;,..  Parameters used in this calculation were the RW schefpg,
=6 Ry, andE, =20 Ry. =6 Ry, andE. =20 Ry.
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FIG. 7. The error in the total energytat 142 fs plotted against Dynamical
the E.,;. Parameters used in this calculation wAte=0.2 a.u., the —0.465
RW scheme, ané& =6 Ry.

L 1 1 | L

limited also by the order of the interpolation scheme. How- 0 IOTO. 200 300
- . ime (fsec)

ever, when a non-SCF potential is used, a sixth-order scheme

was superior to the fourth-order scheme. FIG. 9. Calculated potential energy surfa@@ES during the

We have found, however, that the accuracy of the intermolecular dynamics simulation for The solid line is the PES

polation cannot be improved by simply increasing the ordempbtained by dynamical calculation while the dotted line is the Born-

of the polynomialsee Eq(14)]. When a fifth-order polyno- Oppenheimer surface obtained at the corresponding atomic configu-

mial was used to reproduce the potential up to the seconchtions. The total energy curve is also plotted in the figure.

derivative, the accuracy of the dipole moment and the con-

servation of the total energy became worse. We also foungut whenAt was larger, the dependence became strong. The

that when a second-order interpolation scheme was used, te@mulation without the preconditioning showed poor conser-

accuracy and the conservation again became worse. Thergation of the total energy for 04At<0.8 a.u. ForAt

fore the third-order scheme is the most suitable when using-1 a.u., only the simulation with both the preconditioning

the RW scheme. and the cutoff of the charge density was stable.

3. Cutoff . .
B. Electron-ion dynamics of K,

When we compared simulations with and without the pre-
conditioning and the cutoff techniques, we found that a dif-
ference appeared in the conservation of the total energ
First, we changed only the cutoff energy of the charge den
sity with the preconditioning energy fixed at 6 Ry. When we 9 1 .
compared the error in the total energytatl42 fs, the error N from the ground statea)(by)” to an excited state

increased as the cutoff energy was incred$egl. 7). Param- (a1)*(5a,)" and let the K atoms have velqcities equal _to
eters used in this calculation weret=0.2 a.u.. the third °ne-tenth of the Hellmann-Feynman force in atomic units.

RW, and the fourth Suzuki-Trotter decomposition. Next, we | © Preak the initial symmetryQs, ), we randomly displaced

compared the error in the total energy by changing théhe atomic position by 0.1 a.u. The simulation was done for

E.. E andAt (Fig. 8. WhenAt was smaller than 0.3 300 fs. In this calculation, we adopted the nonlocal pseudo-
cutr “prec -9 :

a.u., the error had very little dependencey; and E ., pote_r_ma! of Troglller and Marting] a’?d the potential-
partitioning technique was used to avoid the ghost effect.

We used the third-order RW scheme, the fourth-order

10 —=—6/20 v Suzuki-Trotter decomposition,E,.=8 Ry, and E
e A/ »=prec ’ cut
-6/ / =8 Ry. The parameter for the cutoff functighwas taken

10° —A— /- v
10 —w—-/20 7 to be 0.5 a.u. In each time step, the atomic positions were

Next, we studied the numerical stability and efficiency of
he mixed electron-ion dynamics by following the coupled
TD-DFT and Newton equation. We simulated the dynamics
of a photoexcited K cluster. Initially, we excited the elec-

ERRs 4 n also updated using the Verlet algorithm.

RS / The drift in the total energy at 300 fs was 1.0

S e X108 a.u. when we usedt=0.1 a.u. and it was 1.0

5 10° L X 10~ " when we usedt=0.5 a.u. On the other hand, when

R / the PC scheme was used instead of the RW scheme, the total
07 energy increased very quickly at about 250 fs and the simu-

T lation encountered serious numerical instability. This was
00 02 0406 dof L1214 16 18 not improved whem\t was reduced to 0.05 a.u. In this way,
t(eu) the advantage of the RW scheme became very apparent in
FIG. 8. The error in the total energy &t 142 fs versus the this simulation.
Eprec and E¢y. “6/20,” for example, indicatesE =6 Ry and We found that at about 250 fs, the deviation from the
E.=20 Ry, and “-/-" means neither the preconditioning nor the Born-Oppenheimer surfacéBOS) became appreciable, as
cutoff were used. The RW scheme was used in this calculation. shown in Fig. 9, which is plotted on the basis of the simula-
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tion usingAt=0.5 a.u. In this figure, we plotted the total the simulation at that point since the branching becomes sig-
potential energy, which is equal to the sum of the kinetichificant there. Thus we do not know if the simulation would
energy, the Hartree-exchange-correlation energy, the pseud&ad to a dissociation or not. It would be interesting to con-
potential energy, and the ion-ion interactions, against timetinue the simulation by adopting the surface hopping pre-
Deviation from the BOS can be seen in the difference in thescription, but that is beyond the scope of this paper.

total potential energy between the state evolving with time
(the solution of the TD-DFY and the state of which the

electronic degrees of freedom were optimized at each time We have proposed schemes that enable stable and effi-

step. Deviation from the BOS directly indicates the MIXIUre o nt simulation of electron or electron-ion dynamics within

of two or more electronic eigenstates, which results in a flucy \ '+5 b1 and pseudopotentials. We have found that by

:'Lé)i“?nno?ef égig;f‘;ge ?,?,ZSQZ{-JT{hTﬁeS erggiﬂga:qggi%ql'psing a combination of techniques, RW interpolation for up-
! . aing. \ Ieve this tngg ! ! dating the self-consistent potential and smoothing of the ki-
ity of the simulation using the PC scheme.

. . ™ netic and potential energy operators, the numerical instabilit
In this calculation, the initial state wasa{)?(5a;)?, P gy op Y

which had an excitation energy of 1.61 eV. This state wa roblem can be eliminated and a larger time step can be used

or the integration. This opens the possibility of performing

chosen because we expected it to have a large OSCIIIat%rubpicosecond-long simulations on transient dynamics of

strength on th.e baS|s of a symmetry conSIderat_lon and bee'lectrons and ions for a number of materials.
cause the excitation energy is close to the experimental one,
1.54 eV3? Experimentally, the excited cluster dissociated
into K+K, about 500 fs after the excitation. In our simula-
tion we found a deviation from the BOS at 250 fs, by which  We are indebted to Roberto Car for his suggestions con-
time the cluster geometry had changed from a triangle wittcerning the branching problem. All calculations were done
angles of 81°, 49.5°, and 49.%the initial geometryto a  using the SX-4 supercomputer system at the NEC Tsukuba

triangle with angles of 52.0°, 57.5°, and 69.6°. We stoppedResearch Laboratories.

IV. CONCLUSION
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