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Mixed finite element and atomistic formulation for complex crystals
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A general formulation for the analysis of complex Bravais crystals using atomic energy functionals embed-
ded within a finite element framework is presented. The method uses atomistic potentials to determine the
constitutive response of the system. Unlike traditional finite element methods, the nonlinear elastic effects, the
symmetries of the underlying crystal, and the possibility of uniform structural phase transformations are
naturally included in this formulation. Explicit expressions for empirical energy functionals with separable
two- and three-body potentials, and semiempirical tight-binding energy functionals with two-center integrals
are presented. A simple application to silicon underscores the importance of including internal relaxation in a
finite element treatment of a complex crystal. In a forthcoming companion paper, the method presented here is
applied to the nanoindentation of silicd50163-18209)14301-7

[. INTRODUCTION the quasicontinuum methddin this approach a continuum
finite element formulation is used to characterize the me-

Computer simulations are a valuable tool for understandehanical response of a given system. The difference from
ing the fundamental processes that determine how a materiatandard finite element methodologies lies in that the consti-
responds to external loads. Broadly speaking, there are twiitive response of the system is obtained from an atomistic
classes of approaches that have proven particularly usefutalculation rather than an empirical phenomenological rule.
atomistic and continuum simulations. Atomistic approachesThe basic idea is that every point in a continuum corresponds
provide detailed information about microscopic processesio a very large region on the atomic scale. Thus, the consti-
and advances in computer design and algorithms have madetive response at that point, i.e., the stress-strain relation
possible the simulation of ever larger systems. Howeverthere, may be obtained by deforming the underlying crystal
even the most ambitious atomic simulations using empiricaktructure by the local strain to obtain the local state of stress.
potentials can only handle systems sizes of ordératéms,  This approximation will be adequate as long as the variation
which means that system dimensions generally cannot exf the continuum fields is “slow” on the atomic scale. When
ceed a few hundred nanometers. Moreover, reliable resulthis breaks down, such as near defect cores, the quasicon-
for large systems depend on the availability of high-quality,tinuum method includes a nonlocal limit where the inhomo-
efficient energy functionals. Accurate, transferable empiricajeneous deformation is specifically accounted for. Here,
potentials are available for many pure metals and a fevhowever, we focus on the local limit of the quasicontinuum
single-element covalent systems, but very few systems thd@brmulation, leaving the treatment of the nonlocal defect ef-
contain more than one element. An alternative is to uséects to a future publication.
guantum-mechanical energy functionals based on tight- In its original version the quasicontinuum method was
binding or density-functional theory formulations. These areformulated with simple Bravais crystals in mind. Many use-
more transferable and can be applied to more complicatefiil materials(silicon being one exampldave more than one
crystals, but are several orders of magnitude slower in comatom per primitive unit cell. Furthermore, with a sufficiently
putational speed than empirical potentials. large unit cell, a realistic representation of amorphous struc-

Continuum mechanics simulations have a different set ofures and alloys could be modeled, permitting finite element
strengths. Since atomic details are coarse grained out of themulations of these complex materials. Extending the qua-
formulation, much larger systems can be treated. But th&icontinuum method to simulate materials with multiple at-
constitutive equations that relate the strain and stress in @ams in a unit cell is the focus of this paper. We present a
system are often empirically determined, making their reli-formulation that maintains the advantages of traditional finite
ability over a wide range of deformations dubious. In addi-element methods, including correct treatment of the far-field
tion to this difficulty, the lack of an explicit connection be- boundary conditions. At the same time, the formulation natu-
tween the continuum fields and atomic degrees of freedomally incorporates the anisotropy and symmetries of the ma-
makes it difficult to take into account the important proper-terial, all the nonlinearities associated with finite deforma-
ties of a crystal that depend on its atomic structure, such ason, and the possible occurrence of structural phase
crystal symmetries, invariance of a primitive cell with re- transformations. Finally, the efficiency of the finite element
spect to shear by a full Burger's vector, and for complexformulation permits computationally expensive quantum-
crystals, the possibility of structural phase transformationsmechanical energy functionals to be applied to significantly
We seek to overcome these deficiencies in traditional conlarger systems than would be possible in atomistic simula-
tinuum approaches by explicitly embedding atomistic total-tions.
energy calculations within a finite element framework. This generalized quasicontinuum method is ideal for

We focus on a recently introduced approach referred to asimulating a variety of complex systems. In a forthcoming
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companion paper, the method is applied to nanoindentation X
of silicon? Additional applications include modeling the

constitutive response of ferroelectric materfalsimulating *=0X)
microelectromechanical systems devices, and modeling RS
highly strained nickel-aluminum alloys. All these systems
have multiple atoms in a unit cell, and internal relaxation L
plays an important role in determining the response of the ‘

\‘d\x

system to external loads. Furthermore, in some systems large B, B
deformation can lead to phase transformations: silicon has
been observed to transform into a conducting phase under an X

indenter? and NiAl can undergo martensitic transformations
near a crack tip. The formulation of the quasicontinuum *
method presented here naturally captures these diverse
physical phenomena.

The outline of the paper is as follows: Section Il briefly
describes the finite element framework. Section Ill focuses
on the atomistic aspects of the formulation. First, the general X;
expressions for the stresses and elastic constants for a 98N"L\ = 1 The deformation mapping relating the mater) and

eral complex crystal are derived. Second, the explicit energ)o(patial(B) configurations. Displacements are specified on the dark

der.]SIFy expressions that link the continuum and atomic dea shed part of the boundarygg,) and tractions on the remaining
scriptions are presented for the case of a separable two- an undary ¢Bqy).

three-body potential, and for the case of a two-center tight-

binding Ham.iltonian. Section IV shpws how internal relax— The deformation mapping and its gradient characterize
ation dramatically affects the behavior of system undergoinge kinematics of the deformation. The constitutive nature of
simple shear. the material is introduced through the strain energy density
function W which relates the energy at a point to the local
Il. FINITE DEFORMATION CONTINUUM FRAMEWORK state of deformation there. From the hypothesis of locality

. . . . .and use of the entropy production inequality it may be
The continuum formulation adopted here is that of f'mteshowr‘? thatW can only be a function oF, i.e., W=W(F)

deformation. Thus, no assumptions are made regarding the . o .
. . . . . and not its derivatives or any other variables. Furthermore,
smallness of the strains. This can be important in microsys;

tems where large mismatch and thermal strains as well a%;n'r;\llgg'gg ;T]%vggigl?ﬁi g]; rg?]tsgr?(l;efrglvm:n |I|;1dc|;fﬁr§2|ce It
large mechanical operating strains are sometimes encou P y

c f " T ’
tered. Within a finite deformation framework we differenti- e through the right Cauchy _Gre(_an_ tensor FF. HQW

ate between a solid in its reference or undistorted gtds® ever, 'for the current formulation it is more convenient to
referred to as thenaterialframée and its current or deformed Wo\r/be;nrr:zrn:ls()xf?érmulate the general boundary value brob-
state(called thespatial frame. Consider a crystal occupying | T tﬁ/' q Gt gth f by d P

a configuratiorBy in the reference frame which is mapped to lem. To this end, we partition the reference bounda,

: : : into a displacement componefB,, and a traction compo-
its current shap® by the deformation mapping(X) (see ) .0 . )
Fig. 1). Thus every poinX in the reference configuration is nentdBor (see Fig. 1 The solid is subjected to prescribed

mapped to some pointin the current configuration by displacementsu on 9Bo, and prescribed traction$ on
dBot . Stable configurations of the crystal are identified with

x=(X)=X+u(X) (1) minimizers of the potential energy,
whereu(X) is the displacement at point. The deformation s f _j F.
of an infinitesimal neighborhood of poidt (represented as a IT=inf, BOW(F)dVO HBOT(T WdS, @)
shaded circle in the figuyés completely characterized by the ) ] ]
linear part of(X). This defines an affine mapping, where F is a function ofu through Eq.(3), and the trial
deformationsu satisfy the essential boundary condition
dx=FdX, (2) =uondBgy. S . .
To solve the problem we discretize our continuum into a
whereF is the deformation gradient, set of finite elements bounded by nodsge Fig. 2 The
continuous displacement field is now approximated by fi-
d au nite element interpolation from its nodal values,
F=Voh=r =1+, &) P ves
X X N,
where | is the identity tensor. In indicial notatiorf, u(X)=G(X)=a21 UaNa(X), ®

= ¢; ; and dx;=F;;dX; where upper case indices refer to

the material frame, lower case indices to the spatial framewhere there aré\,, nodes in the mesh and,(X) are the
(+).; indicates differentiation with respect t§; and Ein-  standard finite element interpolation, or “shape” functidns.
stein’'s summation convention on repeating indices is obThe potential energy in Ed4) may also be rewritten in the
served. discretized form
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whereD are the mixed tangential moduli,
e PPW

IF30F " (D

Digk=

We now have expressions for the gradient and Hessian of
the potential energy in Eq€48) and (10) in terms of the
stresses and elastic moduli within the elements. These de-
pend on our choice of a strain energy density functin
through an appropriate atomistic model.

Ill. ATOMISTIC CONSTITUTIVE LAW FOR COMPLEX
BRAVAIS LATTICES

X, In order to formulate a constitutive law for a continuum
from the atomic interactions of the discrete crystal that un-
FIG. 2. Finite element mesh of reference soBg showing  derlies it, we must hypothesize a connection between the
boundary conditions and nodal degrees of freedom. continuum displacement field and the motion of atoms. The
standard reasoning consistent with the locality approxima-

~ Ne Nn _ tion of continuum mechanics is that the atomic environment
Iuh=2 f W(F)dVo— > f (T-Ux)N.0 S, at a continuum point is characterized by the deformation

e=1 Ja, a=1 JiByr . Lo

6) gradient _there, this is referred to as lthe Cauchy-Born

hypothesig® Thus, each continuum point is taken to repre-
whereN, is the number of elements a, is the domain of  sent a large, essentially infinite, region on the atomic scale
elemente. All integrals in Eq.(6) are normally carried out by which is homogeneously distorted according to the deforma-
numerical quadraturée.g., tion gradient at the point. The energy of the distorted crystal
and its derivatives can then be obtained from any atomistic

Q . . . -
model of choice from approximate classical descriptions to
~ aq a . . o -
fQ W(F)dVo qzl wW(Fe), (@) rigorous first-principles methods through the use of periodic
¢ boundary conditions.
where Q is the order of the quadrature ruley] are the It is worth noting the limitations of the local approxima-

quadrature weights for elemeatand F{ is the deformation tion. First, a local formulation has no internal length scale,
gradient evaluated at the quadrature pajmif elemente. In  thus it is the strain in an element and not its absolute size that
the limit of linear triangular elementas employed in paper enters into the constitutive calculation. This approximation
I), a single quadrature point is used and the volume integrakill be valid as long as the continuum displacement field is
simply reduces t&2 W(F,), whereF, is the constant defor- Slowly varying on the atomic scale. If it is not, a nonlocal
mation gradient in the element. formulation will be necessarfsee Ref. 11 for details Sec-

To find the equilibrium configuration we need to mini- ©nd, surfaces and other interfaces will be invisible to a local
formulation. Itis possible within a local formulation to in-
either a conjugate gradient algoritheee Ref. 8 for more plude regions with different con_stitutive de.s;cript'ions, €.9., as

in a polycrystal, and of course in a numerical simulation the

detai) which requires the gradient of with respect tai, or  yqqel is finite and must terminate at surfaces. However, the
quasi-Newton schemésee Ref. which have superior con- gnergetics of the interfaces will not be accounted for since,

vergence properties but also require the second derivativgs stated, the constitutive calculations at each point are per-
matrix or Hessian of Eq6). Differentiating Eq.(6) we have  ¢5rmeq for an infinite crystal free of boundaries. Third, the

details of atomic scale defects such as dislocation cores will

mize the potential energfi({u;}) in Eq. (6). We can use

=~ N
all ¢ — :
= PN, 5dVo— J TN dS,, ®) not be corr_ectly reproduce_d. _Interestmgly, though,_due to the
Uai  e=1 Ja, ’ Bot nonconvexity of an atomistically calculated strain energy

) ) ) ) ] function, a local modetan sustain stable dislocations with
whereP is the first Piola-Kirchhoff stress tensor defined by finite core energies. This is because the energy is computed
from the atomic interactions in a crystal and thus all symme-
oW . . .
= (9 tries are automatlcally reproduc_ed and more importantly lat-
dFis tice invariant shears are recognized. As a result, when a lat-

Note that the first Piola-Kirchhoff stress is a mixed tensor,tICe is sheared by a full Burgers vector, as it is in the wake of

i.e., it has one index in the reference configuration and one iff dislocation, the energy pgnalty is nil and the dislocation is
the’ spatial configuration and it is not symmetric stable (see Ref. 1 for details The relaxed core structure,

The Hessian can similarly be obtained however, will only be a crude approximation to the correct

structure.
S0 Ng Now let us consider the application of the Cauchy-Born
—_—=> f [DiskeNa N 1dVo, (10)  rule to complex Bravais lattices. We consider a crystal which
IUqidUpj  é=1 Ja, may be represented as a Bravais lattice with Bravais vectors
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A, and\,+1 basis atoms per Bravais site. The coordinate$ther scalar products will have a similar dependence. Thus,
of the atoms making up the lattice in the reference coordinatét general, we havv=W(F,¢*, - - -,¢'2). For a given mac-
system will be roscopic deformation, the strain energy must be minimized

with respect to the inner displacemetitshus we require

XY=/ NA+D0", (12
oW
whereN is the Bravais site number running from OAQ, if @ =0, n=1,... M, (19
F

there areN;+1 sites, and 0 corresponds to the origin site

(i.e., /g=0),n is an index referring to the basis atom num- and 92W/a¢™a¢" must be positive definite. The relations in
ber, 7N is a triplet of integers locating Bravais sit¢ in Eq. (19) form a system of 3/, equations for the &/, un-
space and" is the pOSition of basis atom relative to the knowns g‘r]" The dependence ol on é‘n will genera”y be
Bravais site. In order to Slmpllfy the notation we bundle theh|gh|y Comp'ex and the resulting System of equations
site and basis atom number into a single index denoted by upled and nonlinear. Practically, the solution of B is
Greek letter, e.g.p=(N,n), which completely identifies an pest achieved by employing a numerical minimization algo-
atom. Without loss of generality, we may $#t=0 so that rithm, such as the conjugate gradient method, to minirize
one basis atom always lies at the Bravais site. Applying thgyith respect to the inner displacements with the deformation
Cauchy-Born rule, the positions of the atoms after deformagradientr held fixed. This minimization can be strongly his-
tion is given by tory dependent at zero temperatyre., the local minimum
, ) N N to which it converged will depend on the initial gugsBhus,
X'=F(X"+ &) =F(/\ Actb"+{"), (13 it is necessary to store the inner displacemdfitat each
where ¢" are additional inner displacements resulting fromduadrature point, using the previous solution at that point as
energy relaxation with respect to the basis atom positiong1e initial guess for the next iteration. _
(see Refs. 12—14 for detailsAgain, without loss of gener- After mlplmlgatlon, we obtain the equilibrium inner dis-
ality and in order to rule out rigid-body translation we may placementg"= £"(F), which implies that the strain energy is
fix the lattice by settingg?®=0. By defining the inner dis- only a function ofF,
placements" in the reference configuration we automati- R R R
cally guarantee the invariance of these measures with respect W=W(F,{")=W((F,{"(F)=W(F). (20
to rigid-body rotation-?
In general, the energy of a collection of atofm&} will be
a function of their coordinates,

We may now compute the stress and moduli tensors in the
presence of internal relaxation. The first Piola-Kirchhoff
stress was defined earlier in E§). For a complex Bravais

E=E({x"}). (14) lattice we have
The ;train_ energy densityV follov_vs by normalizing this oW IW IW BZE
guantity with respect to the atomic volume in the reference Py=—= | =, (21
. . (9Fi‘] aFiJ N F)gn AaFiJ “
configuration(2, ¢ 9%kl z
1 where the subscrigf indicates the expression is evaluated at
W= —E({x"}). (15

the relaxed inner displacemerﬁéand repeat indices on vec-
) , . tor quantities K and n on ¢) implies summation over all
We stated earlier that the strain energy function must obey,mponents. Under ideal conditions the second term in Eq.
material frame indifference, i.e., invariance with respect t0(21) drops out due to Eq19) and we are left with the stan-

. . . . 3 . . . . .
rigid-body rotation. Mgrtu’m studied the implication of this  jarq definition for the stress tensor evaluated at the relaxed
to atomic energy functions and concluded that the energy caipner displacements

only depend on the atomic coordinates through scalar prod-

ucts of their relative positions. We defifeandr as relative OW
position vectors between pairs of atoms in the reference and P= =
deformed configurations, respectively, Z

)

(22

However, since in practical applications Ef9) is only sat-

v _ _yv_( M_ /N _
R™=XK=X"=(/¢ =/ OAHDT=D", (16) isfied approximately to some given precision, it is preferable

herex=(M,m) and to work with the more complicated expression in E2fl). If
Eq. (22) is used instead, the energy and its stress derivative
(VR =yt V= F[(/kM —/’Q‘)Aﬁ b™—p"+ M- M. would not be compatible and numerical difficulties will en-

(17)  sue at the final stages of convergence where the minimum of
o , the energy surface would not correspond to a stress-free
From Eq.(17) it is clear that scalar dot products ofwill state. To use Eq(21) we need to compute the nontrivial

= .
depend onF throughF'F or C as expected from material yeriyativeas"/ 9F. To this end we differentiate E¢L9) with
frame indifference. For example, the magnituder &f will respect toF,, and obtain

be given by
PW ol W
PR =J[ X, —XV+ _ TFTF XM — XV + _ 1/2. | —_
i M-FF el 48 Al e el (23
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Inverting this relation we find the required derivative

A
IFLaly

PW
a¢1"aL5

To obtain the mixed tangential moduli tensbrin Eg.
(11) we must differentiate Eq21) with respect td=, explic-
itly accounting for the dependence ij on it. Differentiat-
ing, rearranging and simplifying by making use of Ef9),
we find

2

OFeL

(29)

. 2W X 2W agg‘+ W IR
iJkL_&FiJaFkL (gFIJ&é’g‘ aFkL ﬁFkLagg] &FiJ

. PW L LG
ALpaLy IFiy IF L

(29
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the index. In this case the indices w, andv run over all
Bravais sites and associated basis atoms in the solid. Note
that in Eqg.(28) we have assumed a trigonometric depen-
dence of the energy on the angleThis is normally the case
and greatly simplifies the expressions derived later in Appen-
dix A.

For a homogeneously distorted crystal, the same basis at-
oms at different lattice sites will experience identical envi-
ronments and thus the calculation of EB8) may be limited
to a single unit cell in order to obtain the correct energy
density. For convenience we choose to compute the energy
with respect to the origin Bravais site=(0,a),

1 1
W= 52 (52 Va(r)+ 2 Va(ro,re”,cos®) |,
Q (o] 2 “ u<v

(29

where for notational simplicity we have dropped the indica-Where Q2 is the primitive Bravais cell volumer®* is the

tion that all terms are evaluated& but this is implied. The
last two terms in Eq(25) can be shown to cancel when Eq.

distance of atomu from basis atona of the origin Bravais
site, and#°#” is the angle measured relative to that atom.

(23) is substituted into the last term and we are left with theThe = symbol indicates summation only over the second

following simpler relation:

W . PW Iy
dFiy0F . 9F30Lp IF L’

Dig= (26)

Finally, by substituting Eq(24) into Eq. (26) we can obtain
a more symmetric expression for the elastic moduli

iJkL OF30F L aFiJagg‘ ﬂFkLﬁg“g

I*W
2CaCy

;
(27)

It is worth noting that the correction due to internal relax-
ation will be non-zero and may be significant even for an — = _
undistorted crystali.e., F=1). Thus, internal relaxation may aLR Q%
not be negligible even for infinitesimal straining in some

cases; this is the case for silicon.

As in the case of the stresses, an argument may be made

component of a Greek indgke., overa in this casg

Given the specific potential description of EQ9) we
may explicitly obtain the derivatives of the strain energy
density appearing in the stre€&l) and moduli(27) expres-
sions. The first derivatives are given

W 1S 12 v ar"“_i_2 v ar°“+v ar°
ﬁFiJ _5 0 EI—" 2 &FiJ uw<v S [?FL] S'V(?FL]
+V deo 30
0T, || (30

13 12 v aroH N 2 v ar o+ ny ar°

290 TP a2 Moy ok
&cosﬁc’””l ] 31

3,07 .5 .
IR

that due to numerical precision considerations the full ex-

pression for the elastic moduli which does not assume Edn the above expressions ( )indicates differentiation with
(19) (not given hergshould be used in lieu of the simplified respect ta°* and (), indicates differentiation with respect
expression in Eq(27). However, since the elastic moduli are to cog®**. The second derivatives can easily be obtained in
only used to obtain search directions and are not used assimilar fashion and are not given here for reasons of brevity.
convergence criterion the discrepancy is less significant an@ihe derivatives in Eq¥30) and(31) and the second deriva-

Eqg. (27) may be used.

Two-body and three-body separable potentials

tives contain partial derivatives of the ford@r/JF,dr/dg,
---. These are kinematic identities and they are given in
Appendix A.

To this point the derivation was general without reference When the energy is computed classically as in &9),
to a particular energy function. We now assume that thdt iS necessary to locate all neighboring atoms displaced to
energy of a collection of identical atoms may be expressed iMithin the computed atom’s cutoff radius upon deformation.

the form of a two-body and three-body separable potential, However, obtaining an atom’s neighbors in a deformed crys-
tal is computationally intensive. A convenient approach, is

to construct acrystal template This is a list of the atomic
coordinates of all atoms within some large radius of the unit
cell sorted by distance from the basis atoms. It is then
possible to compute a conservative estimate for the outer
wherer 7* is the distance between atomsandx and §7*”  radius from which atoms could move inside the cutoff
is the angle defined by the triplet of atos w«, andwv. In  sphere. This is referred to as arfluence radiusA deriva-

Eq. (28) a sum over a Greek index implies a double summadion of this measure for complex Bravais lattices is given in
tion over the Bravais sites and basis atoms associated withppendix C.

1
E=2 |52 Vo(r7)+ X Va(rm,r”,cos™?)|,
7 2# n<v
(28)
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In simulations, this influence radius serves two purposes. ~ o
First, it is used to ensure that the crystal template stored for ~W=W+ WE [faln(fy) +(1—f)In(1-f,)]. (37)
the energy calculations is sufficiently large. Second, the in- kn
fluence radius is used to identify the smallest subset of atomBor the derivatives,
which have a possibility of entering into the cutoff radius,

thereby making the energy calculations as efficient as pos- oW B 1'2‘: 12 v Jrok
sible. IF,; Q4 |2 < 2 Fi)
Tight-binding models E 3
€
A completely different method for computing the energy 1 1. moo den
of a collection of atoms uses the tight-binding method, a +QNk§n: 2fn_;fn €n™ R IF "
simple quantum-mechanical modglln this method the at- >
oms are treated as classical particles that interact in part m
through an effective potential exerted by the electrons that (38
are treated quantum mechanically. Hypothetical basis Orbith ere
als with the angular symmetries of single atom eigenstates
are centered around each atom. The details of the basis func- el(en—eplol
tions do not enter into the energy calculation, but only the An:—/z' (39
interactions between basis elemets) that form the over- (1+ellen=enlel)
lap matrix With the aid of the Hellman-Feynman theor®rr one can
show,
Sij=(il ¢, (32
and the Hamiltonian matrix den 1S o Mim _ 9Sm ou -1
== —€e'——|r Fi,
dFis 22 % {% ¥ ardH ‘ P Ym| Fok
Hij=(¢i|H|¢;). (33 (40)

The indices andj run over the all the atoms and all the basiswherer?* is the ith component of the the position vector
elements centered on each atom. The energy eigenvalues dretween the atoms and u.
found by solving the generalized eigenvalue equation

IV. SIGNIFICANCE OF INTERNAL RELAXATION

H. o..= -
0= €nSij i (39 So far the derivation has been given in general terms for
wheree, is thenth eigenvalue and,; is thejth component  arbitrary crystal structures. To demonstrate the benefits and
of the nth eigenvector. implications of implementing an atomistically based consti-
In the particular tight-binding model used here, the energytutive law we turn to the specific example of silicon. In par-
density,W, is made up of a classical two-body pair repulsionticular, we will investigate the effect of internal atomic re-
term and a band-structure tefn laxation on observable macroscopic response. We compare
two different atomingic descriptions, the classical Stillinger-
13 2 Weber (SW) modef” and a nonorthogonal tight-binding
W:ﬁzo: +Q_Nk2 frens (39 Hamiltonian(TB) developed by Bernstein and Kaxirds.

We focus on a simple shear deformation. We choose a
whereNy is the number ok points, and the surl, is over  [110] shear direction with 4111] slip plane normal. The
both bands an# points. The distributiorin is taken to be the Corresponding deformation gradient has the form
Fermi function,

1
32 Vaolr™)

F=1+ys®n, (41)

_ 1 (36) wherey is the shear parametesjs the slip direction, and

1+ ellen—enial’ is the slip plane normal. Figure 3 presents the strain energy

density of the crystal as it is sheared. In fratageno internal
wheree; is the Fermi energy, and is a smoothing param- relaxation is allowed, while in framéb) relaxation is taken
eter. The smoothing parameter is used to maintain numericahto account. The difference in the energies are startling. Al-
stability when configurations with no band gap are treatedowing the second basis atom to relax reduces the maximum
with a finite k point mesh in the course of a simulation. It is energy by a factor of nearly 30. This is emphasized in the
not related to the physical temperature of the system. figure by the dashed inset in frani@ which corresponds to
Ideally simulation results should not depend on the valughe domain of frameb).

of o. Da Vita’ has shown that while the energy and free- |n addition to the dramatic reduction in energy, and per-
energy density both vary a€, the average of the two varies haps more importantly, the periodic nature of the response is
asa* (see Appendix B Thus for the tight-binding model we also affected by relaxation. Whereas in the unrelaxed case
use an average of the energy and free-energy density, deéhe perfect crystal structure is restored after shearing by
notedW, which has an entropic term added to the expressiorFZ\/E, when the second basis atom is allowed to relax, the
in Eq. (35), period is reduced by a factor of four, i.ey= J6/2. The

n
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FIG. 3. Strain energy density of a silicon crystal as it is sheared ananm@]/(lll) slip system. Fram@) presents the case where
no internal relaxation is allowed. In fram®), which occupies the dashed inset(@), relaxation is taken into account. Solid lines were
computed using the TB formalism, dashed lines with the SW potential.

reason for this becomes apparent by studying a single tetratom and the upper triplet of atoms, remain closer to the
hedron as it is sheared with and without internal relaxation a&leal 109.47°. As the shear progresses, the lower left atom
seen in Fig. 4. The lighter atoms are the Bravais site atomfalls further behind causing the second basis atom to move
that are constrained to move according to the applied deforjown in the[111] direction and slightly back in thg110]
mation field. The dark atom is the second basis atom Whicla"rection to reduce the strain on that bme Snapshcﬁ)_

in frame (a) is constrained along with the Bravais site atomsas the lower right atom draws closer, the second basis atom
and in(b) is free to move relative to them. Each frame con-js pulled towards it, now moving a little ahead of the upper
tains a series of three snapshots labeled by letters as indkiangle, and eventually the perfect crystal structure is re-
cated in F|g 3. stored inF.

In the unrelaxed case, we see that the second basis atom Finally, it is of interest to compare the predictions of the
lags further and further behind the triplet of atoms above ittight-binding model with the Stillinger-Weber potential. The
The tetrahedron gets more and more distorted as the crystg§ht-binding approach is attractive because its quantum-
is sheared. At poinC the crystal structure is far from the mechanics basis promises for a more transferable model,
ideal diamond structure with a correspondingly high energyhowever it is computationally far more intensive than classi-
The pel’feCt structure will be restored Only by Shearing fourca| approachese_g_, Computing the relaxed curves in F|g
times further. When relaxation is taken into account the secg(p) takes 300 times longer using the TB method than with
ond basis atom displaces to minimize the distortion. The inithe SW potentigl For the simple shear deformation studied
tial structure inD is, of course, the same #sin the unre-  here both approaches yield rather similar results. The overall
laxed case, but then as the upper triangle moves to the righénergetics are close and the structures observed along the
the second basis atom moves with it, remaining underneatiihear trajectory were nearly identical. The main concern as-
In this manner, the bond angles between the second basigciated with the SW potential is the appearance of a non-
physical local minimum corresponding to the midshear posi-
tion [see Fig. 8)]. This appears to be a general feature of
classical potentials. In fact, it appears that the more elaborate
the potential and the more it is fitted to given structures, the
more undesirable local minima appear between these desired
states. This may not be of concern in finite temperature simu-
lations where the system has sufficient thermal energy to
escape the local wells, however at zero temperature these
minima can be problematic. Thus, in addition to transferabil-
ity, the smoothness of the energy surface of more rigorous
guantum-mechanical approaches is of significant benefit.
These issues will be pursued in more detail in a companion
paper where more complex deformation pathways will be
studied?

(a) ®

V. SUMMARY AND CONCLUSIONS
FIG. 4. Shearing of a single silicon tetrahedr@h without in-

ternal relaxation andb) with internal relaxation. The dark atom is We have formulated a finite element method for materials
the second basis atom which in frarie is allowed to relax at each With multiple atoms in a unit cell that uses atomistic energy
step. The letters correspond to points on the graphs in Fig. 3. Affunctionals to determine the constitutive relations. The
structures were computed using the TB formalism. method presented here naturally incorporates crystal anisot-
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ropy, nonlinear contributions to the energy density, and thenotation of Sec. Ill, i.e.r°# is defined according to E¢18),
possibility of structural phase transitions within the finite el- coss®” is given by cog®*”=(r°*-r°")/r°*r° andp is the
ement framework. We have derived explicit expressions founit vector in the direction of,pP*=r#/r

an empirical potential with two- and three-body terms, and The first derivatives are given by

for a two-center tight-binding Hamiltonian. Throughout, spe-

cial care has be taken to correctly treat the internal degrees of Jronr on o1

freedom. We have shown that correct treatment of these de- prmi i Clia i LT (A1)
grees of freedom dramatically affects the behavior of even a )

simple system such as sheared bulk silicon.

Irok
=(Smp— Sap) PR F ik » A2
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APPENDIX A: DERIVATIVES OF THE KINEMATICAL JCOSYOHY 5mp— 5ap ov_ o oup 5np— 5ap
MEASURES o | ron (p”— pi"coss™ HT
K

In this section we give the final expressions for the first
and second derivatives of#, the distance between atom
and an atom at the origin, and &3¥’, the angle between
two atomsu and v and the origin, with respect to the defor-
mation gradient and internal displacements. We follow theThe second derivatives are given by

X (pi* = pR"cost™) |Fyx. (A4)

oro —1--1
T Lo P i ey i o Fu (A5)
(92r0,u N
IF0LP :(5mp_ 5ap)[5ikpjp'u+ 5jkpiOM_Pio'uP?'uPE’u]FJj Fuk, (AB)
iJOSK

(72r0,u (5m p— 5ap)( 5mq_ 5aq)
- S— P pPHIF kFiL (A7)
320 on 8= PP IFkFiL

92cosh+

TFaFL ={&lp{“pi"+p" pr* — cosB (i pP*+ pi o) 1= (PP + " o) (k¥ P+ Pk o7 ") — (PP P + PP pi")
I
—-1-—-1
X(ptpr"+ pr”pr*) + cost  pPtpi R P+ pP oy ok T + 3p oY pik P+ 3 T ok o T F S L

(A8)

07200890#1/_ 5mp_ 5ap ov ov ou Ov ov_Opm\ Om ou ou ov _Ovy Ov 0oLV ou ou
Py - ron LSikej "+ okpi = (pi"py "+ i pi ) o — (p "+ pi 7 pj ) pk” — COSBHY (Sikpi ™ + Sikpi
iJ K

5np_ 5ap
= (p{ P +3p P ) p*) 1+ TR [Sipi™+ Sjpi™— (p7* P+ i pk” = (PP + 07" p7") PR

— oI (Siepf”+ Sjkp” — (pP P +3p" p0) PR F 3 Fiek (A9)
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(9200590;“/ _ (5mp_ 5ap)(5mq_ 5aq) 5np_ 5ap)(5nq_ 5aq)

(
[—pk " —pR"pr* + co“ (3pphpi* — 6i) 1+

ILRIEE (rom)? (rov?
(5mp_ 5ap)(5nq_ 5aq)
X[=pip?" = PP+ co8 " (3py"pP" = d) 1+ Coror
(5np_ 5ap)(5mq_ 5aq)
X[ 8= pi“pr*—pe"pr" +cost™ (ptp") 1+ oror
X[ 8= PP = PP+ ot (p"pi*) 1 | FikFiL - (A10)
|
APPENDIX B: AVERAGED ENERGY DEPENDENCE In numerical tests of typical highly compressed silicon
ON SMOOTHING PARAMETER unit cells, we find thatV is significantly less sensitive to the

In this section we show that in a tight-binding-model the Soothing parameter value than the energy or free energy
alone. Up to values of a few tenths of an eV to/\W devi-

a ates from the zero-temperature energy by about 0.001%,
while the energy and free energy deviate by about 0.01%.
However, the behavior of the forces is worse by at least an
order of magnitude. We keep the temperature as low as pos-
sible during simulations, between 19and 102 eV.

average of the energy and free-energy dendityand the
corresponding forces vary as'. We assume that we have
smooth, continuous density of statg¢e). Thus our starting

expression folV is the same as the expression in E3),
except that (ZAN,) =, is replaced byfg(e)de. We con-

siderW to be a function ofc and ¢;, and require that the
number density of electror$ be independent of the smooth-

. APPENDIX C: INFLUENCE RADIUS FOR COMPLEX
ing parameter. Then,

LATTICES
dW W oW/ N N The energy and derivative computations in the main body
do _ do —&—Gf(% a—ef) . (BY) of the paper are computationally intensive. It is of great prac-

tical importance to minimize the number of atoms that are

Determining the zero-order contributions to the derivatives involved in the computation. To this end we compute an

with respect to the Fermi energy is immediate, and additionanfluence radius This is the distance of the furthest atom
terms in the expansion are of ordef, from the origin that will come within the cutoff radii of the

computed Bravais site atoms. We obtain a continuum esti-
mate for this measure.

M= €r9(€er) +0(a?), (B2) Following the notation of Sec. I, a generic poitin the
i reference configuration is mapped to the deformed configu-
ration by
oN 5
ﬂ—efzg(ff)ﬂLO(U ) (B3) x=FX+z, (C1

wherez=F{ is the inner relaxation in the deformed configu-
ration. We wish to maximiz& "X subject to the constraint
x'x=rZ, wherer is the cutoff radius. We define the func-

The derivatives with respect to can be evaluated using
Sommerfield’s lemnta

P tional

- = ! + 3

do 3 €9 (e)ot O, B4 A=XTX— u(X"x=r2), (C2)
N 2 where u is a Lagrange multiplier. Inverting EqC1) and
A %g/(ef)mL o(cd). (85)  substituting into Eq(C2), we have

Jdo

— (T 5T —1/y__ _ Ty_ ¢2
Combining Egs(B1)—(B5), we obtain A=(X1=2)B(x=2) = p(X'x=To), €3

whereB~1=F TF 1 s the inverse of the left Cauchy-Green

dw deformation tensor. Taking a variation of B@3) with re-
5“0(03)- (B6)  spect tox, SA=0, leads to the system of equations
(B™1—ul)x=B" 1z (C4)

Taking the derivative of the expansion ¥f with respect to
atom positions confirms that the forces have the same temn the absence of internal atoms, i.e=0, this is a simple

perature dependence @4 eigenvalue problem with the solutid®=r:vumax Where
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MmaxiS the maximum eigenvalue & 1. Whenz is not zero, 32

Eq. (C4) is no longer an eigenvalue problem. Instead we % 18
need to solve for the value @f by solving Eq.(C4), subject

|
|
| 2
to the constraink'x=r2. To facilitate this, we introduce the 16 I r T,
eigenvalues and eigenvectors of ma&ix®, \; and& , re- 14
spectively, and expressandB™ !z in this basis H Il
125
3 11 |
=2 @k, (C5) o |
i=1 ]l
8Kl |l
3 I
-3 SFI I
=2 Bi&. (Co) E V)
= 4l
Substituting Eqs(C5) and (C6) into the system(C4) and 2 -: I
making use of the eigenvalue identity, Elol s sy
00;\3 Ay 5 10 15
B'&=\i&, (nosum, (C7) M
we obtain FIG. 5. A typical solution for the values of the Lagrange multi-
plier «. The curve is drawn for Stillinger-Weber silicon&3.77
s 3 A) for a randomly selected deformation gradient and inner displace-
> ai(N—p)E=D, BiE . (C8  ment. The six rootg, are indicated by black dots.
i=1 i=1
We can then solve fog; 2 )
(Riyp)?= Z ——(z-§)>. (C14
Bi ‘=1 (Nj— k)
= (C9
i M The influence radiu®;, follows as
and thus obtainx from Eq. (C5), .
Rint=max Ry} (C15
k

3 ,8
x=2, 4. (C10
=1 hNi—u Equations(C12 and (C14) above represent a complete
solution to the problem. However, solving for the roptg
and obtaining the eigenvalues and eigenvector8 of may
prove to be too time consuming for this to be worthwhile. It
is thus of interest to obtain an approximate solution to the
problem that will not underestimate the exact influence ra-
Bi=\;(z- &)(no sum. (c1y  dius, and will be significantly faster.
Empirically, we observe that the maximum influence ra-
The remaining unknowns in E4C10) are the values of the dius is always associated with the maximynroot, i.e., the
Lagrange multiplier. We obtain an implicit equation for one to the right of the maximum eigenvalng (see Fig. 5.

The coefficients; in Eq. (C10 can readily be obtained from
Eq. (C6). Applying § to both sides of Eq(C6), making use
of the symmetry of8~! and the orthogonality of its eigen-
vectors and recalling relatiofC7), we find

the values ofu by enforcing the constraintx=r2, We can approximately compute., by assuming that the
term associated with ; in Eq. (C12 dominategsince the
i \(z- £)? P denominator X; — uma) Will be very small, thus
S n-p? (12
N1(z- &) z-&
where we have again made use of the orthogonality of the Pomax™= N1t T:M 1+ o | (C16
eigenvectors; .
Equation(C12 may have as many as six distinct roots. Substituting Eq(C16) into Eq.(C14), we have
These will appear in pairs around the eigenvalueBof,\; ,
where the left-hand side of EQC12) is infinite. This can be 2. X
seen in Fig. 5 where a typical curve for silicon is drawn. Rﬁﬂ:)\% 1+ 1} E ] (z-&)%
Once the rootgy, are found, we may compute the corre- Fe | i=1 [Nq(z- &DITe+HNi—N\; ]2
sponding influence radrY;, (C17)
(R<)2=XTX = (x] - 2")B~ (%~ 2), (c13  Thetermz- £ is bounded by = |z|, sinceg; is a unit vector.

In addition we may assume the= 1 term in Eq.(C17) domi-
wherex, is the solution(C10) with = . After substitut- nates since the denominator is smallest and numerator
ing in the appropriate expressions and following some algegreater there. Applying these assumptions and rearranging
bra we obtain we find the final simplified estimate for the influence radius
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RY: is the influence radius for the shuffle-free case. Al-
. (C19 though, we have not established it rigorously, in practice this

Rint= \/A—lrc
estimate has always behaved as a conservative bound on the
Interestingly, this expression is simply €1z/r ;) R%f, where  actual influence radius.

4
1+ —
I’C
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