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Trends in the properties and structures of the simple metals from a universal local pseudopotential
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The properties of simple metals are fixed primarily by the equilibrium average valence-electron density
parameter, and secondarily by the valenzeThe simplest level of theory that can account quantitatively for
these trends invokes a “universal” local electron-ion pseudopotential, defined for each pajr énd treated
as a second-order perturbation. We construct this pseudopotential from two conditiofbke total energy
should minimize at the equilibrium Wigner-Seitz radat§r 5. (2) The bulk modulus should equal the realistic
rs-dependent prediction of the stabilized jellium model with effective valericel. These conditions can be
satisfied by an analytic local pseudopotential depending upon two parameters otherweashow that the
choice of the two-parameter forfevanescent core vs Heine-Abarenk@/not important. Our universal local
pseudopotential is applied to calculate realistic bulk binding energies, pressure derivatives of bulk moduli,
Voigt shear moduli, and interstitial electron numbers, revealing their trends as functiopsuad z. Equilib-
rium crystal structures are mapped in the-z plane, where the Hume-Rothery rules for substitutional alloys
are manifest. The effect of pressure on crystal structure is also exam8&63-18299)10603-9

[. INTRODUCTION as thez* —0 limit of stabilized jellium. Howeverz* =1 is a
more realistic choice which is not only correct for the alkali

The 16 simple orspbonded metals with valence<4 metals but also more generally consistent with neglect of the
(Be, Al, Ga, Sn, Pb, In, Tl, Mg, Li, Ca, Sr, Ba, Na, K, Rb, band structure energy or of variations in the valence-electron
and Cs display a weak effective interaction between valencedensity.
electrons and ion coré<. In previous work® we constructed While r¢ is the dominant density parameter of the simple
local electron-ion pseudopotentials for each metal individumetals, the valence plays a secondary role and has a sig-
ally. In conjunction with the local-density approximation for nificant effect on the bulk binding energy and the pressure
exchange and correlation, these pseudopotentials succesierivative of the bulk modulus. The stabilized jellium model
fully predict the bulk binding energies, bulk moduli, and with the true valencez, also known as the structureless
phonon frequencie’’ and structural energy differences for pseudopotential modélcorrectly describes the dependence
most of these metals in the face-centered-cufiic), ideal  of the bulk binding energy upon, andz, but spoils some of
hexagonal-close-packedhcp), and body-centered-cubic the bulk moduli for the polyvalent simple metals that were
(bco) structures, as well as the liquid-metal resistivifiéghe correctly described by the choia® =1. The stabilized jel-
transferability of these pseudopotentials beyond the contum model is derived from the local pseudopotential picture
densed state varies strongly from one element to an8ther. by constraining the valence-electron density to be uniform

The simple metals are amenable to theoretical descriptioand then choosing the average value of the core repulsion to
at many different levels. The lowest level is the jellium make the total energy minimize at the observed Wigner-Seitz

model, in which the valence electrons of density radiusz'?r . The constraint of uniform density is fairly re-
alistic for z=<2, but not forz>2.
_ 3 1 The appropriate level of theory to describe the broad
- 47-rr§ (1) trends of the simple metals is one which invokes a “univer-

sal” local electron-ion pseudopotential, defined for each pair

neutralize a uniform positive background representing thgr.,z) and treated as a second-order perturbation on the en-
ion lattice. Jellium is a fairly realistic model fors  ergy of the uniform electron gds!~**This is also the low-
=4 bohr (Na), where it is stable, but not fors=2 (Al), est level of theory that can predict shear moduli and crystal
where its surface energy is negative, orifgr-6 (Cs), where  structures. Universal local pseudopotentials were sought by
its bulk modulus is negative. The stabilized jellium mddel Ling and Gelaft® to explain the “chemical trends” of the
with effective valence* =1 remedies these ills without los- simple metals, and in our earlier wotkput without great
ing the simplicity of the jellium model, and even predicts success(Although Ling and Gelatt found some chemical
realistic bulk moduli for the simple metals. trends of the elastic constants, their universal local pseudo-

The jellium model and the stabilized jellium model with potential was sometimes inconsistent with Fermi-surface
z* =1 have a single input parametgr. Another such model properties and liquid-metal resistivitigsdere we will fill in
is the ideal metal of Shore and Rosehich can be viewed  this missing link in the hierarchy of theoretical models, be-
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FIG. 1. Bulk binding energies calculated with the stabilized jel- £ 2. same as Fig. 1 for the bulk moduli. The (X results

lium model withz* =1 [SIM(z* =1)] and the individual evanes- .yincige with the SIM¢* =1) values by construction. The solid
cent core pseudopotentidEC(I)] in second-order perturbation line is the curve obtained by fitting\r;m to the SIMg*=1)

theory, compared to one another and to experimental re@st®  5ints A is 918 GPa boHR. Experimental values are as in Refs. 3
Ref. 3. The dashed lines represent the universa(UBGralues of and 17.

Sec. lll. rg and z are the equilibrium density parameter and the

valence, respectively. To identify the individual metals, we refer to : ;
Table I.(The bulk binding energy is the energy per valence electror{)hi ps?rﬂ?:'[ﬂ?jézlg ?ggﬁg\&?gygﬂf sgz?i?ntehri;(l:c\,/gﬁg’sagrde
needed to break up the solid into separated valence electrons al . :
ions) those in the corrected version of Ref. 3, although a_few of the
experimental values have been upddfedur universal

tween the stabilized jellium level and the level of “indi- model postulates positive bulk modj indicating stability
vidual” pseudopotentials constructed separately for each ednder expansion and compression, and finds positive Voigt
ement. At the latter level, Hafner and Held® related  shear moduliu. Note thatrs=2z"%, B, andB’ are them-
crystal structures to features of the screened pseudopotentigglves inputs to a “universal” equation of stafe!® which

Our recently constructed individual local predicts the pressurB for any volume compression ratio
pseudopotentiafsare analytic “evanescent-core” functions V/Vj.
in real space, depending upon two parameters other than the While the bulk modulus of Fig. 2like the surface prop-
valencez. The two parameters were fixed by two conditions: erties discussed in Refs. 7, 8, and 19determined largely
(1) The total energy per electron, evaluated to second ordddy rg alone, the other properties clearly depend upcss
in the pseudopotential, should minimize at the observedvell. The universal pseudopotential results, which are de-
Wigner-Seitz radiug*r. (2) The interstitial electron num- fined for all pairs (,z), reveal trends that would otherwise
berN;, (i.e., the number of electrons between the surface obe hard to see due to the sparseness of the real simple metals
the Wigner-Seitz cell and an inscribed sphemvaluated to in the rg—z plane and to individual variations among the
first order in the pseudopotential, should match that found irelements.
an all-electron calculation. In Sec. Il, after recalling some of the basics of pseudopo-

To construct universal local pseudopotentials, here we
shall replace conditio2) by a condition which depends 6.5

0 8JM (z'=1)

uponr alone and gives similar result®’) The bulk modu- « EG()
lus should equal the realistic prediction of the stabilized jel- - . EC(U)

lium model with effective valenceg* = 1, an analytical func-
tion of rg. The absence of a second condition in the work of
Ling and Gelatt:?® and use of an unrealistic second condition
in our earlier attempt to construct the universal
pseudopotential,were responsible for the lack of success
encountered there.

4 Experiment

55 A

Figures 1-5 display the trends of the simple-metal bulk . s A A
binding energye, bulk modulusB, pressure derivativB’ of as | T o ey e e
the bulk modulus, Voigt shear modulys and interstitial ' e ob o o o o
electron numbeN;,,;, as functions of i andz These figures o 0@O® °
show not only the experimental values, but also the predic-
tions of the stabilized jellium modelSIM with effective 25 : : . ‘

. o 2.0 3.0 4.0 5.0 6.0

valencez* =1, the individual evanescent core pseudopoten- r. (bohr)

tial [EC(I), using the conventional crystal structures of Ref.

3], and the universal evanescent core pseudopotential FIG. 3. Same as Fig. 1 for the pressure derivatives of the bulk
moduli.

[EC (U), using the fcc structuie Like the equilibriumrg,
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, ing to identification of trends along the periodic table and to
. e Eg?&) physical insight. Furthermore, density functional theory re-
4 Experiment quires in principle that the external potential be Io€al.

We may take as a perturbation on jelliufor better, on
stabilized jellium withz*=1) the difference between the
local pseudopotential and the jellium potential. Within
second-order perturbation thedr}:~* the binding energy

per valence electron is

10 -

os e=e;+ey+Wgtegs, 2
wheree; is the jellium energywhich includes only kinetic
and exchange-correlation contributidmdey, is the Made-
lung or Ewald energy, which describes the electrostatic in-
} . . . teraction between ions in a lattice is the average in the
20 3.0 4.0 5.0 6.0 Wigner-Seitz cell of the repulsive part of the pseudopoten-
r, (bohr) tial, and egs is the second-order contribution or band-

FIG. 4. Same as Fig. 1 for the Voigspherically averaged —Structure energy:
shear moduliw. Note that all shear moduli vanish in the stabilized

0.0

jellium model. Experimental values are as in Ref. 4. N (= z

WR=ZJ' W(r)+F4wr2dr, ©)
tential perturbation theory, we shall compare two different 0
two-parameter local pseudopotentidés/anescent core and
Heine-Abarenkoy fitted to the same individual conditions n . (G)

. 2 X
(1) and(2) above. Although these two pseudopotentials look €es= 52 > W(G)S(G)] «(G)’ (4)
G#0

rather different, we find that they predict essentially the same
ph}/rflgaelc?ﬁ)l,p\?vrél(\a/\iIlf(()jristgues?::noe:gi{irg)za’ll)sforthe construc- Herelw(r) an'd w(G) are, [es.pectively, the pseydopotential
tion of our universal local pseudopotential. We will also find @nd its Fourier transformG is a reciprocal-lattice vector,
universal phase diagrams for the equilibrium crystal strucS(G) is the structure factory(G) is the susceptibility, and
tures of pure metals and alloys under zero and high press(G) is the dielectric function, as defined in Ref. 3. The
sures, which show that the valeneelargely controls the lattice-dependent terms in E(R) areey andegs.
structure. While the pure metals are sparse in thezj The stabilized jellium modéldropsegs in Eq. (2), and
plane, the alloys cover far more of this plane and represent makes a spherical approximation fey; . Thus its energy is
rich field of potential application for our work. Our conclu- independent of the lattice structure. The spherical approxi-
sions and ideas for future work are summarized in Sec. IV.mation fore,, introduces negligible errors for the fcc, hcp,
and bcc lattices.
Il. PERTURBATION THEORY The local Heine-AbarenkoyHA) (Refs. 12 and 21-23
AND PSEUDOPOTENTIAL FORMS or CoheR* potential can be regarded as a generalization of
the Ashcroft empty-core potenti&l. The HA potential is

_ Local pseudopotentials are easy to use and economical fob,nstant inside the core but not necessarily zero. It may be
simultaneous treatment of many metals and structures, leagitten in real space as

14 'Eg?&) 1 HA, . uzlre, r<rg .
—— Old universal W (r'rC'U)_ —Z/I’, r=re. ( )
12 F 1
1ol Foru=0, Eq.(5) reduces to the Ashcroft potential, and, for
: u=—1, to a continuous potential with a discontinuous first
08 | | derivative, the one-parameter Shaw potefitiased by Ling
= . z=4 and Gelaft® in their search for a universal pseudopotential.
06 | z=3"] In order to determine the two parameters of the HA potential,
LI S different information has been invoked: solid statmnd
04| =2 structures, Fermi-surface data, bulk moduli, )etir. atomic
: * b Y = (excitation energies, scattering data, ett*® Some
02| ] authoré”~34fit the parameters to the equilibrium lattice con-
stant and measured bulk modulig bulk phonon frequen-
00 20 3.0 4.0 5.0 6.0 cies. . . .
) r, (bohr) In Ref. 3, we introduced a potential which also depends

on two parameters but is smoother than the HA potential.
FIG. 5. Number of interstitial electrons as a function of the This evanescent cordeC) pseudopotential has the general
density parameterg and the valence. form
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FIG. 6. Core decay lengtR of the EGI) pseudopotential as a function of the density parametemd of the Wigner-Seitz radius
rws=z"%. Left: the dashed lines show the B parameters of Sec. Ill, while the symbols denote thélEarameters. Right: the full
line is a linear rms fit to the EQ@ points. The dashed line is a linear rms fit to the(BCparameters of the simple metals. Note tRas
small for metastable metallic hydrogen=1r,=1.7).

z We have also used the conditions given by E@$.and
WES(r;R, @)= — F+WR(r;R,a), (6)  (8) to extract the parameters of the HA potential. The HA
potential thus found is denoted HIA Table | shows the
and is constructed so that the repulsive pag(r;R,a) resulting parameters, whic_h also display trer.1ds. as functi_ons
shows an exponential decay at largewith R the decay of r¢andz The rms errors in the caIcu.Iated binding energies
length. In the opposite limit of smat, some analytical con- and bulk moduli with respect to experiment are only slightly
ditions at the origin assure smoothnéasproperty which is larger with the HAI) potential than with the EQ) (5% and
emphasized, for instance, in the Troullier-Martins construc-17%; respectively, in contrast to 4% and 18%he form of
tion of pseudopotentialé®d. Its Fourier transform, which @ two-parameter local pseudopotential is therefore less im-
may be found analytically, has a single zero controlledRoy Portant than the choice of properties to be fitted by those two
and . The parameters of this potential are chosen using Rarameters. .
crystalline reference state or conventional lattice, in contrast In Table Il, we present the predicted crystal structures for
to the usual construction of the nonlocal norm-conservinghose simple metals which are experimentally cubic or hcp,
pseudopotential, which starts from the free affnf?we  comparing the EQ) with the HA(l) potentials. EQ) cor-
have chosen the observed room-temperature lattice excefftctly predicts nine structures out of 13, while Hppredicts
for Ga, In, and Sn, which for simplicity were taken to be fcc. Seven. The failure of EQ) occurs only for Ca, Sr, Ba, and
The room-temperature lattice is also the zero-temperaturBP. Table Il presents energy differences for three represen-
lattice, except for Li and N&~*° where the former is bcc tative simple metals, corresponding to the valences 1, 2, and
instead. 3. The local pseudopotential perturbative approacheg)EC
The potential parameters were then adjusted to reproducd HA(l) do very well in comparison with other, more so-
the key features of the valence electron density. Besides tHehisticated, approaché¥.
stability condition

8.50
(9 0 z=1
— e(rg,Z;R,a)=0, 7 02z=2
drs (s, zR,a) @ 750 | % ©2=3
A z=4
which assures that the total energy minimizes at the experi-
mental electron density, we used the condition 6.50 1
Ning= Ny ©°" (8  ® 550
which assures that the interstitial electron numbigy ob- es0l m
tained in an all-electron calculation is reproduced within R I
first-order perturbation theorfrig. 5). The EC potential with
the parameters thus determined for each individual metal is 380
referred to as E().
In Figs. 6 and 7 we present the paramefiend « which 2.50

were found with our approach as a functionrgffor eachz. 20 A (boh‘:'.)o 50 60

R shows a good linear correlation with the Wigner-Seitz ra-

diusrws=2z" for anyz « is essentially a smooth function  FIG. 7. Pseudopotential parameteplotted against the density

of rs for eachz parameter. Symbols and lines are as in Fig. 6, left.
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TABLE |. Density parameterg, valencez and individual TABLE IlI. Equilibrium structural phases as predicted by several
Heine-Abarenkov [HA(I)] pseudopotential parameters for the potentials: individual evanescent core potentaC(l)], individual
simple metals, and the corresponding binding energies, bullHeine-Abarenkov potentigHA(l)], and universal evanescent core
moduli, and pressure derivatives of the bulk moduli. Lengths arepotential [EC(U)]. The last column lists the observed zero-
given in bohr, energies in eV per electron, and bulk moduli in GPatemperature structure@Ve assumed hcp to be the zero-temperature
The values in parentheses are the experimental values, as sumnstructure for Li and Na, since it is similar to the 9R latlic&he

rized in Refs. 3 and 17. symbol means that the observed structure is reproduced.
Metal rg z re u e B B Metal EQI) HA(I) EC(U) Expt.
Be 187 2 0.779 0.416 —16.21 774 3.8 Be J J J hcp
(—15.45 (11449 (4.6 Al J J J fcc
Al 207 3 1.377 —-0.453 -19.07 67.1 4.7 Pb hcp hcp hcp fcc
(—18.88 (79.9 (4.7 TI N fcc fcc hcp
Ga 219 3 1481 —-0.705 -19.64 426 4.1 Mg N N N hep
(—20.03 (56.8 Li N fcc bcc hcp
Sn 222 4 1951 -0.898 —23.15 41.6 4.6 Ca hcp hcp hcp fcc
(—24.08 (54.1) (6.0 Sr hcp hcp hcp fcc
Pb 230 4 2350 —-1.030 -—22.17 38.6 4.8 Ba hcp hcp hcp bcc
(—24.68 (48.8 (5.5 Na N N bcc hcp
In 241 3 1963 -0.876 —17.70 337 45 K N N N bcc
(-18.40 (418 (4.9 Rb N N N bcc
Tl 248 3 2256 —-0.993 -17.30 309 45 Cs N N N bcc

(-19.42 (382 (5.7

Mg 265 2 1741 -0571 ~—1215 303 44 \ith similar results, but we prefer the smooth EC model,

. (-121) (369 (€9 which leads to a more rapid convergence of sums over re-
Li 3.24 1 1482 -0.127 -7.27 13.8 3.7 ciprocal lattice vectors.
(-6.97 (133 (39 The EQU) pseudopotential parametd®saand « are found
Ca 327 2 2599 -0774 -10.08 169 45  fomr_andzwith the help of two conditions1) The energy
(=991 (152 (32  per electron should minimize at the observed equilibrium
Sr 357 2 3071 -0858 -935 128 45  \igner-Seitz radiug*’r,. (2’) The calculated bulk modu-
(=920 (118 (35  |us B should equal the realistic prediction of the stabilized
Ba 371 2 3425 -0.936 -9.03 111 46  jellium model with effective valence* = 1, an analytic func-
(=854 (103 (3.4  tion of rg which can be represented simply by the approxi-

Na 393 1 2371 -0660 —6.24 71 37  mation B=Ar;"? (as shown in Fig. 2 Cohed® and
(=629 (7.3 (3.9  Kelires? found that a similar form with the same exponent

K 486 1 3362 —-0.774 -519 35 338 describes the bulk moduli of semiconductors. The
(=529 @7 41 individual-pseudopotential analog of condition’j2would

Rb 520 1 3.897 —0.870 —4.91 28 37 fit to the observed bulk modulus for each metal, as some
(-5.02 (2.9 (4.1 users of the Heine-Abarenkov form have déhe*

Cs 562 1 4.486 —0.926 —4.59 21 3.7 While condition(1) follows from first principles, condi-

(—4.69 (2.3 (4.0 tion (2) is ultimately supported by comparison with experi-

ment. However, results only slightly less satisfactory are ob-

tained if we replace condition (2 by minimization of the

lIl. UNIVERSALITY CONDITIONS AND UNIVERSAL core decay lengtR, which helps to maximize transferability
PHASE DIAGRAMS of the pseudopotential.

From Figs. 6 and 7, it is apparent that the pseudopotential TABtLllz Hl. Str“d‘?tlireﬂ snter:gy dtiﬁetr.erl‘c.esdfortsgme_rre&reiegtla'
parameters are simple functionsrafandz By a universal — ¢ Metals, as predicted by the potentials indicated in favle 1. AISo
. hown are results from perturbati€PT, Ref. 46 and nonpertur-
pseudopotential, we mean one whose parameters are orﬁg. . i )
. S . tive calculationgNP, Refs. 47 and 48All energies are in meV
determined by the equilibrium density and the valence. er electron
In Ref. 3 we presented a universal pseudopotential WhiC|£|) i

required two conditions: the stability condition and the Metal EQl) HA() ECU) GPT NP
equality of the interstitial average density to the bulk average

density. As shown in Fig. 5, the second condition was real-Na  fcc-bcc -04 0.6 03 -07 1.4
istic for z<2, but not forz=3 and 4. Pseudopotentials for fcc-hep 0.1 0.1 -01 0.1 3.5
high-valence metals draw electrons out of the interstitial re-Mg  fcc-bce -95 -103 -89 —-95 -
gion. This effect reduce8 from the too-high values pre- fcc-hep 4.1 3.6 5.1 4.1 -
dicted by the stabilized jellium model with the true valeace Al  fcc-bcc —29.4 —-32.3 —-285 —33.1 -—382
Here we propose a more accurate universal pseudopotential fcc-hep 7.7 -84 -73 77 -16.6

model[EC(U)]. We could as well use the HA potential form
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From Eq.(2.15 of Ref. 3, we can computg,, the first
and only zero of the Fourier transfoww(q) of the universal
pseudopotential, and its ratio to kg, where kg
=(97/4)Y¥Irg is the bulk Fermi wave vector. Far=1,
go/2kg varies from 0.71 ar,=1.6 to 0.93 atr;=6. The
range is even narrower at=2 (0.75 to 0.87, z=3 (0.76 to
0.78, andz=4 (0.76 to 0.73.

The EQl) and EGQU) pseudopotential parameters are
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4.0

N

compared in Figs. 6 and 7, and some physical results are
compared in Figs. 1-5 and Tables Il and lll. The predicted
phases in Table Il are the same, except for Li, Na, and TI.
[For Li and Na, EQU) predicts the conventional bcc phase.
The structural energy differences are also very close for the

three metals considered. The rms errors in th¢lB®inding
energies and bulk modulFigs. 1 and 2are 7% and 8%, i.e.,
the bulk modulus error has been reduced at the expense
the binding energy error.

Figure 1 shows how the universal pseudopotential clari-

fies the systematics of the binding energies. For fizeithe
energy decreases with decreasiggand, for a given g, the
energy increases with decreasimdrigure 3 shows that, for a
given z, the pressure derivativB’ of the bulk modulus in-
creases slowly withrg and that, for eachig, B’ increases
with z. Finally, the /B ratios from the universal local
pseudopotential E@) are always around 0.8-ig. 4). We
have calculated the Voigt shear modupudy the method of

1.0

2.0

3.0 4.0

r, (bohr)

5.0 6.0

of

FIG. 8. Universal phase diagram at zero pressure. Shown is the
structure of lowest energy for a given atomic volume. The line
shows the Lj_.Mg. phase transition.

To describe the stable structures of virtual crystals, the
EC(U) parameters R,a) were found in a regular mesh
(rs,2). These pseudopotential parameters are available as a
supplementary tabf The phase diagram in therd,z)
plane, for zero pressure, is shown in Fig. 8. There is a com-

Ref. 51. As a check on this method, we have reproduced thglicated pattern with the three compact structures inter-

EC(1) values ofu obtained from the phonon frequencies of weaved, but is clearly the dominant factor determining the

Ref. 4. lattice. An example of alloy phase transitions is provided by
Cubic crystals have three independent elastic consfantsLi,_.Mg., with ¢ varying from 0 to 1. The path for this

C11, Cqp, andCyy, or equivalentlyB=(Cy;+2C;,)/3, C’
:(Cll_ C12)/2, and,u=(2C’ +3C44)/5 C, andC44 mea-

transition can be seen in Fig. 8, and the structural energy
differences are shown in Fig. 9. This alloy starts as hc (

sure rigidity against tetragonal and angle-bending distortions=0, Li), and goes through several intermediate phases, arriv-

of the unit cube, respectively. Whil and u are essentially
the same for the nearly-close-packed struct@ré<C’ can

ing at hcp €=1, Mg). Figure 9 is very similar to Fig. 5 of
Hafner®® who used nonlocal pseudopotentials.

vary strongly between fcc and bce structures. Our previous The Hume-Rothery rulé&®for the structural phase tran-

work* with the individual pseudopotential EIG found C’

<0 for all the real simple metals witte=2 in the bcc struc-
ture, indicating a phonon soft-mode instabifityfor this
structure.

sitions in alloys of noble metals witep metals predict the
fcc-a phase to be stable up to electron number 1.38, fol-
lowed by the sequence of phases ge-complexy

In Fig. 5 we present the interstitial electron number, as

predicted by the individual pseudopotential C our
former universal pseudopotentiand our present universal
pseudopotential EQ@). Forz=1 and 2(but not 3 and 4 the
former and present universal results are very similar.
Universality makes very simple predictions for the struc-

tures of solid alloys. For example, consider a binary alloy of

metalsA and B, with concentrationg and (1-c), valences
Z* and z°, and density parameters' and rS. The alloy
valence is just

"B=cA+(1-c)Z=

©)

The alloy density parametef® is best found by minimizing
the energy of the alloy, for example within the virtual-crystal
approximatior?->* While an accurate determination ff® is

needed to find the heat of formation, the simple Vegarcrule

A\ 1/3 B
B

S

AB_

I's

C F F (10

1/3
|

can suffice for the prediction of alloy crystal structure.

r§+(1—c%

1.00 .
RS BCC .
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---- HCP y |
’ A
0.00 S ¢ g
T \
5 \
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[

FIG. 9. Structural energy differences for the, LiMg. phase
transition, from the universal local pseudopotential B for com-
parison with Fig. 5 of Ref. 55. Vegard's ru[&q. (10)] has been
employed here, but not in Ref. 55.
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4.0 - - ! - IV. CONCLUSIONS AND FUTURE DIRECTIONS

HCP

The simplest realistic model for the simple metals is the
stabilized jellium model with effective valen@ = 1, which
has the single input parameteyand correctly predicts sur-
face properties and bulk moduli. The appropriate second
level of theory is the universal local pseudopotential model
we have presented here, which has two inpytandz, and
correctly predicts additional properties including bulk bind-
ing energies, pressure derivatives of bulk moduli, shear
moduli, and equilibrium crystal structures within second-
order perturbation theory.
Our universal local pseudopotential depends upon two pa-
rametergother thanz) which must be fixed by two realistic
conditions. However, we have found that rather different
2.0 3.0 4.0 5.0 6.0 . .
r, (bohr) two-parameter pseudopotentiéévanescent core and Heine-
Abarenkoy yield essentially the same results when fitted to
FIG. 10. Universal phase diagram at a compression ratio othe same set of conditions. We still prefer the evanescent
V/Vy=0.6. According to the simplest realistic equation of statecgre form, which is smoother in real space than the Heine-
(Ref. 10, the pressure at this compression raticPis B(0.31B"  aparenkov form, and for which sums over reciprocal-lattice
+0.18).r4 is the density parameter for the uncompressed solid Wi”\/ectors converge faster; converged structural energy differ-
VIVo=1. ences are found here by summing upde- 8k, wherekg
=(9/4)3r4 is the Fermi wave vector.
—hcp-e, stable at electron numbers 1.48, 1.62, and 1.75, 1ne gimplicity of our approach makes it well suited for
respectively. From Fig. 8, far;<<4, we can observe a similar the study of liquid metal$®°6! expanded metafs®? and
pattern: fcc phase stable at=1.3-1.4, bee ar=1.5-1.6, solid or liquid alloys. For the solids at zero or high pressure,

and hcp az=1.7-2.0. o .
In order to understand the mechanism of these transition%’ve have mapped the equilibrium crystal structures inrthe

. . e -z plane. These predictions are rather realistic, except for
we replace the Lindhard screening functibfix=q/(2kg)] . .
[Eq. (3.6) of Ref. 3] by a rational approximatich the alkaline earth&Ca, Sr, Bawhich have strongly nonlocal

pseudopotentials.
FapProY ) = (1+ x2/3)/( 1+ 2x2/3+ x%). (11) Our pseudopotentials are constructed within and for a cal-
culation of the energy to second order in perturbation theory.
Equation(11) matches the Lindhard function through order For use in nonperturbative calculations, the parameters
x? for smallx, and through ordex 2 at largex. It matches should be reoptimize8iThis reoptimization represents a pos-
the value(but not the infinite slopeof F(x) atx=1. Under sible direction for future work, as it would allow us to ex-
this replacement, the phase transitions described in the preand Figs. 8 and 10 to include the diamond structure, an
ceding paragraph all disappear. As argued in Ref. 58, thepen crystal structure for which the pseudopotential is in no
Hume-Rothery rules arise from the rapid variation of thesense a weak perturbation. The simpfebonded elements
Lindhard F(x) aroundx=1. This Fourier-space argument include not only metals, but also semiconductors like Si
can be complemented by one in real sp&cé, which “prefer” the diamond structure. To find the which
According to the Hume-Rothery size nflé® substitu-  characterizeg=4 silicon, it is only necessary to perform an
tional alloys A.B;_. tend to form only when #Y)*%2  ajl-electron or nonlocal pseudopotential calculation for this
=(2®)V% 8. Otherwise, they tend to phase separate. The elelement in a hypothetical fcc structure, as in Ref. 83 (
ement with the largerg and thus the smaller surface energy = 1.8 bohr).
is expected to segregate to the surface. Finally, our work raises fundamental questions we can
Figure 10 is the same as Fig. 8 but for a compressednly partly answer:(1) Why must the form of a realistic
volume ratioV/Vy=0.6. The most striking effect of pressure pseudopotential depend upon at least two parameters other
is the stabilization of the bcc structure fa<2. The ob- than the valencez? Chemical experience answers that a
served phase diagrams of the elements are summarized fiseudopotential must minimally reprodurelus the ioniza-
Ref. 59. It would make a long story to discuss all the ele-tion energyl and the electron affinity of the free atonjor
ments under pressure at zero temperature, so we focus oreguivalently the electronegativityl ¢ A)/2 and chemical
few for which the local pseudopotential approximation ishardnesd —A]. (2) Why arel and A determined largely by
most appropriate: Na transforms to bcc under slight comsg andz? Our previous work on size effects in metal clus-
pression, and remains in that phas&/1&%/,=0.6 or less. Mg ters provides an answer, if we regard an atom as a small
remains hcp toV/Vy=0.6, then transforms to bcc. Al re- cluster containing valence electrong3) Given that the bulk
mains fcc toV/Vy=0.6 or less. Pb transforms to hcp under modulusB is determined by andrg, why is it so largely
slight compression, and remains in that phas¥td,=0.6  independent of for z=17? While some trends in the simple
or less. For these four elements, Fig. 10 is correct. We finanetals can be explain&tby the structure of pseudopotential
the Mg hcp—bcc transition atV/V,=0.4—0.5; the phonon perturbation theory, this trend seems to arise from the inter-
soft mode of bcc Mg disappears f97V,<0.87. nal structure of the atom.
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