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Electromagnetic response of a pinned Wigner crystal

H. A. Fertig
Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506-0055
(Received 18 September 1997; revised manuscript received 22 Decembgr 1997

A microscopic model for analyzing the microwave absorption properties of a pinned, two-dimensional
Wigner crystal in a strong perpendicular magnetic field is developed. The method focuses on excitations within
the lowest Landau level, and corresponds to a quantum version of the harmonic approximation. For pure
systems(no disorde), the method reproduces known results for the collective mode density of states of this
system, and clearly identifies the origin of previously unexplained structure in this quantity. The application of
the method to a simple diagonal disorder model uncovers a surprising result: & Stianption) response at
zero temperature that is consistent with recent experiments. A simple spin lattice model is developed that
reproduces the results of the quantum harmonic approximation, and shows that the sharp response is possible
because the size scalg of patches moving together in the lowest-frequency collective mode is extremely
large compared to the sample size for physically relevant parameters. This result is found to be a direct
repercussion of the long-range nature of the Coulomb interaction. Finally, the model is used to analyze
different disorder potentials that may pin the Wigner crystal, and it is argued that interface disorder is likely to
represent the dominant pinning source for the system. A simple model of the interface is shown to reproduce
some of the experimental trends for the magnetic field dependence of the pinning resonance.
[S0163-18289)07703-9

. INTRODUCTION analyse¥ 1 of these experiments have largely focused on
determining the correlation length of the WC from the ex-
It has long been appreciated that the ground state of eleperimental data, although no clear consensus on this quantity
trons in an otherwise structureless environment should bbas yet been reached.
crystalline at low enough densitié<onsiderable effort has Very recently, experiments on high-quality hbté® and
been focused on creating such a state in a two-dimensionalectrort’ systems at low filling factors have revealed struc-
electron gas(2DEQ) as realized in semiconductor hetero- tures in their microwave absorption properties thatcarali-
junction and quantum well systerigiithough obtaining the  tatively differentthan what is observed in CDW systems. At
appropriate limit of low electron and impurity densities hasthe lowest temperatures and highest magnetic fields avail-
proven difficult. The introduction of a magnetic field perpen'ab|e’ these Systems exhibharp resonances at low frequen_
dicular to the 2DEG improves this situation by raising thecjes, with quality factor®Q=f/Af (f here is the frequency
electron density at which crystallization is thought to occur.of the resonance peak and its width) as high as 30. The

fields such that the filling factor=N/N, with N the num-
ber of electrons anill, the number of magnetic flux quanta

through the system, is below 1/5 for electron$® and ~1/3 creaseswith magnetic field. The subject of this work is to

for hole systems.While much intriguing experimental data derstand s of thi i . tal find
has accumulated, a definitive proof that the low filling factorUnderstand Some aspects of this puzziing experimental find-

insulating state of these two-dimensional systems is indeel¥- ) ) )
an electron, or Wigner, crystéWC) has remained elusive. In what follows we will adopt a microscopic model of the
One experimental fact for the low filling factor systems Magnetically induced two-dimensional Wigner crystal. The
that is in clear agreement with expectations for a WC interground state is assumed to be well described by a product of
pretation is that they are insulating. It is well appreciated bylocalized Gaussian wave packets, so that exchange effects
now, from analogous behavior in charge density waveare ignored® Our goal is to find the response of the system
(CDW) systemg, that an arbitrarily small disorder potential to a time-dependent, spatially uniform electric fiéldTo
should pin the WC at zero temperature so that there are neompute the latter quantity we will employ a “quantum har-
charge carriers that can flow in response to an arbitrarilynonic approximation”(QHA),?? a natural generalization of
small static electric field. In CDW systems, the pinning po-the classical harmonic approximation, in which a finite num-
tential also supplies a restoring force that induces a broaller of angular momentum orbitals per site is retained in the
peak in the ac electromagnetic response at the “pinning freHilbert space of states for the electron system. This is, of
guency,” whose magnitude may be used to assess the correeurse, sensible provided that the electrons remain close to
lation length of the CDW:’ Early experiments on the their ground state sites after being excited by the electric
magnetically-induced WC identified similar structure in thefield. A very strong magnetic field is assumed so that projec-
density response using various technigiiés.Theoretical tion into the lowest Landau level is appropridteand all

By contrast, most existing theoretical work prediéts:181°
a broad Q~1) resonance, and a pinning frequency tthext
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FIG. 1. Center of mass response functjgff, for a system oN=1024 electrons at=0.2. Half the sites are chosen at random to have
a pinning potentiah U;=0.01e?/ k|, (see texk, the other half are unpinned. Two states per site were retained in this calculsg®text
Inset: Relative power absorption for the same system.

results reported here are for zero temperature. For an undise that a current may flow. From the CDW point of viéw,
ordered WC, the QHA reproduces known results fowitth-  this model corresponds to a strongly pinned system. How-
out resorting to a harmonic approximatiéhand indeed of- ever, we will see that the strong pinning approach grossly
fers an explanation of features found in the density responsaverestimates the pinning frequency, so that the experimen-
function that were not easily interpreted previously. tally measured pinning frequencies cannot be explained by
Because exchange effects are negligible in this syfem, this source of disordér’. The ultimate reason for the discrep-
time-dependent Hartree approximation turns out to be botlancy between the pinning frequency in the microscopic
convenient and accurate for computing the response fungnodel and the CDW result for this is that a magnetically
tions of this system. For simplicity we consider only a diag-induced WC isnot a CDW. Our results indicate that the
onal disorder model; i.e., the disorder enters only in thecollective mode spectrum associated with strongly pinned
single particle excitation energies and not in the interactiorcenters is far more like that of a crystal with vacancies
matrix elements among the electrons. In practice this mearginned at charged impurity sites than that of an elastic me-
we have adopted a model in which the lattice is perfectlydium tied down at random sites.
ordered, and disorder is introduced as a random on-site pin- We then focus on a model of interface disorder that we
ning potentiaf® As we will see, this assumption greatly sim- believe is likely to be the dominant pinning mechanism in
plifies the computation of matrix elements entering the QHA .electromagnetic absorption for these systems. Heterostruc-
Using a perturbative approach described below, for weakure and quantum well interfaces are believed to have struc-
disorder it is possible to demonstrate that our qualitative reture at length scales of several tens of angstrghas: inter-
sults are insensitive to the diagonal disorder assumption. pretation of this is that in semiconductor heterostructures the
For all the disorder models studied in this work, the re-interface between different materia{gypically GaAs and
sults of the QHA turn out to be qualitatively the same: theAlAs) may only be defined to within one or two lattice con-
response functions exhibit an extremely sharp response at tistants (-5 A). This is often modeled as an interface with
lowest collective mode frequency(provided that the pits and/or islands of typical size scate100 A2° Electrons
electron-electron interaction is unscreened; see bglbhis  residing in large pits or regions with an unusually large num-
is the central result of this work. Two physical models of ber of small pits have an enhanced probability of lying
pinning are analyzed in detail in this study. Charged impuri-slightly closer to the donor layer and so may be bound by
ties which may be found in the spacer layer between donorhem. An important aspect of the physics in this model is that
and the electrons have been argiied represent the stron- in the lowest Landau level interfaces with pits whose size
gest source of pinning for the WC in dc nonlinda¥ mea-  scales are smaller than the magnetic lerigth (%.c/eB)*/?
surements; i.e., these set the energy scale necessary to fulgve pinning potentials that increase with decreasing
dislodge the electrons in a nonvanishing static electric fieldThis leads to aincreasingpinning frequency with magnetic
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field, as seen in experiment. Thel GHz magnitude of the T T T
measured pinning frequency may be explained with very rea-
sonable parameters describing the interface at which the
2DEG resides, as described below.

A typical result for a single disorder realization, whose
precise form is described below, is shown in Fig. 1. The
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system includes 1024 electrons, and is assumed here % 40

(as throughout this wojkto obey periodic boundary condi- =

tions. Because of the finite number of degrees of freedom,

the density response function consists of a series foinc- .
tions. Note that the scale of the figure is logarithmic, so that =0

a linear plot of power absorbed as a function of frequency
shows a single>-function response at the lowest collective

\I\\lll\\‘\\\\‘\!l

(o] (o]
mode frequency, as illustrated in the inset. The height of this N o0 of;gf’gg‘;g
peak shows no sign of decreasing with increasing system 0.000 0.001 ) 0002

size, nor do any other collective modes develop a noticeable wrly /et

oscillator strength in power absorption. For a model in which )

the typical on-site pinning potential is small, we find the F!G- 2. Center of mass response functigff}, for a system of
pinning frequency(i.e., the position of the>-function re- sizeN=225 electrons a;t»:O.ZZ nghlg scr_eened Coulomb potential
sponse in Fig. Jlto a good approximation is given by, the giftetze;?ermclr}]gqs)ei 2;erg I;(dqor: qtco) h’a\\;\gthaqcpi:ni.i?wg 0'p;2':m§2f
energy required to excite an electron from the=0 to the =0.01e?/ k|, (see tex); the other half are unpinned. Two states per

m=1 angular momentum state in the absence of other elecs'ite were retained in this calculation. The result indicates that

t_rolrlls, haveraged OVT: all tllr?( eIectrons.lehls Valuk? 'S,essngreening broadens the response, so that the sharpness of the re-
tially t € same as the well-known result for weakly pinnedg,,qe jiystrated in Fig. 1 is related to the long-range nature of the
CDW's.” Typically, the exact pinning frequency found in the ~,,iomb interaction.

QHA falls somewhat below this estimate, by an amount that

is specific to the precise disorder realization. This correction . ) ) )

to the weak pinning result may be estimated using a pertur=>0: |Ug |[—1. Provided that the disorder potential does not

bative approach described below. have fluctuations on arbitrarily long length scales —i.e., that
Although the sharpness of the absorption peak seems @bitrarily large patches of unpinned or strongly pinned elec-

be in agreement with recent experiments, one needs sonens are rare — then one expebﬁéJ(ﬁ)Focqz for smallq.

analytic method to demonstrate that in the thermodynami@he dispersion relation for the uniformly pinned system we

limit the peak does not broaden, particularly since this resulshow below has the form

is so different from prior expectatiort® Towards this end

we develop dpseudgspin lattice model in which the com-

ponent of the spin at a given site represents the angular mo-

mentum state of an electron. A convenient perturbation

theory for the system may be developed around a uniformlyor small g, wherep, is the electron density and is the

pinned statdi.e., one in which the pinning potential for ev- dielectric constant of the host semiconductor. The linear dis-

ery site isvy). The perturbing parameter is the&U(ﬁ), persion withq turns out to be a direct result of the long-range

with {R} representing the sites around which the electrond@ture of the Coulomb interaction, and is not present in a
are localized and)(R) = v+ AU(R) is the energy required mode! with shortTrangée.g., screengcelectron-electron in-
10 excite an electron from thei=0 to them=1 state. For teractions. Plugging Ed2) into Eq.(1) demonstrates that for

. ; L a given disorder realization a finite depletion results that will
the uniformly pinned system, it is natural for the power ab- 9 b

sorbed to have a&-function response, since the collective be small if the pinning is not too far from uniform. This
P ' directly demonstrates that it is the long-range nature of the

modes have wave vectgras a good quantum number. The glectron-electron interaction that is responsible for the sharp
correction to the weightV of this & function due to disorder response in the system. A system with short-range interac-
may be computed in perturbation theory, and a depleflon tions has a collective mode spectrum dispersipgdrati-
may be defined such thaW«1—-D. To lowest nontrivial cally with g away fromv,, and as seen for E¢), this leads
order in perturbation theory, the largest contributiorDiags g g divergence iD, signaling that the responserist sharp
found to have the form in this case. Figure 2 illustrates the response function for a
AUGIZIuE 12 model in which the electron-electron interaction is screened.
Docf d2q| U(a)[*ug| o As may be seen, even for a relatively small number of par-
|EE_ EP |2 ' ticles (N=225), the response has been significantly broad-
a Ta=0 ened, as is typically found in CDW systeth§® Roughly
Hereq represents wave vectat,U(ﬁ) the Fourier trans- speaking, this Says that an appropria}te .ana.logy for the.ran-
form of the perturbation, anB” the collective mode disper- domly pinned WC in a strong magnetic f|elq s a hard object
] ) ' q o 7 that does not deform much when vibrating on randomly
sion for the uniformly pinned systerfu |? is a weighting  placed springs, so that a well-defined periodic response is to
function whose precise form is given below; in the limit be expected in spite of the randomness of the pinning.

E§~v0+ 27792P0|§q/’<+o(q2) 2
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One important caveat to this result must be noted. Thestate and low-lying excited states may be represented as lin-
assumption thatAU(q)|2q? is actually not true for the €ar combinations ofunsymmetrizefiproducts of single par-
most common forms of disorder studied. Specifically, white-ticle states. The single particle states we will use consist of
noise pinning models usua”y have equa| ﬂuctuationangular momentum states, and we will find that it is an ex-
strengths at all length scales, so thd does not vanish as Cellent approximation to retain only the lowest-lying ones
g—0. In our expression, Eq1), this leads to a formal loga- When computing low-energy properties of the system. Once
rithmic divergence in the thermodynamic limit and an ex-We have truncated the Hilbert space in this way, it becomes
pected broadening of the absorption peak. We note, howevep0ssible to numerically compute response fUﬂCthF}S for rea-
that the disorder models used in the QHA have a white-nois€onably large systems, which one may compare with experi-
character, yet we have not been able to detect a finite widtAent. _ _ _ _
in the resonance for any disorder realization. Presumably this The ground state of two-dimensional charged particles in
indicates that the>-function response is a finite system size @ Very strong magnetic field is believédo be accurately
effect, and one needs to estimate a length scale above whi¢égPresented by a collection of distinguishable particles in
broadening in the response function should become appareffgdussian orbitals of the form
This may be accomplished by noting that the integral in Eq.

1/2
(1) has an infrared cutoff 2/L wherelL is the system size. s 1 —|Fi— R[22+ (i12)2- (Ryxr 2
The value ofL for which D~ 1, which we callL., sets the Pog,(ri)= 2712 © '
size scale above which broadening will be significant. Solv-
ing for L., one finds In this state, the electron with coordinafe is maximally
localized within the lowest Landau level. Since the kinetic
3 energy of a collection of electrons in such orbitals is already
Lcm/eXP{T], as small as possible, the ground state presumably will be
|AU] found by minimizing the total potential energy with respect

where / is a length scale above which E®) is accurate 0 the parameter®; . In the absence of disorder these should
be chosen to lie on a perfect lattice, so that the charge dis-

(#~10ao, with a, the WC latfice constant and AU 4 ionin the limit of infinite magnetic fieldlg—0) ap-

=limq_oAU(q)«lo/e”. proaches that of the ground state for a distributiorlesi-

The physical interpretation df. is that it is the length ¢ point particles. Disorder changes the optimal positions
scale for coherent motion of patches of electrons in the lowsor the electrond® but provided the disorder is not too

est collective mode, since fdr<L . the perturbation theory
is valid and the system responds much like a single OSC'”atoénother on the scale of the magnetic lengthin this situa-

o the excitaiion field. A conservative estimatelgffor the .tion, wave function overlaps among the individual electrons

experiments of Refs. 15 and 16 shows that in practice it i L : :
huge,L > 107, at v=0.22, wherea, is the lattice constant %re negligible, so that a product of the single particle wave

of the WC. Thus, remarkably, in spite of the formal diver- paCketS‘ﬁOﬁi(ri) is an accurate representation of the ground
gence in the thermodynamic limit, the perturbation theory isstate, despite the fact that it is not explicitly antisymmetfic.
in fact controlled and valid for samples with physically rel-  Since we are interested in the electromagnetic response of
evant dimensions, whelle~10Pay,<L.. Thus our interpre- the system at low frequencies, it will be necessary to com-
tation of the WC response as one of an undeformable osciPute the low-lying excited states of the system. In a classical
lator is indeed appropriate. analysis, this is typically done by assuming the displace-
This article is organized as follows. In Sec. Il we developments of the electrons from their ground state positions are
the QHA used to compute the electromagnetic response @mall, so that the energy may be expanded to second order in
the pinned WC. Section Il develops the pseudospin apdisplacements, allowing the normal modes of the system to
proach to the collective modes and shows how a perturbatioe found in a relatively simple fashion. If we assume the
theory may be developed around the uniformly pinned stateglectrons are localized within a magnetic length of their
and the calculation of the depletidh is discussed. Section ground state positions, then the analog of the small displace-
IV discusses some details of the interface pinning modelMents approximation is to allow individual electrons to be
Readers interested in our results and not the details of thexcited into higher angular momentum states localized about
calculations may wish to proceed directly to Sec. V, whicheach lattice site. Provided the angular momentum is not too
discusses results for different pinning models, includinglarge, the charge densities associated with these states for a
charged impurities in the electron layer and the interface pingiven site will not overlap significantly with those of its
ning model. Section VI discusses the relationship of thisheighbors, so that exchange effects may continue to be ig-
work with results of other calculations, as well as severanored. Thus we consider a set of states for each site
unresolved questions regarding the experimental results. We 1
conclude with a summary in Sec. VILI. - 1 z—7Z\"
¢m'i(r):(2ﬂ'| ) ( )

2Hom
62™ml

strong, the site centeF§ will presumably not be close to one

lo

IIl. QUANTUM HARMONIC APPROXIMATION . 2 - s s
x e~ IT—Ril?141g+ (i12)2-(Ryxr)/1 (3)

In this section we will develop a quantum mechanical
generalization of the harmonic approximation, in which thewherez=x+iy is the electron position in complex notation,
electrons are treated as distinguishable, so that the grourathd Z;=R+iR}. If we define creation operators for these
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single particle statea;rm, then the Hamiltonian for the sys- instabilities in the response function computed below when

tem may approximately be written in the form too many orbitals are included per site. As we will see, all
the low-energy excitationé.e., phononsof the system are
H=2 2 Vi ata. aqcurately capt.ured When o'ntyvo orbitals per site are re-
~ &y mnemiEni tained, so that in practice this does not arise as a problem.
With these simplifications, the Hamiltonian takes the form
1 .
+35 2 2 UIr#-n-m-n-atm-ian-ia;q-jan-j .
2 i#] minm;n; T i

| o _ H=2 X &(m)afam
Here,V,,, represents the interaction of an isolated electron tem
with a disorder potential, and the interaction matrix element

is given by + EE > ull o alagal an ;. (5)
2{F] min;m;n; i )
1 2
U'n‘qlmzmsmff dzrldzrz( 2) The zero of energy may always be chosen such that
2mlg g;(m=0)=0, and we expect;(m>0)=0. The choice of
(My+ Myt mg+mg)/2 {&;(m)} defines the specific disorder model we are studying.

% i We note that the greatest power of this method is that it is
ZIS well suited to disorder potentials that vary on length scales of

the order ofl  and smaller. The two pinning mechanisms we

2742 2,72
Xz} Mzy%z; ™z te 12020 study in detail — charged impurities and interface pinning
. — both fall into this category.
Xv(ri—r+Rj), (4) The quantity we will calculate, from which either power

absorption or frequency-dependent conductivity may be

where for most cases we will study(r) is the Coulomb computed, is the response function

interactione?/ xr, with  the dielectric constant of the host
material for the electron layer.

To simplify our calculations, we will make certain as-  Xmymmam,(ij:7)=—(T.ah i(T)an,i(7)an ;(0)an,(0)),
sumptions about the form of the disorder enterithgFirst, 6)
we assume that although disorder certainly will cause the

orbit centersR; to vary from the positions of a perfect lattice, where herer is imaginary time and,;(7), afm(r) are the
this variation does not affect the qualitative features of theusual time-dependent Heisenberg representations of the an-

absorption spectrum. Thus in practice (Fﬂr‘s take on the hihilation and creation operators, afid the time ordering
values of perfect triangular lattice positions. It should beoperatoﬁl The bracketg ) represent a thermal average. The
noted that this choice of thH&’s is not required to carry out Fourier transform of this function with respect to imaginary
the QHA, but by adopting it the numerical computation of time has poles at the collective mode frequencies. To gener-

Uir%inimjnj is greatly simplified. Some details on how this is ate a closed formula foy, we employ an equation of motion

, : . ) , method similar to that used in Ref. 24. The time derivative of
done in practice are discussed in the Appendix. The secong satisfies the equation

simplification we introduce is to assume that the pinning
potential at the individual sites is circularly symmetric, so

that in the ground state the electrons occupy de o, or- 9 Xmymomgm, (113 7) y y

bitals and do not admix higher angular momentum states. or == {[pmym,(1;7):pmym,(150)1) 8(7)
Again, the QHA may be developed without this assumption. )

However, this simplification has the great advantage of al- Ipmym,(1:7) )
lowing an analytic specification of the ground state. In the N\ Te——Pmgm,(1:0) ],

absence of this assumption one would need to find the

ground state orbital occupations numerically, which presum- (7

ably could be computed with sufficient accuracy using a

static Hartree approximation. While such a calculation isWherepm, m,(i;7) =2, i(7)anm,(7). The time derivative of

clearly feasible, we believe that allowing asymmetric formsmay be computed from the Heisenberg equation of motion

for Vp,,, will have little quantitative effect, provided the av-

erage of this quantity over the sites restores the circular sym- i
. . Ppm,m,(157)

metry. Finally, to take full advantage of the symmetries of 12

the system, we will impose periodic boundary conditions. JT

A second caveat related to this is that in principle one

must retain fewer than seven orbitals on each site to havBote that the formal inclusion of the chemical poteniais

each electron lie purely in thev=0 orbital in the ground necessary because of the use of the finite temperature formal-

state. Even in the absence of disorder, the sixfold symmetrism; this means our formalism allows in principle for us to

of the lattice will in principle admix in states with angular treat the situation in which there is more than one electron

momenta equal to integral multiples of six. Although this per site. In what followsy will be chosen such that there is

effect is extremely smaff it can in principle lead to weak one electron per site in the ground state, and we will see in

=[H_MN:pmlm2(i;T)]-
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any case that any formal dependencewodrops out of our [Pmlmz(i)’f)msw(i)]

equations for the response functions, so that it does not need . .

to be explicitly computed. The relevant commutators in the =[pm,m, (1) Om,m, = Pmm, (1) Om,m,16ij - (8)
equation of motion may be worked out usif@mi,a5;}  Combining Eqgs.(5), (7), and (8), the equation of motion
= 6mndjj (Ref. 32 from which one may show takes the form

aXm1m2m3m4(ij '7)

=- [<Pm1m4(i )>5m2m3_<pm3m2(i )>5m1m4] 5ij o(7)+[ei(my)— Si(mz)]Xmlm2m3m4(ij ' 7T)

or
il - : - : -
- n1r122ngn4 EI U nlln2n3n4<Tr[Pnlm2(| ) T)Pn3n4(| ;7) 5n2ml_ Pmln2(| ) T)pn3n4(| ;7 5nlm2]pm3m4(l ;0)).
9
|
Hereu/! =~ =uU!  (1-&,). To obtain a closed form 1

1N2N3Ny 123N, T == ir—R. iVal . .

for the equation of motion, we utilize a Hartree decomposi- Uem =N m%z ZI (my,ifr R,|m2,|)aml’|am2,,, (1D

tion of the last term in EQ9). This is very much in the spirit .

of Ref. 24; however, because we are ignoring overlap amonghere|m,i) is a ket-vector representation ¢f,,;(r). The
single particle states located at different sites, it is unnecegperturbation due to a time-dependent, spatially uniform
sary(and in fact would be inapproprigtéo include exchange electric field (e.g., microwaves in terms of U, is
terms in the decomposition. We thus make the substltutlon_eNEO. Gc.m.r whereN is the total number of electrons. A
quantity whose response to this perturbation is convenient to
study is the center of mass displacement itself, so that the

—>[pn1m2(i;7-) 5n2m1—Pm1n2(i§T) 5n1m2]<Pn3n4(|)> response function we will actually focus on is
Xem(T)=—(Tugn(1)uE 1 (0)), (12)

+ [(Pnlmz(i )>5n2m1_<Pm1n2(i )>5nlm2]Pn3n4(| ;7).
wherea, 8=X,Y.

Substituting the above decomposition and Fourier transform- The conductivity and hence power absorption may be

Ing Eq. (9) with respect to imaginary time, we arrive at the written in terms of this quantity as follows. The time Fourier
time-dependent Hartree approximation for the response fun(ffansform of the spatially averaged current density in re-

[Pnlmz(i ; T)Pn3n4(| '7) 5n2m1_ pmlnz(i ; T)Pn3n4(| i7) 5nlm2]

tion: . . o e
sponse to an applied external field Bg'“! is (j(w))
iwnXmlm2m3m4(ij Jlwp) = iepowﬁc_m_(w), with pg the sheet density of the electrons.
_ _ In linear response theory, this takes the fofah zero tem-
=~ [pmym, (1)) By = (Pmgn, (1)) Omym, 1 9 peraturg (j(w))=—ie2powN= sx28 (w+i8)ES, where in
He(my) —ei(my)] (ijiwp) the usual yva§/1 we have Fourier transformed the response
L i\ 2] 1Xmgmymgm {117 @ function with respect to imaginary time, and made the re-
_ placementiw,— w+id to take the zero-temperature limit.
+ E E U,Ql'r'unam{[xnlmzmam“(ij ;iwn)5n2m1 The dot product of this quantity with the total electric field is

ninangng | proportional to the power absorbed. A minor complication is
that one must include the screening field generated by the

- ij;iw,) 6 I ! . . .
Xmyngmym,(1]:1@n n1m2]<pn3n4( 2 displacements of the electrons. Since we are interested in

+{pnm (1)) m — (Pm (1)) En.m.] the bulk current through the system, we assume that the in-
M fon AN M duced electric field may be replaced by its spatial avefage.
X Xngn,mgm, (T T@n)}. (100  Using a dipole approximation for the electric field generated

by the motion of the electrons, it is easily shown that

Once we have solved EL0), in principle we may compute e . . 5 ' . .
any response function we like. However, since ultimately weEind(t) = 5 @Ucm(t), With a=2;,01/R7. Using E=Eo
are interested in the conductivity or power absorption of the - i e -
system for a spatially uniform electric field, it is convenient *+Eing, aone fmc}gs for the power gpsorpﬂo@(@}Etm
to formulate the equation for a response function that is les& > sFotas(@)Et, With the conductivity matrix given by
cumbersome in terms of indices, but which may still be used 02 ; Fey1-1

. o . . =—le N +id)[1-2aN +id ,
to compute the physical quantities of interest. Towards this (@) PooNxem(@Hi0)l aNxem(@+10)]
end we just consider the center of mass response of the syshere here we are regarding and y., as 22 matrices.
tem. An operator corresponding to the displacement of thé\s has been pointed out befotethe induced electric field
center of mass may be written in the form shifts the frequency of the peaks ir(w) from where they
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are found iny.m(w+id8). However, since the width of the in terms of which
peak we will find inx. . is remarkably small, this shift may
be neglected for our purposes. Thus in this study we will
focus ony.m. and its frequency dependence.

To compute the center of mass response, we define an
intermediate response function

1 _ o .
xéﬁf’n.(w)=@2 E <m1-||ra_Ri|m2!|>Xr€11m2(|;w)'

i mm,

Combining the definition ob('fnlmz(i;f) with Eq. (10), one
derives the equation of motion

ch:‘lmz(i;T)Ezj: mg;u (mg,jlre— Rja|m4aj>Xmlm2m3m4(ij ;7)

0nXfnym, (151 00) = 2 [{pmm, (D)) (MIF M) = (prm, (DX Ml m) 1+ Lei(My) = £1(Ma) Lo, m, (51 0n)

+ 2 25 Un g L X m, (15100) 0, = X0, (151010) Bnm, g, (1)
+ [<pnlm2(i )> 5n2ml_ <pmln2(i )> 5n1m2])('r[133n4(| i wn)}' (13

Note that the matrix elementsn|r?|m,) are the same as whereAg;(m;,m,)=%;(m;) —¢;(m,) is the energy required

those appearing in Eql1), evaluated folR;=0. to excite an electron on sitfrom them, orbital into them,
Equation(13) may be solved if one knows the ground orbital when all the other electrons are static,

state densitiegpm m,(1)). It is here that our assumption that

all the electrons reside fully in the lowest angular momentum b il il

orbitals for their sites in the ground state becomes useful: the  Uim;my).(inynp) = Yom,nn,Om, 0~ Ym,ongn,Om, 0

form of the densities is simplypm, m,(i)) = Sm,00m,0- Fur-

thermore, as shown in the Appendix, it can be proven that . , .
s,U! .:12000( Sngnys SO that Eq(13) is considerably simplified, Is the change in this energy difference due to the fact that

M all the electrons are in fact dynamic, aacﬁ,om (Il wp)
taking the form P B . L2 .
0B (iion) =(0|r |m1>5m20—<m2|r |0>5m10 is the response function
w . . .
nXm;m,{1+1 @n in the absence of both electron-electron interactions and the

:<0|rﬂ|m1>5m20_<m2|rﬁ|0>5mlo disorder .ppten'tlal. The matrik may be diagonalized nu-
merically; it will have real eigenvalues; (which may be
+[;i(m1)—§i(m2)]xﬁlm2(i;iwn) shown to come in pairs of equal magnitudes but opposite

sign9 and eigenvector&//(m;m,l). It can be shown that
when regarded as a matrix in the indigeand (m;m,l), V

il il : : ; ,
+r§ El [Uom, ngn, my.0~ Yrngongn, Om o has an invers& ~1. Denotingw; as the diagonal matrix of

s eigenvalues oM, the solution to Eq(14) may be written
X Xhn (I @), (14  schematically as

wherez;(m)=g;(m) +2|U,’n”n00. It is also easy to show that R R
Xﬁlmzzo if either m; andm, are both zero, or if both are xP(iwn)=x°Piwy) V[iwpgl— ;] VL
nonzero. This is the equation we actually work with, and it is

solved in a way closely analogous to the method develope‘ajrom this form, it may be seen that the polesyofand hence

. B _ . . .
in Ref. 24. We regardvm,m,(1) as a vector whose Compo- ¢ energies of collective modes of the system, are given by
nents are labeled by, ,m,,l. Equation(14) may be written  the set of eigenvalues; .

schematically in the form As a first example, as well as a check on whether this
S o+ A (my.my)]8, method works, we consider the situation of a WC in an un-
N @OnT 2T, T2) 106,y my),(1,ny ;) disordered environment. One only needs then toeg@t)
=0 for alli, min Eq. (14), and proceed as described above.
+Uﬁmlmz),anan)}XganU;iwn) A histogram of the collective mode energies, which repre-
_ sents the density of states for the system, is shown in Fig. 3.
=[1©nd(i,m, m,).(1.ny.np~ Mim,m,).(inyny] In this calculation, the number of electrons was: 225, the
B . filling factor was set tov=0.2, and five states per site were
X Xy, (LT @n) retained. As may be seen, a broad peak near the origin is
=Xﬁ10 (i), accompanied by three larger, well-separated peaks at higher

1M7 energy. The number of such sharp peaks appearing in the
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FIG. 3. Collective mode density of states for an unpinned WC
as calculated using the quantum harmonic approximati¥n.
=225, v=0.2, and five states per site are retained in the calcula-
tion. The result illustrates that including higher-order angular mo-
mentum states introduces collective modes at high energy, whic —1024, »=0.2, and two states per site are retained in the calcu-

mzlaly b? |nterp(;etecr1] as alr_l ?nalfc;g of Freﬂkell excilsee te(;<): Suc_h fIation. This has a form consistent with the phonon density of states
collective modes have little effect on the low-energy dynamics ofg, ., classical, unpinned WC in a strong magnetic field, and dem-

the system, so that one may drop the high angular momentum Stat((aﬂc‘nstrates that the QHA produces sensible results for the test case of

\év;;klg;t introducing serious errors in the pinning response of thea WC in the absence of disorder.

wikl,/e?

FIG. 4. Collective mode density of states for an unpinned WC
s calculated using the quantum harmonic approximat@idA).

calculations gives a strong indication that the QHA works,

density of states we find in general to be equal to the numbegnd we learn from the above calculations that all the low-
of orbitals per site above the ground state retained in thenergy modesi.e., phononsof the WC can be captured by
calculation. retaining just two states per site. This considerable simplifi-

The meaning of the sharp peaks may be interpreted if oneation allows one to treat fairly large numbers of electrons
notes that their positions are very close to the values ofor the pinned WC; our largest calculations contdih
Aei(m,0) used in the equations of motion. This means that=1024 electrons. From this point onward we will adopt the
the collective modes are only very weakly affected Uy, two-state approximation, and denote the energy difference
so that one may understand the modes as local excitations between the two states on a site/as,(m=1,0) asAe; .
which an electron is excited to a high angular momentum. Having established that the QHA gives sensible results for
Thus, these peaks may properly be understood as an analogses where the correct answer is known, we can now use it
of Frenkel excitons in tight-binding models of electron sys-to investigate the case of the pinned WC. We defer detailed
tems. Interestingly, these peaks have been previously notetiscussions of the results to Sec. V; however, they can be
in an approach that do@®tuse a harmonic approximatiéfi.  summarized extremely briefly. Essentially all of our center of
However, in that approach, the nature of these excitationmass response functions are dominated by a single collective
was unclear; the introduction of the harmonic approximatiormode, the lowest excited state arising for any given disorder
allows us to understand why there is structure in the densityealization(e.g., Fig. ). For the weak disorder modd|se.,
of states at these energies. A careful comparison of the peake; <wg, Wherewg is the bandwidth of the phonon density
positions fory=0.25 found in Ref. 24see Figs. 2 and 3 of of stategFig. 4)], the position of the pinning frequency turns
that work with results from the method described hereout to be extremely close to,, the average pinning energy
shows that the energies of these peaks are nearly identical fper site. We find this form of the center of mass response for
the lowest-energy peaks. all our disorder models and system sizes studied, and there is

Figure 4 illustrates the density of states for a calculatiomo noticeable trend for the strength of this one mode to de-
with N=529, »=0.2, and just two states per site retained.crease with increasing system size within the sizes one may
As may be seen, the density of states is precisely what ongtudy using this model. One is led to conclude that the elec-
expects for a phonon density of states in a magnetic field: theomagnetic response of the WC in a strong magnetic field at
leading edge of the phonon density of states rises sharplyero temperature is extremely sharp, consistent with experi-
consistent with theD(w)*w'® expected for the low- ment but not with previous theoretical expectations. As ex-
frequency behavior of the density of states that results fronplained in the Introduction, this turns out to be a conse-
the w(k)>k>? dispersion of the WC in a magnetic field. quence of the long-range nature of the Coulomb interaction.
The peak contains a strong cusp structure consistent with Bo see precisely how this result arises, as well as to assess
van Hove singularity, and the width of the peak is found towhether it will survive in the thermodynamic limit, we need
decrease with increasing magnetic field, consistent with théo develop an approach from which one may learn what hap-
1/B dropoff expected for the phonon bandwidth. pens to this mode for very large systems. This is the subject

The quantitative agreement of these results with previousf the next section.
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I1l. PSEUDOSPIN REPRESENTATION pl(li’):|¢(2)(r")|2[% +SIZ]+|¢§(F)|2[%_SIZ]
The results of the QHA indicate that generically there is a R o - .
sharp resonance in the low-frequency response of the mag- +¢5 (N d1(N)ST + P71 (N do(r)S] 17

netically induced WC for the finite size systems one is ablgyhere o1y are them=0(1) orbitals localized around the
to handle with that method. While there is no indicationsite of interes{Eq. (3)], and we have suppressed the explicit
within those calculations that the resonance either broadengie |abelsi(j). Substituting Eq(17) into Eq. (16), expand-

or weakens with increasing system size, one cannot rule o%g the integrand to second order m,/R;; where R;

based upon them the possibility that a broadening does de=—|§._§‘
velop at very large system sizes. Thus one would like to """ " ! )
develop models that are analytically tractable wherein thdhe formulaU= z Z;.;U;;, with

thermodynamic limit may be taken.

, and performing the integrations, one arrives at

e? 3el3 €3
. U” =—+
A. Quantum Spin Model R 2Ri3} 2R3

In this subsection we will develop a mapping of the elec- 22
tron system onto an effective spin lattice system, and obtain i ze—h)[s”-su—s(a”-Ii-)(SU-Ii»)/R?]
couplings between these spins using an expansidg/a,, RS AT A
with a, the nearest neighbor distance. One important advan- | . o
tage of this formulation is that the resulting couplings are fathere Si;,=(Sj;,,S);),0). Note that the effective interac-
more tractable than the matrix elements found in the QHAfIon between spins itJ;; is of anXY dipole form, which is
allowing us to make considerable progress analytically. Th&ot surprising given the fact that a smakxpansion for the
spin waves of the model are the analog of the phonons foglectron-electron interaction leads to an electric dipole inter-
the WC, and it will be shown that the resulting dispersion ofaction. The third term irJ;; takes the form of an effective
these spin waves is identical to the classical phonon spegnagnetic field that tends to orient the spins in the direc-
trum of the WC, demonstrating that the mapping producesion; this reflects the fact that thg, state is the ground state
sensible results. of an electron in a given site if all the other electrons are

We begin with the observation from the QHA analysisfixed in their ¢, states. The Hamiltonian for the effective
that essentially all the low-energy excitations of the magnetispin system thus may be written in the form
cally induced WC may be obtained in a model that retains
only two states per lattice site. This motivates an approach in
which one may wish to consider the on-site degrees of free-
dom of each electron as an effective pseudospin, with the
m=0 angular momentum state representing a “spin up”wherea,f=x.y, J"*=(e?3/R?)[ 8, s~ 3RIRI/R?], and
state, and then=1 a “spin down” state.(Note that we will ~ hj=—3;.4j (eZISIZRﬁ) +&;(m=0)—¢g;(m=1) is an effec-
assume the real spins of the electrons are polarized by the/e magnetic field, which may be nonuniform due to the
magnetic field and do not represent a low-energy degree gdinning potential. Note that we have dropped an irrelevant
freedom for the systemThe system is then mapped onto a constant from the Hamiltonian.
guantum magnet, whose interactions we will see are of a The low-energy collective modes of this model are spin
magnetic dipole form, and whose spin waves will have thewaves, and in the absence of a pinning potential their disper-
same dispersion relation as the phonon spectrum of the usion relation should be identical to that of the phonon modes
derlying classical electron degrees of freedom. Formally, thef the underlying WC from which the pseudospin model was

H=2> hSi+2> > Jrfsesf, (18
i aBiE]

mapping is given by derived. We thus begin our analysis by considering the case
: : , £;(m)=0. To derive the spin-wave spectrum, we rewrite the
agjaoj —arjay— 25, spin operators in terms of bosonic degrees of freeavith
the approximate mapping
agjaljﬂsr ) (15) 1
z T
To write an effective Hamiltonian for these pseudospin St b
- ; : —by, (19
degrees of freedom, it is convenient to employ a multipole !
expansion of the electron density, which becomes quantita- s _pt
| [

tively accurate in the limity/ag<1 (i.e., v<<1), wherea, is

the nearest neighbor distance. Neglecting exchange effects,
the interaction energy is formally This mapping is an approximate form of the Holstein-
Primakoff transformatiori’ expanded for the situation
(blb;)<1/2, where( ) is an expectation value for any of the
low-energy states that are of interest in the zero temperature
response function. A simple way to see t(ia&b» is small is
Writing p(r +R\)=p;(r), the densities may be written in to write it directly in terms of the underlying electron cre-
terms of the pseudospin operators, ation and annihilation operatorsi:);r:aLaOi ,bi=a5ia1i.

; p(r1+R)p(r2+R))
2775 S5 5 S, -
IRi+r1—R;— T,

e2
U=— >, folz‘rld2 (16)
2 7
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One then finds[b; b/1=alag—aja;. If the mapping with G(k)=e*|G(K)|, and tanh 2= —2|G(K)//F(K).

were exact, this commutator would be unity. However, to the E; thus represents the spin-wave dispersion for this
extent that the ground state is well approximated by electronmodel, and we need to confirm that it has the same form as
in Gaussian orbitals(ajaq)=1 and (aj;a;;)=0 in the the underlying electron degrees of freedom. For the WC in
ground state. Furthermore, the lowest excited states — thgvo dimensions in the absence of a magnetic field, the pho-
spin waves in the bosonic language — are described in termson dispersion is found by solving the eigenvalue equétion
of the electronic degrees of freedom by a single particle ex-

cited out of them=0 state into them=1 state, averaged - 5

with an appropriate phase factor over all the sites. Thus the % Cap(kieg=w(kieg, (22
expectation value ofb; ,biT] for the low-lying states is the

same as that of the ground state, up to corrections that vanid{1€re

in the thermodynamic limit. It should be noted that when ) 3R*RE

guantum(or, at finite temperature, thermdluctuations are c (IZ)= _ e_| E it Ou,p (e—iE. Eej_l)]
important, then one must work with the exact mapping be- ap m* | R R3

tween spin and boson operatdfsand higher-order terms : : (23)

in b/b; should be retained, introducing spin-wave interac- . .

. . .~ and m* is the effective mass of the electrons. For every
tions. Such terms are the analog of anharmonic terms in the 2 . i
Hamiltonian for the underlying WC degrees of freedom, andvalue ofk, Eq.(22) has two eigenvalues, corresponding to a
we expect them to be very small at zero temperature for larg®ngitudinal modew, (k) and a transverse modg(k). In the
magnetic fields(small v), where placing the electron in presence of a magnetic field, the equations of motion for the
Gaussian orbitals at specified locations that minimize the poelectrons mix these two modes. One then obtains two differ-
tential energy is thought to be an excellent approximation foent normal modes, one dispersing from the cyclotron fre-
the ground stat®’ From this point onward we will ignore quencyw.=eB/m*c, and the other having the form in the
spin-wave interactions, and our goal will be to understandstrong field limit® w(E):wI(R)wt(E)/wc_ By solving Eq.
why disorder does not broaden the electromagnetic respon$g?) and using Eq(23), one may show with some algebra

associated with the quadratic Hamiltonian below. that w(K) w;(K)/ @,=E; . Thus the spin waves of our pseu-
In terms of the bosonic operators, the Hamiltonian Weqagpin model faithfully reproduce the exact phonon spec-
thus will consider takes the form trum for the WC in a strong magnetic field, and we see that
our model quantitatively captures the low-energy dynamics
e?l} of the WC
H:E U,blTbI'F;—B ’
i i #]

! B. Uniformly pinned Wigner crystal
x{— }(brbﬁbibT)— g[(ni’])zb?bfﬂL(nij)zbibj] ) In this subsection we will analyze the response function
4 4 of a WC in which each site has precisely the same pinning
(20) potential. We will find that the power absorption from a spa-
tially uniform, time-varying electric field is sharp as a func-
Here,U;=—h;, andn;;=(Rj;—iR},)/R;; is a complex rep- tion of frequency. This result is hardly surprising as there is
resentation of the vector direction separating sReandR; . no disorder in this model. However, it will serve as the basis
In the absence of pinninges;(m)=0], H is diagonalized in  for the perturbative treatment in the next subsection, and so
two steps. First, a canonical transformation from real to mois useful to analyze in some detail.
mentum space separates out the independent modes: To introduce uniform pinning in the model, one only
needs to seh;= — =g o(€?13/2R%) — v, for all the sites in
Eq. (18). The representation of the spin wave Hamiltonian in
terms of phonon degrees of freedom, and its diagonalization,
. are formally identical to the steps used in the preceding sub-
where bk=(1/N1/2) zieik-Ribi , F(E)= %21(62|3/R,—3)(1 section, provided one makes the replacement

—e R, and G(K)= § Bg . o(€2F/R}) (ng ) 2K Fi. The
diagonalization of the Hamiltonian is then completed with a
Bogoliubov transformation of the formy;=ugbi+vib';,  The resulting(pseuddspin wave for this model is thus

H= F(K)bibg— > [G(K)bgb_g+G*(K)b b1,
k k

F(K)—F(K)+vo=Fp(K).

- g2 |2 i - =
with |ug] . |v|f| 1 guaranteeing t.hityk,yi] al.ﬂT?eﬂb-o EE: \/Fp(k)2—4|G(k)|2. (24
son Hamiltonian then may be written &b==(Egy, i if
one chooses In the limit k—0, EE*)U(). Thus for collective modes in
. which all the electrons move together, only the center of
ug=coshoge' ¢, mass degree of freedom is relevant: electron-electron inter-
‘ actions may be ignored, and one obtains the single electron
vi=sinhgge 42, (21)  excitation frequency* The long wavelength dispersion of

Eq. (24) may be obtained by evaluatirfg(k) and G(Kk) us-
Ei=VF(K)2—4|G(K)|?, ing an Ewald sum techniqu.One finds
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F(K)~2me?2pok+O(K?), (25) moving together in phase in the lowest collective mode, and
we will see thatL, is extremely large compared to real
sample dimensions.

G(k)~ me?l3po(Kky+iky) 2 k+O(K?), (26) The quantity we will use for our perturbing parameter

is the deviation of the pinning potential from perfect unifor-
so that mity, AU;, which is formally defined by the equatidm
=—3g.0(€?132R®) —v,—AU;. Note from its definition

EEmUOqL 2?1 3pok+O(K?). (27) that=;AU;=0, a property we will use below. The power

absorptiorf Eq. (28)] may be written via standard many-body
The linear dispersion of the pinned collective mode spectrunianipulations® in terms of a Green’s function, in the form
is purely a result of the long-range nature of the Coulomb
interaction. For a short-range interaction, the collective mode _ 2122 0/i\ 40/ ik
disperses instead & from v,. The linear dispersion, and Plw)=-e IOEOwIm[E 2 du(Dd, ()
hence the long-range nature of the Coulomb interaction,
turns out to play a crucial role in allowing the sharp response
of the uniformly pinned system to survive the introduction of
disorder. This will be discussed more carefully in the next
subsection. The Green function matrix entering above is given in imagi-

Because one may exactly diagonalize the Hamiltonian ifary time by

this model, it is convenient to compute the power absorption
using Fermi’s golden rule. For an electric field of the form G, (ij;7)=—(T b (1)b{"(0)), (30)

E(t)=ReEy(x+iy)e'“!, one obtains for zero temperature

wy ]

XG,,(ij;0+id)}. (29)

with u,»=1,2, bM=b;, and b®=b. The c-numbers
dz(i) entering Eq.(29) are those that diagonalize the
P(w)=Nme’E3I2>, EP(n|7_,|0)28(w—EP), (28)  pseudospin-wave Hamiltonian EQO) for thek=0 mode in

" the uniformly pinned casefi.e., d2(i)=vg_o=0,d5(i)
=Uuj_o=1, with u,v given by Eq.(21)]. Using the method
described in Sec. Il and E¢0), the equation of motion for
athe Green function in imaginary time is found to be

where|0) is the ground state of the systgmo spin waves
and|n) represents the set of single pseudospin wave excit

tions (which in the present case may be Iabeledth;ather

thann). For the uniformly pinned system, the matrix ele- Gyijioy)

ment entering Eq(28) is nonvanishing only foEEzvo, SO —iwn( )

that one obtains @function response at=uv,, as expected.
Equation(28) is a good starting point for a perturbative

treatment of disorder effects. In particular, the weight arising ==

from the matrix elementn|yg_,/0) must remain propor-

tional to the system size in the thermodynamic limit for one

particular moden if the system is to retain the sharp response

Go(ij;iwp)
1
0

-1 OMGn(ijiiwn))

+AU; s
UI[ 0 1)\ Gy(ijiwp)

—Fy(R—R) —2G*(R—Ry)

observed in Sec. Il for an arbitrarily large system. In the next k| 2G(Ri—Ry) Fo(Ri—Ry)

subsection, we show that, at least for weak disorder, this is

indeed the case. (Gll(kj"w”)> (31)
Ga(Kkjsiwy) /)’

C. Weak disorder: Perturbative treatment where

In this subsection, we will formulate a perturbation theory

for Eq. (28), in terms of deviations of the pinning potential R ezlg 1

from uniformity. The point of this analysis is to understand ~ Fp(R)=—=~ 2, —[dro~ drr/](1~ Sro) +vodRo,
how the sharpness of the response might survive the intro- R'#0 R'3

duction of disorder. Towards this end, we will focus on the (32
height of thes-function response found in the preceding sub- 322

section, and develop an expression to the lowest nontrivial G(R)= On%(l— SR0)-

. . oo R
order in perturbation theory to see how much it is decreased 4R3

by disorder. The resulting expression, when disorder aver- L ) ,
aged, will turn out to have a formal, logarithmic divergence,NOt€ the the quantities in E¢32) are just the discrete
which we interpret to mean that there is no tréiéunction ~ Fourier transforms of the quantiti€s,(k) andG(k) defined
response in the thermodynamic limit. However, the diver-in the preceding subsection. The matrix eleme@ts and
gence is in fact cut off by the system size, and we will se€G,, may be found by usingG;y(ij;iw,)=G3(ij;—iwy)

that even a conservative estimate of the integral for real sysand G, (ij ;i w,) =G7y(ij; —iw,).

tem sizes indicates that it is in fact small, so that the pertur- Equation(31) may be solved in a manner closely analo-
bation theory is valid. The integral allows us to define agous to that of Sec. Il: one needs to solve the eigenvalue
length L that is the characteristic size scale for electronsequation
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_AUiéik_Fp(ﬁi_ﬁk) —2G*(R—Ry) that is a continuous function of frequency. What we have
> o L found in Sec. Il seems to imply that the lowest mode in the
k 2G(R—Ry) AU; 8+ Fp(Ri—Ry) spectrum of the disordered system retains a much larger

40 (k) (i) overlap than all the othgr modes, even for large systems. To
«| N e 33) understand how this arises, we need to compute the overlap
d’(k)) M\ dd(i) ) sum [;d3(i)ef(i)* ][, d(k)* d(k)*] in Eq. (34) for
. . the lowest-energy mode, and see how it scales with increas-
and then the solution may be expressed in terms of the e|hg system size. Although an exact calculation of this quan-

genlvalues ?nd e;g}envertgrs. Itt Is not %'ﬁ'cﬂt to t[r)]rove SeV'tity is not possible for an arbitrary disorder strength and ar-
eral properties of the solutions to E@3) based on the sym- bitrarily large system, we can at least estimate it for weak

metry of the matrix® In partic_ular, one may ea;ily show that giqrqer to see if and when a finite overlap survives in the
the eigenvalues come in pairs of equal magnitude and Opp%ermodynamic limit

site sign, = w; . The eigenvector of the solution with nega- 14,314 this end, we compute the eigenvectors of the

tive w; may be fpund from the solution with positive with matrix in Eq.(33) to second order iU, . The method by

the transformation which this is done is identical to standarrc;l}gnondegenerate
d(l )(k)=d(2+)*(k), d<2 )(k)zd(lﬂ*(k). pe(rj';urebano(rjl) Eheory in (i()}u?ntur(rjj) Enecha i.De(jr;otlng

o o L (d17(Ry),dY(Ry), ... (d37(Ry),dY(Rp), ... )=V, we

Because the matrix being diagonalized is not Hermitianymay write the result of the calculation as

these two eigenvectors are not in general orthogonal to one

another. If one imposes the normalization condition

s1dP (k) |12~ ]d(k)[2]=1 for positive eigenvaluesaf

>0) and insists that the eigenvectors associated with each ® (k|]AUj) )

pair of eigenvalues of the same magnitude obey the above + >V erO(AUi)

relation, the inverse of the eigenvector matrix may be k=D J k

explicitly constructed. Writing this aseﬁj)(k) so that

vi=[1-D())]"AVy’

. (39

whereV{) E? are the eigenvectors and eigenvalues in the

S,V (k) (k) =8, , we find absence of the perturbation. The matrix element is given by
el (k)=—di™ k), ed(k=dy* (k) _AU 0\
for w;>0, and <k|AU|J'>:WE)k)T( 0 AU)V(])’
(D (k)= dD* DKy = — qli=*
er (k=dr™ k), ez’(k)==d" (k) with WT representing a column vector of the form
for »;<0. With this explicit expression for the eigenvector (e{)(R,),e{(R,), ... e¥(R)),e¥(R,), ...), and AU
matrix inverse, it is possible to write the solution to E81)  in the above matrix is ahx N diagonal matrix with entries
as AU, on the diagonal. The relevant quantity for our purpose is
; i the “depletion” D(j), which one finds to be
- d (e (k) P o
G,uv(lk;lwn)zz |—+ )
b = (klAU[j) 3
for (uv)=(11) and(21). For (uv)=(22) and(12), the expres- D(J)_k(ﬂ) E}O)_E<ko> +O(AU%). (36)

sion is the same as above, except one needs to take the

complex - conjugate of the numerator. Combining thiSthe zeroth-order eigenvectors and eigenvalues are easily

with E%- _ (2(‘]9)) *an((jj) ngtllgg that di(i)=0 so that  eyaluated, as these were already essentially found in the pre-
ik~ uv v v ! i ion. [ -

Zik2,d, (1) e, (1) d; (k) *d, (k) is purely real, it follows  ceding subsection. Thus the eigenvectors without disorder

that are conveniently labeled by a wave vecﬁpand a sign+
denoting whether the positive or negative eigenvalue for a
P(w)=ed2E20m, | >, dg(i)e(z”(i)*} given wave vector is being referred to. Thus we use the
bl eigenvaluesE) = = Eq=*[F(0)?—4/G(q)|>]* and the
O (i Lns o corresponding  eigenvectors have the forrd{ (i)
X Ek d2(k) d2 (k) 5((9 wJ) (34) — (1/\/N) eiq.Ril)a,d(zq)(i): (1/\/N) eiq'Riua' with
for w>0. R 12
For a finite size system, E¢34) describes absorption by v _|Fp@+EgIT
the system into a discrete set of states, with a weight that Ug=Ug = 2E; e
may be interpreted as the square overlap of the mode being (37)
excited with eigenvector of the=0 mode for the uniformly 21G(§)| 1 1/2
pinned case. In most situations, one expects as the thermo- vi=pL=— _ e i¢ql2
dynamic limit is approached that the weight associated with 47 \/2_Eq Fo(a)+Eq

each mode vanishes with increasing system size, while the
density of modes increases, to generate an absorption curfer EJQ>0, and



2132 H. A. FERTIG PRB 59

- 2|G(q)| 1 vz average of Eq(39) would eliminate the zero in the numera-
Ug=Ug =~ J2E. |F(9)+E- e' %2, tor asq— 0, and introduce a logarithmically divergent deple-
q p(d)+Eq tion in the thermodynamic limit, signaling a broadened rather
) " (38 than sharp response.
 — |Fpla)+Eq —icr2 In practice, however, we find that for physically relevant
Va=Vq = 2E; e systems the response remains sharp. The reason for this is

that the divergence only arises for truly infinite systems. We
for E?<0. Since the factorsly appearing in the power ab- can define a length scale, above which the depletiod (0)
sorption[Eq. (34)] are just the non-zero part of the eigenvec-is of order 1, so that thé-function response becomes sig-
tors above foig=0, it is easy to verify that the weight asso- nificantly broadened. To do this, one must solve the equation
ciated with excitations into the lowest collective mode in

power absorption is just+D(0) [i.e., there will be a con- 1 d?q — lut|? lu-1?

. . . . _ | 2 q q
tribution to the sum over modes appearing in E2{})) pro- 1=— 5l | = [
portional to 1- D (0).] ProvidedD (0)<1, this will remain a Po Ja=2mile(2m) [vo—Eql® [vo+Eql
S-function contribution at zero temperature, even as absorp- (40)

tion into the other modes may merge into a broad backWe can break up this integral into singular and nonsingular
ground. ThudD(0) measures the depletion of the sharp pin-parts ad_.— o, and so write Eq(40) in the form

ning mode response found for the uniformly pinned model. It

should be noted that because of our choice of system around 1 fzw/ dg |AU|?

which we are doing perturbation theory, there are no correc- + (),

tions to the pinning mode frequency &(AU); the first
nonvanishing correction is @(AU?), so that the frequency where we have used E(27). In the above equation;, rep-
of the pinning mode remains close to its uniformly pinnedresents a length scale above which the collective mode dis-

1=
2mpo J2mi, A 27e?l5p3

value: _ _ _ persion for the uniformly pinned system is accurately repre-
Using the forms for the uniformly pinned model in Eqd. sented by Eq(27) (/' ~ 10a, would probably be sufficiently
(36), one finds large), and (/) represents the nonsingular contribution to
N . B . Eq. (40). One may now solve fokL ., with the result
no)o Ly [JUFIAVG@E |l Aav@r? o
N4 ' 2 el
Nq;&o [Uo—E(ﬂ2 [Uo+Ed]2 L.=/"ex M[l_n(/)]
(39 |AU|?

with AU(G) = (1/YN) 3,AU,e"Ri. The second term in Eq. 3

(39 is always finite and is small providdd U(q)/Eq|? is =/ exp ——[1=n()]. (41)
small. The first may potentially diverge even for small AU

|AU(q)| becausé&—v, asq—0, so that there is a vanish- |n Eq. (41), |ATU|? is the disorder potential strengfh U?]
ing energy denominator. However, for a given disorder realyyitten in units ofe?/xl,. For weak disorderp(/)<1. We
ization, by our choice of the system around which we aryj|| discuss the interpretation and consequences of(&%).
performing perturbation theory, we hayAU(q)|xqg? for  further in Sec. V below; for now, however, we point out that
smallg. The energy denominator, using Eg7), behaves as an estimate ot for physically relevant parameters shows
[vo— Ed]z”\\‘(Z’ITeZ%pOQ)Z, so that the integral remains fi- that it is extremely large, much larger than the physical di-
nite, and can be small &U(q) is small enough. mensions of any real sample. This means that in practice, the
This is the central result of this section, and several comdepletionD(0) will be small for weak disorder, since the
ments are in order. First, the result of E9) is only finite ~ Sample size cuts off the divergence at length scales much
in this analysis because of the long-range nature of the inteEmaller than the one at which broadening becomes signifi-
action. For short-range interactiois,— E;]°=<q*, and one ~cant. . . .
ends up with a divergence no matter how snjAIU(ﬁ)| It is mterestmg to con§|der 'What unld happen if one
might be. Such a divergence indicates that one cannot stop ere to consider a model in which the displacement of elec-

t . . ) .
second order in the perturbation as we have done here, a ré)ns from their lattice sites was included as an effect of the

that some self-consistent treatment is called’f$rUnder  disorder. The essential change is that the electron ceﬁters

these circumstances, one expects the resulting response to@gPearing in Eq(31) are no longer on lattice sites. For weak

broad, as is the case for most pinned CDW/As mentioned disorder, if one neglects lattice defects such as dislocations
in the,lntroduction this is borne out by the QHA of Sec. Il and disclinations, the effect of the lattice deformation may be

which shows that a broad response is indeed obtained if ordescribed by  writing F(Ri—Rj)—F,(Ri,R)=F3(R;
uses a screened rather than long-range Coulomb potentialR;) + 6F ,(R; ,R;) and G(R,—Rj)—G(R;,R;)=GR,

(cf. Fig. 2. Secondly, in many caIcuIaans where one aver-_ ﬁj)Jr 5G(§i ﬁj) in Eq. (30), Wherng and G° are the
ages over disorder configurations, the simplest choice of dissoyplings between electron lattice sites in some perfect ref-
order models(white noise introduces fluctuations ?t all erence lattice. One then may tre#f, and 5G as perturba-
length scales, so that the disorder averdgel(q)|?> tions in precisely the same manner as we treateld above.
|AU|? is independent of wave vector. Thus, a disorderThe resulting depletio®(j) has precisely the same form as
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in Eq. (36), with the only difference being that the matrix
appearing in the definition gk|AU|j) now has off-diagonal
matrix elements due téF, and 5G. The resulting expres-
sion for the depletion of the lowest collective mddé0) has
the same form as Eq39), although the precise form of
|[AU(q)|? will be more complicated than for the diagonal ¢
disorder model. The important point, however, is that the
energy denominators in the perturbation theory will be unaf-
fected, so that one still expects only a weak logarithmic di-
vergence if the disorder is not too strong, and a resulting FIG. 5. Schematic representation of the interface disorder
sharp electromagnetic absorption for a finite size systenmodel. The interface has pits and terraces so that the setback from
This demonstrates, albeitposteriorj that our assumption of the ionized donor plane varies by a distance of otiier Electrons
a diagonal disorder model does not alter the qualitative phydecalized by the magnetic field into wave packets in xag plane
ics of the system, at least for weak disorder. of size scale~1, may lower their energy by moving their centers
As is clear from the above discussion, the precise resultglose to pit centers, since in the area of the pit the electron will be
for the length scalé . depend upon the disorder model one closer to the donor layer. For larger pits or decrea;ing magnetic
uses forAU((i). In the next section, we introduce a simple Ie.ngth, more pf thﬁ electron V\;a\;]e packet overlaps with the pit re-
model for this due to imperfections in the interface uponglon’ decreasing the energy of the wave packet.
which the 2DEG resides.

R T i S e e S S S e ot

order of several tens of angstroms. For the hole samples of
Refs. 15 and 16, the interface has an additional corrugated
structure with a size scale of 32 A and a depth of 102'&.

In both the QHA and the perturbative analysis described There are sev_eral reasons for belie_ving that this form of
above, one must make a specific choice for ttisordey disorder may be important in the experiments of Refs. 15 and
pinning potential. In Sec. V we present results for three dif-16. First, the magnetic field _at which one first sees a clear
ferent models. The first is a simple white-noise type modelf€sonance at Fhe lowest available temperatures is roughly 8
in which some fixed fraction of the electrons are given an!. corresponding to a magnetic lengthlgf-90 A, a very
excitation energyo+AU;=U, between then=0 andm _reasonable length scale below which one might expect t_he
=1 orbital states, and all other sites are unpinned. The simtérface structure to trap electrons. If we model the pits in
plicity of this model allows a clear comparison of results the interface as flat depressions of defythas in Fig. 5, one
obtained from the QHA and the perturbative analysis. A secé@n estimate the trap potential for a large pit by assuming the
ond model we investigate is based on the idea that chargelectric field between the 2DEG and the charged remote do-
impurities are likely to be present in the spacer layers ofi0rs is uniformi:® In this case the the potential gained from
heterojunction systems, and that some of these impurities, Rlacing an electron in a pit that is much larger than the mag-

close enough to the 2DEG, will substitute for electrons in theetic length iSAV=2mpee’Az/k~4.35 K in temperature
lattice 2® By choosing a small number of lattice sites to haveUunits; k=12 here is the dielectric constant of the GaAs host

extreme|y |arge values ciﬂp, we can model this type of for the eleCtronS, anq we have takAﬂ:- 10 A It Should be
disorder within the QHA. As will be seen, this leads to anotgd that for experimentally accessible magnetic fields, a
band of collective excitations well above the phonon bandtyPical pit size will generally be much smaller than the mag-
corresponding to localized excitations of the strongly pinnedetic length, so that the pinning energy of an electron trapped
electrons. At low excitation frequencies, these electrons art @ single pit will be of orde\Vs?/I3, considerably smaller
essentially immobile, and so behave as if they were not dethan the maximum possible value AV.

grees of freedom. This is by definition a strongly pinned Because of the roughness of the interface, the WC in gen-
system; yet we will see in Sec. V that the resulting pinningeral will distort slightly so that some or all of the electrons
frequency is extremely small, and that an unacceptably largghay take advantage of the interface potential. Ultimately
number of such charged impurities must be present in theome fraction of the electrons will find equilibrium centers
system to account for the experimentally observed magnifor their (ground staten=0) Gaussian orbitals that are par-
tude of the pinning frequency. ticularly low in energy. Because the first exciteth€1)

We thus focus on a pinning mechanism which, to ourstate of each orbital is spatially far from the center of the
knowledge, has not been previously discussed in the contex=0 state(in the sense thdy, is larger than the average pit
of the magnetically induced WC: interface disorder. The in-size sp), the former state will not be correlated with the
terfaces between GaAs and AlAs at which the 2DEG’s residélisorder potential, and thus is not on average lowered in
are by design of very high quality in samples such as thosenergy as is then=0 state. It should also be kept in mind
of Refs. 15 and 16. Nevertheless, they cannot be perfect, aritiat for a given ground state configuration, the energy of an
it is generally acceptéfl that such interfaces can only be excitation of asingleelectron from then=0 state to then
defined to within a single lattice constant of the host semi—=1 state, keeping all the other electrons fixed, will have its
conductors. A simple idealization of this is to model thelargest contribution from the electron-electron interaction
interface as a series of pits and/or terraces, with the height afither than from the interface disorder. Provided the disorder
the interface fluctuating randomly up and down as illustrateds not too strong, the potential well in which an individual
in Fig. 5. The typical scale of the pits and terraces formed byelectron resides is thus to a first approximation circularly
the imperfect interface is generally thoutthto be of the symmetric, so that the expansion in terms of angular momen-

IV. INTERFACE PINNING MODEL
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tum states used in this work is sensible. whereu is the shear modulus of the lattice. Minimizing the
To fully specify the interface disorder model, we need tototal energyug"—up® with respect taR;, we arrive at the

find the energy due to the disorder to excite an electron ougptimum domain size

of its ground state orbitalnj=0) into the lowest excited

state (n=1) for each sitei, & (m=1)—¢g;(M=0)=0v,

+AU,;. The distribution ofAU; depends upon the assump- R=— 1>

tions one makes about the surface morphology of the inter- AV%(T”H Po)

face, as well as whether other pinning sources besides inteji_-

face roughness are present in the system. We plan to make a. : . .

fuller accounting of various possible models in the futtite; tting this valug ofR; into our expression fou

here we will focus on one reasonable possibility that repro-t0 the expression

duces both the magnetic field and density dependence of the

resonance frequency observed in the experiments of Ref. 15. FLR_ mAV?son?
In this model we make the plausible assumption that the P

strongest pinning in the hole samples comes from defects

and disorder in the interface corrugations of these systems:g use this, we need an explicit form for the shear modulus.
(It may be shown that perfectly regular corrugations of thisThis can be deduced from the transverse phonon dispersion
sort lead only to very weak pinnirfg) As a simple model of  relation of the WC in the absence of a magnetic field, which
this, we assume that the surface has pits of size sgale has the formw.(q)%=(u/m* po) g2, wherem* is the elec-
=30 A and depthdz=10 A with a surface density; . We  tron effective mass. The transverse mode eigenfrequency has
will assume the average distance between pitgnliis  been show#f in the classical harmonic approximation to be
smaller than the nearest neighbor separation of the electromfiven approximately by
a but larger than the magnetic length. This means that
each unit cell of the WC contains several pits in which an wT(q)2=0.036u§(aq)2,
electron might be trapped, but when trapped an electron
wave packet covers one and only one pit. In what follows weyjith w§=4q-re2/ \/§m* ka3, Using the above equation, one
will choose the density; to fit the experimental data at the garrives at the estimate
lowest fields for which a resonance is observed; we then
need to go back and check that the resulting pit density is e?
consistent with ,<1/\/n;<a. p~03—. (43

To estimate the density of pinned electrons, we use the Ka
collective pinning approach that has been very successful i
the context of vortices in superconductrand charge den-
sity waves”® The basic idea is to find a size scdke of
correlated domains, whose positions may adjust more or less FLR rxalAV2sgn?
independently of one another to take advantage of the pin- Up ~5.24 2|2 '
ning potential, at the expense of lattice distortion energy. The 0
average number of pins that may be found under electron
wave packets in a single domain if placed at a random Iocat—h
tion is given byN = poRZ713n; ; if we vary the position of
the domain a distance of the order of the disorder correlatio
length (in this case, ¥n;), one exgits fluctuations in the
number of pinned electrons of ordgN,;,. Since the ener Lo P o P
gained by gn electron wave packet when sitting over agp);t iy Eq. (44). Note within this approximationwp,l B,

AVS/I2, in analogy with the Fukuyama-Lee-RiggLR)  hich leads to a pinning frequency thatreaseswith mag-
etic field, as seen in experiment. It is also interesting to note

model for charge density waves, the energy per electroﬁ]1 3 a2 = , i )

gained from the disorder potentiaELR is that w,i,ca OC}Slp0 , WhICh is also gon.3|stent. with experi-
mental result4> We will obtain quantitative estimates fop,

in the next section using the above expressions.

When the pinning potential for an electron trapped by a
pit approaches the bandwidth of the phonon density of states,
the perturbative estimate above becomes quantitatively inac-
curate, and one needs to perform a QHA calculation to ob-

The introduction of such distortions inevitably leads to atain reliable results fowy,. To do this, we need the prob-
lattice distortion of amplitude 1/h; over a distanc®. . Fol-  ability that a given electron will be trapped in a pit, which in
lowing Ref. 13, we assume the distortions are purely transthis approach is given byE"R/AV(sg/IS). We are then led
verse, and so estimate the distortion energy per electron to g consider a distribution of pinning energies in which most
electrons are unpinned, and a small fraction are pinned with
an effective potentialvy+AU;=AVsy/13. The resulting
> model is then formally identical to the white-noise model
niRcpo mentioned above.

2ulo 42)

e resulting pinning energy per particle is found by substi-

PR, leading

2/,L|g

rIlhe resulting pinning energy per particle is finally given by

(44)
e

In the perturbative regime, where the effective depth of
e individual pinning centersAVs3/13, is much smaller
than the bandwidth of the phonon density of states, the pin-
rﬁing frequency is just given by the average binding energy
per site, so that one findsy,~vo~uy ™", with uf-" given

72
ufR~
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this observation is that, for smdll,, 0, is determined al-

most exclusively by the restoring force on the WC when
only the center of mass coordinate is moved with the lattice
itself undistorted. Lattice distortions do introduce some de-
] viation in the resonance frequency, generally pushing it be-

* kKK

x %

4
T

2 : low the value expected from the lowest-order perturbation
K theory, in a way thadoesdepend on the precise disorder
fi . realization as may be seen in the figure. However, for any
ot Npin= 53 1 given disorder realization, a single mode always dominates
the response; broadening is never observed for a fixed disor-
/1_/ N = 529 der configuration.

We note that with higher-order corrections to the pertur-

‘ , , bation theory of Sec. Ill, more accurate predictionswgf,

o 20 a0 ex107? g0 can be made for a given disorder realization. For example,
one of the configurations in Fig. 6 witd ,=0.003 haswp,

FIG. 6. Pinning frequencyo, for a system ofN=529 elec- =2.32X 10~ *. (The numbers for both, andU, here are
trons, at filling fractiony=0.2, as a function of the pit potential. in units of €%/«l,.) The lowest-order perturbation theory
10% of the electrons are pinned at random sites with enaidy  predicts Wpin™ wé?3=3>< 10 # at this density of pinning
=Up; the remaining electrons are unpinned. Stars are the results @fites. which is in error by approximately 35%. Using the

the QHA for five different disorder realizations at each value Ofmethods of Sec. Ill, the second-order correction may be
Uy, with two states per site retained in each calculation. Dotted ling;, ) tef for this particular disorder realization, with the
is the expected pinning frequency as calculated in lowest-order per- | R @ =2 19%10-* which i ithin 5.6%
turbation theory. For small values bf, the approaches agree quite result wpin™~ wpip + wpip = 2.19x » Which is within 5.6%

well; for larger values the perturbation theory sets an upper boun@f the QHA result, a considerable improvemefNote that

2
Uyl /€

on the pinning frequency. the first order correction idU; ,w{}), precisely vanishes in
our perturbative approaghAnother significant point, as
V. RESULTS stated above, is that the weight of this single mode shows

emarkably little size dependence. For example, using the

In this section we describe in more detail the results 0{ arameters relevant to Fig. 1, the power absorption per elec-
our study. As has been emphasized, the electromagnetic rE

sponses computed in the OHA in all the models we have on at the_ frequency of the sharp_peak in the inset of Fig. 1
. . . . . is proportional to yy(wpin) @pin/ N=0.006 209, whereN

studied are qualitatively the same: one finds a single sharp 1024 for thi cul P £ iselv th
line dominating the absorption spectrum. This line is very or this calculation. For precisely the same system
robust in that its weight shows no discernible decrease witlparameters,  butN=529, one finds . @pin) @pin/N
increasing system size, and for models in which the pinning? 0.006 200, a slightecreasefor the smaller system size.
potential of the individual electrons is small compared to thelhis decrease is almost certainly related to the fact that the
width of the phonon density of statéBig. 4), the frequency disorder realizations in the two calculations are inevitably
of the resonance occurs at the average excitation energy p@ifferent, rather than to any systematic increase with increas-
electron, as expected from the perturbative analysis of Se#d system size. Nevertheless, this result illustrates that one
ll. We begin by describing in more detail the results for cannot discern a decreasing weight in the sharp response
disorder that is in this sense weak. with increasing system size for the values fone may
handle in the QHA.

The important question remains: to what extent, and un-
der what conditions, does this response remain sharp for sys-

A particularly useful model for comparison of the QHA tems of experimentally relevant sizes? To address this ques-
and perturbative analysis is one in which a fixed fractiontion, we turn to the perturbative treatment of Sec. IIl. It was
Npin=Npin/N 0f randomly chosen electrons is pinned, with shown there that it is convenient to compute the power ab-
each such site assigned the same pinning potemial sorption by starting from a uniformly pinned state — i.e., a
+AU;=U,. According to the perturbative analysis, the pin- pinning potential that is the same for all electrons in the
ning frequencywpin~nynUp, regardless of the precise dis- system — and computing perturbatively the corrections to
;g?u:'h(ig Or;g'ggled viiI:ﬁS.hl:I?uiﬁg 15322 Zpsi:]‘r?:’dtypdgﬁ:éesu“%his_ab_sorption spectrum due to the fact that the pinning po-
— 0.0/ «l Fi’gure 6 illustrates the values of ’ as corrp1- f[e_nt|al is not truly ur_uf_orm. For the uniformly pmned system,

e 0 . : . pin == it is not at all surprising that energy absorption from a spa-
puted in the _QHA for five different disorder realizations eaChtiaIIy homogeneoustime-dependeptelectric field is domi-
at several different values afo+ AU;=U,, for a smaller nated by a single mode: the collective modes have a well-
density of pinned site€l0%), andAU;=0 for all other sites, ) L it
along with the prediction of the perturbative analy@stted ~ defined wave vectok, and only thek=0 mode can couple
line). For smallU,, the agreement of the two approaches isto the electric field. In principle this=0 mode is mixed in
quite good. Furthermore, there is almost no variatiomj ~ among all the modes when disorder is introduced. Thus, as
for a fixed value ofU, when it is small as the precise real- discussed more carefully in Sec. Ill, we are led to ask
ization of the pinned sites is changed. The interpretation ofvhether there is a finite overlap between kw0 collective

A. Pinning by weak disorder
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mode for the uniformly pinned case and the lowest-~10%%,, far larger than any real sample. The conclusion
frequency collective mode in a disordered system in the therthen is thatL.>L in Refs. 15 and 16, and the electrons at
modynamic limit. zero temperature react essentially as a single domain in re-
In Sec. Ill we showed that this overlap may be written in sponse to théspatially uniform) electric field. Furthermore,
the form 1—- D, with D given to second order in perturbation the depletiorD is in fact small in spite of the formal diver-

theory by gence whenL—oo at second order in perturbation theory;
R _ this accounts for the sharpness of the measured response at
d2q |u§ lAu(@f?  fug Plau(e)f? the lowest temperaturés?®
= 24 g2 Pz | Finally, it must be emphasized that this effect arises
Po [vo q] [vo+ q] purely due to the long-range nature of the Coulomb interac-

( tion. For short-range potentiaIEg—vo~q2, and the diver-

with AU(q) = (1/VN) EiAUieidFii’ and AU, is the devia- gence in Eq(45) is much stronger. This observation leads to
tion of sitei from the site-averaged value of the pinning another interpretation of the result: for short-range interac-

potential,v,. Explicit expressions fou® andu- are given 1ions, the phonon density of states for a uniformly pinned
in Eas.(3 d(38 dE is the di q ql tion for th system at small frequencies is much larger than is the case
in Egs.(37) and(38), an q 'S the dispersion relation forthe - ¢, long-range interactiongIn the former case the phonon

uniformly pinned system, Eq24). For smallg, as shown  gensity of states jumps at the band edge, whereas in the latter

above[Eq. (28)] it rises linearly from zerd.Thus, if one displaces the center
p 22 s of mass of the systerfi.e., creates aj=0 excitation, for
Eg~vot27el5poq+0(q%), Coulomb interactions there are very few states into which the

. ) o - o disorder can scatter this excitation. The calculations in this
so thatD diverges in the thermodynamic limit, [AU(q)| work demonstrate that the suppression of the phonon density
—|AU[*>0 asq—0, as is typically the case for white-noise of states at the band edge by the Coulomb interaction is
potentials such as the one studied here. The meaning of thigfficiently strong to leave a finite oscillator strength of the
divergence is that essentially all the weight of ttreO mode  pure center of massg&0) mode in the lowest-frequency
for the uniformly pinned system has been depleted by theollective mode when disorder is included.

disorder from the lowest-energy collective mode, and is dis- The observation that Coulomb interactions are crucial to
tributed among the other collective modes. However, ingetting the sharp response is consistent with the results of the
practice D is only divergent in the thermodynamic limit, QHA: Fig. 2 illustrates response for a single disorder real-
since the integral in Eq(45) has an infrared cutoffy, ization when the Coulomb interaction is screened. For this
=2m/L, wherelL is the linear dimension of the system size. calculation, we took an electron-electron interaction of the
The depletion becomes significariD£1) for system sizes form

L>L., which in Sec. Ill was found to bEEq. (41)]

v(q)=2me% k\q?+ 2,

3
Lo~/ expl |AU|2] ' 40 \ith 0.=2.0,%, N=225, and the parameters are otherwise
the same as for Fig. 1. The broadening even for this rela-
where|AU|? is the disorder-averaged square potential evalutively small system is already apparent.
ated in units ok? |, for q—0, and 27// is a wave vector
below which the smaltj expansion for the uniformly pinned B. Pinning by charged impurities
collective mode spectrufEg. (27)] becomes reasonably ac-

curate; presumably’~10a,, with ay the interelectron lat- . e .

fi b y 0 0 nitude of the depinning threshold observed in dc voltage-

ice spacing. 96+ ) . . .
current measuremeft€*®is one in which charged impuri-

For system sizek <L, the depletion remains small, so . . !
that a single sharp resgnance should still be present. Thiles close to the 2DEG become incorporated in the lattice as

means that one may interpreet as a length scale for which substitutions for electrorfS.This is a paradigm for a strongly

the electrons in an infinite sample move together coherentl)}?'m}f‘?I S)‘/‘ste_:ﬁalvgere c’farta:jn I?Cat'o?s dOf th(;a lattice afr?rgz:
To estimate the width of the resulting resonance, we notgeNntally nailed down,” and eliminated as degrees o

that the fluctuations in the pinning potential averaged over %om. In QDW systems, the pinning frequency for this type of
length scale ol will be npm[ltaO/Lc](A_Uz) 12 oo that isorder is estimated as the frequency of a phonon mode for

the effectiveQ of the resonance would He./2a,. If L. is the pure system, evaluated at wavelength2mr/d, whered

: is a typical separation between pinned sites. Using the QHA,
very large, clearly this leads to an extremely narrow reso- yp P P 9 Q

nance. In fact, even a conservative estimate gshows that we can quantitatively investigate this model to test whether it
Nl ' . . ; can account for the-1 GHz resonance as well.

it |s.Iarge@n the physical d|men3|on§of any real sample. The method for emulating the charged impurity model
Taking (AU?)Y2~ 10wpin, SO thal‘t AU~100pinklo/€%  \ithin the QHA is to choose a small number of sites for
~0.014, wheravy, is the observeld'°resonance frequency which AU, is larger than the width of the phonon density of
of 1.25 GHz, and we used a magnetic lengik 81 é ap-  states. A typical collective mode density of states arising
propriate for a 10 T magnetic fieldWe expect thatAU| is  from this type of disorder realization is illustrated in Fig. 7.
considerably smaller than thigAt this field, the filling factor ~ Two peaks emerge, one at high frequency above the reso-
for the experimental densities i#=0.22, so thatL. nance frequency of the individual pinned sites, the other

A commonly accepted model for understanding the mag-
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result quite reminiscent of what was found for the weak pin-
ning model of Sec. VA. The magnitude of the pinning fre-
quencies found is surprisingly small; if one extrapolates the
linear behavior for small pinning densities, we find that
~13% of the sites would have to be pinned in order to
achieve the 1.25 GHz resonance seen=ad.2. Such a high
density of charged impurity substitutions near the 2DEG is
clearly inconsistent with the high mobilities these samples
exhibit in zero magnetic field. Furthermore, the pinning fre-
quency is a monotonically decreasing function of field in this
model, contrary to experimental observation. It thus seems
quite clear that this model cannot be the primary pinning
source relevant in electromagnetic absorption.

The behavior of the pinning mode at low impurity densi-
ties is surprising in its similarity to the results of the weak
pinning model above, given that this is intrinsically a strong

FIG. 7. Density of states for a strongly pinned WC, computedpinning mechanism. Indeed, the results of a strongly pinned
using the QHA, withN=529, »=0.2, and two states retained per CDW estimate grossly overestimate the pinning frequency at

site. 10% of sites have a pinning potential,+AU;=U,

the densities we have studied. For example, if we assume a

=0.04%/ k1o, a relatively large pinning potential; the rest are un- pinned  site fractionn,,=0.05, then for filling factorv
pinned. A high-energy set of collective modes may clearly be seen- 0.2 the Strong pinning estimate y|e|ds an expected pinning
separated above the main peak. These modes arise due to loca"zﬁ'gquency greater thanﬂlO’geZ/KIO, while the frequency
collective modes of the strongly pinned electrons. For the modes i und in the QHA is roughly &10—462/“0. This great

the lower, main peak, the pinned electrons are essentially Stationar}ﬂisparity between the strongly pinned CDW estimate and the

shifted slightly upward from the phonon density of states fo
the pure system. It is easily checked that the motion of th
electrons in the lowest-energy modes leaves the pinned ele
trons stationary, so that the magnitude of the pinning poten-

these electrons are removed as degrees of freedom.

Figure 8 illustrates the frequency of the lowest collective
mode as a function of pinned site density, with several dif
ferent disorder realizations. As in all the results of this work,
the electromagnetic absorption is dominated for each realiz
tion by only the lowest mod&. At low densities, the fre-
guency is approximately linear in the pinning site density,

©
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result of a more realistic calculation we believe exemplifies
the limits of using CDW theory to quantitatively analyze
roperties of the magnetically induced WC. Indeed, we be-

ieve the tendency for the system at low;, to behave so
much like a weakly pinned WC may be understood if one

Thinks of a strongly pinned electron as a charged impurity to

which a vacancy in the WC has become bound. One then
may think of the strongly pinned WC as a weakly pinned
WC with point defects, and it is likely that a perturbative
analysis of this system as in Sec. Ill would explain the sharp-

Hess of the response found from the QHA. If so, the strongly
apinned WC for the purposes of ac response is equivalent to a

weakly pinned, defective WC.

C. Interface pinning model

We now turn to the results of the interface pinning model
defined in Sec. IV. As a first estimate, we use the perturba-
tive resultwyin~vo~upR, with ui*® given by Eq.(44). As
discussed in Sec. IV, we sg§=30 A, AV=4.3K~90 GHz,
and takea=480 A, andk=12, as is appropriate for the
experiments of Ref. 15. To estimate the density of pits
we setvg=uf""~1 GHz atB=8 T,'* for which |,~90A,
and use Eq(44) to solve forn;; the result isn;~2.5x 10!
cm 2. The resulting average distance between pits {,11/
~200 A, which clearly falls into the range of validity of our
model,l,<1/yJ/n;<a. We note with this estimate af,, the
(Fukuyama-Lee-Rigecorrelation lengthR. with the use of
Egs. (42 and(43) is found to beR.~7.5a. Figure 9 illus-

FIG. 8. Pinning frequency,,, for a system oN=>529 electrons
with strong pinning centerswy,, was computed using the QHA

with two states per site at filling fraction=0.2 as a function of . . .
Npin, the fraction of pinned sites, withy+AU;=U,=0.046%/ kI, The actual potential for sites that are pinned turns out to

the potential of the pinned sites. {In,,, of the sites are unpinned. b€ large enough that the perturbative approach overestimates
Stars are the results for five different disorder realizations at eackhe value ofw;, noticeably. We thus turn to the QHA to get
value of n,,. The computed frequencies are significantly lower @ more accurate estimate of the pinning frequency. As dis-
than what is expected from an estimate based on strong pinning @fussed above, this requires us to find the what fraction of
an elastic medium. electrons is pinned; for the above parameters, this works out

trates the result of the perturbative estim@elid line) as a
function of magnetic field for this set of parameters.



2138 H. A. FERTIG PRB 59

” : ' ‘ for weak disorder potentials a calculation of tl&atio
CDW domain size diverges when ar lihteraction is in-
cluded. In Ref. 13 it was argued that this divergence may be
removed by a careful treatment of the different energy scales
L AV = 90GHz | for longitudinal and transverse distortions of the crystal. This
treatment computed a lineshape for electromagnetic absorp-
tion by assuming the system may be thought of as indepen-
dent Fukuyama-Lee-Rice domains, with randomness in the
pinning frequencies of the individual domains satisfying
A wpin/ wpin~1. By noting that there must be a length scale
over which the variations in domain pinning frequency ef-
fectively decouple the domains, an estimate for the expected
line shape was found.
‘ ‘ The model of Ref. 13 is in fact not very different than
8 10 12 & ours. One could think of the individual electrons in our cal-
o culations as FLR domains, and the model investigated would
FIG. 9. Pinning frequencip,, in the interface pinning model as basically be the same. However, in that work it was assumed
a function of magnetic field, foAV=90 GHz corresponding to a that the length scale over which Coulomb coupling may be
pit depth of Az=10 A. The average pit size,=30 A, and the ignored is the same as the FLR length, leading to a resonance
electron density in this figure is fixed ap=5x10" cm 2 Solid ~ with Q~1. This reasoning works well in the absence of a
line illustrates the perturbative estimate @f;, for a pit density of ~magnetic field, because each domain has two possible polar-
n;=2.5x10"cm 2. The magnitude of the pinning frequency may izations for their motion in a collective mode. For the lowest
be seen to increase linearly with magnetic field, due to the decrea$requency collective modes, the domains can execute a trans-
ing magnetic length of the Gaussian orbitals in which the electronyerse motion that avoids long-range density fluctuations,
reside in the ground state. Stars represent the results of a quantuhich are very high in energy. Such long-range density fluc-
harmonic approximatioiiQHA) calculation with the same param- tuations do appear when the motion of the domains is longi-
eters except for a slightly increased pit densitys3.0x 10"em 2. tydinal, and so such modes contribute to the phonon density
Results for five different disorder realizations are shownBer7, of states at high frequencies. For the transverse modes, the

911,13, and 15 T. coupling of motion among the domains is weak, and the
LR - o . approximations of Ref. 13 make sense.
t0 Npin=Npin/N=U,"7AV (s5/15) ~10%. It is interesting to In the presence of a magnetic field, however, it is not

note that, sincei5 R, 2, the fraction of pinned electrons is possible to separate modes into transverse and longitudinal;

independent of magnetic field. Each pinned electron has athese modes are inevitably mixed. The magnetic field causes

excitation energy o) )= AV %/lé for these parameters. We the domains to move in a circular fashion, essentially circu-

can then proceed with the QHA precisely as in the calculal@ting around their effective potential wells. However, if dif-
erent domains circulate at different frequencies, there will

tions of Sec. V A. Using the parameters adopted for the per‘i . . )
turbative approach, we find @=8 T in the QHA wy; necessarily be long-range density fluctuations, so that such

= 0.84 GHz, slightly below the experimental value of 1 GHz, Modes will be high in energy. Low-frequency modes can be

This indicates that we should raise our estimate;gfsince achieved if the coupling betyveen domains s explicitly in-

its value was chosen to match the experimental result for thigluded, SO Lha.t (;oréelatlgn_ls_hlln the motions of dlfft(_arihtlddtor;

particular magnetic field. We find that the pinning frequencymalns May be introduced. ThiS means in a magnetic field the
wgn~1 GHz in the QHA if the fraction of pinned sites, is system will have alynamicalcorrelation length that is dif-

raised to 11%; this can be achieved if we assume a pit der{_erent than thestatic (FLR) _correlatio_n length, a_nd in this .
sity of n;=3 O>’< 10 em~2. The results of this calculation work we have seen that this dynamical correlation length is
i - . .

are illustrated for several values of magnetic field in Fig. g_extremely large. We emphasize that this behavior is very

As in Sec. V A, the perturbative result overestimates the pin-dlfferent than what occurs in most CDW systems, where the

ning frequency by an increasingly large amount as the Valugtatlc and dynamic correlation lengths are basically the

3,49 H : ;
of U, at the pinned sites increases; this leads to the subline comgli.nati(-)rrrn]if ?\;\g d?;ﬁﬂgfoﬁsnstﬁz Il;ic?;ne (;)fcf)huelo%r;)lqiz-e
growth of wy, with magnetic field that is apparent in the ' 9 9

QHA result. It is interesting to note that experimentally theteractlon, and a magnetic field, and leads to the sharp reso-

variation of w,;,, with B is indeed found to be subline&t. nance fo.und n thls. vv_ork. -
p Experimentally, it is somewhat surprising that only the

most recent measurements have uncovered the sharpness of
VI. DISCUSSION this resonance, whereas there have been a number of earlier
gneasurements of rf, surface acoustic wave, and microwave

. . =10,12 .

response of a pinned, magnetically induced two-dimensiondfSPONses in this systént®*? which found broad reso-
WC to a spatially uniform, time-dependent electric field is N@Nces. There may be several reasons for this. First, in order
sharp, to our knowledge is unanticipated in the literature. AJO Couple to the 2DEG, the experimental methods probe the
we have seen, the key reason for this result is the long-rang@y/stem at a finit&, not with a purely spatially uniform elec-
nature of the Coulomb potential. Early studies of a two-tric field. From a practical viewpoint this is necessary, as the
dimensional CDW system in a magnetic fi#ldid note that  oscillator strength for transitions at sméilis very small,

The primary result of this work, that the zero-temperatur
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making detection of the absorbed energy difficult. However, The author has become aware of a recent investigition
a repetition of the analysis of Sec. Ill shows that the absorpof the pinning properties of the magnetically induced WC.
tion is sharponly for k=0: the second-order correction in These authors are also able to explain the increase of the
perturbation theory diverges more strongly at fititan for  ninning frequency with increasing field observed in experi-
k=0, indicating that the response broadenskéscreases. ment. However, the work does not find the unbroadened

This observation is supported by the results of Ref. 16, fokesonance at zero temperature that is the focus of the present
which several absorption peaks are observed, presumabpsper.

representing harmonics of the fundamental probing wave-
length. The widths of these peaks are found to increase with
increasing frequency. Thus it may be that some of the meth- ACKNOWLEDGMENTS

ods used in previous work coupled to or mixed in large The author is indebted to Professor Sankar Das Sarma for
enough values ok to wash out the resonance. _ _ telling him of the results of Ref. 15, as well as for many
A second important aspect of the result is that it applieg;sefyl discussions and encouragement through the course of
on!y at zero temperature; cllearly one expects thermal proaqhis work. Lloyd Engel, Chichun Li, Chris Mellor, and Dan
ening of the resonance, which we have not addressed in thifgy; are gratefully acknowledged for making the results of
work. This means that one can only expect such sharp resgnejr work available prior to publication. The author also
nances at the lowest temperatures. One study of the tempekgsnks Steve Girvin for a useful discussion. This work

ture dependence of the resonaiidedicates that it is only \yas supported by NSF Grant No. DMR98-70681, and the
apparent below 100 mK, and that it sharpens very rapidly ifResearch Corporation.

the range 50 mk>30 mK. It seems quite reasonable that
thermal broadening is responsible for the absence of this _
sharp resonance in previous experiments, especially since the APPENDIX: COMPUTATION OF INTERACTION
temperature below which the sharp resonance settles in may MATRIX ELEMENTS
be sample specific. The i ; ; ij
) ) ) e interaction matrix elements can be greatl

A number of open questions remain unresolved by this . _ miMaMamMy greaty
work. First, because this is a zero-temperature study, waMPlified by the use of the strict translational periodicity
have not been able to understand the detailed absorption “%ssumed in this work. In general, they may be written in the

shape of Refs. 15 and 16. Beyond thermal effects, the larg m
scale coherence of the electron motion at zero temperature
indicates that specific dissipation mechanisms — in particus ij _ 2, 42 2 Si4- (=T 4% (7B
lar, edge statééeg— of the VpVC may prove important ir?this m1m2m3m4_f d°ryd rzf d*qu(gye 2)¢m1(r Ri)
context. Beyond the lineshape, some aspects of the magnetic . - -
field dependence of the resonance remain unexplained: at the X $my(r =R 7, (1 = Ry) b, (r = Ry),
highest magnetic fields, the resonance shows little or no field
dependence, while th® of the resonance continues to in- where ¢m(F) is the mth angular momentum state centered
crease with field. This work gives a natural explanation foraround the origin. The quantity(q) is the Fourier transform
how the frequency may be an increasing function of field inof the electron-electron interaction, which for most of this
an interface pinning model; however, it is not clear how onework will take the form 2re?/q. [To describe a screened
could obtain a field-independent resonance. Investigations @oulomb potential, one may take(q)=2me%/\/q>+q>.
these issues are currently being pursued. This was the form used in the calculations leading to Fiyj. 2.
Because we are imposing periodic boundary conditions, the
interaction needs to be replaced with one that is periodic in a
Vil. SUMMARY superlattice of unit cells, each witk electrons, whose posi-
In this work, we studied the response of a two- tions inside each cell are identical. This is accomplished by

dimensional Wigner crystal in a strong magnetic field to amaking the replacemenig—G, [d?q— (1/vc) =g in the
spatially uniform, time-dependent electric field, at zero tem-above expression, whe{é} are the reciprocal lattice vec-
perature, pinned by a disorder potential. An approach taors of the superlattice, ang, is the supercell area. Making
computing the response functions of a localized electron syshis replacement, and switching over to bra-ket notation, we
tem in the lowest Landau level was introduced, the quantunhave

harmonic approximation. It was found that the response is

sharp; i.e., there is a resonance thandg disorder broad- N 1 . .
ened. For weak disorder, this effect was shown within per- Ul momem = —E U(G)<m1|ef'G'r|m2>
. . . 1772734 [ =
turbation theory to survive for macroscopically large G
samples, because of the emergence of an extremely large x(mg|e® T|my)e 16 R-R)_ (A1)

length scald._. that represents the distance over which elec-
trons oscillate together in the lowest excited state of the sys- . L2
tem. The fact that . is so very large was shown to result Although f‘ZY thf" unscreened Coulomb interactiofG) di-
primarily from the long-range nature of the Coulomb inter-verges forG=0, we may formally set it to zero if one in-
action. A model of interface pinning was shown to reproducecludes the effects of a uniform neutralizing background. The
both the magnitude and some aspects of the field dependenceatrix elements(m,|e”'®"|m,) may be computed with

of the resonance as observed in experiment. some work analytically. The result is
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(my—my)2 what happens at length scales shorter than a magnetic length,
allowing one to treat disorder potentials that vary on a short
length scale. This is the advantage the QHA has over the

(Glg)? method of Ref. 24, which is typically limited to several hun-

(T) dred values of5.

In the text, we took advantage of the sum rule

m,! H(Glo)2

m!| 2

(me~mg)=|

XLyt
my

[ ks

x glmy=my)| 06+ 5]~ (Glo%2 (A2)

il il i
for m;=m,, whered is the angle between the the vecr Z Um1m2°°_2| Umymy00~ Ym,my00 Omym,: -~ (A3)

X i ml_m2 i i - . . . .
and thex axis, andLm2 Is an associated Laguerre poly which we now demonstrate. We begin with the simple ob-

nomial. The expression fan,>m; may be obtained using servation that
(my|e”1® "m,)=(m,|e ") "Im;)*. It is convenient to

write this result in the form E elGRj— Nz 556,
.27 . - ] g
<m1|e—|G.r|m2>:e|(m2—m1)(06+ W/Z)lemz(G)y . _ _
where the{g} are the reciprocal lattice vectors of the elec-
with tron lattice(i.e., not the superlattige Then
my! ][ (Glg)2]| (M~ m2)/2 i —ig-f ig-7
lemz(G):[m_l!H 2 zl UmlmZOO_N% U(g)<m1|e |m2><0|e |0>
y Lmlmz( (G|o)2) o GiZ2 From Eq.(A2) itis clear thak0|e'""|0) depends only on the
my 2 magnitude oﬁ and not its orientation, so that the orientation

for my=m,. Form;<m,, the expression foF , . (G) has angle enters the sum above througim,|e™'9"|m,)

] o ’ i(my—my) 64 P ; : '
the same form as above, only with the indices, m, inter- S °. Since each reciprocal lattice vector has five
changed. others of the same magnitude oriented at angles that are in-

The interaction matrix element can now be written in thetegral multlple§ ofw/3 away from g5, it fOHOWS. that the
form phase factor will cause the above sum to vanish untess
=m,. Thus

- 1 T
ij — —iG-(Rj—Rj) .
Uth mymam, UC% v(G)e RIF  my(G)Fmgm, (G) Z U 00 Sy, (A4)
1 \Mg—mg;i |[mq—my|+|mg—my| .
X (= 1)Ma™ Maj M= Mol iMs = Ma Similarly, for Up, - o0 We have

x gi[Ma—my+my—ms] oG
which is particularly convenient for calculations. For a given Uirlezoo:z v(G){my|e "¢ "|m,)(0|e'®"|0).
value of Ri—R; one in practice can include a very large G

number of reciprocal lattice vectors in the sum; for exampleAs above, the quantity entering the sum involves the orien-
our calculations withN=1024 electrons include approxi- tation of G only throughe'(M2~™)%  so this sum must also

mately 60 000 different values @& in the sum. Because we vanish unlessn,=m,. Together with Eq(A4), this proves
include so many of these, the QHA can accurately reflecthe sum rule Eq(A3).
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