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Mixed finite element and atomistic formulation for complex crystals

E. B. Tadmor,* G. S. Smith, N. Bernstein,† and E. Kaxiras
Division of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138
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A general formulation for the analysis of complex Bravais crystals using atomic energy functionals embed-
ded within a finite element framework is presented. The method uses atomistic potentials to determine the
constitutive response of the system. Unlike traditional finite element methods, the nonlinear elastic effects, the
symmetries of the underlying crystal, and the possibility of uniform structural phase transformations are
naturally included in this formulation. Explicit expressions for empirical energy functionals with separable
two- and three-body potentials, and semiempirical tight-binding energy functionals with two-center integrals
are presented. A simple application to silicon underscores the importance of including internal relaxation in a
finite element treatment of a complex crystal. In a forthcoming companion paper, the method presented here is
applied to the nanoindentation of silicon.@S0163-1829~99!14301-7#
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I. INTRODUCTION

Computer simulations are a valuable tool for understa
ing the fundamental processes that determine how a mat
responds to external loads. Broadly speaking, there are
classes of approaches that have proven particularly us
atomistic and continuum simulations. Atomistic approach
provide detailed information about microscopic process
and advances in computer design and algorithms have m
possible the simulation of ever larger systems. Howev
even the most ambitious atomic simulations using empir
potentials can only handle systems sizes of order 109 atoms,
which means that system dimensions generally cannot
ceed a few hundred nanometers. Moreover, reliable res
for large systems depend on the availability of high-qual
efficient energy functionals. Accurate, transferable empir
potentials are available for many pure metals and a
single-element covalent systems, but very few systems
contain more than one element. An alternative is to
quantum-mechanical energy functionals based on tig
binding or density-functional theory formulations. These a
more transferable and can be applied to more complica
crystals, but are several orders of magnitude slower in c
putational speed than empirical potentials.

Continuum mechanics simulations have a different se
strengths. Since atomic details are coarse grained out o
formulation, much larger systems can be treated. But
constitutive equations that relate the strain and stress
system are often empirically determined, making their re
ability over a wide range of deformations dubious. In ad
tion to this difficulty, the lack of an explicit connection be
tween the continuum fields and atomic degrees of freed
makes it difficult to take into account the important prop
ties of a crystal that depend on its atomic structure, such
crystal symmetries, invariance of a primitive cell with r
spect to shear by a full Burger’s vector, and for comp
crystals, the possibility of structural phase transformatio
We seek to overcome these deficiencies in traditional c
tinuum approaches by explicitly embedding atomistic tot
energy calculations within a finite element framework.

We focus on a recently introduced approach referred to
PRB 590163-1829/99/59~1!/235~11!/$15.00
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the quasicontinuum method.1 In this approach a continuum
finite element formulation is used to characterize the m
chanical response of a given system. The difference fr
standard finite element methodologies lies in that the con
tutive response of the system is obtained from an atomi
calculation rather than an empirical phenomenological ru
The basic idea is that every point in a continuum correspo
to a very large region on the atomic scale. Thus, the con
tutive response at that point, i.e., the stress-strain rela
there, may be obtained by deforming the underlying crys
structure by the local strain to obtain the local state of stre
This approximation will be adequate as long as the variat
of the continuum fields is ‘‘slow’’ on the atomic scale. Whe
this breaks down, such as near defect cores, the quas
tinuum method includes a nonlocal limit where the inhom
geneous deformation is specifically accounted for. He
however, we focus on the local limit of the quasicontinuu
formulation, leaving the treatment of the nonlocal defect
fects to a future publication.

In its original version the quasicontinuum method w
formulated with simple Bravais crystals in mind. Many us
ful materials~silicon being one example! have more than one
atom per primitive unit cell. Furthermore, with a sufficient
large unit cell, a realistic representation of amorphous str
tures and alloys could be modeled, permitting finite elem
simulations of these complex materials. Extending the q
sicontinuum method to simulate materials with multiple
oms in a unit cell is the focus of this paper. We presen
formulation that maintains the advantages of traditional fin
element methods, including correct treatment of the far-fi
boundary conditions. At the same time, the formulation na
rally incorporates the anisotropy and symmetries of the m
terial, all the nonlinearities associated with finite deform
tion, and the possible occurrence of structural ph
transformations. Finally, the efficiency of the finite eleme
formulation permits computationally expensive quantu
mechanical energy functionals to be applied to significan
larger systems than would be possible in atomistic simu
tions.

This generalized quasicontinuum method is ideal
simulating a variety of complex systems. In a forthcomi
235 ©1999 The American Physical Society
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236 PRB 59TADMOR, SMITH, BERNSTEIN, AND KAXIRAS
companion paper, the method is applied to nanoindenta
of silicon.2 Additional applications include modeling th
constitutive response of ferroelectric materials,3 simulating
microelectromechanical systems devices, and mode
highly strained nickel-aluminum alloys. All these system
have multiple atoms in a unit cell, and internal relaxati
plays an important role in determining the response of
system to external loads. Furthermore, in some systems l
deformation can lead to phase transformations: silicon
been observed to transform into a conducting phase unde
indenter,4 and NiAl can undergo martensitic transformatio
near a crack tip.5 The formulation of the quasicontinuum
method presented here naturally captures these div
physical phenomena.

The outline of the paper is as follows: Section II briefl
describes the finite element framework. Section III focu
on the atomistic aspects of the formulation. First, the gen
expressions for the stresses and elastic constants for a
eral complex crystal are derived. Second, the explicit ene
density expressions that link the continuum and atomic
scriptions are presented for the case of a separable two-
three-body potential, and for the case of a two-center tig
binding Hamiltonian. Section IV shows how internal rela
ation dramatically affects the behavior of system undergo
simple shear.

II. FINITE DEFORMATION CONTINUUM FRAMEWORK

The continuum formulation adopted here is that of fin
deformation. Thus, no assumptions are made regarding
smallness of the strains. This can be important in micros
tems where large mismatch and thermal strains as we
large mechanical operating strains are sometimes enc
tered. Within a finite deformation framework we differen
ate between a solid in its reference or undistorted state~also
referred to as thematerial frame! and its current or deformed
state~called thespatial frame!. Consider a crystal occupyin
a configurationB0 in the reference frame which is mapped
its current shapeB by the deformation mappingf(X) ~see
Fig. 1!. Thus every pointX in the reference configuration i
mapped to some pointx in the current configuration by

x5f~X!5X1u~X!, ~1!

whereu(X) is the displacement at pointX. The deformation
of an infinitesimal neighborhood of pointX ~represented as
shaded circle in the figure! is completely characterized by th
linear part off(X). This defines an affine mapping,

dx5FdX, ~2!

whereF is the deformation gradient,

F5¹0f5
]f

]X
5I1

]u

]X
, ~3!

where I is the identity tensor. In indicial notation,FiJ
5f i ,J and dxi5FiJdXJ where upper case indices refer
the material frame, lower case indices to the spatial fra
(•) ,J indicates differentiation with respect toXJ and Ein-
stein’s summation convention on repeating indices is
served.
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The deformation mapping and its gradient character
the kinematics of the deformation. The constitutive nature
the material is introduced through the strain energy den
function W which relates the energy at a point to the loc
state of deformation there. From the hypothesis of loca
and use of the entropy production inequality it may
shown6 that W can only be a function ofF, i.e., W5W(F)
and not its derivatives or any other variables. Furthermo
by invoking the postulate of material frame indifference
can also be shown6 that the dependence ofW on F can only
be through the right Cauchy-Green tensorC5FTF. How-
ever, for the current formulation it is more convenient
work in terms ofF.

We may now formulate the general boundary value pr
lem. To this end, we partition the reference boundary]B0
into a displacement component]B0U and a traction compo-
nent ]B0T ~see Fig. 1!. The solid is subjected to prescribe
displacementsu on ]B0U and prescribed tractionsT on
]B0T . Stable configurations of the crystal are identified w
minimizers of the potential energy,

P5 infuH E
B0

W~F!dV02E
]B0T

~T•u!dS0J , ~4!

where F is a function ofu through Eq.~3!, and the trial
deformationsu satisfy the essential boundary conditionu
5u on ]B0U .

To solve the problem we discretize our continuum into
set of finite elements bounded by nodes~see Fig. 2!. The
continuous displacement fieldu is now approximated by fi-
nite element interpolation from its nodal valuesua ,

u~X!.ũ~X!5 (
a51

Nn

uaNa~X!, ~5!

where there areNn nodes in the mesh andNa(X) are the
standard finite element interpolation, or ‘‘shape’’ function7

The potential energy in Eq.~4! may also be rewritten in the
discretized form

FIG. 1. The deformation mapping relating the material (B0) and
spatial~B! configurations. Displacements are specified on the d
dashed part of the boundary (]B0U) and tractions on the remainin
boundary (]B0T).
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PRB 59 237MIXED FINITE ELEMENT AND ATOMISTI C . . .
P̃~$ui%!5 (
e51

Ne E
Ve

W~F!dV02 (
a51

Nn E
]B0T

~T•ua!NadS0 ,

~6!

whereNe is the number of elements andVe is the domain of
elemente. All integrals in Eq.~6! are normally carried out by
numerical quadrature,7 e.g.,

E
Ve

W~F!dV0' (
q51

Q

ve
qW~Fe

q!, ~7!

where Q is the order of the quadrature rule,ve
q are the

quadrature weights for elemente andFe
q is the deformation

gradient evaluated at the quadrature pointq of elemente. In
the limit of linear triangular elements~as employed in pape
II !, a single quadrature point is used and the volume inte
simply reduces toVeŴ(Fe), whereFe is the constant defor
mation gradient in the element.

To find the equilibrium configuration we need to min
mize the potential energyP̃($ui%) in Eq. ~6!. We can use
either a conjugate gradient algorithm~see Ref. 8 for more
detail! which requires the gradient ofP̃ with respect toua or
quasi-Newton schemes~see Ref. 9! which have superior con
vergence properties but also require the second deriva
matrix or Hessian of Eq.~6!. Differentiating Eq.~6! we have

]P̃

]uai
5 (

e51

Ne E
Ve

PiJNa,JdV02E
]B0T

T̄iNadS0, ~8!

whereP is the first Piola-Kirchhoff stress tensor defined b

PiJ5
]W

]FiJ
. ~9!

Note that the first Piola-Kirchhoff stress is a mixed tens
i.e., it has one index in the reference configuration and on
the spatial configuration and it is not symmetric.

The Hessian can similarly be obtained

]2P̃

]uai]ub j
5 (

e51

Ne E
Ve

@DiJkLNa,JNb,L#dV0 , ~10!

FIG. 2. Finite element mesh of reference solidB0 showing
boundary conditions and nodal degrees of freedom.
al

ve

,
in

whereD are the mixed tangential moduli,

DiJkL5
]2W

]FiJ]FkL
. ~11!

We now have expressions for the gradient and Hessia
the potential energy in Eqs.~8! and ~10! in terms of the
stresses and elastic moduli within the elements. These
pend on our choice of a strain energy density functionW
through an appropriate atomistic model.

III. ATOMISTIC CONSTITUTIVE LAW FOR COMPLEX
BRAVAIS LATTICES

In order to formulate a constitutive law for a continuu
from the atomic interactions of the discrete crystal that u
derlies it, we must hypothesize a connection between
continuum displacement field and the motion of atoms. T
standard reasoning consistent with the locality approxim
tion of continuum mechanics is that the atomic environm
at a continuum point is characterized by the deformat
gradient there; this is referred to as the Cauchy-B
hypothesis.10 Thus, each continuum point is taken to repr
sent a large, essentially infinite, region on the atomic sc
which is homogeneously distorted according to the deform
tion gradient at the point. The energy of the distorted crys
and its derivatives can then be obtained from any atomi
model of choice from approximate classical descriptions
rigorous first-principles methods through the use of perio
boundary conditions.

It is worth noting the limitations of the local approxima
tion. First, a local formulation has no internal length sca
thus it is the strain in an element and not its absolute size
enters into the constitutive calculation. This approximati
will be valid as long as the continuum displacement field
slowly varying on the atomic scale. If it is not, a nonloc
formulation will be necessary~see Ref. 11 for details!. Sec-
ond, surfaces and other interfaces will be invisible to a lo
formulation. It is possible within a local formulation to in
clude regions with different constitutive descriptions, e.g.,
in a polycrystal, and of course in a numerical simulation t
model is finite and must terminate at surfaces. However,
energetics of the interfaces will not be accounted for sin
as stated, the constitutive calculations at each point are
formed for an infinite crystal free of boundaries. Third, t
details of atomic scale defects such as dislocation cores
not be correctly reproduced. Interestingly, though, due to
nonconvexity of an atomistically calculated strain ener
function, a local modelcan sustain stable dislocations wit
finite core energies. This is because the energy is comp
from the atomic interactions in a crystal and thus all symm
tries are automatically reproduced and more importantly
tice invariant shears are recognized. As a result, when a
tice is sheared by a full Burgers vector, as it is in the wake
a dislocation, the energy penalty is nil and the dislocation
stable ~see Ref. 1 for details!. The relaxed core structure
however, will only be a crude approximation to the corre
structure.

Now let us consider the application of the Cauchy-Bo
rule to complex Bravais lattices. We consider a crystal wh
may be represented as a Bravais lattice with Bravais vec
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238 PRB 59TADMOR, SMITH, BERNSTEIN, AND KAXIRAS
Ak andNa11 basis atoms per Bravais site. The coordina
of the atoms making up the lattice in the reference coordin
system will be

Xn5l k
NAk1bn, ~12!

whereN is the Bravais site number running from 0 toNs , if
there areNs11 sites, and 0 corresponds to the origin s
~i.e., l k

050),n is an index referring to the basis atom num
ber, l N is a triplet of integers locating Bravais siteN in
space andbn is the position of basis atomn relative to the
Bravais site. In order to simplify the notation we bundle t
site and basis atom number into a single index denoted
Greek letter, e.g.,n5(N,n), which completely identifies an
atom. Without loss of generality, we may setb050 so that
one basis atom always lies at the Bravais site. Applying
Cauchy-Born rule, the positions of the atoms after deform
tion is given by

xn5F~Xn1zn!5F~ l k
NAk1bn1zn!, ~13!

where zn are additional inner displacements resulting fro
energy relaxation with respect to the basis atom positi
~see Refs. 12–14 for details!. Again, without loss of gener
ality and in order to rule out rigid-body translation we m
fix the lattice by settingz050. By defining the inner dis-
placementszn in the reference configuration we automa
cally guarantee the invariance of these measures with res
to rigid-body rotation.12

In general, the energy of a collection of atoms$xn% will be
a function of their coordinates,

E5E~$xn%!. ~14!

The strain energy densityW follows by normalizing this
quantity with respect to the atomic volume in the referen
configurationV,

W5
1

V
E~$xn%!. ~15!

We stated earlier that the strain energy function must o
material frame indifference, i.e., invariance with respect
rigid-body rotation. Martin13 studied the implication of this
to atomic energy functions and concluded that the energy
only depend on the atomic coordinates through scalar p
ucts of their relative positions. We defineR andr as relative
position vectors between pairs of atoms in the reference
deformed configurations, respectively,

Rnm5Xm2Xn5~ l k
M2l k

N!Ak1bm2bn, ~16!

herem5(M ,m) and

r nm5xm2xn5F@~ l k
M2l k

N!Ak1bm2bn1zm2zn#.
~17!

From Eq.~17! it is clear that scalar dot products ofr will
depend onF throughFTF or C as expected from materia
frame indifference. For example, the magnitude ofr nm will
be given by

r nm5$@Xm2Xn1zm2zn#TFTF@Xm2Xn1zm2zn#%1/2.
~18!
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Other scalar products will have a similar dependence. Th
in general, we haveW5W(F,z1,•••,zNa). For a given mac-
roscopic deformation, the strain energy must be minimiz
with respect to the inner displacements,14 thus we require

]W

]zn U
F

50, n51, . . . ,Na , ~19!

and ]2W/]zm]zn must be positive definite. The relations
Eq. ~19! form a system of 3Na equations for the 3Na un-
knownszJ

n . The dependence ofW on zn will generally be
highly complex and the resulting system of equatio
coupled and nonlinear. Practically, the solution of Eq.~19! is
best achieved by employing a numerical minimization alg
rithm, such as the conjugate gradient method, to minimizeW
with respect to the inner displacements with the deformat
gradientF held fixed. This minimization can be strongly his
tory dependent at zero temperature~i.e., the local minimum
to which it converged will depend on the initial guess!. Thus,
it is necessary to store the inner displacementszn at each
quadrature point, using the previous solution at that poin
the initial guess for the next iteration.

After minimization, we obtain the equilibrium inner dis
placementsẑn5 ẑn(F), which implies that the strain energy i
only a function ofF,

W5W~F,ẑn!5W„~F,ẑn~F!…[Ŵ~F!. ~20!

We may now compute the stress and moduli tensors in
presence of internal relaxation. The first Piola-Kirchho
stress was defined earlier in Eq.~9!. For a complex Bravais
lattice we have

PiJ5
]Ŵ

]FiJ
5

]W

]FiJ
U

ẑ

1
]W

]ẑK
nU

ẑ

]ẑK
n

]FiJ
U

ẑ

, ~21!

where the subscriptẑ indicates the expression is evaluated
the relaxed inner displacementsẑn and repeat indices on vec
tor quantities (K and n on z) implies summation over al
components. Under ideal conditions the second term in
~21! drops out due to Eq.~19! and we are left with the stan
dard definition for the stress tensor evaluated at the rela
inner displacements

P5
]W

]F U
ẑ

. ~22!

However, since in practical applications Eq.~19! is only sat-
isfied approximately to some given precision, it is prefera
to work with the more complicated expression in Eq.~21!. If
Eq. ~22! is used instead, the energy and its stress deriva
would not be compatible and numerical difficulties will e
sue at the final stages of convergence where the minimum
the energy surface would not correspond to a stress-
state. To use Eq.~21! we need to compute the nontrivia
derivative]zn/]F. To this end we differentiate Eq.~19! with
respect toFkL and obtain

]2W

]z I
m]zJ

n

]z I
m

]FkL
52

]2W

]FkL]zJ
n . ~23!
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PRB 59 239MIXED FINITE ELEMENT AND ATOMISTI C . . .
Inverting this relation we find the required derivative

]z I
m

]FkL
52F ]2W

]z I
m]zJ

nG21 ]2W

]FkL]zJ
n . ~24!

To obtain the mixed tangential moduli tensorD in Eq.
~11! we must differentiate Eq.~21! with respect toF, explic-
itly accounting for the dependence ofẑn on it. Differentiat-
ing, rearranging and simplifying by making use of Eq.~19!,
we find

DiJkL5
]2W

]FiJ]FkL
1

]2W

]FiJ]zP
m

]zP
m

]FkL
1

]2W

]FkL]zP
m

]zP
m

]FiJ

1
]2W

]zP
m]zQ

n

]zP
m

]FiJ

]zQ
n

]FkL
, ~25!

where for notational simplicity we have dropped the indic
tion that all terms are evaluated atẑn, but this is implied. The
last two terms in Eq.~25! can be shown to cancel when E
~23! is substituted into the last term and we are left with t
following simpler relation:

DiJkL5
]2W

]FiJ]FkL
1

]2W

]FiJ]zP
m

]zP
m

]FkL
. ~26!

Finally, by substituting Eq.~24! into Eq. ~26! we can obtain
a more symmetric expression for the elastic moduli

DiJkL5H ]2W

]FiJ]FkL
2F ]2W

]zP
m]zQ

n G21 ]2W

]FiJ]zP
m

]2W

]FkL]zQ
n J U

ẑ

.

(27)

It is worth noting that the correction due to internal rela
ation will be non-zero and may be significant even for
undistorted crystal~i.e.,F5I ). Thus, internal relaxation ma
not be negligible even for infinitesimal straining in som
cases; this is the case for silicon.

As in the case of the stresses, an argument may be m
that due to numerical precision considerations the full
pression for the elastic moduli which does not assume
~19! ~not given here! should be used in lieu of the simplifie
expression in Eq.~27!. However, since the elastic moduli a
only used to obtain search directions and are not used
convergence criterion the discrepancy is less significant
Eq. ~27! may be used.

Two-body and three-body separable potentials

To this point the derivation was general without referen
to a particular energy function. We now assume that
energy of a collection of identical atoms may be expresse
the form of a two-body and three-body separable potent

E5(
h

F1

2(m V2~r hm!1 (
m,n

V3~r hm,r hn,cosuhmn!G ,
~28!

wherer hm is the distance between atomsh andm anduhmn

is the angle defined by the triplet of atomsh, m, andn. In
Eq. ~28! a sum over a Greek index implies a double summ
tion over the Bravais sites and basis atoms associated
-

de
-
q.

a
d

e
e
in
l,

-
ith

the index. In this case the indicesh, m, andn run over all
Bravais sites and associated basis atoms in the solid. N
that in Eq. ~28! we have assumed a trigonometric depe
dence of the energy on the angleu. This is normally the case
and greatly simplifies the expressions derived later in App
dix A.

For a homogeneously distorted crystal, the same basi
oms at different lattice sites will experience identical en
ronments and thus the calculation of Eq.~28! may be limited
to a single unit cell in order to obtain the correct ener
density. For convenience we choose to compute the en
with respect to the origin Bravais siteo5(0,a),

W5
1

V(
o

ˆ F1

2(m V2~r om!1 (
m,n

V3~r om,r on,cosuomn!G ,
~29!

where V is the primitive Bravais cell volume,r om is the
distance of atomm from basis atoma of the origin Bravais
site, anduomn is the angle measured relative to that ato
The (̂ symbol indicates summation only over the seco
component of a Greek index~i.e., overa in this case!.

Given the specific potential description of Eq.~29! we
may explicitly obtain the derivatives of the strain ener
density appearing in the stress~21! and moduli~27! expres-
sions. The first derivatives are given

]W

]FiJ
5

1

V(
o

ˆ H 1

2(m V2,m

]r om

]FiJ
1 (

m,n
FV3,m

]r om

]FiJ
1V3,n

]r on

]FiJ

1V3,u

]cosuomn

]FiJ
G J , ~30!

]W

]zK
p

5
1

V(
o

ˆ H 1

2(m V2,m

]r om

]zK
p

1 (
m,n

FV3,m

]r om

]zK
p

1V3,n

]r on

]zK
p

1V3,u

]cosuomn

]zK
p G J . ~31!

In the above expressions ( ),m indicates differentiation with
respect tor om and ( ),u indicates differentiation with respec
to cosuomn. The second derivatives can easily be obtained
similar fashion and are not given here for reasons of brev
The derivatives in Eqs.~30! and~31! and the second deriva
tives contain partial derivatives of the form]r /]F,]r /]z,
••• . These are kinematic identities and they are given
Appendix A.

When the energy is computed classically as in Eq.~29!,
it is necessary to locate all neighboring atoms displaced
within the computed atom’s cutoff radius upon deformatio
However, obtaining an atom’s neighbors in a deformed cr
tal is computationally intensive. A convenient approach,
to construct acrystal template. This is a list of the atomic
coordinates of all atoms within some large radius of the u
cell sorted by distance from the basis atoms. It is th
possible to compute a conservative estimate for the o
radius from which atoms could move inside the cuto
sphere. This is referred to as aninfluence radius. A deriva-
tion of this measure for complex Bravais lattices is given
Appendix C.
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240 PRB 59TADMOR, SMITH, BERNSTEIN, AND KAXIRAS
In simulations, this influence radius serves two purpos
First, it is used to ensure that the crystal template stored
the energy calculations is sufficiently large. Second, the
fluence radius is used to identify the smallest subset of at
which have a possibility of entering into the cutoff radiu
thereby making the energy calculations as efficient as p
sible.

Tight-binding models

A completely different method for computing the ener
of a collection of atoms uses the tight-binding method
simple quantum-mechanical model.15 In this method the at-
oms are treated as classical particles that interact in
through an effective potential exerted by the electrons
are treated quantum mechanically. Hypothetical basis or
als with the angular symmetries of single atom eigensta
are centered around each atom. The details of the basis f
tions do not enter into the energy calculation, but only
interactions between basis elementsuf i& that form the over-
lap matrix

Si j 5^f i uf j&, ~32!

and the Hamiltonian matrix

Hi j 5^f i uHuf j&. ~33!

The indicesi andj run over the all the atoms and all the bas
elements centered on each atom. The energy eigenvalue
found by solving the generalized eigenvalue equation

Hi j cn j5enSi j cn j , ~34!

whereen is thenth eigenvalue andcn j is the j th component
of the nth eigenvector.

In the particular tight-binding model used here, the ene
density,W, is made up of a classical two-body pair repulsi
term and a band-structure term16

W5
1

V(
o

ˆ F1

2(m V2~r om!G1
2

VNk
( f nen , ~35!

whereNk is the number ofk points, and the sum(n is over
both bands andk points. The distributionf n is taken to be the
Fermi function,

f n5
1

11e[ ~en2e f !/s]
, ~36!

wheree f is the Fermi energy, ands is a smoothing param
eter. The smoothing parameter is used to maintain nume
stability when configurations with no band gap are trea
with a finite k point mesh in the course of a simulation. It
not related to the physical temperature of the system.

Ideally simulation results should not depend on the va
of s. Da Vita17 has shown that while the energy and fre
energy density both vary ass2, the average of the two varie
ass4 ~see Appendix B!. Thus for the tight-binding model we
use an average of the energy and free-energy density
notedW̃, which has an entropic term added to the express
in Eq. ~35!,
s.
or
-
s

,
s-

a

rt
at
it-
s

nc-
e

are

y

al
d

e
-

e-
n

W̃5W1
s

VNk
(

n
@ f nln~ f n!1~12 f n!ln~12 f n!#. ~37!

For the derivatives,

]W̃

]FiJ
5

1

V(
o

ˆ F1

2(m V2,m

]r om

FiJ
G

1
1

VNk
(

n F 2 f n2
1

s
f̂ nS en2

(
m

emf̂ m

(
m

f̂ m

D G ]en

]FiJ
,

~38!

where

f̂ n5
e[ ~en2e f !/s]

~11e[ ~en2e f !/s] !2
. ~39!

With the aid of the Hellman-Feynman theorem18,19 one can
show,

]en

]FiJ
5

1

2(o

ˆ
(
m

F(
lm

cnl* S ]Hlm

]r i
om

2en
]Slm

]r i
omD r k

omcnmGFJk
21 ,

~40!

where r i
om is the i th component of the the position vecto

between the atomso andm.

IV. SIGNIFICANCE OF INTERNAL RELAXATION

So far the derivation has been given in general terms
arbitrary crystal structures. To demonstrate the benefits
implications of implementing an atomistically based cons
tutive law we turn to the specific example of silicon. In pa
ticular, we will investigate the effect of internal atomic re
laxation on observable macroscopic response. We com
two different atomistic descriptions, the classical Stillinge
Weber ~SW! model20 and a nonorthogonal tight-bindin
Hamiltonian~TB! developed by Bernstein and Kaxiras.16

We focus on a simple shear deformation. We choos

@ 1̄10# shear direction with a@111# slip plane normal. The
corresponding deformation gradient has the form

F5I1gs^ n, ~41!

whereg is the shear parameter,s is the slip direction, andn
is the slip plane normal. Figure 3 presents the strain ene
density of the crystal as it is sheared. In frame~a! no internal
relaxation is allowed, while in frame~b! relaxation is taken
into account. The difference in the energies are startling.
lowing the second basis atom to relax reduces the maxim
energy by a factor of nearly 30. This is emphasized in
figure by the dashed inset in frame~a! which corresponds to
the domain of frame~b!.

In addition to the dramatic reduction in energy, and p
haps more importantly, the periodic nature of the respons
also affected by relaxation. Whereas in the unrelaxed c
the perfect crystal structure is restored after shearing bg
52A6, when the second basis atom is allowed to relax,
period is reduced by a factor of four, i.e.,g5A6/2. The
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FIG. 3. Strain energy density of a silicon crystal as it is sheared along the@ 1̄10#/(111) slip system. Frame~a! presents the case wher
no internal relaxation is allowed. In frame~b!, which occupies the dashed inset in~a!, relaxation is taken into account. Solid lines we
computed using the TB formalism, dashed lines with the SW potential.
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reason for this becomes apparent by studying a single te
hedron as it is sheared with and without internal relaxation
seen in Fig. 4. The lighter atoms are the Bravais site ato
that are constrained to move according to the applied de
mation field. The dark atom is the second basis atom wh
in frame~a! is constrained along with the Bravais site atom
and in~b! is free to move relative to them. Each frame co
tains a series of three snapshots labeled by letters as
cated in Fig. 3.

In the unrelaxed case, we see that the second basis
lags further and further behind the triplet of atoms above
The tetrahedron gets more and more distorted as the cr
is sheared. At pointC the crystal structure is far from th
ideal diamond structure with a correspondingly high ener
The perfect structure will be restored only by shearing fo
times further. When relaxation is taken into account the s
ond basis atom displaces to minimize the distortion. The
tial structure inD is, of course, the same asA in the unre-
laxed case, but then as the upper triangle moves to the r
the second basis atom moves with it, remaining underne
In this manner, the bond angles between the second b

FIG. 4. Shearing of a single silicon tetrahedron~a! without in-
ternal relaxation and~b! with internal relaxation. The dark atom i
the second basis atom which in frame~b! is allowed to relax at each
step. The letters correspond to points on the graphs in Fig. 3.
structures were computed using the TB formalism.
a-
s
s
r-
h

-
di-

om
t.
tal

.
r
c-
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ht,
th.
sis

atom and the upper triplet of atoms, remain closer to
ideal 109.47°. As the shear progresses, the lower left a
falls further behind causing the second basis atom to m
down in the@ 1̄1̄1̄# direction and slightly back in the@11̄0#
direction to reduce the strain on that bond~see snapshotE!.
As the lower right atom draws closer, the second basis a
is pulled towards it, now moving a little ahead of the upp
triangle, and eventually the perfect crystal structure is
stored inF.

Finally, it is of interest to compare the predictions of th
tight-binding model with the Stillinger-Weber potential. Th
tight-binding approach is attractive because its quantu
mechanics basis promises for a more transferable mo
however it is computationally far more intensive than clas
cal approaches@e.g., computing the relaxed curves in Fi
3~b! takes 300 times longer using the TB method than w
the SW potential#. For the simple shear deformation studie
here both approaches yield rather similar results. The ove
energetics are close and the structures observed along
shear trajectory were nearly identical. The main concern
sociated with the SW potential is the appearance of a n
physical local minimum corresponding to the midshear po
tion @see Fig. 3~b!#. This appears to be a general feature
classical potentials. In fact, it appears that the more elabo
the potential and the more it is fitted to given structures,
more undesirable local minima appear between these de
states. This may not be of concern in finite temperature sim
lations where the system has sufficient thermal energy
escape the local wells, however at zero temperature th
minima can be problematic. Thus, in addition to transfera
ity, the smoothness of the energy surface of more rigor
quantum-mechanical approaches is of significant ben
These issues will be pursued in more detail in a compan
paper where more complex deformation pathways will
studied.2

V. SUMMARY AND CONCLUSIONS

We have formulated a finite element method for materi
with multiple atoms in a unit cell that uses atomistic ener
functionals to determine the constitutive relations. T
method presented here naturally incorporates crystal an
ll
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ropy, nonlinear contributions to the energy density, and
possibility of structural phase transitions within the finite
ement framework. We have derived explicit expressions
an empirical potential with two- and three-body terms, a
for a two-center tight-binding Hamiltonian. Throughout, sp
cial care has be taken to correctly treat the internal degree
freedom. We have shown that correct treatment of these
grees of freedom dramatically affects the behavior of eve
simple system such as sheared bulk silicon.
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APPENDIX A: DERIVATIVES OF THE KINEMATICAL
MEASURES

In this section we give the final expressions for the fi
and second derivatives ofr om, the distance between atomm
and an atom at the origin, and cosuomn, the angle between
two atomsm andn and the origin, with respect to the defo
mation gradient and internal displacements. We follow
e

r
d
-
of
e-
a

e
t

t

e

notation of Sec. III, i.e.,r om is defined according to Eq.~18!,
cosuomn is given by cosuomn5(rom

•ron)/r omr on, andr is the
unit vector in the direction ofr ,r i

om5r i
om/r om.

The first derivatives are given by

]r om

]FiJ
5r om@r i

omr j
om#FJ j

21 , ~A1!

]r om

]zK
p

5~dmp2dap!rk
omFkK , ~A2!

]cosuomn

]FiJ
5@r i

omr j
on1r i

onr j
om

2cosuomn~r i
omr j

om1r i
onr j

on!#FJ j
21 , ~A3!

]cosuomn

]zK
p

5Fdmp2dap

r om
~rk

on2rk
omcosuomn!1

dnp2dap

r on

3~rk
om2rk

oncosuomn!GFkK . ~A4!

The second derivatives are given by
]2r om

]FiJ]FkL
5r om@d ik2r i

omrk
om#r j

omr l
omFJ j

21FLl
21 , ~A5!

]2r om

]FiJ]zK
p

5~dmp2dap!@d ikr j
om1d jkr i

om2r i
omr j

omrk
om#FJ j

21FkK , ~A6!

]2r om

]zK
p ]zL

q
5

~dmp2dap!~dmq2daq!

r om
@dkl2rk

omr l
om#FkKFlL , ~A7!

]2cosuomn

]FiJ]FkL
5$d ik@r j

omr l
on1r j

onr l
om2cosuomn~r j

omr l
om1r j

onr l
on!#2~r i

omr j
on1r i

onr j
om!~rk

omr l
om1rk

onr l
on!2~r i

omr j
om1r i

onr j
on!

3~rk
omr l

on1rk
onr l

om!1cosuomn@r i
omr j

omrk
onr l

on1r i
onr j

onrk
omr l

om13r i
omr j

omrk
omr l

om13r i
onr j

onrk
onr l

on#%FJ j
21FLl

21 ,

~A8!

]2cosuomn

]FiJ]zK
p

5H dmp2dap

r om
@d ikr j

on1d jkr i
on2~r i

omr j
on1r i

onr j
om!rk

om2~r i
omr j

om1r i
onr j

on!rk
on2cosuomn~d ikr j

om1d jkr i
om

2~r i
onr j

on13r i
omr j

om!rk
om!#1

dnp2dap

r on
@d ikr j

om1d jkr i
om2~r i

omr j
on1r i

onr j
om!rk

on2~r i
omr j

om1r i
onr j

on!rk
om

2cosuomn~d ikr j
on1d jkr i

on2~r i
omr j

om13r i
onr j

on!rk
on!#J FJ j

21FkK , ~A9!
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]2cosuomn

]zK
p ]zL

q
5H ~dmp2dap!~dmq2daq!

~r om!2
@2rk

omr l
on2rk

onr l
om1cosuomn~3rk

omr l
om2dkl!#1

~dnp2dap!~dnq2daq!

~r on!2

3@2rk
omr l

on2rk
onr l

om1cosuomn~3rk
onr l

on2dkl!#1
~dmp2dap!~dnq2daq!

r omr on

3@dkl2rk
omr l

om2rk
onr l

on1cosuomn~rk
omr l

on!#1
~dnp2dap!~dmq2daq!

r omr on

3@dkl2rk
omr l

om2rk
onr l

on1cosuomn~rk
onr l

om!#J FkKFlL . ~A10!
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APPENDIX B: AVERAGED ENERGY DEPENDENCE
ON SMOOTHING PARAMETER

In this section we show that in a tight-binding-model t
average of the energy and free-energy densityW̃ and the
corresponding forces vary ass4. We assume that we have
smooth, continuous density of states,g(e). Thus our starting
expression forW̃ is the same as the expression in Eq.~37!,
except that (2/VNk)(n is replaced by*g(e)de. We con-
sider W̃ to be a function ofs and e f , and require that the
number density of electronsN be independent of the smooth
ing parameter. Then,

dW̃

ds
5

]W̃

]s
2

]W̃

]e f
S ]N

]sY ]N

]e f
D . ~B1!

Determining the zero-orders contributions to the derivative
with respect to the Fermi energy is immediate, and additio
terms in the expansion are of orders2,

]W̃

]e f
5e fg~e f !1O~s2!, ~B2!

]N

]e f
5g~e f !1O~s2!. ~B3!

The derivatives with respect tos can be evaluated usin
Sommerfield’s lemma21

]W̃

]s
5

p2

3
e fg8~e f !s1O~s3!, ~B4!

]N

]s
5

p2

3
g8~e f !s1O~s3!. ~B5!

Combining Eqs.~B1!–~B5!, we obtain

dW̃

ds
'O~s3!. ~B6!

Taking the derivative of the expansion ofW̃ with respect to
atom positions confirms that the forces have the same t
perature dependence asW̃.
al

-

In numerical tests of typical highly compressed silic
unit cells, we find thatW̃ is significantly less sensitive to th
smoothing parameter value than the energy or free ene
alone. Up to values of a few tenths of an eV fors,W̃ devi-
ates from the zero-temperature energy by about 0.00
while the energy and free energy deviate by about 0.01
However, the behavior of the forces is worse by at least
order of magnitude. We keep the temperature as low as
sible during simulations, between 1022 and 1023 eV.

APPENDIX C: INFLUENCE RADIUS FOR COMPLEX
LATTICES

The energy and derivative computations in the main bo
of the paper are computationally intensive. It is of great pr
tical importance to minimize the number of atoms that a
involved in the computation. To this end we compute
influence radius.1 This is the distance of the furthest ato
from the origin that will come within the cutoff radii of the
computed Bravais site atoms. We obtain a continuum e
mate for this measure.

Following the notation of Sec. III, a generic pointX in the
reference configuration is mapped to the deformed confi
ration by

x5FX1z, ~C1!

wherez5Fz is the inner relaxation in the deformed config
ration. We wish to maximizeXTX subject to the constrain
xTx5r c

2 , wherer c is the cutoff radius. We define the func
tional

L5XTX2m~xTx2r c
2!, ~C2!

where m is a Lagrange multiplier. Inverting Eq.~C1! and
substituting into Eq.~C2!, we have

L5~xT2zT!B21~x2z!2m~xTx2r c
2!, ~C3!

whereB215F2TF21 is the inverse of the left Cauchy-Gree
deformation tensor. Taking a variation of Eq.~C3! with re-
spect tox, dL50, leads to the system of equations

~B212mI !x5B21z. ~C4!

In the absence of internal atoms, i.e.,z50, this is a simple
eigenvalue problem with the solutionRinf5r cAmmax, where
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mmax is the maximum eigenvalue ofB21. Whenz is not zero,
Eq. ~C4! is no longer an eigenvalue problem. Instead
need to solve for the value ofm by solving Eq.~C4!, subject
to the constraintxTx5r c

2 . To facilitate this, we introduce the
eigenvalues and eigenvectors of matrixB21, l i andji , re-
spectively, and expressx andB21z in this basis

x5(
i 51

3

a iji , ~C5!

B21z5(
i 51

3

b iji . ~C6!

Substituting Eqs.~C5! and ~C6! into the system~C4! and
making use of the eigenvalue identity,

B21ji5l iji , ~no sum!, ~C7!

we obtain

(
i 51

3

a i~l i2m!ji5(
i 51

3

b iji . ~C8!

We can then solve fora i

a i5
b i

l i2m
, ~C9!

and thus obtainx from Eq. ~C5!,

x5(
i 51

3
b i

l i2m
ji . ~C10!

The coefficientsb i in Eq. ~C10! can readily be obtained from
Eq. ~C6!. Applying jj to both sides of Eq.~C6!, making use
of the symmetry ofB21 and the orthogonality of its eigen
vectors and recalling relation~C7!, we find

b i5l i~z•ji !~no sum!. ~C11!

The remaining unknowns in Eq.~C10! are the values of the
Lagrange multiplierm. We obtain an implicit equation fo
the values ofm by enforcing the constraintxTx5r c

2 ,

(
i 51

3
l i

2~z•ji !
2

~l i2m!2
5r c

2 , ~C12!

where we have again made use of the orthogonality of
eigenvectorsji .

Equation~C12! may have as many as six distinct roo
These will appear in pairs around the eigenvalues ofB21,l i ,
where the left-hand side of Eq.~C12! is infinite. This can be
seen in Fig. 5 where a typical curve for silicon is drawn.

Once the rootsmk are found, we may compute the corr
sponding influence radiiRinf

k ,

~Rinf
k !25XTX5~xk

T2zT!B21~xk2z!, ~C13!

wherexk is the solution~C10! with m5mk . After substitut-
ing in the appropriate expressions and following some a
bra we obtain
e

e

.

e-

~Rinf
k !25mk

2(
j 51

3
l j

~l j2mk!
2
~z•jj !

2. ~C14!

The influence radiusRinf follows as

Rinf5max
k

$Rinf
k %. ~C15!

Equations~C12! and ~C14! above represent a comple
solution to the problem. However, solving for the rootsmk
and obtaining the eigenvalues and eigenvectors ofB21 may
prove to be too time consuming for this to be worthwhile.
is thus of interest to obtain an approximate solution to
problem that will not underestimate the exact influence
dius, and will be significantly faster.

Empirically, we observe that the maximum influence r
dius is always associated with the maximumm root, i.e., the
one to the right of the maximum eigenvaluel1 ~see Fig. 5!.
We can approximately computemmax by assuming that the
term associated withl1 in Eq. ~C12! dominates@since the
denominator (l12mmax) will be very small#, thus

mmax.l11
l1~z•j1!

r c
5l1F11

z•j1

r c
G . ~C16!

Substituting Eq.~C16! into Eq. ~C14!, we have

Rinf
2 .l1

2F11
z•j1

r c
G2

(
j 51

3
l j

@l1~z•j1!/r c1l12l j #
2
~z•j1!2.

~C17!

The termz•j1 is bounded byz5uzu, sincej1 is a unit vector.
In addition we may assume thej 51 term in Eq.~C17! domi-
nates since the denominator is smallest and numer
greater there. Applying these assumptions and rearran
we find the final simplified estimate for the influence radi

FIG. 5. A typical solution for the values of the Lagrange mul
plier m. The curve is drawn for Stillinger-Weber silicon (r c53.77
Å! for a randomly selected deformation gradient and inner displa
ment. The six rootsmk are indicated by black dots.
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Rinf5Al1r cS 11
z

r c
D . ~C18!

Interestingly, this expression is simply (11z/r c)Rinf
0 , where
Rinf
0 is the influence radius for the shuffle-free case. A

though, we have not established it rigorously, in practice t
estimate has always behaved as a conservative bound o
actual influence radius.
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