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Two-dimensional magnetoplasma/Bernstein modes coupled with bulk
and surface optical phonons
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We analyze the interaction of two-dimensio2D) magnetoplasmons, including 2D Bernstein modes, with
bulk and surface optical phonons. The system studied is a 2D sheet of nonlocal electron magnetoplasma
embedded in a semi-infinite semiconductor medium with optical phonons. We examine the longitudinal col-
lective mode spectrum as a function of distaag®f the 2D sheet from the bounding surface of the semicon-
ductor. In particular, the 2D magnetoplasma/Bernstein modes couple preferentially to the bulk LO-phonon
deep in the mediumz— ), whereas in the vicinity of the surface,(—0) they couple preferentially to the
surface phonon. This study is carried out by explicitly inverting the spatially inhomogeneous dielectric func-
tion of the combined system of a planar quantum-well plasma and a semi-infinite semiconductor in a position
representation. The resulting closed-form inverse dielectric funétian ,z,) yields the oscillator strengths of
the various modes as its position-dependent residues at the frequency poles defining the modes.
[S0163-182699)10703-3

I. INTRODUCTION: INVERSE DIELECTRIC phonons. Interest in this problem has been spurred by recent
FUNCTION experimental observatiotsand the need to explore the lim-

Advances in the fabrication of semiconductor nanostruc—itS of validity of earlier theoretical wofkwhich omitied .
tures have focused considerable attention on collectivd®atment of the surface phonons. The system under consid-
modes in confined geometries, and much theoretical and efgration is depicted in Fig. 1, with a 2D sheet of magneto-
perimental work has ensued. While many confined collectivé?lasma embedded in a semi-infinite_host medium bearing
modes have already been studied, there are, in fact, yet mof®tical phonons, the 2D sheet being parallel to and at a dis-
to be examined, particularly in the arena of confined collectancez, from the bounding surface of the host material. The
tive modes in mutual interaction with one another. In thismagnetic field is perpendicular to both the interface and the
paper, we will investigate the interaction of two-dimensionalplane of the 2D plasma sheet. The inverse dielectric function
(2D) Bernstein modes and the principal 2D magnetoplasmofor this geometrical arrangement was derived recehdygd
with surface optical phonons as well as with bulk opticalit may be written in the form
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whereK(z;,2,) is the Fourier transform of the inverse di- 7_(2)=6(z)— 6(—2), (1.4

electric functionK(zl,zz,Fl— Fz,tl—tz) in the lateral plane
r,—r,—k and in timet;—t,—w with the appearance of
bothk and w suppressed. In Eq1.1), 6(z) is the Heaviside

and the dynamic host medium dielectric function incorporat-
ing optical phonons is

unit step function, and 2_ 2
w —w,_
858(0)):8%—2 > (1.5
_ 2D —2k W —w
eA=e+4maf (1-Te %), 1.2 T

Here,wt andw, are the transverse- and longitudinal-optical-
n.(2)=e6(z2)+&'0(—z), 1.3 phonon frequencies, and, is the high-frequency dielectric
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eA=g(w)+4mad®(1-Te ?%)=0, (2.1

&’ & . . .
() which can alternatively be written as

Planar Surface e —— z, —>
e’ +e(w) AmaiPe %%

(2.2

\ e'—¢e(w) s(w)+47ra(2)D.

2D Sheet Two geometric limits which are of special interest will be
(V¢

discussed in detail in the following subsections, namely,
FIG. 1. Schematic of the 2D sheet at a distaagefrom the ~ when the 2D sheet is deep in the mediukzg—, and

interface az=0 of a semi-infinite medium. when it is close to the interfac&zy— 0.
constant, while the adjoining medium dielectric constant is A. Local spectrum
e'. Furthermore, the image strength factor associated with
the interface is 1. 2D electron sheet deep in the medium
' e(w) Herezy— o (kzy>1): In this case the dispersion relation
€ —&lw i
I=T(w)= . (1.6 (2.1) yields
e'+e(w) ,
w —w

Equation(1.1) represents a generalization of the results of s(w)+47raéD=8w2—;+47TagD=O, 2.3
Ref. 3 in several respect$a) The in-plane polarizability w"— w7

2D _ 2Dy, H . .. .
4may”=4mag- (K ,w) now includes nonlocal, as well as lo- \hich is independent of the bounding surface due to the

cal, 2D structure and magnetic-field dependences(larttie  |arge separation of the 2D sheet from the interface. In the
adjoining medium dielectric constantés (arbitrary and is  |ocal limit,*® 47a2P= - wip/[wi—w?] (here w3y

nqt restricted.to the vacuum \(alue u.nity. Moreov@),  is =2mn,pe?k/m, nup is the 2D density, and. is the cyclo-

still local and is taken to describe optical phonons of the bulk,qp, frequency, this dispersion relation couples the 2D prin-

mediu(;n,faﬁ gir\]/ent by Ec{.l.S), instead of a plasma back- ¢jna  |ongitudinal magnetoplasmon wf— w2+ wZy/€..)
ground ot the host medium. with the bulk phonon @2=wf) through the quadratic rela-

tion
Il. DISPERSION RELATION FOR COUPLED 2D
MAGNETOPLASMONS AND SURFACE/BULK 02— w? w2
OPTICAL PHONONS €. L__72 _p (2.4)
wz—w$ wz—wg '
The longitudinal collective mode dispersion relation
which emerges from Ed1.1) is given by which yields the interacting local modes. as
|
1 w%D 1 w%D ? w%D‘”%
wiZE 0l + wi+ iE witwit —| —4| w?wi+ . (2.5
Ex © ©

Furthermore, we note that, deep in the medium, E2|4) and(2.2) are also satisfied by’ + ¢(w) =0, representing a surface
phonon,w?=[&' w3+ ¢, w?]/[¢' +&.], completely decoupled from the modes of the distant 2D sheet.

2. 2D electron sheet near interface
Herezy,—0 (kzy<<1): In this case the dispersion relati¢h2) takes the form
g'+e
2

&

+4m§D> =0. (2.6)

The local mode arising from=0 is just the uncoupled bulk phonon?= w?. It is clear from the vanishing of the second
factor of Eq.(2.6) that the 2D magnetoplasmon preferentially couples to the surface phomgs @f through the quadratic
dispersion relation

g'+e

2

+47Ta5D=0, (2.7

which yields the interacting local modes as

1 > 1
2 w2+ wi+ 2 t—\/
(e)] 2

2 \2 2 2
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where the constan{e), defined as the average)=(c..

+¢')/2, is effective in screening the 2D plasmon at the in-

terface(whereas this screening role is playeddy deep in
the mediun).

B. Nonlocal spectrum

Admitting nonlocality to consideration introduces 2D

TWO-DIMENSIONAL MAGNETOPLASMA/BERNSTEN . . .
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from which we have the weakly coupled modes deep in
the medium agapproximately

(Qife.) (02— 0])(0h — o))

(03— 020l —(20)?]

w?i%wzt—l-

. (219

and within this framework the=2 Bernstein mode,,_, is

Bernstein mode phenomenology into the dispersion relatiogiven by
[Eq. (2.2)] due to the occurrence of frequency poles of the

2D polarizability at multiples of the cyclotron frequent$,

NwZ™"

=1 w?—[Nw]?’

4e’Mw
k

2D_
Amagy =

(2.9

whereZ(™ is given in Refs. 5 and 6 for all statistical regimes

2
wh=>~ (2w,

Qi e)[(20.)°— 03](3wd)
[(200)2— 0% ][(2w) 2~ w? ]

Again, there is another mode deep in the medium, namely,
the decoupled surface phonona¢, as discussed after Eq.
(2.5), for a total of four modes. These approximations, which

2+

(2.19

and magnetic-field strengths. In the illustrative calculationsapply for zo—<, are not valid when then=2 Bernstein
of the accompanying figures, we consider a nondegenerateode is in a parameter range of strong interaction with

2’7Tn2d

2D Landau-quantized plasma, for whic£ 1/kT and A?
2 nﬁwcﬁ)

= ﬁkZ/mec)
Sln"( 2
o B
2

h
X exr{ - A%otl’(

mMh w

2

sinhhwc,BIZ)' 2.19

J

For our purposes, it suffices to consider just one Bernstein (wz—wi)(wz—wz_)=

mode in the vicinity of the frequency pole of the 2D polar-
izability at 2w., in addition to the principal 2D magneto-

plasmon, so we retain only the=1 and 2 terms of the sum

in Eq. (2.9), which is a good approximation for low wave
number,A?<sinh(iw8/2),

2 2
W32p Qf
4P~ — - ) (2.11
0 wz—wg a)z—(Zoz)C)2
Wheré'6 QEEZWGZUZDk3/m2(DE and Oop

= (hweNyp/2) cothiwy8l2).

1. Zy— ®

It follows that for the 2D electron sheet deep in the me-

dium Eq.(2.4) is supplanted by
a)z—wf B cu%D/soc

wz—w$ wz—wg

Qs.,

wz—(ch)z_

0. (2.12

This dispersion relation, which is cubic i?, can be solved

exactly analytically, but it is cumbersome, and we therefore
provide approximate solutions which correspond to the

coupled modesw. [Eg. (2.5] of the 2D principal-

longitudinal-magnetoplasmon/bulk-phonon type in weak in-

teraction with the Bernstein mode=2. The mutual shifting
of these modes due to this weak interaction is readily dete
mined by rewriting Eq(2.12) in the form

(QE/sw)(wz—wg)(wz—wg)

w?— (ch)z

(02— w?)(0?—0?)=

(2.13

r-

orw-_.

2. ZO—>0

In the case when the 2D electron sheet is near the inter-
face, the dispersion relatiohEq. (2.7)] for the coupled
modesw- [Eq. (2.8)] is supplanted by

ZQﬁwz(wz— w-2|-)

(8" +e.)[ 02— (2w0)?]

(2.19

In the parameter ranges of weak interaction betweemthe
=2 Bernstein mode and-. , we have approximate solutions

w- for z;—0 as

l

202 0% (05— %)

g'+e. [02—(200)%) (02— k)

x

w§=w%_,+

(2.17

and then=2 Bernstein modev,_, is approximately

0 407 (2we)%— w?]

e'te. [(20)?2— i ][(2we)?— 0]

(2.18
The fourth mode azy,— 0 is the decoupled bulk phonon at
w_ , as discussed after E(R.6). Again, these results far,
—0 are not valid for parameter ranges whenhe2 Bern-
stein mode is in strong interaction with, or w_ .

02— =(200)%+

[ll. EXCITATION AMPLITUDES: OSCILLATOR
STRENGTHS

It is also important to provide information about the ex-
citation amplitudes of the coupled modes we have examined.
These excitation amplitudes, or oscillator strengths, are given
by the residues oK(z;, z,) at the frequency pole positions
of the collective modes of the coupled system, and we deter-
mine them using Egg1.1), (1.2), etc., for the case when the
2D Bernstein modew,,_, is weakly coupled tow. as fol-
lows (below, Resdenotes residye

(1) When the 2D sheet is deep in the mediug,-> <, we
have
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~3_ 2~2+_ 2~2+_2 2 2 032
ResKzy,2,) 5. = (w wT)N(w_~:)C)[f2)_ ~(2 wi)z] (~2602D s+ = K S| 8(z,—zg)e W=l (3.0
* ) (2)8(20.) (02— 02) (@2~ 02| 92— 0? @ —(20,)
and
D2 N @ o — D @2 . —(2 2 2 032
ResKz1,2,), 5 _,= (0n-2 wfi(wnfz wf)z[wn_iz( wf)] /~2w2D S+ = 8z~ zg)e Ma 7,
2 g (20)8n(@7y— @2 ) (@0 @2) (20ny) | @y ) @ p—(20)
(3.2
wherew. ,w,_, are given by Eqs(2.14) and (2.15), respectively.
(2) When the 2D sheet is near the interfazg,~0, we have
47TaSD - -
ResKZy,2)) 5. =~ ——[8(2o—20) — 8(z)T(0+)[1-T () 7_(z,)]e W2l
= 7+(21)
X([s'+s<2‘o¢>]<’&»i:;u$>§:'i—f§>[5~";2—(~2§)c>2]) 33
(e'tex)e(ws)(wi—03)(20:) (0l —wp_))
and
2P - -
ResKzy,2) 5 =~ [ (25— 20) — 8(25)T (0n=2) [1—T(wp=y) 7 (21) e
n=2 1n+(23)
[s'+s<5n=2>]<3)ﬁ=2—w$><5§=2—w%)[Z)ﬁ:z—(zwc)Z]) 34
(8" +e.)e(wnen) (Wi~ 02)(Wie— 02)(20ps) | '

wherew. ,w,_, are given in this case by Eq&.17) and  mode occur whef)y is comparable to the other characteris-
(2.18), respectively, in the parameter ranges of weak interactic frequencies of the system, such @g, and w, , and/or
tion of the modes. there is a “crossover” of @. with the other characteristic
In Egs. (3.1)—(3.4), we have focused on the residues of frequenciegwhich would occur in the absence of such inter-
the collective modes which involve coupling of the 2D prin- actions.
cipal magnetoplasmon and phonon modes with the Bernstein The dispersion relation for arbitrary given by Eqs(2.1)
moden=2. Terms involvingd(z,) reflect the fact that the or (2.2), taken jointly with Eq.(2.11) for the nonlocal
surface modes can only be excited by an impressed fieldandau-quantized 2D polarizability at low wave number, is
impinging directly on the interfacdjn the local limit con-  quartic in w?. This yields four nonlocal collective modes
sidered for the host mediumand terms involvings(z,  shown in Figs. 2 and 3. In Fig. 2, we chozg=20A and
—20) require impressed fields to impinge directly on the 2D =12 T for a GaAs-based quantum well, exhibiting the dis-
electron sheet to excite 2D magnetoplasmons. The factofsersion of the four mode frequenciegw, as a function of
e M2~z ande ¥l describe the effective electrostatic po- \yaye numberk/\27n,p for a nondegenerate 2D Landau-

tential atz; in accordance with the Poisson equation. quantized plasma of density,p=10"/cn?. It is clear that

there is considerable interaction among the nonlocal
w,,w_, andn=2 Bernstein modes, with mutual repulsion
of the modes in their wave-number variation. The fourth
“phonon” mode (almost independent of wave numpés
limited to the decoupled surface phonan asz, becomes

The results above indicate that the 2D magnetoplasmkarge. In Fig. 3, the four mode frequenciesw, are plotted
mode anch=2 Bernstein mode couple preferentially to the as functions ofzy (A) for k/y27n,p=0.2 andB=12T. In
bulk phononw, when the 2D plasma sheet is deep in thethese calculations, we took the Al compositionx@s-0.3,
medium kz3>1), but when it is near the bounding surface and usefle’=13.18-3.1%;, #..=10.89-2.73, and the
(kzy<1) the 2D electron magnetoplasma oscillations coupleelectron effective mass  m/my=0.0665(1-X)
preferentially to the surface phonas,. To gain an appre- +0.15;, o =(36.25-6.55,+1.7%2) meV, and wr
ciation of how the longitudinal coupled modes hybridize and=(33.29-0.64x.— 1.16(%) meV. Again, we have the nonlo-
behave over the entirg, range, and to examine parameter cal , andw_ modes, with thew, mode having a greater
regimes in which the=2 Bernstein mode interacts strongly variation with z; than does thes . mode. Then=2 Bern-
with w, or w_, we analyze they-dependent longitudinal stein mode is seen to be almost independergyofand the
dispersion relation of EQ.2.2) numerically. Generally fourth “phonon” mode limits to the decoupled bulk-phonon
speaking, such regimes of strong interaction of the Bernsteifrequency w, as z,—0, while approaching the decoupled

IV. CONCLUSIONS: z,-GEOMETRY
DEPENDENCE OF THE COMBINED
INTERACTING MODE SPECTRUM
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FIG. 2. Plot of the eigenmode frequencies, in units of the lon-

0.20

gitudinal bulk-phonon frequency, , as functions ok/k wherek

=(27n,p) Y2 for ;=20 A andB=12 T. The GaAs parameters those used for Figs. 2 and 3, except tlat-—«.) The
used in the calculation are given in the text, as'igor the adjacent

medium.

surface-phonon frequenay, as zo—. Since w’=(e' w3
+e,0?)/ (€' +€..) differs only slightly fromw? for GaAs/
Al,Ga _,As, this “phonon” mode is almost flat, varying by
about 20% as, ranges over 100 A. Correspondingly, the
coupling of the Bernstein mode to the surface phonon is hard
to distinguish from its coupling to the bulk phonon in the
case of GaAs/AlGa, _,As.

medium so that’ differs greatly frome, choosing an ideal
metal e’ — — . In this case our analysis of E.1) yields

three eigenmodes, which are plotted as functions of

k/\27n,p in Fig. 4 for fixedzo=20 A andB=12 T. The
plot of the three modes as functionszfin Fig. 5 for fixed
k/\27n,5=0.2 shows an increased variation®f with z,,

1.1 T T T T

O+
1.0 ‘C -

=———Phonon mode

09 rF =

~ Bernstein mode
8 08} =

<)

0.7 - -
06 - 0)_ =

05 | | | |

0 20 40 60 80

zy (A)

100

FIG. 3. Plot of the eigenmode frequencies, in units of the lon-
gitudinal bulk-phonon frequency, , as functions of the distance
z, of the 2D sheet from the interface a0 for k/k=0.2 andB
=12 T. All other parameters are the same as in Fig. 2.
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FIG. 4. Same as in Fig. 2, except thet= — .

Bernstein mode of Fig. 5 shows greater variation veighin
this case than was seen above. It is of particular interest to
note that the “phonon” mode, which varied from, to wg
above, is now absent. As indicated above, in the present case
of an adjacent ideal metal,

1 € +e(w)

—

1, (4.2)

€ —e(w)

o ] the dispersion relation of Eq$2.1) and (2.2) is cubic, not
To explore the lack of variation of the Bernstein mode asq,artic. in w2 having only the three roots shown in Figs. 4

a function ofz,, we have considered changing the adjacentnq 5 physically, the impossibility of a fourth mode is un-
derscored by Eq4.1), which clearly rules out the existence

of a surface mode corresponding ¢b+ e(w)—0.
In summary, the geometry dependence of the coupled col-

lective mode spectrum arising from 2D magnetoplasmon/
interaction with surface and bulk
phonons has been examined here. We have also shown that
and somewhat less variation of, . (The parameters used in the coupled modes are accompanied by a position-geometry
the numerical calculations for Figs. 4 and 5 are the same agependence of their relative excitation amplitudescillator
strengthg as described in Sec. Ill above. These explicit and
detailed results show that the 2D magnetoplasma/Bernstein
modes couple preferentially to the bulk LO phonon when

Bernstein modes in

1.1

1.0
0.9

. 038

/o

0.7

06 -
0.5

0.4

60
z, (R)

80 100 120

FIG. 5. Same as in Fig. 3 except thet= —oo.
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zo—o0, deep in the medium, whereas, in the vicinity of thetion with w., and which also have a larger difference be-
interface, z,—0, they couple preferentially to the surface tweenw andw than that of GaAs/AlGa, _,As (so that the
phonon. One may expect a greater variation of the2 surface phonon differs more substantially from the bulk pho-

Bernstein mode as a function gf for materials of relatively non in its coupling with the Bernstein modéne such pos-
low mass, which puts @ directly in the region of interac- sible material choice is a HgTe-based quantum well.
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