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Anomalous paramagnetic phase of the Hubbard model
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A strong-coupling regime of the Hubbard model around half filling is investigated in the Hartree-Fock
random-phase approximation. At half filling, besides a normal solution that gives rise to antiferromagnetic
instability atT=TﬁPA~U, we find a solution representing the paramagnetic phase of the Mott insulator, for
which we obtain the Na temperaturéy~J in three-dimensional lattices. The solution is interpreted as the
ferromagnetic band insulator depolarized by spin wave, the bound state of a particle-hole pair. Similarly, an
anomalous metallic phase is derived from the Nagaoka ferromagnetic state. We eVglaste function of
doping concentrationx to find that it vanishes atx=0.05 for U/6t=4 in a simple cubic lattice.
[S0163-182699)00604-9

[. INTRODUCTION described in real-space representation at the outset. For the
same reason, anomalous properties of doped systems had
Normal-state properties of the underdoped region of highbetter be justified without recourse to thel model, since
T. cuprates have attracted a lot of current interest. It is exthe property of our concern, that of an anomalous metal as a
perimentally and theoretically suggested that the metallicloped insulator, is already incorporated in that model. As it
state adjacent to an insulating antiferromagnetic phase is g6 still controversial if the two approaches, from the strong-
anomalous that it is better interpreted as a doped Mott instand weak-coupling limits, are compatible with each other, it
lator than as a conventional metal described by Fermi-liquids highly desirable to clarify how insulating and anomalous
theory. In the former, an electric current is regarded to bemetallic properties dictated by superexchange interactions
carried by holes doped in a parent magnetic insulator, as iare derived in the conventional-diagram technique based on
doped semiconductors. This feature is adequately embodidtie formal perturbation theory in powers 0f This problem
in the t-J model, but, unfortunately, it has not yet beenis addressed in this paper.
reached a consensus whether a conventional perturbation To begin with, let us note several points, which are related
theory starting from an uncorrelated normal metal is ad-+o the subject and results of this paper. First, the m¢@)eb
equate or not as a canonical framework to attack this probrewritten
lem.
In this paper, we study a paramagnetic phase of the = TR g nd
single-band Hubbard model, H % wqbqbq+2J2 bibibyb ©

H:_t<.2> CiT(er(,-FUEi NN, (1) wq:_Jz (1_eiq5), (4)
ij),o 5
particularly in the strong-coupling regimé>W, whereW in terms of the Holstein-Primakoff bosons,
is the bandwidthW=4dt. For one electron per site, it is well
known that the model is mapped to the antiferromagnetic 25,=1-2b'b;, S'=b;, S =b/, (5)
Heisenberg model, . ~

whereb; and b;r are the annihilation and creation operator of

~ . o~ 1 a hard-core boson. The operaﬁiracts on the ferromagnetic
H—2J%> (g.sj— Z)’ @ vacuum,
with the coupling constant=2t2/U. This is a model for an
insulating magnet, while the modé€l) generally describes |F>:H IT0), ®)
itinerant electron systems.

The antiferromagnetic coupling<U ~1 is usually derived  to create the statg;)=b!|1;). The sum in Eq(4) is taken
by means of the second-order virtual processes, which arg er the nearest-neighbor vectols For example, in a
operative for the otherwise decoupled localized spifs. simple cubic lattice, we have
short, this is perturbation theory id ! around the insulat- '
ing limit U=00, in contrast to the conventional perturbation wq= —2J(3— COSUy— COSQy— COS(,), (7)
theory from a metallic sidé)=0. We note that this kind of ) o
derivation ofJ, though physically sound, presupposes one ofVhich takes the minimum-12J at q=Q=(m,m,m). The
the essential properties inherent in magnetic insulators, thdose-Einstein condensate of the bob@‘corresponds to the
electrons do not move around freely so that they are welNeel ordered phase. Above the &letemperatureTy, it is
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Schmitt-Rink showed that the transition temperat(ifg of
strong-coupling superconductors corresponds to the critical
temperature of the Bose-Einstein condensation for indepen-
dent bound pairs, which, therefore, becomes independent of
the attractive interaction to form the bosonic pairs. On the
other side, it is well known that the Hubbard modg#) is
mapped to that with an attractive interaction by a suitable
particle-hole transformatich.Then the Cooper pair in the
attractive model is mapped back to a particle-hole bound
state in a ferromagnetic vacuum, that is, the spin wave. In the
repulsive model, the Bose-Einstein condensation brings
about a magnetic long-range order, and the critical tempera-
ture will turn out to be of order of the hopping energy of the
pair. Indeed, this is the way we estimatg~J from a para-
magnetic side of the phase diagram of the Hubbard model.
To this end, in the next section, we start with the conven-

tional theory of the Hartree-FodHF) RPA. In our theory,
Hubbard model in a simple cubic lattice at half filling. Dashed the f?rmal _technlguis |nvolv_ed In tEe Holstgln-Prlrr:jaIToff
curve, the result of the RPA. In a correct thedFy, should decrease transformation and the mapping to the attractive model are

for U—, as indicated by the solid curve. See the text for the soligUtiliz€d in physical context, in which the ferromagnetic ref-
curve: Ty=3.46]=6.922/U. erence frame is derived as a mean-field solution. Then we

shall make use of the results of Ref. 2, which were primarily
expected on physical grounds that the paramagnetic phasdtained to study the stability of the ferromagnetic ground
with 2(8,))=1-2(bb,)=0 is realized as a stable state. In State>~
this formalism, the paramagnetic state has to be maintained
by means of repulsive interaction between the bosons. Thus,
to prove the stability would not be a simple task theoreti- . .
cally, for one has to deal with the many-body problem sub-N N?W llet us start' ?ln th.e ma;}n SbeJeCt' For th'(\al total number
ject to hard-core interaction. Nonetheless, it should be re; @ of electrons with spiro, the free energfF(N.S,) as a

marked that this formalism is formally exact, even though it';unCt:;)T O;Nz Ni+N, antq SZ:.('\.ItT_ Nl){z :S (E[)ften 'mrifé'
is formulated on the broken symmetry stébg in principle, uced to discuss magnetism in iinérant electron Systems.

the rotation symmetry of the paramagnet must be recovered® evaluateF(N,S,;), we may deal with the Hamiltonian
in the exact result.

FIG. 1. The Nel temperatureTy as a function ofU for the

Il. MODEL

Second, let us review the results obtained in Ref. 2, which H'=H=uN=2hS,, ®)
are used in the following discussion. We investigated thewvhere
Hubbard model to show that the ferromagnedidagaoka
state around half filling is destabilized by spin-wave instabil- S G o a_5 R
ity. Even in the presence of a slight amount of doped holes, N_E,;‘ N"_iE,:‘, Mios  25=Ni =Ny, ©

the spin-wave dispersioa, does not change so much from
that of the undoped phase, for which E) with J
=2t%/U was obtained in the strong-coupling limit. More-
over, in terms of the spin wave thus obtained at half filling,
we could reproduce the Heisenberg mot®I? In this deri-
vation, the insulating property at half filling are evident from

the outset, for all the physical states are derived from the N=— @ S,=— @
band insulatotF) by exciting the ferromagnetic spin waves, o’ dh’
which are electrically neutral. In fact, the spin wave in this ) - A .
context is effectively interpreted as the Holstein-Primakofffor givenN=(N) andS,=(S,). The thermodynamic poten-
boson defined in Eq5). Then, as a logical consequence, welial & in Eq. (10) is written

speculated that an anomalous metallic state might result from O=0utAQ (12)
the Nagaoka state, a doped-band insulator, in the same man- HF k
ner as the Mott insulator at half filling is derived from a where the Hartree-Fock part is given by
filled-band ferromagnet. The speculation can be put in other
words: Is the Nagaoka state really driven to a normal metal
after the spin-wave instability?

Third, it is known that the Nel temperaturel ™ esti-
mated in the random-phase approximati®PA) turns out
to be very large in the limit of strong correlation, i.e., one
obtains TR "xU instead ofTyxJ or Ty=0 depending on
dimensionality of the moddPR). (See Fig. 1.In effect, this is
not a problem peculiar to itinerant magnets. Nozgeand

and forH we use Eq(1). Then the free energy is given by
F=Q+uN+2hS,. (10

The Lagrange multiplierge andh have to be determined by

11

QHF:—T% In(1+e */H)—~LUnin,. (13

Here we defined,, by
8k0.58k+un,0_/.l,_h0', (14)

and L is the total number of lattice sited() includes all
effects of electron correlation. In this paper, we take account
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In a simple cubic lattice, the divergence first occursTat
=TRPA for q=Q= (7, 7); the dashed curve in Fig. 1 is
obtained as the solutiofiy * of Eq. (21). At the low tem-
peratureT<TR'*, the BCS-like mean-field solution of the
antiferromagnetic phase existsin general, the mean-field
theory of the magnetically ordered phase was discussed by
many authorg:811-14

B. Nontrivial solution

As is well known, the theory based db predicts fer-
romagnetism folJ=W. As a function ofU, the Curie tem-
peratureTl - determined by the Stoner criterion also increases
as TR * does; in effect, bothTc and TR tend toU/4 for
gargeU.11 In particular, within the Hartree-Fock approxima-
tion, the complete ferromagnetic state, e.g., with Q)
=(1,0), is obtained as a stable phase at low temperatures
T<U. This insulating state, however, is shown to bear spin

FIG. 2. An example of diagrams for the thermodynamic poten-
tial, describing particle-hole pair fluctuations.

of particle-hole pair fluctuations described by the diagram
as shown in Fig. 2, i.e., we work within the HF RPA. Then it
is straightforward to derive

T waves with negative energy, so that it cannot remain stable.
AQ= EE IN[1-Uxo (diwy)]. (15  As we show below, the instability is readily taken into ac-
4@n count within our approximation adopted here.
The transverse susceptibilifgy ~(q,) is given by To investigate the ferromagnetic solution, we choasso
thate;<u<e|. Then the equation tU g ~(q,w)=0, or
+- 1 f(8k+ql)_f(3kT)
Xo (4.0) L; Exiq " Ek @ (1 —EE ! =0, (22

LXK exrq—extU+2h—o B

wheref(¢) is the Fermi-distribution function has a bound-state solution, namely, the spin wavew,

1 +2h below the continuumyg, (k) =&y, q— &+ U+2h. This
f(e)= ——. (17)  eigenequation was discussed in Ref. 2, where it was shown
eT+1 that in the limitU—oo for the tight-binding dispersion

The longitudinal fluctuation need not be considered here, =
since we are not interested in the absolute valu€ of =12, e*?, (23
Within this approximation, from Eq.11) we get g
we obtain the solutiori4) with J=2t%/U. In this case, we
have an energy gap U in charge excitations. Therefore, in

sz,,: NUZZ‘, fleko), 18 terms of the bound-state solutian,,AQ in Eqg. (15) reads
and AQ=TS In(1—e (@a*20/T) (24)
1) JAQ !
25,=— - =Ny =N = —. (19 for T<U. This is the thermodynamic potential of the boson

of energyw, and chemical potential-2h, the factor—2
The parameterg andh are determined by these equations. being due t30 spirS,= —1 of the boson. Hence, from Eq.
(19) follows

Ill. JUST AT HALF FILLING

In this section we discuss the case at half filling: 28,=L—2, IORTTST (25
=N/L=1. q €e'“a -1
The parameteh should be determined by E5) for given
A. Normal solution S,. As a result, up to an irrelevant constant, we obtain the
. . free energy
Equations(18) and (19) with N=L and S,=0 have a
solution, F=AQ+2hsS,, (26)

n=U/2, h=0, (20 in which Egs.(24) and(25) are substituted.

) ) _ Note that the free energy derived here is nothing but what
whenn;=n,=1/2. In this case, the sum in EQL5) diverges e would obtain for the antiferromagnetic Heisenberg model
at the temperature determined by (3) when boson-boson interactions are neglected. The ne-

glect, however, brings about a problem. This is related to a
1-Uxg (q,00=1+ EE flewiq) —flew =0. (21) difference fro.m the case of supe_rcondu_cti_vity; in our 'Fheory
L Ek+q~ Ek S,, unlike N, is not a given quantity but it is the quantity to
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be determined so as to minimiZe For this purpose the U/dt=4 n=09 -0.01 -.--.
boson-boson interaction should not be neglected, as noted in 0r

the introduction. Nonetheless, for practical purposes to dis-

cuss qualitative features of our anomalous solution, we shall -0.01

assumeS,=0, anticipating that the state abovg, would -0.02

never be ferromagnetic. Then E(R5 determinesh as a
function of T and the radius of convergence &f) is set by -0.03
the condition for the Bose-Einstein condensatiar, Ty is -0.04
determined by wg+2h=0, which is tantamount to 1

—Uyxg (Q,0)=0. For example, in the simple-cubic lattice

in the strong-coupling regime, we may use K@) to find (0,0)
Tn=3.46; which is the solid curve in Fig. 1. This is to be
compared with the resurfR}f= 22§ S+1)J/3=3J of the
Weiss mean-field theory for the antiferromagnetic Heisen- FIG. 3. The spin waves, as a function o= (qy.qy) for the
berg model(2). Moreover, it is noted that our theory cor- Hubbard model withU/4t=4 andn=0.9 in a square lattice. The
rectly givesTy=0 for low-dimensional systems where the Minimum lies not atq=Q=(m,m) as for n=1, but atq
Bose-Einstein condensation never occurs at finite tempera= (7.0-37). (See also Fig. 4.

ture.

in two ways? (i) the bandwidthA o= max(wg) —min(wg) is
reduced andii) the momentuny,,,, which gives the mini-
mum of g, Or min Of

The nontrivial solution that we saw above continues to '
exist even in the presence of doped holes. In this section, we wg=q,,,, = MiN(wq),
consider the solution foN<L, or n<1, in the strong-

coupling regionU>W. Note that Eq.(19) for N;=N and . !
N, =0 does not depend g asA{) does not. This indicates garded as the effective superexchange coupling Ay
! =27 J5t, andqin determines the spin structure, commensu-

that spin excitations are independent of the chemical poten- k )
tial . Thereforeu is determined by Eq(18), rate or incommensurate, of the ordered phase; see (Egs.

and(7) for the undoped system. To show these points explic-
_ itly, the spin-wave solutiom, of Eq. (28) is calculated for a
N=N;=> f(ex—p), (27)  square lattice, with which we obtained Figs. 3 and 4.

K In terms of the bound-state solution of E@8), Ty is
and h is fixed by Eq.(19). In Eq. (27) we defined;E,u calculated as in Fhe previous section. Assunmiag 0, from
—h, which may be used in place gf to control charged Ed- (19) we obtain
excitations.

IV. EFFECT OF HOLE DOPING

shifts from q=Q for n=1. It is remarked thal w is re-

In this case, we obtain the eigenequation E: 12 1
2 LG glogthiT_q’
U Ny
1- fZ Py — =0, (28)  andT, is determined as the temperature at which the Bose-
K €k+q €k n+2h—w . . L . -
Einstein condensation occurs. In Fig. 5, theeNemperature
in which we substituted the step function, Ty is shown as a function of the hole density 1—n. In the
- range of hole density shown in the figure, we found that the
1, <
Ne= R (29 1.0
O, 8k> M
_ 0.30 |
for the Fermi-distribution functiorfi(g,— u) to simplify the
following calculation. Similarly, we use, for Eq. (27). By
this replacement, we neglect the temperature dependence of < 020 |
the boson dispersiom= wq+2h, the bound-state solution E: 05 | 13
of 1-Uyxg (g,w)=0. Equation(28) corresponds to Eq. c? g
(22) for the filled bandn=1, and it may be regarded as the o.10
eigenequation for the spin excitation spectrum of the Na- )
gaoka ferromagnetic state, U/4t=4
IF)= 11 cfl0), (30) 0090 095 100 %D o095 100

ek<p n n

which is a doped band insulator. FIG. 4. The momentunt, of q=(m,qmin), Which gives the

As shown in the case oh=1, the low-energy spin- minimum of w, (left), and the bandwidtiA w=max(w,)—min(w,)
excitation properties of the system is determined by theright) as a function of in the casdJ/4t=4 of the Hubbard model
bound-state solutiom,. Upon hole dopingw, is modified  in a square lattice.
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0.08 T ously generated ferromagnetic background. The bound states
sc U/l6t=4 === thus formed behave just as local moments. This point of
6t S view, in terms of charged-spinless fermions and neutral
bosons withS=1 in the complete ferromagnet, embodies a
kind of “spin-charge separation.” In the presence of the
bound-state excitations, crossover from insulator to metal is
vy 25 caused by depolarization of the ferromagnetic vacuum, dis-
sociation of the bound state due to the thermal effect or as a
result of the vanishing-binding energy. These are realized by
decreasingJ, by raising temperatur€, or by increasing the
0.00 hole densityx. Similarly, crossover from the anomalous to
0.00 0.05 0.10 normal metal occurs as a result of the dissociation: The nor-
mal metal should not have the particle-hole bound-state ex-
citation of which energy takes a minimum at finige The
FIG. 5. The Nel temperaturely of the Hubbard modeU /6t anomalous metal is anomalous because of the presence of
=4 in a simple cubic lattice as a function®f1—n. In the inset, such an excitation obeying Bose statistics. The
the result TRP* of the Hartree-Fock approximation is displayed ferromagnetic-to-paramagnetic transition of the mean-field
along withTy. solution, however, should not be distinctly reflected as a
phase transition in physical observables, just as the results
minimum of wq remains at the zone boundagy=Q. The for the symmetric phases of E@) should not depend on the
linear decrease oFy as a function o is due to the reduc- direction of the spin axis prescribed pfy) in the Holstein-
tion of the bandwidth w, cf. the right of Fig. 4. In Fig. 6, Primakoff formalism. In the crossover region, we have to
we show the dispersiom, for a doped system in a simple take account of not only the particle-hole bound states but
cubic lattice. In this example, as in Fig. 3, the minimum is@ls0 individual-particle spin excitations. The latter are ne-
shifted fromgq=Q upon hole doping, and the bottom of the 9lected in this paper, for they have a vanishing spectral
band is considerably flattened. The latter is responsible fow€ight in the strong-coupling regime of our concern.

T, /6t
D
R

AF paramagnetic

x=1-n

the vanishing transition temperaturBy—0 for X=xg Within the RPA, one can show that the ferromagnetic
~0.05, even in three-dimensional systems. state becomes stable in an overdoped regienxX™*, e.g.,
xBPA~0.1 for U/6t=4 in a simple cubic lattice. But this is

just to indicate that RPA is not a good approximation to
describe that region, in which we know the bound-state so-

We viewed the Mott insulator as the ferromagnetic bandutions should disappear as a result of a sharp drop in energy
insulator accommodating a macroscopic number of ferroof single-particle excitation spectrufithe scarcity of vacant
magnetic spin waves. In the same manner, the doped Mo#gites and a strong repulsion are responsible for the formation
insulator is constructed from a doped-ferromagnetic band inof the particle-hole bound pairs. In the absence of well-
sulator, the Nagaoka state. It was shown that the HF RPAlefined bound pairs, the ferromagnet beyond instability will
has the solutions that substantiate this viewpoint. The condie driven to a normal metal. Therefore, our theory, based on
tion for the Mott transition is that the system must contain afRPA, is inapplicable to the overdoped regime. We have to
many up-spin particles as down-spin holes, ile=1-n, use a better approximation to d|s_cuss the crossover from the
orn=n,+n,=1; the insulating magnet follows when all of anomalous to normal-metal solution.

the particle-hole pairs are tightly bound up on the spontane- In the previous section, we saw thaj; vanishes at the
hole densityx=x,,~0.05 for U/6t=4 in a simple cubic

0.0 lattice. On the other side, as noted above, the spin waves

N cease to remain well defined when further holes are déped,

‘\ s¢ Ul6t=4 / i.e., they will disappear for=x.,(>X.1). To see this point

\ . definitely, in Fig. 7 the energy gap in the spin-excitation

1 . . . . .

\ P spectrumA =minzy(k) —min w4 obtained using the improved
‘.‘ Ve theory of Ref. 2 is displayed as a functionxofwhere 7,(k)

\ d andwg represent the bottom energy of the Stoner continuum
-~ and the energy of the spin wave, respectively. As discussed
’ above, below the dissociation temperature, i.e., TTerA/2,

\ J — n=0.94 we will l_::e in the _anomalous metallic phase where particle-
N - p=l hole pair correlations become conspicuous. Thus, the gap
may be tentatively identified with the “high-energy
—0.2 pseudogap” recently observed _ by photoemission
(0,0,0) (R.7T) (n.7,0) (7,0,0) spectroscopy® In any case, from the figure we obserxg
~0.2. Then there arises a question concerning the ground

FIG. 6. For the Hubbard model with/6t=4 in a simple cubic ~ State in the range;<x<X.,. To settle this problem, we
lattice, wy for n=0.94 (solid) and n=1 (dashed curveare dis- must solve a complicated problem of the system of interact-
played as a function af. The dot on the solid curve indicates the ing bosons with highly overlapping internal structures that
minimum of @, . depend on the electronic state of doped holes as well as the

V. DISCUSSION

/6t

> 0.1

d"——
-
A Y
\
\
)
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FIG. 7. The excitation gap =min,(K)—minw, estimated by
the improved theory of Ref. 2 is displayed as a functiorxefl
—n for the Hubbard model witty =4 andzt=1 in a simple cubic
lattice z=6 and a square lattice=4. For the formefTy is drawn
also with the dashed line.

configuration of the bosons themselves. Theoretically, tq

in the simple approximation. Indeed this is just an attempt to
facilitate understanding of the subject of current controversy,
the metallic state adjacent to the magnetic insulator, which,
in fact, appears to have little resemblance to a canonical
normal metal. To explain the anomalous features, we have
recourse to just the two elementary notions, that a com-
pletely filled band is insulating, and that spin wave does not
carry an electric current.

In summary, our approach made use of a “defect” of the
mean-field approximation, that it predicts ferromagnetism
when the on-site repulsion dominates the hopping energy.
The ferromagnetic state must be made unstable either by
collective or single-particle excitations. The former is rel-
evant around half filling, while the latter is for large doping
concentration. In contrast to the latter case where one will
end up with a normal metal, we argue that the former case
can lead to an anomalous metallic state, which may be ulti-
mately led to antiferromagnetism, or some other unusual
ground states. This argument is motivated by the fact that
one can properly construct the antiferromagnetic Heisenberg
model in terms of spin waves of a ferromagnetic band
insulator? From this point of view, we estimated the &le
temperatureTy as a function of the hole concentration
Jrom a paramagnetic side of the phase diagram on the basis

construct a symmetric state from a bro_k_en—symmetry phas 3 the Hartree-Fock random-phase approximation.
as proposed in this paper, is not a familiar procedure. How-

ever, we believe that such a formal device will help us to
understand how things are going in the Mott insulator and
the anomalous metal, even though it may not be well suited
for practical purposes of calculation. Needless to say, a real This paper was supported by the Japan Society for the
matter of fact is not so simple and clear-cut as we saw abovBromotion of Science for Young Scientists.
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