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Anomalous paramagnetic phase of the Hubbard model

Takuya Okabe
Faculty of Engineering, Gunma University, Kiryu, Gunma 376-8515, Japan

~Received 22 May 1998!

A strong-coupling regime of the Hubbard model around half filling is investigated in the Hartree-Fock
random-phase approximation. At half filling, besides a normal solution that gives rise to antiferromagnetic
instability atT5TN

RPA;U, we find a solution representing the paramagnetic phase of the Mott insulator, for
which we obtain the Ne´el temperatureTN;J in three-dimensional lattices. The solution is interpreted as the
ferromagnetic band insulator depolarized by spin wave, the bound state of a particle-hole pair. Similarly, an
anomalous metallic phase is derived from the Nagaoka ferromagnetic state. We evaluateTN as a function of
doping concentrationx to find that it vanishes atx.0.05 for U/6t54 in a simple cubic lattice.
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I. INTRODUCTION

Normal-state properties of the underdoped region of hi
Tc cuprates have attracted a lot of current interest. It is
perimentally and theoretically suggested that the meta
state adjacent to an insulating antiferromagnetic phase i
anomalous that it is better interpreted as a doped Mott in
lator than as a conventional metal described by Fermi-liq
theory. In the former, an electric current is regarded to
carried by holes doped in a parent magnetic insulator, a
doped semiconductors. This feature is adequately embo
in the t-J model, but, unfortunately, it has not yet bee
reached a consensus whether a conventional perturb
theory starting from an uncorrelated normal metal is
equate or not as a canonical framework to attack this pr
lem.

In this paper, we study a paramagnetic phase of
single-band Hubbard model,

H52t (
^ i , j &,s

cis
† cj s1U(

i
n̂i↑n̂i↓ , ~1!

particularly in the strong-coupling regimeU@W, whereW
is the bandwidthW.4dt. For one electron per site, it is we
known that the model is mapped to the antiferromagn
Heisenberg model,

H̃52J(
^ i , j &

S Ŝi•Ŝj2
1

4D , ~2!

with the coupling constantJ[2t2/U. This is a model for an
insulating magnet, while the model~1! generally describes
itinerant electron systems.

The antiferromagnetic couplingJ}U21 is usually derived
by means of the second-order virtual processes, which
operative for the otherwise decoupled localized spins.1 In
short, this is perturbation theory inU21 around the insulat-
ing limit U5`, in contrast to the conventional perturbatio
theory from a metallic sideU50. We note that this kind of
derivation ofJ, though physically sound, presupposes one
the essential properties inherent in magnetic insulators,
electrons do not move around freely so that they are w
PRB 590163-1829/99/59~4!/2564~6!/$15.00
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described in real-space representation at the outset. Fo
same reason, anomalous properties of doped systems
better be justified without recourse to thet-J model, since
the property of our concern, that of an anomalous metal a
doped insulator, is already incorporated in that model. A
is still controversial if the two approaches, from the stron
and weak-coupling limits, are compatible with each other
is highly desirable to clarify how insulating and anomalo
metallic properties dictated by superexchange interacti
are derived in the conventional-diagram technique based
the formal perturbation theory in powers ofU. This problem
is addressed in this paper.

To begin with, let us note several points, which are rela
to the subject and results of this paper. First, the model~2! is
rewritten

H̃5(
q

vqb̃q
†b̃q12J(

^ i , j &
b̃i

†b̃i b̃ j
†b̃ j , ~3!

vq52J(
d̄

~12eiq d̄ !, ~4!

in terms of the Holstein-Primakoff bosons,

2Ŝzi5122b̃i
†b̃i , Ŝi

15b̃i , Ŝi
25b̃i

† , ~5!

whereb̃i andb̃i
† are the annihilation and creation operator

a hard-core boson. The operatorb̃i
† acts on the ferromagneti

vacuum,

uF&5)
i

u↑ i&, ~6!

to create the stateu↓ i&5b̃i
†u↑ i&. The sum in Eq.~4! is taken

over the nearest-neighbor vectorsd̄. For example, in a
simple cubic lattice, we have

vq522J~32cosqx2cosqy2cosqz!, ~7!

which takes the minimum212J at q5Q5(p,p,p). The
Bose-Einstein condensate of the bosonb̃Q

† corresponds to the
Néel ordered phase. Above the Ne´el temperatureTN , it is
2564 ©1999 The American Physical Society
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PRB 59 2565ANOMALOUS PARAMAGNETIC PHASE OF THE HUBBARD MODEL
expected on physical grounds that the paramagnetic p
with 2^Ŝzi&5122^b̃i

†b̃i&50 is realized as a stable state.
this formalism, the paramagnetic state has to be mainta
by means of repulsive interaction between the bosons. T
to prove the stability would not be a simple task theore
cally, for one has to deal with the many-body problem su
ject to hard-core interaction. Nonetheless, it should be
marked that this formalism is formally exact, even though
is formulated on the broken symmetry state~6!; in principle,
the rotation symmetry of the paramagnet must be recove
in the exact result.

Second, let us review the results obtained in Ref. 2, wh
are used in the following discussion. We investigated
Hubbard model to show that the ferromagnetic~Nagaoka!
state around half filling is destabilized by spin-wave instab
ity. Even in the presence of a slight amount of doped ho
the spin-wave dispersionvq does not change so much fro
that of the undoped phase, for which Eq.~4! with J
[2t2/U was obtained in the strong-coupling limit. More
over, in terms of the spin wave thus obtained at half fillin
we could reproduce the Heisenberg model~2!.2 In this deri-
vation, the insulating property at half filling are evident fro
the outset, for all the physical states are derived from
band insulatoruF& by exciting the ferromagnetic spin wave
which are electrically neutral. In fact, the spin wave in th
context is effectively interpreted as the Holstein-Primak
boson defined in Eq.~5!. Then, as a logical consequence, w
speculated that an anomalous metallic state might result f
the Nagaoka state, a doped-band insulator, in the same
ner as the Mott insulator at half filling is derived from
filled-band ferromagnet. The speculation can be put in ot
words: Is the Nagaoka state really driven to a normal m
after the spin-wave instability?

Third, it is known that the Ne´el temperatureTN
RPA esti-

mated in the random-phase approximation~RPA! turns out
to be very large in the limit of strong correlation, i.e., o
obtainsTN

RPA}U instead ofTN}J or TN50 depending on
dimensionality of the model~2!. ~See Fig. 1.! In effect, this is
not a problem peculiar to itinerant magnets. Nozie`res and

FIG. 1. The Ne´el temperatureTN as a function ofU for the
Hubbard model in a simple cubic lattice at half filling. Dash
curve, the result of the RPA. In a correct theory,TN should decrease
for U→`, as indicated by the solid curve. See the text for the so
curve:TN53.46J56.92t2/U.
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Schmitt-Rink3 showed that the transition temperatureTc of
strong-coupling superconductors corresponds to the crit
temperature of the Bose-Einstein condensation for indep
dent bound pairs, which, therefore, becomes independen
the attractive interaction to form the bosonic pairs. On
other side, it is well known that the Hubbard model~1! is
mapped to that with an attractive interaction by a suita
particle-hole transformation.4 Then the Cooper pair in the
attractive model is mapped back to a particle-hole bou
state in a ferromagnetic vacuum, that is, the spin wave. In
repulsive model, the Bose-Einstein condensation bri
about a magnetic long-range order, and the critical temp
ture will turn out to be of order of the hopping energy of th
pair. Indeed, this is the way we estimateTN;J from a para-
magnetic side of the phase diagram of the Hubbard mo
To this end, in the next section, we start with the conve
tional theory of the Hartree-Fock~HF! RPA. In our theory,
the formal techniques involved in the Holstein-Primako
transformation and the mapping to the attractive model
utilized in physical context, in which the ferromagnetic re
erence frame is derived as a mean-field solution. Then
shall make use of the results of Ref. 2, which were prima
obtained to study the stability of the ferromagnetic grou
state.5–9

II. MODEL

Now let us start on the main subject. For the total num
Ns of electrons with spins, the free energyF(N,Sz) as a
function of N5N↑1N↓ andSz5(N↑2N↓)/2 is often intro-
duced to discuss magnetism in itinerant electron system10

To evaluateF(N,Sz), we may deal with the Hamiltonian

H85H2mN̂22hŜz , ~8!

where

N̂[(
s

N̂s[(
i ,s

n̂is , 2Ŝz[N̂↑2N̂↓ , ~9!

and forH we use Eq.~1!. Then the free energy is given by

F5V1mN12hSz . ~10!

The Lagrange multipliersm andh have to be determined b

N52
]V

]m
, 2Sz52

]V

]h
, ~11!

for given N5^N̂& andSz5^Ŝz&. The thermodynamic poten
tial V in Eq. ~10! is written

V5VHF1DV, ~12!

where the Hartree-Fock part is given by

VHF52T(
k,s

ln~11e2«ks /T!2LUn↑n↓ . ~13!

Here we defined«ks by

«ks[«k1Un2s2m2hs, ~14!

and L is the total number of lattice sites.DV includes all
effects of electron correlation. In this paper, we take acco
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2566 PRB 59TAKUYA OKABE
of particle-hole pair fluctuations described by the diagra
as shown in Fig. 2, i.e., we work within the HF RPA. Then
is straightforward to derive3

DV5
T

2 (
q,vn

ln@12Ux0
12~q,ivn!#. ~15!

The transverse susceptibilityx0
12(q,v) is given by

x0
12~q,v!52

1

L(
k

f ~«k1q↓!2 f ~«k↑!

«k1q↓2«k↑2v
, ~16!

where f («) is the Fermi-distribution function

f ~«!5
1

e«/T11
. ~17!

The longitudinal fluctuation need not be considered he
since we are not interested in the absolute value ofV.

Within this approximation, from Eq.~11! we get

N5(
s

Ns5(
k,s

f ~«ks!, ~18!

and

2Sz52
]V

]h
5N↑2N↓2

]DV

]h
. ~19!

The parametersm andh are determined by these equation

III. JUST AT HALF FILLING

In this section we discuss the case at half filling:n
5N/L51.

A. Normal solution

Equations~18! and ~19! with N5L and Sz50 have a
solution,

m5U/2, h50, ~20!

whenn↑5n↓51/2. In this case, the sum in Eq.~15! diverges
at the temperature determined by

12Ux0
12~q,0!511

U

L (
k

f ~«k1q!2 f ~«k!

«k1q2«k
50. ~21!

FIG. 2. An example of diagrams for the thermodynamic pot
tial, describing particle-hole pair fluctuations.
s

e,

.

In a simple cubic lattice, the divergence first occurs atT
5TN

RPA for q5Q5(p,p,p); the dashed curve in Fig. 1 i
obtained as the solutionTN

RPA of Eq. ~21!. At the low tem-
peratureT,TN

RPA, the BCS-like mean-field solution of th
antiferromagnetic phase exists.11 In general, the mean-field
theory of the magnetically ordered phase was discussed
many authors.4,8,11–14

B. Nontrivial solution

As is well known, the theory based onVHF predicts fer-
romagnetism forU*W. As a function ofU, the Curie tem-
peratureTC determined by the Stoner criterion also increas
as TN

RPA does; in effect, bothTC and TN
RPA tend toU/4 for

largeU.11 In particular, within the Hartree-Fock approxima
tion, the complete ferromagnetic state, e.g., with (n↑ ,n↓)
5(1,0), is obtained as a stable phase at low temperat
T!U. This insulating state, however, is shown to bear s
waves with negative energy, so that it cannot remain sta
As we show below, the instability is readily taken into a
count within our approximation adopted here.

To investigate the ferromagnetic solution, we choosem so
that «↑,m,«↓ . Then the equation 12Ux0

12(q,v)50, or

12
U

L (
k

1

«k1q2«k1U12h2v
50, ~22!

has a bound-state solution, namely, the spin wavev5vq
12h below the continuumhq(k)5«k1q2«k1U12h. This
eigenequation was discussed in Ref. 2, where it was sh
that in the limitU→` for the tight-binding dispersion

«k52t(
d̄

eik d̄, ~23!

we obtain the solution~4! with J52t2/U. In this case, we
have an energy gap;U in charge excitations. Therefore, i
terms of the bound-state solutionvq ,DV in Eq. ~15! reads

DV5T(
q

ln~12e2~vq12h!/T!, ~24!

for T!U. This is the thermodynamic potential of the bos
of energyvq and chemical potential22h, the factor22
being due to spinSz521 of the boson. Hence, from Eq
~19! follows3

2Sz5L2(
q

2

e~vq12h!/T21
. ~25!

The parameterh should be determined by Eq.~25! for given
Sz . As a result, up to an irrelevant constant, we obtain
free energy

F5DV12hSz , ~26!

in which Eqs.~24! and ~25! are substituted.
Note that the free energy derived here is nothing but w

we would obtain for the antiferromagnetic Heisenberg mo
~3! when boson-boson interactions are neglected. The
glect, however, brings about a problem. This is related t
difference from the case of superconductivity; in our theo
Sz , unlike N, is not a given quantity but it is the quantity t

-
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be determined so as to minimizeF. For this purpose the
boson-boson interaction should not be neglected, as note
the introduction. Nonetheless, for practical purposes to
cuss qualitative features of our anomalous solution, we s
assumeSz50, anticipating that the state aboveTN would
never be ferromagnetic. Then Eq.~25! determinesh as a
function ofT and the radius of convergence ofDV is set by
the condition for the Bose-Einstein condensation,3 or TN is
determined by vQ12h50, which is tantamount to 1
2Ux0

12(Q,0)50. For example, in the simple-cubic lattic
in the strong-coupling regime, we may use Eq.~7! to find
TN53.46J; which is the solid curve in Fig. 1. This is to b
compared with the resultTN

mf52zS(S11)J/353J of the
Weiss mean-field theory for the antiferromagnetic Heis
berg model~2!. Moreover, it is noted that our theory co
rectly givesTN50 for low-dimensional systems where th
Bose-Einstein condensation never occurs at finite temp
ture.

IV. EFFECT OF HOLE DOPING

The nontrivial solution that we saw above continues
exist even in the presence of doped holes. In this section
consider the solution forN,L, or n,1, in the strong-
coupling regionU@W. Note that Eq.~19! for N↑5N and
N↓50 does not depend onm asDV does not. This indicates
that spin excitations are independent of the chemical po
tial m. Therefore,m is determined by Eq.~18!,

N5N↑5(
k

f ~«k2m̄ !, ~27!

and h is fixed by Eq.~19!. In Eq. ~27! we definedm̄[m
2h, which may be used in place ofm to control charged
excitations.

In this case, we obtain the eigenequation

12
U

L (
k

nk

«k1q2«k1Un12h2v
50, ~28!

in which we substituted the step functionnk ,

nk5H 1, «k,m̄

0, «k.m̄
~29!

for the Fermi-distribution functionf («k2m̄) to simplify the
following calculation. Similarly, we usenk for Eq. ~27!. By
this replacement, we neglect the temperature dependen
the boson dispersionv5vq12h, the bound-state solution
of 12Ux0

12(q,v)50. Equation ~28! corresponds to Eq
~22! for the filled bandn51, and it may be regarded as th
eigenequation for the spin excitation spectrum of the N
gaoka ferromagnetic state,

uF&[ )
«k,m̄

ck↑
† u0&, ~30!

which is a doped band insulator.
As shown in the case ofn51, the low-energy spin-

excitation properties of the system is determined by
bound-state solutionvq . Upon hole doping,vq is modified
in
s-
ll

-

a-

e

n-

of

-

e

in two ways;2 ~i! the bandwidthDv[max(vq)2min(vq) is
reduced and~ii ! the momentumqmin , which gives the mini-
mum of vq , or qmin of

vq5qmin
5min~vq!,

shifts from q5Q for n51. It is remarked thatDv is re-
garded as the effective superexchange coupling byDv
52zJeff , andqmin determines the spin structure, commens
rate or incommensurate, of the ordered phase; see Eqs~4!
and~7! for the undoped system. To show these points exp
itly, the spin-wave solutionvq of Eq. ~28! is calculated for a
square lattice, with which we obtained Figs. 3 and 4.

In terms of the bound-state solution of Eq.~28!, TN is
calculated as in the previous section. AssumingSz50, from
Eq. ~19! we obtain

n

2
5

1

L(
q

1

e~vq1h!/T21
,

andTN is determined as the temperature at which the Bo
Einstein condensation occurs. In Fig. 5, the Ne´el temperature
TN is shown as a function of the hole densityx512n. In the
range of hole density shown in the figure, we found that

FIG. 3. The spin wavevq as a function ofq5(qx ,qy) for the
Hubbard model withU/4t54 andn50.9 in a square lattice. The
minimum lies not at q5Q5(p,p) as for n51, but at q
5(p,0.3p). ~See also Fig. 4.!

FIG. 4. The momentumqmin of q5(p,qmin), which gives the
minimum of vq ~left!, and the bandwidthDv[max(vq)2min(vq)
~right! as a function ofn in the caseU/4t54 of the Hubbard model
in a square lattice.
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2568 PRB 59TAKUYA OKABE
minimum of vq remains at the zone boundaryq5Q. The
linear decrease ofTN as a function ofx is due to the reduc-
tion of the bandwidthDv, cf. the right of Fig. 4. In Fig. 6,
we show the dispersionvq for a doped system in a simpl
cubic lattice. In this example, as in Fig. 3, the minimum
shifted fromq5Q upon hole doping, and the bottom of th
band is considerably flattened. The latter is responsible
the vanishing transition temperatureTN→0 for x>xc1
.0.05, even in three-dimensional systems.

V. DISCUSSION

We viewed the Mott insulator as the ferromagnetic ba
insulator accommodating a macroscopic number of fe
magnetic spin waves. In the same manner, the doped M
insulator is constructed from a doped-ferromagnetic band
sulator, the Nagaoka state. It was shown that the HF R
has the solutions that substantiate this viewpoint. The co
tion for the Mott transition is that the system must contain
many up-spin particles as down-spin holes, i.e.,n↑512n↓
or n5n↑1n↓51; the insulating magnet follows when all o
the particle-hole pairs are tightly bound up on the sponta

FIG. 5. The Ne´el temperatureTN of the Hubbard modelU/6t
54 in a simple cubic lattice as a function ofx512n. In the inset,
the resultTN

RPA of the Hartree-Fock approximation is displaye
along withTN .

FIG. 6. For the Hubbard model withU/6t54 in a simple cubic
lattice, vq for n50.94 ~solid! and n51 ~dashed curve! are dis-
played as a function ofq. The dot on the solid curve indicates th
minimum of vq .
or

d
-
tt
-

A
i-
s

e-

ously generated ferromagnetic background. The bound st
thus formed behave just as local moments. This point
view, in terms of charged-spinless fermions and neu
bosons withS51 in the complete ferromagnet, embodies
kind of ‘‘spin-charge separation.’’ In the presence of t
bound-state excitations, crossover from insulator to meta
caused by depolarization of the ferromagnetic vacuum,
sociation of the bound state due to the thermal effect or a
result of the vanishing-binding energy. These are realized
decreasingU, by raising temperatureT, or by increasing the
hole densityx. Similarly, crossover from the anomalous
normal metal occurs as a result of the dissociation: The n
mal metal should not have the particle-hole bound-state
citation of which energy takes a minimum at finiteq. The
anomalous metal is anomalous because of the presenc
such an excitation obeying Bose statistics. T
ferromagnetic-to-paramagnetic transition of the mean-fi
solution, however, should not be distinctly reflected as
phase transition in physical observables, just as the res
for the symmetric phases of Eq.~3! should not depend on th
direction of the spin axis prescribed byuF& in the Holstein-
Primakoff formalism. In the crossover region, we have
take account of not only the particle-hole bound states
also individual-particle spin excitations. The latter are n
glected in this paper, for they have a vanishing spec
weight in the strong-coupling regime of our concern.

Within the RPA, one can show that the ferromagne
state becomes stable in an overdoped regionx>xc

RPA, e.g.,
xc

RPA;0.1 for U/6t54 in a simple cubic lattice. But this is
just to indicate that RPA is not a good approximation
describe that region, in which we know the bound-state
lutions should disappear as a result of a sharp drop in en
of single-particle excitation spectrum;2 the scarcity of vacant
sites and a strong repulsion are responsible for the forma
of the particle-hole bound pairs. In the absence of we
defined bound pairs, the ferromagnet beyond instability w
be driven to a normal metal. Therefore, our theory, based
RPA, is inapplicable to the overdoped regime. We have
use a better approximation to discuss the crossover from
anomalous to normal-metal solution.

In the previous section, we saw thatTN vanishes at the
hole densityx5xc1;0.05 for U/6t54 in a simple cubic
lattice. On the other side, as noted above, the spin wa
cease to remain well defined when further holes are dop2

i.e., they will disappear forx>xc2(.xc1). To see this point
definitely, in Fig. 7 the energy gap in the spin-excitati
spectrumD[minhq(k)2minvq obtained using the improved
theory of Ref. 2 is displayed as a function ofx, wherehq(k)
andvq represent the bottom energy of the Stoner continu
and the energy of the spin wave, respectively. As discus
above, below the dissociation temperature, i.e., forT&D/2,
we will be in the anomalous metallic phase where partic
hole pair correlations become conspicuous. Thus, the
may be tentatively identified with the ‘‘high-energ
pseudogap’’ recently observed by photoemiss
spectroscopy.15 In any case, from the figure we observexc2
;0.2. Then there arises a question concerning the gro
state in the rangexc1<x<xc2 . To settle this problem, we
must solve a complicated problem of the system of intera
ing bosons with highly overlapping internal structures th
depend on the electronic state of doped holes as well as
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PRB 59 2569ANOMALOUS PARAMAGNETIC PHASE OF THE HUBBARD MODEL
configuration of the bosons themselves. Theoretically,
construct a symmetric state from a broken-symmetry ph
as proposed in this paper, is not a familiar procedure. H
ever, we believe that such a formal device will help us
understand how things are going in the Mott insulator a
the anomalous metal, even though it may not be well su
for practical purposes of calculation. Needless to say, a
matter of fact is not so simple and clear-cut as we saw ab

FIG. 7. The excitation gapD[minhq(k)2minvq estimated by
the improved theory of Ref. 2 is displayed as a function ofx51
2n for the Hubbard model withU54 andzt51 in a simple cubic
lattice z56 and a square latticez54. For the formerTN is drawn
also with the dashed line.
w

in
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in the simple approximation. Indeed this is just an attemp
facilitate understanding of the subject of current controver
the metallic state adjacent to the magnetic insulator, wh
in fact, appears to have little resemblance to a canon
normal metal. To explain the anomalous features, we h
recourse to just the two elementary notions, that a co
pletely filled band is insulating, and that spin wave does
carry an electric current.

In summary, our approach made use of a ‘‘defect’’ of t
mean-field approximation, that it predicts ferromagneti
when the on-site repulsion dominates the hopping ene
The ferromagnetic state must be made unstable eithe
collective or single-particle excitations. The former is re
evant around half filling, while the latter is for large dopin
concentration. In contrast to the latter case where one
end up with a normal metal, we argue that the former c
can lead to an anomalous metallic state, which may be u
mately led to antiferromagnetism, or some other unus
ground states. This argument is motivated by the fact t
one can properly construct the antiferromagnetic Heisenb
model in terms of spin waves of a ferromagnetic ba
insulator.2 From this point of view, we estimated the Ne´el
temperatureTN as a function of the hole concentrationx
from a paramagnetic side of the phase diagram on the b
of the Hartree-Fock random-phase approximation.

ACKNOWLEDGMENTS

This paper was supported by the Japan Society for
Promotion of Science for Young Scientists.
zel,

zel,
-

a,
a,
1P. W. Anderson, Phys. Rev.115, 2 ~1959!.
2T. Okabe, Phys. Rev. B57, 403 ~1998!.
3P. Nozières and S. Schmitt-Rink, J. Low Temp. Phys.59, 195

~1985!.
4K. Dichtel, R. J. Jelitto, and H. Koppe, Z. Phys. B246, 248

~1971!.
5With regard to the historical background of the present paper,

must mention, among others, Anderson~Ref. 6! and Kohn~Ref.
7! who speculated the metal-insulator transition at half filling
terms of spin waves of a ferromagnetic-band insulator. In
mean-field theory of Krishnamurthyet al. ~Ref. 8!, a similar
view as ours was presented in different terms. In Ref. 9,
array of localized spins in the ferromagnetic Kondo latti
model, viz., the Mott insulator, was described as a filled band
a general model comprising degenerate orbitals.

6P. W. Anderson,Concepts in Solids~Addison-Wesley, Reading
MA, 1992!.

7W. Kohn, Phys. Rev.133, A171 ~1964!.
e

e

e

f

8H. R. Krishnamurthy, C. Jayaprakash, S. Sarker, and W. Wen
Phys. Rev. Lett.64, 950 ~1990!.

9T. Okabe, Prog. Theor. Phys.98, 331 ~1997!.
10T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism

~Springer, Berlin, 1985!.
11K. Dichtel, R. J. Jelitto, and H. Koppe, Z. Phys. B251, 173

~1972!.
12S. Sarker, C. Jayaprakash, H. R. Krishnamurthy, and W. Wen

Phys. Rev. B43, 8775 ~1991!; C. Jayaprakash, H. R. Krishna
murthy, S. Sarker, and W. Wenzel, Europhys. Lett.15, 625
~1991!.

13Q. P. Li and R. Joynt, Phys. Rev. B47, 3979 ~1993!; 49, 1632
~1994!.

14J. R. Schrieffer, X. G. Wen, and S. C. Zhang, Phys. Rev. B39,
11 663~1989!.

15A. Ino, T. Mizokawa, K. Kobayashi, A. Fujimori, T. Sasagaw
T. Kimura, K. Kishio, K. Tamasaku, H. Eisaki, and S. Uchid
Phys. Rev. Lett.81, 2124~1998!.


