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Density-functional approach to electron dynamics: Stable simulation under a self-consistent field

Osamu Sugino and Yoshiyuki Miyamoto
Fundamental Research Laboratories, NEC Corporation, 34 Miyukigaoka, Tsukuba, Ibaraki-Ken, 305-8501, Japan

~Received 30 July 1998!

We propose efficient and stable numerical methods for simulating the electron dynamics within the time-
dependent density-functional theory and the nonlocal pseudopotential. In this scheme, time evolution of the
wave function is followed by self-consistently solving the time-dependent Kohn-Sham equation using the
higher-order Suzuki-Trotter type split-operator method. To eliminate the numerical instability problem and
increase the time step for the integration, we introduce the railway curve scheme to interpolate the self-
consistent potential and the cutoff schemes to smooth the kinetic energy operator and the charge density.
Applying these techniques to the electron dynamics of an Al cluster and the electron-ion dynamics of an
excited K cluster, we found that they significantly improve the stability and efficiency. This opens the possi-
bility of performing subpicosecond-long simulations of the transient dynamics of electrons and ions for a
number of materials.@S0163-1829~99!14403-5#
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I. INTRODUCTION

The transient dynamics of electrons and ions have bec
the target of extensive research owing to the developmen
experimental techniques such as the use of pulsed las1

Such research has led us to the discovery of details conc
ing, for example, ultrafast chemical reactions triggered
electron excitation,1 or the transport and decay of carriers
bulk or nanostructures.2 Theoretically, these reactions an
the transport and decay of carriers can be studied by ex
itly integrating the time-dependent many-body Schro¨dinger
equation with respect to time, but this method of calculat
is much less developed than time-independent methods.
cently, time-dependent density-functional theory~TD-DFT!3

has attracted much attention because it offers a reason
level of simplicity and accuracy. There have been seve
applications of this theory concerning the tunneling of el
trons in mesoscopic quantum structures,4 electron transfer in
the collision of microclusters,5 and the excitation spectra o
molecules.6 Most TD-DFT calculations simply adopt th
adiabatic density functional for the exchange-correlation
ergy, though it does not include the memory effect.7–9 When
calculated results have been compared with those of an e
calculation on a two-electron system or with experimen
results, however, a satisfactory description was found to h
been given for several problems. Tunneling coefficients4 and
excitation energy6 are two such examples.

Applying the TD-DFT to mixed electron-ion dynamic
may not always be justified because of the well-kno
branching problem,10,11but such simulation can yield impor
tant information for carefully selected problems. The bran
ing problem is known to be significant when electrons de
ate from the adiabatic surface and the Hellmann-Feynm
forces derived from each constituting adiabatic surface
come different from each other.10,11 Yet, there are ways to
avoid this problem. First, by adopting the surface hopp
prescription,12 we can continue a simulation after the branc
ing by letting the electrons return to one of the adiaba
surfaces. Such simulations have been done recently by
eral authors.13–15 Second, the effect of the branching is us
PRB 590163-1829/99/59~4!/2579~8!/$15.00
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ally less serious when studying the collision of energe
particles. Third, we can extract information regarding ho
fast and to which surface the electron jumps from the par
the simulation done before the branching problem becom
significant.

Several numerical difficulties, however, appear when
tensively applying the TD-DFT. First, the time step for th
integration,Dt, is several hundred times smaller than the o
used by the Car-Parrinello type molecular dynamics~MD!.16

For example, for carbon,Dt was taken as 6.631024 fs or
0.027 a.u.,6 while Dt for the Car-Parrinello type MD is abou
7 a.u. ~Ref. 17!. The number of operations thus differs b
roughly three orders of magnitude. With such a smallDt, it
is impractical to simulate for subpicosecond intervals, wh
is a typical time scale required to induce a chemical react
Second, the total energy, which is a constant of motion in
case, tends to significantly drift unless a prohibitively smal
Dt is used~see Sec. II below for examples!. The drift often
grows exponentially, and serious numerical instability eve
tually occurs. This problem does not appear in one-body
culations, but appears when the self-consistent potentia
used. Therefore this is a problem inherent to many-body
culations such as in DFT and probably Hartree-Fock cal
lations.

In this context, our aim is to show howDt can be in-
creased while eliminating the numerical instability. We a
ply several numerical techniques: use of a higher-or
Suzuki-Trotter type split operator18 as is frequently used fo
quantum Monte Carlo simulation, cutoff of the kinetic an
potential energy operators as is done for the Car-Parrine16

type plane-wave calculations, and the application of the r
way ~RW! curve interpolation19 to update the self-consisten
potential. In particular, the newly introduced RW schem
plays an important role in stabilizing the simulation. Wh
these techniques are combined,Dt can be significantly in-
creased without leading to numerical inaccuracy or insta
ity. For example,Dt for Al and K becomes 0.5–1.0 a.u. an
the number of operations becomes only about two order
magnitude larger than that of the Car-Parrinello type M
Below, we provide detailed formulations in Sec. I within th
2579 ©1999 The American Physical Society
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TABLE I. Parameter set for the sixth- and eighth-order Suzuki-Trotter decomposition. The param
determined by Suzuki~a! satisfy upi u,1 while those determined by Yoshida~b! do not.

~a!

6th q514 (pi5p152 i) 8th q515 (pi5p161 i)

p15p2 0.392256805387732 p1 0.210902950774054 p5 0.769771783843536
p35p4 0.01177866066796810 p2 0.835657990415923 p6 0.199415314882502
p55p6 20.5888399920894384 p3 20.658440728286576 p7 0.0363152045812476
p65p8 0.06575931603419684 p4 20.0774373402366569 p8 20.0892171910150694

~b!

6th q57 (pj5p82 j )

p1 0.784513610477560
p2 0.0235573213359357
p3 21.17767998418887
p4 1.31518632068391
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nonlocal pseudopotential scheme. In Sec. II we demons
the capabilities of these combined techniques by doin
subpicosecond simulation of simple molecules, Al2 and K3 .

II. METHOD OF CALCULATION

A. Suzuki-Trotter type split-operator method

In integrating the time-dependent Schro¨dinger ~Kohn-
Sham! equation, we use the Suzuki-Trotter type sp
operator method.18 The split-operator method was original
introduced by Feit and co-workers20 to approximate the ex
ponential of the Hamiltonian as a product of the exponen
of the kinetic energy operatorT and the potential energ
operatorV as

exp@2 i ~T1V!Dt#.expF2
1

2
iTDt Gexp@2 iVDt#

3expF2
1

2
iTDt G . ~1!

The advantages of this method are as follows. First, sincT
andV, respectively, are diagonal in reciprocal space and
space, the exponential can be directly calculated. Sec
since it keeps the unitarity of the time evolution, the orth
normality of the wave functions is guaranteed, allowing us
skip the time consuming orthonormalization operation. T
is particularly advantageous when using parallel comput
Third, this scheme is unconditionally stable,21,22 in that the
simulation does not show divergent behavior even whenDt
is too large. This is unlike other methods where the expon
tial is expanded into a series ofHDt.

Suzuki18 generalized this method and provided high
order schemes for decomposing operators that consistedq
components,H5(n51

q An . According to Suzuki’s method
the exponential ofH up to the second order of2 iDt([x)
can be approximated as

exH.e~x/2!A1e~x/2!A2
•••e~x/2!Aq21exAqe~x/2!Aq21

3•••e~x/2!A2e~x/2!A1

[S2~x!. ~2!
te
a

l

al
d,

-
o
s
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n-

-
f

Using the second-order symmetric decompositionS2(x),
higher-order decompositions can be constructed: For
ample, the fourth-order symmetric decomposition can
written as

S4~x!5S2~p1x!S2~p2x!S2~p3x!S2~p2x!S2~p1x!, ~3!

where the parametersp follow the equations

2p112p21p351,
~4!

2p1
312p2

31p3
350.

The set of solutions

p15p25
1

4241/3
,

~5!
p35124p1

is a special one that minimizes max@up1u,up2u,up3u#. The param-
eters obtained for the sixth- and eighth-order schemes
shown in Table I~a!. The parameterspj given by Suzuki
satisfy upj u,1 for all j, while the parameters previousl
given by Yoshida23 do not @see Table I~b!#. Minimizing the
maximum upj u is known to be very important for Monte
Carlo simulations where imaginary time is used, but we ha
found this is also advantageous when using real time.

Suzuki24 also extended this scheme to the case contain
time-dependent operators.~See also Ref. 25.! For example,
the fourth-order decomposition can be written as

T̂FexpS 2 i E
t

t1Dt

H~s!dsD G5S2~p1x;t1!S2~p2x;t2!

3S2~p3x;t3!S2~p2x;t4!

3S2~p1x;t5!1O~x5!,

S2~x;t ![e~x/2!A1~ t !e~x/2!A2~ t !
•••e~x/2!Aq21~ t !

3exAq~ t !e~x/2!Aq21~ t !
•••e~x/2!A2~ t !e~x/2!A1~ t !, ~6!

t j5t1~p11p21•••1pj 211pj /2!Dt,
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p55p1 ;p45p2 ,

whereT̂ is the time-ordering operator.
When applying the split-operator method to the TD-DF

the Suzuki-Trotter decomposition is suitable for several r
sons. First, decomposition can be performed even for
nonlocal pseudopotential calculation where the Hamilton
consists of many noncommutable potentials, the Hartr
exchange-correlation potentialVHxc , and the nonlocal
pseudopotentialsVnl . Second, since theVHxc is expected to
be strongly dependent on time, the variation of the Ham
tonian betweent and t1Dt should be explicitly taken into
account unless a sufficiently smallDt is used. Third, to pre-
vent a loss of phase information concerning the dynam
after a long simulation, numerical accuracy achieved by
ing a higher-order scheme is important.

B. TD-DFT pseudopotential theory

We will briefly discuss the algorithm for the TD-DFT
pseudopotential simulation. The electronic part of the Ham
pr
-
-
bo
e
d
er
ve
id
,
-
e
n
e-

l-

s
s-

l-

tonian consists of the kinetic energy operator, the Hartr
exchange-correlation potential, and the pseudopotentials
tered on each atomRt ,

H5T1VHxc@r#1(
t lm

Vt lm
ps ~r2Rt!, ~7!

wherel andm stand for the angular and azimuthal quantu
numbers, respectively. In the Kleinmann-Bylander form26

the nonlocal pseudopotential can be written as

Vt lm
ps ~r !5

Vt l
psuPt lYlm&^Pt lYlmuVt l

ps

^Pt lYlmuVt l
psuPt lYlm&

, ~8!

wherePt l stands for the radial atomic pseudowave functi
for the tth atom, andVt l

ps stands for the radial pseudopote
tial. Ylm is the spherical harmonics. Since a power produc
Vt lm

ps (r ) can be written as
$Vt lm
ps ~r !%n5

Vt l
psuPt lYlm&^Pt lYlmuVt l

psVt l
psuPt lYlm&n21^Pt lYlmuVt l

ps

^Pt lYlmuVt l
psuPt lYlm&n

~9!

for n>1, the exponential ofVt lm
ps (r ) can be analytically given as

exp@xVt lm
ps ~r !#511

Vt l
psuPt lYlm&H expF x

^Pt lYlmuVt l
psVt l

psuPt lYlm&

^Pt lYlmuVt l
psuPt lYlm&

G21J ^Pt lYlmuVt l
ps

^Pt lYlmuVt l
psVt l

psuPt lYlm&
. ~10!
r-
In applying this scheme, it is necessary to express the
jectors, e.g.,Vt lm

ps uPt lYlm&, and to compute the matrix ele
ments, e.g.,̂ Pt lYlmuVt l

psuPt lYlm&, within the same represen
tation, whether reciprocal space or real space, so that
sides of Eq.~9! are numerically exactly equated. Otherwis
the unitarity and conservation of the total energy are ba
affected. Note that theVt l

ps are not commutable to each oth
when the pseudopotentials belonging to different atoms o
lap. The condition of nonoverlapping was previously cons
ered necessary to apply the split-operator method,27 but that
is not the case here.

To summarize, the wave function att1Dt to thenth or-
der of Dt is

c~ t1Dt !5U~ t1Dt,t !c~ t !5F)
i

S2~piDt;t i !Gc~ t !,
o-

th
,
ly

r-
-

S2~pDt;t !5expF2
1

2
iTpDt G

3H )
t lm

ascending

expF2
1

2
iVt lm

ps ~ t !pDt G J
3exp@2 iVHxc~ t !pDt#

3H )
t lm

descending

expF2
1

2
iVt lm

ps ~ t !pDt G J
3expF2

1

2
iTpDt G , ~11!

where the multiplication is done symmetrically by first a
ranging the pseudopotentials in ascending order oft lm and
then in descending order.
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Using the wave function, the charge density att1Dt is
given as

r~r ,t1Dt !5(
i

uc i~r ,t1Dt !u2. ~12!

Generally, the Hartree-exchange-correlation poten
VHxc(t1Dt) constructed from the charge density is not co
sistent with the one used for the time evolution ofc @Eq.
~11!#, in that they discontinuously match att1Dt. Thus, we
reconstructed the potentials betweent andt1Dt so that they
would be continuously matched att1Dt, and this procedure
was repeated until the matching was realized s
consistently. For the electron-ion dynamics, the Hellma
Feynman force obtained by the self-consistently determi
wave functionc is used for the Newton equation of ions
each time step.

C. Railway curve interpolation scheme

In the reconstruction of the potential, the selection of
interpolation scheme is an important decision. The usual
dictor corrector~PC! scheme usesn11 past potentials (n is
usually 1–3!, and interpolation is done using annth-order
polynomial as

V~s!5 (
i 52n11

1

ci~s!V~ t1 iDt !, ~13!

where the parametersci are determined so as to reprodu
the potentials at each time slice. This procedure breaks
time-reversal symmetry, except for the second-order sche
because a larger weight is put on the past. However,
time-reversal symmetry is known to be very important
numerical stability,21,22 and to keep the symmetry, we pro
pose using the railway curve interpolation scheme,19

V~s!5S s2t2Dt

Dt D 2

3F3V~ t !1DtV̇~ t !1
s2t2Dt

Dt
@2V~ t !1DtV̇~ t !#G

1S s2t

Dt D 2F3V~ t1Dt !2DtV̇~ t1Dt !

2
s2t

Dt
@2V~ t1Dt !1DtV̇~ t1Dt !#G ~14!

for s betweent andt1Dt, whereV̇ is the time derivative of
the potential. This reproduces the potential up to the fi
time derivative att and t1Dt, and is accurate to the thir
order ofDt. The time derivative of the potential can be an
lytically obtained if we use the TD Kohn-Sham equation
follows. Using the derivative of the charge density,
l
-

f-
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he
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e

r

t

-
s

ṙ~r ,t !52 i(
n

wn* ~r ,t !Hwn~r ,t !1 i(
n

wn~r ,t !Hwn* ~r ,t !

52 i(
n

wn* ~r ,t !Twn~r ,t !1 i(
n

wn~r ,t !Twn* ~r ,t !

52 ImF(
n

wn* ~r ,t !Twn~r ,t !G , ~15!

the derivative of the potential can be obtained as

V̇Hxc~r ,t !5
dVHxc@r~r ,t !#

dr~r ,t !
ṙ~r ,t !. ~16!

Averaging the interpolated potential betweent j 21 andt j , we
obtain the value used forV(t j ) in Eq. ~11!.28 As we will
show in the next section, the RW scheme prevents the t
energy from drifting, allowing us to use a much larger tim
step than that allowed when using the PC scheme.

D. Cutoff

To further increase the time stepDt, we can smooth the
charge density and the kinetic energy by cutting off high
oscillating components in real space to reduce the amplit
of high-frequency components in real time. This is based
the close relationship between the real space and real
for the high-frequency components of the wave functio
which has the form

exp@ iGr2 iv~G!t#. ~17!

In this equation,v is approximately equal to the Fourie
component of the diagonal part of the Hamiltonian, and
G2/2 for particularly large values ofG. Therefore the ampli-
tude of high-frequency components in real time can be
duced by cutting off the largeG component.

High-frequency Fourier terms of the kinetic energy ope
tor are cut off by modifying as

T~G!5minFG2

2
,EprecG . ~18!

This is essentially the same as the preconditioning techn
developed for the Car-Parrinello type MD.17 Similarly, the
high-frequency component of the potential can be reduce
magnitude by smoothing the charge density in recipro
space,

r̄~G!5r~G! f cut~G!, ~19!

f cut~G!5
1

11exp@b~G2/22Ecut!#
. ~20!

The potential, which is a function ofr, then becomes
smooth. This mimics the standard plane-wave scheme w
the cutoff is introduced by the step function as

r̄~G!5r~G!QS Ecut2
G2

2 D . ~21!

We use a smooth function because, contrary to the pla
wave scheme formulated in reciprocal space only,
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scheme is formulated both in reciprocal space~for T) and
real space~for V). Such a dual-space treatment is requir
by the split-operator scheme whereT andV are diagonal in
reciprocal space and real space, respectively. In that c
r̄(r ) obtained by Fourier transformingr̄(G) can become
negative unless a smooth cutoff is introduced. We h
found that a suitable value for the smoothing factorb is
between 0.5 and 1.0 a.u.

III. RESULTS

In this section we evaluate the performance of the ab
techniques by applying them to a simple model of the el
tron dynamics of Al2 and a model of the electron-ion dynam
ics of K3 .

A. Electron dynamics of Al2

In our first example, we located two aluminum atoms
bohrs apart and keeping the interatomic distance constan
followed the electronic motion for up to 720 fs, which co
responds to 30 000 time steps whenDt51 a.u. We started
the simulation slightly shifted from the ground state by in
tially applying a uniform electric field parallel to the molec
lar axis. The electric field, whose strength was 0.5 eV/bo
was then suddenly switched off when starting the simulati
The electronic motion had two main degrees of freedom:
interatomic charge transfer and the intraatomic depolar
tion associated with rehybridization of the 3s and 3pz orbit-
als. Because of the large interatomic distance~6 bohrs!, the
two motions had different time constants, 21 fs and 2.3
for the interatomic and intra-atomic motion, respective
Because of this, the total dipole moment behaved as sh
in Fig. 1. Such two-mode motion is generally considered
appear, for example, in the transfer of electrons in the co
sion of heavy molecules or in tunneling in nanostructur
We will now explain in detail how the above techniqu
improve the numerical stability and efficiency. In the follow
ing electron dynamics of Al2 , the local pseudopotential o
Pickett, Louie, and Cohen29 was used to reduce the CP
time. The smoothing factor for the cutoff functionb was
taken to be 1.0 a.u.

FIG. 1. Typical time evolution of the dipole moment, which is
superposition of the intra-atomic depolarization having a period
2.3 fs and the interatomic charge transfer having a period of 21
Parameters used in this calculation wereDt51.0 a.u., the RW
scheme, fourth-order Suzuki-Trotter decomposition,Eprec56 Ry,
andEcut520 Ry.
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1. Railway curve versus the conventional predictor corrector

In this subsection we compare the results obtained us
the railway curve interpolation scheme and those obtai
using the conventional predictor corrector interpolati
scheme. We have found that the difference mainly appea
the conservation of the total energy. Figure 2 shows how
error in the total energy,Etot(t)2Etot(t50), evolved with
time. Parameters used in this calculation wereDt
51.0 a.u., the RW scheme, fourth-order Suzuki-Trotter f
mula,Eprec56 Ry, andEcut520 Ry. The error consisted o
long time-scale drift and very short time-scale fluctuatio
The drift often increased exponentially as shown in Fig. 2~a!,
indicating that the quality of the simulation can quickly d
teriorate over the simulation. After 600 fs, we found that t
drift was about 531024 a.u. (50.01 eV) when the RW
scheme was used, while it was 0.02 a.u.~5 0.54 eV! when
the PC scheme was used@see Figs. 2~a! and 2~b!#. Since this
amount, 0.54 eV, is almost the same as the typical ene
scale of these dynamics, the present simulation using the
scheme is meaningless except for the initial part.

Next we systematically investigated the drift by changi
the time stepDt between 0.03 and 1.0 a.u.~Fig. 3!. The
conservation of the total energy was roughly 100 times be
for the RW scheme. Since the computational time requi
when using each scheme is almost the same, the rela
merit of the RW scheme is obvious.

f
s.

FIG. 2. Typical time evolution of the error in the total energ
which consists of very fast fluctuation and long time-scale drift. T
drift shows a superlinear dependence on time~a!. When the RW
scheme was used@see~a! and the solid line in~b!#, the drift became
significantly smaller than that when the PC scheme was used@see
the broken line in~b!#. Parameters used in this calculation we
Dt51.0 a.u., fourth-order Suzuki-Trotter decomposition,Eprec

56 Ry, andEcut520 Ry. Note that the energy scale of~a! is
much smaller than that of~b!.



th

rg
s
al

ta
m
a

om
a
a

th

ca
ta

o
th
ap
5
ed

RW

n-
ich

t
g

der
la-
ion
er

ifi-
pu-
th-

e,
rate
e-
to

s

t
e
al

te

t.
ond-

n.

2584 PRB 59OSAMU SUGINO AND YOSHIYUKI MIYAMOTO
When we used the fourth-order PC scheme instead of
third-order PC scheme used to obtain Fig. 2~b!, though, the
conservation became worse. Since the asymmetry is la
for the fourth-order scheme, we believe the time-rever
symmetry plays an important role in the drift of the tot
energy.

Some additional remarks concerning the error of the to
energy: The fluctuation of the total energy was almost co
pletely independent of the interpolation scheme, but h
large dependence on the order of the Suzuki-Trotter dec
position as is shown in Fig. 4. On the contrary, the drift w
almost insensitive to the order of the decomposition but w
sensitive to the scheme of the interpolation. This means
what was reduced by improving the Schro¨dinger equation
solver was not the drift, which tends to induce numeri
instability, but the fluctuation, which does not induce ins
bility.

2. Lower order versus higher order

We also investigated Suzuki-Trotter decompositions
different orders, i.e., second-, fourth-, sixth-, and eigh
order schemes. We found that the difference mainly
peared in the time evolution of the dipole moment. In Fig.
we plotted the time evolution of the dipole moment referr
to a result obtained using smallDt which was equal to

FIG. 3. The error in the total energy att5143 fs plotted agains
Dt. The error for the RW scheme is approximately 100 tim
smaller than that for the PC scheme. Parameters used in this c
lation were the fourth-order Suzuki-Trotter decomposition,Eprec

56 Ry andEcut520 Ry.

FIG. 4. Fluctuation of the total energy curve att572 fs plotted
against the order of the Suzuki-Trotter decomposition. Parame
used in this calculation wereDt51 a.u., the RW scheme,Eprec

56 Ry, andEcut520 Ry.
e

er
al

l
-
d
-

s
s
at

l
-

f
-
-
,

0.0125 a.u. Parameters used in this calculation were the
scheme, second-order Suzuki-Trotter formula,Eprec56 Ry,
andEcut520 Ry. The deviation increased exponentially u
til it became as large as the absolute dipole moment wh
was roughly equal to 2 in our arbitrary units~see Fig. 1!.
This happened at about 20 fs forDt50.2 a.u. and at abou
60 fs for Dt50.05 a.u. The phase information regardin
intra-atomic motion was then obviously lost.

In Fig. 6, we plotted the accumulation of the error forDt
of 0.05 or 0.2 a.u. and the second- and the fourth-or
Suzuki-Trotter decomposition. Compared with the simu
tion using the second-order Suzuki-Trotter decomposit
and Dt50.05 a.u., the simulation using the fourth-ord
Suzuki-Trotter decomposition andDt50.2 a.u. improved
the accuracy by two orders of magnitude without sign
cantly increasing the computational time. Since the com
tational time when going from the second- to the four
order scheme with the sameDt of 0.05 a.u. is only a factor of
5, it is advantageous to use a fourth-order scheme.

One might consider that using a still higher-order schem
such as sixth and eighth order, would yield a more accu
simulation, but this was not true in our case. No improv
ment in the accuracy was found. This was probably due
the self-consistent field~SCF! potential whose accuracy i

s
cu-

rs

FIG. 5. Typical time evolution of error in the dipole momen
Parameters used in this calculation were the RW scheme, sec
order Suzuki-Trotter decomposition,Eprec56 Ry, and Ecut

520 Ry.

FIG. 6. The error in the dipole moment att5142 fs obtained
for different Dt ’s or orders of the Suzuki-Trotter decompositio
Parameters used in this calculation were the RW scheme,Eprec

56 Ry, andEcut520 Ry.
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limited also by the order of the interpolation scheme. Ho
ever, when a non-SCF potential is used, a sixth-order sch
was superior to the fourth-order scheme.

We have found, however, that the accuracy of the in
polation cannot be improved by simply increasing the or
of the polynomial@see Eq.~14!#. When a fifth-order polyno-
mial was used to reproduce the potential up to the sec
derivative, the accuracy of the dipole moment and the c
servation of the total energy became worse. We also fo
that when a second-order interpolation scheme was used
accuracy and the conservation again became worse. Th
fore the third-order scheme is the most suitable when us
the RW scheme.

3. Cutoff

When we compared simulations with and without the p
conditioning and the cutoff techniques, we found that a d
ference appeared in the conservation of the total ene
First, we changed only the cutoff energy of the charge d
sity with the preconditioning energy fixed at 6 Ry. When w
compared the error in the total energy att5142 fs, the error
increased as the cutoff energy was increased~Fig. 7!. Param-
eters used in this calculation wereDt50.2 a.u., the third
RW, and the fourth Suzuki-Trotter decomposition. Next,
compared the error in the total energy by changing
Ecut, Eprec, andDt ~Fig. 8!. WhenDt was smaller than 0.3
a.u., the error had very little dependence onEcut andEprec,

FIG. 7. The error in the total energy att5142 fs plotted agains
theEcut . Parameters used in this calculation wereDt50.2 a.u., the
RW scheme, andEprec56 Ry.

FIG. 8. The error in the total energy att5142 fs versus the
Eprec and Ecut . ‘‘6/20,’’ for example, indicatesEprec56 Ry and
Ecut520 Ry, and ‘‘-/-’’ means neither the preconditioning nor th
cutoff were used. The RW scheme was used in this calculation
-
e
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r
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-
d
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re-
g

-
-
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-

e

but whenDt was larger, the dependence became strong.
simulation without the preconditioning showed poor cons
vation of the total energy for 0.4,Dt<0.8 a.u. ForDt
51 a.u., only the simulation with both the preconditionin
and the cutoff of the charge density was stable.

B. Electron-ion dynamics of K3

Next, we studied the numerical stability and efficiency
the mixed electron-ion dynamics by following the coupl
TD-DFT and Newton equation. We simulated the dynam
of a photoexcited K3 cluster. Initially, we excited the elec
tron from the ground state (a1)2(b1)1 to an excited state
(a1)2(5a1)1 and let the K atoms have velocities equal
one-tenth of the Hellmann-Feynman force in atomic un
To break the initial symmetry (C2v), we randomly displaced
the atomic position by 0.1 a.u. The simulation was done
300 fs. In this calculation, we adopted the nonlocal pseu
potential of Troullier and Martins,30 and the potential-
partitioning technique was used to avoid the ghost effec31

We used the third-order RW scheme, the fourth-ord
Suzuki-Trotter decomposition,Eprec58 Ry, and Ecut
58 Ry. The parameter for the cutoff functionb was taken
to be 0.5 a.u. In each time step, the atomic positions w
also updated using the Verlet algorithm.

The drift in the total energy at 300 fs was 1
31028 a.u. when we usedDt50.1 a.u. and it was 1.0
31027 when we usedDt50.5 a.u. On the other hand, whe
the PC scheme was used instead of the RW scheme, the
energy increased very quickly at about 250 fs and the sim
lation encountered serious numerical instability. This w
not improved whenDt was reduced to 0.05 a.u. In this wa
the advantage of the RW scheme became very appare
this simulation.

We found that at about 250 fs, the deviation from t
Born-Oppenheimer surface~BOS! became appreciable, a
shown in Fig. 9, which is plotted on the basis of the simu

FIG. 9. Calculated potential energy surface~PES! during the
molecular dynamics simulation for K3 . The solid line is the PES
obtained by dynamical calculation while the dotted line is the Bo
Oppenheimer surface obtained at the corresponding atomic con
rations. The total energy curve is also plotted in the figure.



al
ti
ud

th
m

im
re
uc
d

bi

a
la
b

on
ed
a-
ch
it

e

sig-
ld
n-
re-

effi-
in
by
p-
ki-
ility
sed
g
of

on-
ne
uba

2586 PRB 59OSAMU SUGINO AND YOSHIYUKI MIYAMOTO
tion using Dt50.5 a.u. In this figure, we plotted the tot
potential energy, which is equal to the sum of the kine
energy, the Hartree-exchange-correlation energy, the pse
potential energy, and the ion-ion interactions, against tim
Deviation from the BOS can be seen in the difference in
total potential energy between the state evolving with ti
~the solution of the TD-DFT! and the state of which the
electronic degrees of freedom were optimized at each t
step. Deviation from the BOS directly indicates the mixtu
of two or more electronic eigenstates, which results in a fl
tuation of the charge density. This makes numerical con
tion more demanding. We believe this triggered the insta
ity of the simulation using the PC scheme.

In this calculation, the initial state was (a1)2(5a1)1,
which had an excitation energy of 1.61 eV. This state w
chosen because we expected it to have a large oscil
strength on the basis of a symmetry consideration and
cause the excitation energy is close to the experimental
1.54 eV.32 Experimentally, the excited cluster dissociat
into K1K2 about 500 fs after the excitation. In our simul
tion we found a deviation from the BOS at 250 fs, by whi
time the cluster geometry had changed from a triangle w
angles of 81°, 49.5°, and 49.5°~the initial geometry! to a
triangle with angles of 52.0°, 57.5°, and 69.6°. We stopp
c-
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e.
e
e

e

-
i-
l-

s
tor
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e,

h

d

the simulation at that point since the branching becomes
nificant there. Thus we do not know if the simulation wou
lead to a dissociation or not. It would be interesting to co
tinue the simulation by adopting the surface hopping p
scription, but that is beyond the scope of this paper.

IV. CONCLUSION

We have proposed schemes that enable stable and
cient simulation of electron or electron-ion dynamics with
the TD-DFT and pseudopotentials. We have found that
using a combination of techniques, RW interpolation for u
dating the self-consistent potential and smoothing of the
netic and potential energy operators, the numerical instab
problem can be eliminated and a larger time step can be u
for the integration. This opens the possibility of performin
subpicosecond-long simulations on transient dynamics
electrons and ions for a number of materials.
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