
l

PHYSICAL REVIEW B 15 JANUARY 1999-IIVOLUME 59, NUMBER 4
Trends in the properties and structures of the simple metals from a universal local pseudopotentia
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The properties of simple metals are fixed primarily by the equilibrium average valence-electron density
parameterr s , and secondarily by the valencez. The simplest level of theory that can account quantitatively for
these trends invokes a ‘‘universal’’ local electron-ion pseudopotential, defined for each pair (r s ,z) and treated
as a second-order perturbation. We construct this pseudopotential from two conditions:~1! The total energy
should minimize at the equilibrium Wigner-Seitz radiusz1/3r s . ~2! The bulk modulus should equal the realistic
r s-dependent prediction of the stabilized jellium model with effective valencez* 51. These conditions can be
satisfied by an analytic local pseudopotential depending upon two parameters other thanz; we show that the
choice of the two-parameter form~evanescent core vs Heine-Abarenkov! is not important. Our universal local
pseudopotential is applied to calculate realistic bulk binding energies, pressure derivatives of bulk moduli,
Voigt shear moduli, and interstitial electron numbers, revealing their trends as functions ofr s andz. Equilib-
rium crystal structures are mapped in ther s2z plane, where the Hume-Rothery rules for substitutional alloys
are manifest. The effect of pressure on crystal structure is also examined.@S0163-1829~99!10603-9#
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I. INTRODUCTION

The 16 simple orsp-bonded metals with valencez<4
~Be, Al, Ga, Sn, Pb, In, Tl, Mg, Li, Ca, Sr, Ba, Na, K, Rb
and Cs! display a weak effective interaction between valen
electrons and ion cores.1,2 In previous work,3 we constructed
local electron-ion pseudopotentials for each metal indivi
ally. In conjunction with the local-density approximation fo
exchange and correlation, these pseudopotentials suc
fully predict the bulk binding energies, bulk moduli, an
phonon frequencies,4,5 and structural energy differences fo
most of these metals in the face-centered-cubic~fcc!, ideal
hexagonal-close-packed~hcp!, and body-centered-cubi
~bcc! structures, as well as the liquid-metal resistivities.4 The
transferability of these pseudopotentials beyond the c
densed state varies strongly from one element to anothe6

The simple metals are amenable to theoretical descrip
at many different levels. The lowest level is the jelliu
model, in which the valence electrons of density

n̄5
3

4pr s
3

~1!

neutralize a uniform positive background representing
ion lattice. Jellium is a fairly realistic model forr s
.4 bohr ~Na!, where it is stable, but not forr s.2 ~Al !,
where its surface energy is negative, or forr s;6 ~Cs!, where
its bulk modulus is negative. The stabilized jellium mode7,8

with effective valencez* 51 remedies these ills without los
ing the simplicity of the jellium model, and even predic
realistic bulk moduli for the simple metals.

The jellium model and the stabilized jellium model wi
z* 51 have a single input parameterr s . Another such mode
is the ideal metal of Shore and Rose,9 which can be viewed10
PRB 590163-1829/99/59~4!/2570~9!/$15.00
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as thez*→0 limit of stabilized jellium. However,z* 51 is a
more realistic choice which is not only correct for the alk
metals but also more generally consistent with neglect of
band structure energy or of variations in the valence-elec
density.

While r s is the dominant density parameter of the simp
metals, the valencez plays a secondary role and has a s
nificant effect on the bulk binding energy and the press
derivative of the bulk modulus. The stabilized jellium mod
with the true valencez, also known as the structureles
pseudopotential model,7 correctly describes the dependen
of the bulk binding energy uponr s andz, but spoils some of
the bulk moduli for the polyvalent simple metals that we
correctly described by the choicez* 51. The stabilized jel-
lium model is derived from the local pseudopotential pictu
by constraining the valence-electron density to be unifo
and then choosing the average value of the core repulsio
make the total energy minimize at the observed Wigner-S
radiusz1/3r s . The constraint of uniform density is fairly re
alistic for z<2, but not forz.2.

The appropriate level of theory to describe the bro
trends of the simple metals is one which invokes a ‘‘univ
sal’’ local electron-ion pseudopotential, defined for each p
(r s ,z) and treated as a second-order perturbation on the
ergy of the uniform electron gas.1,11–14This is also the low-
est level of theory that can predict shear moduli and cry
structures. Universal local pseudopotentials were sough
Ling and Gelatt13 to explain the ‘‘chemical trends’’ of the
simple metals, and in our earlier work,3 but without great
success.~Although Ling and Gelatt found some chemic
trends of the elastic constants, their universal local pseu
potential was sometimes inconsistent with Fermi-surfa
properties and liquid-metal resistivities.! Here we will fill in
this missing link in the hierarchy of theoretical models, b
2570 ©1999 The American Physical Society
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tween the stabilized jellium level and the level of ‘‘ind
vidual’’ pseudopotentials constructed separately for each
ement. At the latter level, Hafner and Heine15,16 related
crystal structures to features of the screened pseudopote

Our recently constructed individual loca
pseudopotentials3 are analytic ‘‘evanescent-core’’ function
in real space, depending upon two parameters other than
valencez. The two parameters were fixed by two condition
~1! The total energy per electron, evaluated to second o
in the pseudopotential, should minimize at the obser
Wigner-Seitz radiusz1/3r s . ~2! The interstitial electron num
berNint ~i.e., the number of electrons between the surface
the Wigner-Seitz cell and an inscribed sphere!, evaluated to
first order in the pseudopotential, should match that found
an all-electron calculation.

To construct universal local pseudopotentials, here
shall replace condition~2! by a condition which depend
uponr s alone and gives similar results:~28! The bulk modu-
lus should equal the realistic prediction of the stabilized
lium model with effective valencez* 51, an analytical func-
tion of r s . The absence of a second condition in the work
Ling and Gelatt,13 and use of an unrealistic second conditi
in our earlier attempt to construct the univers
pseudopotential,3 were responsible for the lack of succe
encountered there.

Figures 1–5 display the trends of the simple-metal b
binding energye, bulk modulusB, pressure derivativeB8 of
the bulk modulus, Voigt shear modulusm, and interstitial
electron numberNint , as functions ofr s andz. These figures
show not only the experimental values, but also the pre
tions of the stabilized jellium model~SJM! with effective
valencez* 51, the individual evanescent core pseudopot
tial @EC~I!, using the conventional crystal structures of R
3#, and the universal evanescent core pseudopote
@EC ~U!, using the fcc structure#. Like the equilibriumr s ,

FIG. 1. Bulk binding energies calculated with the stabilized j
lium model withz* 51 @SJM(z* 51)# and the individual evanes
cent core pseudopotential@EC~I!# in second-order perturbatio
theory, compared to one another and to experimental results~as in
Ref. 3!. The dashed lines represent the universal EC~U! values of
Sec. III. r s and z are the equilibrium density parameter and t
valence, respectively. To identify the individual metals, we refer
Table I.~The bulk binding energy is the energy per valence elect
needed to break up the solid into separated valence electrons
ions.!
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the propertiese, B, andm vary little among the fcc, hcp, and
bcc structures.4,13 The EC~I! and experimental values ar
those in the corrected version of Ref. 3, although a few of
experimental values have been updated.17 Our universal
model postulates positive bulk moduliB, indicating stability
under expansion and compression, and finds positive V
shear modulim. Note thatr WS5z1/3r s , B, andB8 are them-
selves inputs to a ‘‘universal’’ equation of state,10,18 which
predicts the pressureP for any volume compression rati
V/V0 .

While the bulk modulus of Fig. 2~like the surface prop-
erties discussed in Refs. 7, 8, and 19! is determined largely
by r s alone, the other properties clearly depend uponz as
well. The universal pseudopotential results, which are
fined for all pairs (r s ,z), reveal trends that would otherwis
be hard to see due to the sparseness of the real simple m
in the r s2z plane and to individual variations among th
elements.

In Sec. II, after recalling some of the basics of pseudo

-

n
nd

FIG. 2. Same as Fig. 1 for the bulk moduli. The EC~U! results
coincide with the SJM(z* 51) values by construction. The soli
line is the curve obtained by fittingArs

27/2 to the SJM(z* 51)
points.A is 918 GPa bohr7/2. Experimental values are as in Refs.
and 17.

FIG. 3. Same as Fig. 1 for the pressure derivatives of the b
moduli.
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tential perturbation theory, we shall compare two differe
two-parameter local pseudopotentials~evanescent core an
Heine-Abarenkov! fitted to the same individual condition
~1! and~2! above. Although these two pseudopotentials lo
rather different, we find that they predict essentially the sa
physical properties for the simple metals.

In Sec. III, we will discuss condition~28! for the construc-
tion of our universal local pseudopotential. We will also fin
universal phase diagrams for the equilibrium crystal str
tures of pure metals and alloys under zero and high p
sures, which show that the valencez largely controls the
structure. While the pure metals are sparse in the (r s ,z)
plane, the alloys cover far more of this plane and represe
rich field of potential application for our work. Our conclu
sions and ideas for future work are summarized in Sec.

II. PERTURBATION THEORY
AND PSEUDOPOTENTIAL FORMS

Local pseudopotentials are easy to use and economica
simultaneous treatment of many metals and structures, l

FIG. 4. Same as Fig. 1 for the Voigt~spherically averaged!
shear modulim. Note that all shear moduli vanish in the stabilize
jellium model. Experimental values are as in Ref. 4.

FIG. 5. Number of interstitial electrons as a function of t
density parameterr s and the valence.
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ing to identification of trends along the periodic table and
physical insight. Furthermore, density functional theory
quires in principle that the external potential be local.20

We may take as a perturbation on jellium~or better, on
stabilized jellium with z* 51) the difference between th
local pseudopotential and the jellium potential. With
second-order perturbation theory,1,11–14 the binding energy
per valence electron is

e5eJ1eM1w̄R1eBS, ~2!

whereeJ is the jellium energy~which includes only kinetic
and exchange-correlation contributions! andeM is the Made-
lung or Ewald energy, which describes the electrostatic
teraction between ions in a lattice.w̄R is the average in the
Wigner-Seitz cell of the repulsive part of the pseudopot
tial, and eBS is the second-order contribution or ban
structure energy:

w̄R5
n̄

z E
0

`Fw~r !1
z

r G4pr 2 dr, ~3!

eBS5
n̄

2z2 (
GW Þ0

uw~G!S~GW !u2
x~G!

e~G!
. ~4!

Here w(r ) and w(G) are, respectively, the pseudopotent
and its Fourier transform,GW is a reciprocal-lattice vector
S(GW ) is the structure factor,x(G) is the susceptibility, and
e(G) is the dielectric function, as defined in Ref. 3. Th
lattice-dependent terms in Eq.~2! areeM andeBS.

The stabilized jellium model7 dropseBS in Eq. ~2!, and
makes a spherical approximation foreM . Thus its energy is
independent of the lattice structure. The spherical appro
mation for eM introduces negligible errors for the fcc, hc
and bcc lattices.

The local Heine-Abarenkov~HA! ~Refs. 12 and 21–23!
or Cohen24 potential can be regarded as a generalization
the Ashcroft empty-core potential.25 The HA potential is
constant inside the core but not necessarily zero. It may
written in real space as

wHA~r ;r c ,u!5 Huz/r c ,
2z/r ,

r<r c

r .r c . ~5!

For u50, Eq. ~5! reduces to the Ashcroft potential, and, f
u521, to a continuous potential with a discontinuous fi
derivative, the one-parameter Shaw potential26 used by Ling
and Gelatt13 in their search for a universal pseudopotenti
In order to determine the two parameters of the HA potent
different information has been invoked: solid state~band
structures, Fermi-surface data, bulk moduli, etc.! or atomic
~excitation energies, scattering data, etc.!.27–36 Some
authors27–34fit the parameters to the equilibrium lattice co
stant and measured bulk modulus~or bulk phonon frequen-
cies!.

In Ref. 3, we introduced a potential which also depen
on two parameters but is smoother than the HA potent
This evanescent core~EC! pseudopotential has the gener
form
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FIG. 6. Core decay lengthR of the EC~I! pseudopotential as a function of the density parameterr s and of the Wigner-Seitz radius
r WS5z1/3r s . Left: the dashed lines show the EC~U! parameters of Sec. III, while the symbols denote the EC~I! parameters. Right: the ful
line is a linear rms fit to the EC~I! points. The dashed line is a linear rms fit to the EC~U! parameters of the simple metals. Note thatR is
small for metastable metallic hydrogen (z51,r s51.7).
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wEC~r ;R,a!52
z

r
1wR~r ;R,a!, ~6!

and is constructed so that the repulsive partwR(r ;R,a)
shows an exponential decay at larger, with R the decay
length. In the opposite limit of smallr, some analytical con-
ditions at the origin assure smoothness~a property which is
emphasized, for instance, in the Troullier-Martins constr
tion of pseudopotentials37,38!. Its Fourier transform, which
may be found analytically, has a single zero controlled bR
and a. The parameters of this potential are chosen usin
crystalline reference state or conventional lattice, in cont
to the usual construction of the nonlocal norm-conserv
pseudopotential, which starts from the free atom.37–42 We
have chosen the observed room-temperature lattice ex
for Ga, In, and Sn, which for simplicity were taken to be fc
The room-temperature lattice is also the zero-tempera
lattice, except for Li and Na,43–45 where the former is bcc
instead.

The potential parameters were then adjusted to reprod
the key features of the valence electron density. Besides
stability condition

]

]r s
e~r s ,z;R,a!50, ~7!

which assures that the total energy minimizes at the exp
mental electron density, we used the condition

Nint5Nint
all-electron, ~8!

which assures that the interstitial electron numberNint ob-
tained in an all-electron calculation is reproduced with
first-order perturbation theory~Fig. 5!. The EC potential with
the parameters thus determined for each individual meta
referred to as EC~I!.

In Figs. 6 and 7 we present the parametersR anda which
were found with our approach as a function ofr s for eachz.
R shows a good linear correlation with the Wigner-Seitz
dius r WS5z1/3r s for anyz. a is essentially a smooth functio
of r s for eachz.
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We have also used the conditions given by Eqs.~7! and
~8! to extract the parameters of the HA potential. The H
potential thus found is denoted HA~I!. Table I shows the
resulting parameters, which also display trends as functi
of r s andz. The rms errors in the calculated binding energ
and bulk moduli with respect to experiment are only sligh
larger with the HA~I! potential than with the EC~I! ~5% and
17%, respectively, in contrast to 4% and 13%!. The form of
a two-parameter local pseudopotential is therefore less
portant than the choice of properties to be fitted by those
parameters.

In Table II, we present the predicted crystal structures
those simple metals which are experimentally cubic or h
comparing the EC~I! with the HA~I! potentials. EC~I! cor-
rectly predicts nine structures out of 13, while HA~I! predicts
seven. The failure of EC~I! occurs only for Ca, Sr, Ba, and
Pb. Table III presents energy differences for three repres
tative simple metals, corresponding to the valences 1, 2,
3. The local pseudopotential perturbative approaches E~I!
and HA~I! do very well in comparison with other, more so
phisticated, approaches.46–48

FIG. 7. Pseudopotential parametera plotted against the density
parameterr s . Symbols and lines are as in Fig. 6, left.
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III. UNIVERSALITY CONDITIONS AND UNIVERSAL
PHASE DIAGRAMS

From Figs. 6 and 7, it is apparent that the pseudopoten
parameters are simple functions ofr s andz. By a universal
pseudopotential, we mean one whose parameters are
determined by the equilibrium densityr s and the valencez.
In Ref. 3 we presented a universal pseudopotential wh
required two conditions: the stability condition and t
equality of the interstitial average density to the bulk avera
density. As shown in Fig. 5, the second condition was re
istic for z<2, but not forz53 and 4. Pseudopotentials fo
high-valence metals draw electrons out of the interstitial
gion. This effect reducesB from the too-high values pre
dicted by the stabilized jellium model with the true valencez.
Here we propose a more accurate universal pseudopote
model@EC~U!#. We could as well use the HA potential form

TABLE I. Density parameterr s , valence z, and individual
Heine-Abarenkov @HA~I!# pseudopotential parameters for th
simple metals, and the corresponding binding energies, b
moduli, and pressure derivatives of the bulk moduli. Lengths
given in bohr, energies in eV per electron, and bulk moduli in G
The values in parentheses are the experimental values, as su
rized in Refs. 3 and 17.

Metal r s z rc u e B B8

Be 1.87 2 0.779 0.416 216.21 77.4 3.8
~215.45! ~114.4! ~4.6!

Al 2.07 3 1.377 20.453 219.07 67.1 4.7
~218.88! ~79.4! ~4.7!

Ga 2.19 3 1.481 20.705 219.64 42.6 4.1
~220.03! ~56.8!

Sn 2.22 4 1.951 20.898 223.15 41.6 4.6
~224.08! ~54.1! ~6.0!

Pb 2.30 4 2.350 21.030 222.17 38.6 4.8
~224.68! ~48.8! ~5.5!

In 2.41 3 1.963 20.876 217.70 33.7 4.5
~218.40! ~41.8! ~4.8!

Tl 2.48 3 2.256 20.993 217.30 30.9 4.5
~219.42! ~38.2! ~5.7!

Mg 2.65 2 1.741 20.571 212.15 30.3 4.4
~212.11! ~36.9! ~3.9!

Li 3.24 1 1.482 20.127 27.27 13.8 3.7
~26.97! ~13.3! ~3.5!

Ca 3.27 2 2.599 20.774 210.08 16.9 4.5
~29.91! ~15.2! ~3.2!

Sr 3.57 2 3.071 20.858 29.35 12.8 4.5
~29.21! ~11.6! ~3.5!

Ba 3.71 2 3.425 20.936 29.03 11.1 4.6
~28.54! ~10.3! ~3.4!

Na 3.93 1 2.371 20.660 26.24 7.1 3.7
~26.25! ~7.3! ~3.9!

K 4.86 1 3.362 20.774 25.19 3.5 3.8
~25.27! ~3.7! ~4.1!

Rb 5.20 1 3.897 20.870 24.91 2.8 3.7
~25.02! ~2.9! ~4.1!

Cs 5.62 1 4.486 20.926 24.59 2.1 3.7
~24.68! ~2.3! ~4.0!
al
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with similar results, but we prefer the smooth EC mod
which leads to a more rapid convergence of sums over
ciprocal lattice vectors.

The EC~U! pseudopotential parametersR anda are found
from r s andz with the help of two conditions:~1! The energy
per electron should minimize at the observed equilibriu
Wigner-Seitz radiusz1/3r s . (28) The calculated bulk modu
lus B should equal the realistic prediction of the stabiliz
jellium model with effective valencez* 51, an analytic func-
tion of r s which can be represented simply by the appro
mation B5Ars

27/2 ~as shown in Fig. 2!. Cohen49 and
Kelires50 found that a similar form with the same expone
describes the bulk moduli of semiconductors. T
individual-pseudopotential analog of condition (28) would
fit to the observed bulk modulus for each metal, as so
users of the Heine-Abarenkov form have done.27–34

While condition ~1! follows from first principles, condi-
tion (28) is ultimately supported by comparison with expe
ment. However, results only slightly less satisfactory are
tained if we replace condition (28) by minimization of the
core decay lengthR, which helps to maximize transferabilit
of the pseudopotential.

lk
e
.

ma-

TABLE II. Equilibrium structural phases as predicted by seve
potentials: individual evanescent core potential@EC~I!#, individual
Heine-Abarenkov potential@HA~I!#, and universal evanescent co
potential @EC~U!#. The last column lists the observed zer
temperature structures.~We assumed hcp to be the zero-temperat
structure for Li and Na, since it is similar to the 9R lattice!. The
symbolA means that the observed structure is reproduced.

Metal EC~I! HA~I! EC~U! Expt.

Be A A A hcp
Al A A A fcc
Pb hcp hcp hcp fcc
Tl A fcc fcc hcp
Mg A A A hcp
Li A fcc bcc hcp
Ca hcp hcp hcp fcc
Sr hcp hcp hcp fcc
Ba hcp hcp hcp bcc
Na A A bcc hcp
K A A A bcc
Rb A A A bcc
Cs A A A bcc

TABLE III. Structural energy differences for some represen
tive metals, as predicted by the potentials indicated in Table II. A
shown are results from perturbative~GPT, Ref. 46! and nonpertur-
bative calculations~NP, Refs. 47 and 48!. All energies are in meV
per electron.

Metal EC~I! HA~I! EC~U! GPT NP

Na fcc-bcc 20.4 20.6 0.3 20.7 1.4
fcc-hcp 0.1 0.1 20.1 0.1 3.5

Mg fcc-bcc 29.5 210.3 28.9 29.5 -
fcc-hcp 4.1 3.6 5.1 4.1 -

Al fcc-bcc 229.4 232.3 228.5 233.1 238.2
fcc-hcp 27.7 28.4 27.3 27.7 216.6
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From Eq.~2.15! of Ref. 3, we can computeq0 , the first
and only zero of the Fourier transformw(q) of the universal
pseudopotential, and its ratio to 2kF , where kF
5(9p/4)1/3/r s is the bulk Fermi wave vector. Forz51,
q0/2kF varies from 0.71 atr s51.6 to 0.93 atr s56. The
range is even narrower atz52 ~0.75 to 0.87!, z53 ~0.76 to
0.78!, andz54 ~0.76 to 0.73!.

The EC~I! and EC~U! pseudopotential parameters a
compared in Figs. 6 and 7, and some physical results
compared in Figs. 1–5 and Tables II and III. The predic
phases in Table II are the same, except for Li, Na, and
@For Li and Na, EC~U! predicts the conventional bcc phase#
The structural energy differences are also very close for
three metals considered. The rms errors in the EC~U! binding
energies and bulk moduli~Figs. 1 and 2! are 7% and 8%, i.e.
the bulk modulus error has been reduced at the expens
the binding energy error.

Figure 1 shows how the universal pseudopotential cl
fies the systematics of the binding energies. For fixedz, the
energy decreases with decreasingr s , and, for a givenr s , the
energy increases with decreasingz. Figure 3 shows that, for a
given z, the pressure derivativeB8 of the bulk modulus in-
creases slowly withr s and that, for eachr s , B8 increases
with z. Finally, the m/B ratios from the universal loca
pseudopotential EC~U! are always around 0.5~Fig. 4!. We
have calculated the Voigt shear modulusm by the method of
Ref. 51. As a check on this method, we have reproduced
EC~I! values ofm obtained from the phonon frequencies
Ref. 4.

Cubic crystals have three independent elastic constan52

C11, C12, and C44, or equivalentlyB5(C1112C12)/3, C8
5(C112C12)/2, andm5(2C813C44)/5. C8 andC44 mea-
sure rigidity against tetragonal and angle-bending distorti
of the unit cube, respectively. WhileB andm are essentially
the same for the nearly-close-packed structures,4,13 C8 can
vary strongly between fcc and bcc structures. Our previ
work4 with the individual pseudopotential EC~I! found C8
,0 for all the real simple metals withz>2 in the bcc struc-
ture, indicating a phonon soft-mode instability4,5 for this
structure.

In Fig. 5 we present the interstitial electron number,
predicted by the individual pseudopotential EC~I!, our
former universal pseudopotential,3 and our present universa
pseudopotential EC~U!. Forz51 and 2~but not 3 and 4!, the
former and present universal results are very similar.

Universality makes very simple predictions for the stru
tures of solid alloys. For example, consider a binary alloy
metalsA andB, with concentrationsc and (12c), valences
zA and zB, and density parametersr s

A and r s
B . The alloy

valence is just

zAB5czA1~12c!zB. ~9!

The alloy density parameterr s
AB is best found by minimizing

the energy of the alloy, for example within the virtual-crys
approximation.2,53 While an accurate determination ofr s

AB is
needed to find the heat of formation, the simple Vegard ru2

r s
AB5cS zA

zABD 1/3

r s
A1~12c!S zB

zABD 1/3

r s
B ~10!

can suffice for the prediction of alloy crystal structure.
re
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To describe the stable structures of virtual crystals,
EC~U! parameters (R,a) were found in a regular mes
(r s ,z). These pseudopotential parameters are available
supplementary table.54 The phase diagram in the (r s ,z)
plane, for zero pressure, is shown in Fig. 8. There is a co
plicated pattern with the three compact structures in
weaved, butz is clearly the dominant factor determining th
lattice. An example of alloy phase transitions is provided
Li12cMgc , with c varying from 0 to 1. The path for this
transition can be seen in Fig. 8, and the structural ene
differences are shown in Fig. 9. This alloy starts as bccc
50, Li!, and goes through several intermediate phases, a
ing at hcp (c51, Mg!. Figure 9 is very similar to Fig. 5 of
Hafner,55 who used nonlocal pseudopotentials.

The Hume-Rothery rules53,56 for the structural phase tran
sitions in alloys of noble metals withsp metals predict the
fcc-a phase to be stable up to electron number 1.38,
lowed by the sequence of phases bcc-b→complexg

FIG. 8. Universal phase diagram at zero pressure. Shown is
structure of lowest energy for a given atomic volume. The li
shows the Li12cMgc phase transition.

FIG. 9. Structural energy differences for the Li12cMgc phase
transition, from the universal local pseudopotential EC~U!, for com-
parison with Fig. 5 of Ref. 55. Vegard’s rule@Eq. ~10!# has been
employed here, but not in Ref. 55.
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→hcp-e, stable at electron numbers 1.48, 1.62, and 1.
respectively. From Fig. 8, forr s,4, we can observe a simila
pattern: fcc phase stable atz51.3– 1.4, bcc atz51.5– 1.6,
and hcp atz51.7– 2.0.

In order to understand the mechanism of these transiti
we replace the Lindhard screening functionF@x5q/(2kF)#
@Eq. ~3.6! of Ref. 3# by a rational approximation57

Fapprox~x!5~11x2/3!/~112x2/31x4!. ~11!

Equation~11! matches the Lindhard function through ord
x2 for small x, and through orderx22 at largex. It matches
the value~but not the infinite slope! of F(x) at x51. Under
this replacement, the phase transitions described in the
ceding paragraph all disappear. As argued in Ref. 58,
Hume-Rothery rules arise from the rapid variation of t
Lindhard F(x) around x51. This Fourier-space argumen
can be complemented by one in real space.15,16

According to the Hume-Rothery size rule,2,56 substitu-
tional alloys AcB12c tend to form only when (zA)1/3r s

A

.(zB)1/3r s
B . Otherwise, they tend to phase separate. The

ement with the largerr s and thus the smaller surface ener
is expected to segregate to the surface.

Figure 10 is the same as Fig. 8 but for a compres
volume ratioV/V050.6. The most striking effect of pressu
is the stabilization of the bcc structure forz<2. The ob-
served phase diagrams of the elements are summarize
Ref. 59. It would make a long story to discuss all the e
ments under pressure at zero temperature, so we focus
few for which the local pseudopotential approximation
most appropriate: Na transforms to bcc under slight co
pression, and remains in that phase toV/V050.6 or less. Mg
remains hcp toV/V050.6, then transforms to bcc. Al re
mains fcc toV/V050.6 or less. Pb transforms to hcp und
slight compression, and remains in that phase toV/V050.6
or less. For these four elements, Fig. 10 is correct. We
the Mg hcp→bcc transition atV/V050.420.5; the phonon
soft mode of bcc Mg disappears forV/V0<0.874.

FIG. 10. Universal phase diagram at a compression ratio
V/V050.6. According to the simplest realistic equation of sta
~Ref. 10!, the pressure at this compression ratio isP5B(0.31B8
10.18). r s is the density parameter for the uncompressed solid w
V/V051.
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IV. CONCLUSIONS AND FUTURE DIRECTIONS

The simplest realistic model for the simple metals is t
stabilized jellium model with effective valencez* 51, which
has the single input parameterr s and correctly predicts sur
face properties and bulk moduli. The appropriate seco
level of theory is the universal local pseudopotential mo
we have presented here, which has two inputsr s andz, and
correctly predicts additional properties including bulk bin
ing energies, pressure derivatives of bulk moduli, sh
moduli, and equilibrium crystal structures within secon
order perturbation theory.

Our universal local pseudopotential depends upon two
rameters~other thanz! which must be fixed by two realistic
conditions. However, we have found that rather differe
two-parameter pseudopotentials~evanescent core and Heine
Abarenkov! yield essentially the same results when fitted
the same set of conditions. We still prefer the evanesc
core form, which is smoother in real space than the Hei
Abarenkov form, and for which sums over reciprocal-latti
vectors converge faster; converged structural energy dif
ences are found here by summing up toG58kF , wherekF

5(9p/4)1/3/r s is the Fermi wave vector.
The simplicity of our approach makes it well suited f

the study of liquid metals,4,60,61 expanded metals,5,62 and
solid or liquid alloys. For the solids at zero or high pressu
we have mapped the equilibrium crystal structures in ther s

2z plane. These predictions are rather realistic, except
the alkaline earths~Ca, Sr, Ba! which have strongly nonloca
pseudopotentials.

Our pseudopotentials are constructed within and for a
culation of the energy to second order in perturbation theo
For use in nonperturbative calculations, the parame
should be reoptimized.4 This reoptimization represents a po
sible direction for future work, as it would allow us to ex
pand Figs. 8 and 10 to include the diamond structure,
open crystal structure for which the pseudopotential is in
sense a weak perturbation. The simplesp-bonded elements
include not only metals, but also semiconductors like
which ‘‘prefer’’ the diamond structure. To find ther s which
characterizesz54 silicon, it is only necessary to perform a
all-electron or nonlocal pseudopotential calculation for t
element in a hypothetical fcc structure, as in Ref. 63r s
51.8 bohr).

Finally, our work raises fundamental questions we c
only partly answer:~1! Why must the form of a realistic
pseudopotential depend upon at least two parameters o
than the valencez? Chemical experience answers that
pseudopotential must minimally reproducez plus the ioniza-
tion energyI and the electron affinityA of the free atom@or
equivalently the electronegativity (I 1A)/2 and chemical
hardnessI 2A]. ~2! Why areI andA determined largely by
r s andz? Our previous work19 on size effects in metal clus
ters provides an answer, if we regard an atom as a sm
cluster containingz valence electrons.~3! Given that the bulk
modulusB is determined byz and r s , why is it so largely
independent ofz for z>1? While some trends in the simpl
metals can be explained64 by the structure of pseudopotenti
perturbation theory, this trend seems to arise from the in
nal structure of the atom.
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