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Electromagnetic response of a pinned Wigner crystal
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Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506-0055
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A microscopic model for analyzing the microwave absorption properties of a pinned, two-dimensional
Wigner crystal in a strong perpendicular magnetic field is developed. The method focuses on excitations within
the lowest Landau level, and corresponds to a quantum version of the harmonic approximation. For pure
systems~no disorder!, the method reproduces known results for the collective mode density of states of this
system, and clearly identifies the origin of previously unexplained structure in this quantity. The application of
the method to a simple diagonal disorder model uncovers a surprising result: a sharp~d-function! response at
zero temperature that is consistent with recent experiments. A simple spin lattice model is developed that
reproduces the results of the quantum harmonic approximation, and shows that the sharp response is possible
because the size scaleLc of patches moving together in the lowest-frequency collective mode is extremely
large compared to the sample size for physically relevant parameters. This result is found to be a direct
repercussion of the long-range nature of the Coulomb interaction. Finally, the model is used to analyze
different disorder potentials that may pin the Wigner crystal, and it is argued that interface disorder is likely to
represent the dominant pinning source for the system. A simple model of the interface is shown to reproduce
some of the experimental trends for the magnetic field dependence of the pinning resonance.
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I. INTRODUCTION

It has long been appreciated that the ground state of e
trons in an otherwise structureless environment should
crystalline at low enough densities.1 Considerable effort has
been focused on creating such a state in a two-dimensi
electron gas~2DEG! as realized in semiconductor heter
junction and quantum well systems,2 although obtaining the
appropriate limit of low electron and impurity densities h
proven difficult. The introduction of a magnetic field perpe
dicular to the 2DEG improves this situation by raising t
electron density at which crystallization is thought to occ
Recent experiments have identified the onset of strong in
lating behavior in very high mobility systems, at magne
fields such that the filling factorn5N/Nf , with N the num-
ber of electrons andNf the number of magnetic flux quant
through the system, is below;1/5 for electrons3,4 and;1/3
for hole systems.5 While much intriguing experimental dat
has accumulated, a definitive proof that the low filling fac
insulating state of these two-dimensional systems is ind
an electron, or Wigner, crystal~WC! has remained elusive.

One experimental fact for the low filling factor system
that is in clear agreement with expectations for a WC int
pretation is that they are insulating. It is well appreciated
now, from analogous behavior in charge density wa
~CDW! systems,6 that an arbitrarily small disorder potentia
should pin the WC at zero temperature so that there are
charge carriers that can flow in response to an arbitra
small static electric field. In CDW systems, the pinning p
tential also supplies a restoring force that induces a br
peak in the ac electromagnetic response at the ‘‘pinning
quency,’’ whose magnitude may be used to assess the c
lation length of the CDW.6,7 Early experiments on the
magnetically-induced WC identified similar structure in t
density response using various techniques.8–11 Theoretical
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analyses12–14 of these experiments have largely focused
determining the correlation length of the WC from the e
perimental data, although no clear consensus on this qua
has yet been reached.

Very recently, experiments on high-quality hole15,16 and
electron17 systems at low filling factors have revealed stru
tures in their microwave absorption properties that arequali-
tatively differentthan what is observed in CDW systems. A
the lowest temperatures and highest magnetic fields av
able, these systems exhibitsharpresonances at low frequen
cies, with quality factorsQ5 f /D f ( f here is the frequency
of the resonance peak andD f its width! as high as 30. The
frequency of the peak increases with increasing magn
field, and may saturate at a maximum for the largest field15

By contrast, most existing theoretical work predicts12,13,18,19

a broad (Q;1) resonance, and a pinning frequency thatde-
creaseswith magnetic field. The subject of this work is t
understand some aspects of this puzzling experimental fi
ing.

In what follows we will adopt a microscopic model of th
magnetically induced two-dimensional Wigner crystal. T
ground state is assumed to be well described by a produc
localized Gaussian wave packets, so that exchange ef
are ignored.20 Our goal is to find the response of the syste
to a time-dependent, spatially uniform electric field.21 To
compute the latter quantity we will employ a ‘‘quantum ha
monic approximation’’~QHA!,22 a natural generalization o
the classical harmonic approximation, in which a finite nu
ber of angular momentum orbitals per site is retained in
Hilbert space of states for the electron system. This is,
course, sensible provided that the electrons remain clos
their ground state sites after being excited by the elec
field. A very strong magnetic field is assumed so that proj
tion into the lowest Landau level is appropriate,23 and all
2120 ©1999 The American Physical Society
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FIG. 1. Center of mass response functionxc.m.
xx for a system ofN51024 electrons atn50.2. Half the sites are chosen at random to ha

a pinning potentialDUi50.01e2/k l 0 ~see text!; the other half are unpinned. Two states per site were retained in this calculation~see text!.
Inset: Relative power absorption for the same system.
d

n

,
o
n
g
th
io
a
tl
p
-
A

ea
re
.
re
he
t

o
r
o

-

f
el

,
w-
sly
en-
by
-

pic
lly
e
ed

ies
e-

we
in
ruc-
ruc-

the

n-
th

m-
ng
by

hat
ize
results reported here are for zero temperature. For an un
ordered WC, the QHA reproduces known results foundwith-
out resorting to a harmonic approximation,24 and indeed of-
fers an explanation of features found in the density respo
function that were not easily interpreted previously.

Because exchange effects are negligible in this system20 a
time-dependent Hartree approximation turns out to be b
convenient and accurate for computing the response fu
tions of this system. For simplicity we consider only a dia
onal disorder model; i.e., the disorder enters only in
single particle excitation energies and not in the interact
matrix elements among the electrons. In practice this me
we have adopted a model in which the lattice is perfec
ordered, and disorder is introduced as a random on-site
ning potential.25 As we will see, this assumption greatly sim
plifies the computation of matrix elements entering the QH
Using a perturbative approach described below, for w
disorder it is possible to demonstrate that our qualitative
sults are insensitive to the diagonal disorder assumption

For all the disorder models studied in this work, the
sults of the QHA turn out to be qualitatively the same: t
response functions exhibit an extremely sharp response a
lowest collective mode frequency~provided that the
electron-electron interaction is unscreened; see below.! This
is the central result of this work. Two physical models
pinning are analyzed in detail in this study. Charged impu
ties which may be found in the spacer layer between don
and the electrons have been argued26 to represent the stron
gest source of pinning for the WC in dc nonlinearI -V mea-
surements; i.e., these set the energy scale necessary to
dislodge the electrons in a nonvanishing static electric fi
is-
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so that a current may flow. From the CDW point of view7

this model corresponds to a strongly pinned system. Ho
ever, we will see that the strong pinning approach gros
overestimates the pinning frequency, so that the experim
tally measured pinning frequencies cannot be explained
this source of disorder.27 The ultimate reason for the discrep
ancy between the pinning frequency in the microsco
model and the CDW result for this is that a magnetica
induced WC isnot a CDW. Our results indicate that th
collective mode spectrum associated with strongly pinn
centers is far more like that of a crystal with vacanc
pinned at charged impurity sites than that of an elastic m
dium tied down at random sites.

We then focus on a model of interface disorder that
believe is likely to be the dominant pinning mechanism
electromagnetic absorption for these systems. Heterost
ture and quantum well interfaces are believed to have st
ture at length scales of several tens of angstroms.28 An inter-
pretation of this is that in semiconductor heterostructures
interface between different materials~typically GaAs and
AlAs! may only be defined to within one or two lattice co
stants (;5 Å!. This is often modeled as an interface wi
pits and/or islands of typical size scale,100 Å.29 Electrons
residing in large pits or regions with an unusually large nu
ber of small pits have an enhanced probability of lyi
slightly closer to the donor layer and so may be bound
them. An important aspect of the physics in this model is t
in the lowest Landau level interfaces with pits whose s
scales are smaller than the magnetic lengthl 05(\c/eB)1/2

have pinning potentials that increase with decreasingl 0 .
This leads to anincreasingpinning frequency with magnetic
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2122 PRB 59H. A. FERTIG
field, as seen in experiment. The;1 GHz magnitude of the
measured pinning frequency may be explained with very r
sonable parameters describing the interface at which
2DEG resides, as described below.

A typical result for a single disorder realization, who
precise form is described below, is shown in Fig. 1. T
system includes 1024 electrons, and is assumed
~as throughout this work! to obey periodic boundary cond
tions. Because of the finite number of degrees of freed
the density response function consists of a series ofd func-
tions. Note that the scale of the figure is logarithmic, so t
a linear plot of power absorbed as a function of frequen
shows a singled-function response at the lowest collectiv
mode frequency, as illustrated in the inset. The height of
peak shows no sign of decreasing with increasing sys
size, nor do any other collective modes develop a noticea
oscillator strength in power absorption. For a model in wh
the typical on-site pinning potential is small, we find th
pinning frequency~i.e., the position of thed-function re-
sponse in Fig. 1! to a good approximation is given byv0 , the
energy required to excite an electron from them50 to the
m51 angular momentum state in the absence of other e
trons, averaged over all the electrons. This value is es
tially the same as the well-known result for weakly pinn
CDW’s.7 Typically, the exact pinning frequency found in th
QHA falls somewhat below this estimate, by an amount t
is specific to the precise disorder realization. This correct
to the weak pinning result may be estimated using a per
bative approach described below.

Although the sharpness of the absorption peak seem
be in agreement with recent experiments, one needs s
analytic method to demonstrate that in the thermodyna
limit the peak does not broaden, particularly since this re
is so different from prior expectations.13,18 Towards this end
we develop a~pseudo!spin lattice model in which theẑ com-
ponent of the spin at a given site represents the angular
mentum state of an electron. A convenient perturbat
theory for the system may be developed around a unifor
pinned state~i.e., one in which the pinning potential for ev
ery site isv0). The perturbing parameter is thenDU(RW ),
with $RW % representing the sites around which the electr
are localized andU(RW )5v01DU(RW ) is the energy required
to excite an electron from them50 to them51 state. For
the uniformly pinned system, it is natural for the power a
sorbed to have ad-function response, since the collectiv
modes have wave vectorqW as a good quantum number. Th
correction to the weightW of this d function due to disorder
may be computed in perturbation theory, and a depletioD
may be defined such thatW}12D. To lowest nontrivial
order in perturbation theory, the largest contribution toD is
found to have the form

D}E d2q
uDU~qW !u2uuqW

1u2

uEqW
p
2EqW 50

p u2
. ~1!

HereqW represents wave vector,DU(qW ) the Fourier trans-
form of the perturbation, andEqW

p the collective mode disper

sion for the uniformly pinned system.uuqW
1u2 is a weighting

function whose precise form is given below; in the limitq
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→0, uuqW
1u→1. Provided that the disorder potential does n

have fluctuations on arbitrarily long length scales — i.e., t
arbitrarily large patches of unpinned or strongly pinned el
trons are rare — then one expectsuDU(qW )u2}q2 for smallq.
The dispersion relation for the uniformly pinned system
show below has the form

EqW
p
'v012pe2r0l o

2q/k1O~q2! ~2!

for small q, wherer0 is the electron density andk is the
dielectric constant of the host semiconductor. The linear d
persion withq turns out to be a direct result of the long-ran
nature of the Coulomb interaction, and is not present i
model with short-range~e.g., screened! electron-electron in-
teractions. Plugging Eq.~2! into Eq.~1! demonstrates that fo
a given disorder realization a finite depletion results that w
be small if the pinning is not too far from uniform. Thi
directly demonstrates that it is the long-range nature of
electron-electron interaction that is responsible for the sh
response in the system. A system with short-range inte
tions has a collective mode spectrum dispersingquadrati-
cally with q away fromv0 , and as seen for Eq.~1!, this leads
to a divergence inD, signaling that the response isnot sharp
in this case. Figure 2 illustrates the response function fo
model in which the electron-electron interaction is screen
As may be seen, even for a relatively small number of p
ticles (N5225), the response has been significantly bro
ened, as is typically found in CDW systems.6,7,13 Roughly
speaking, this says that an appropriate analogy for the
domly pinned WC in a strong magnetic field is a hard obj
that does not deform much when vibrating on random
placed springs, so that a well-defined periodic response
be expected in spite of the randomness of the pinning.

FIG. 2. Center of mass response functionxc.m.
xx for a system of

sizeN5225 electrons atn50.2 with a screened Coulomb potenti
of the form v(q)52pe2/k(q21qc

2)1/2, with qc52.0/l 0 . Half the
sites are chosen at random to have a pinning potentialDUi

50.01e2/k l 0 ~see text!; the other half are unpinned. Two states p
site were retained in this calculation. The result indicates t
screening broadens the response, so that the sharpness of t
sponse illustrated in Fig. 1 is related to the long-range nature of
Coulomb interaction.
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One important caveat to this result must be noted. T
assumption thatuDU(qW )u2}q2 is actually not true for the
most common forms of disorder studied. Specifically, whi
noise pinning models usually have equal fluctuat
strengths at all length scales, so thatDU does not vanish as
q→0. In our expression, Eq.~1!, this leads to a formal loga
rithmic divergence in the thermodynamic limit and an e
pected broadening of the absorption peak. We note, howe
that the disorder models used in the QHA have a white-no
character, yet we have not been able to detect a finite w
in the resonance for any disorder realization. Presumably
indicates that thed-function response is a finite system si
effect, and one needs to estimate a length scale above w
broadening in the response function should become appa
This may be accomplished by noting that the integral in E
~1! has an infrared cutoff 2p/L whereL is the system size
The value ofL for which D'1, which we callLc , sets the
size scale above which broadening will be significant. So
ing for Lc , one finds

Lc'l expH n3

uDŨu2J ,

where l is a length scale above which Eq.~2! is accurate
(l '10a0 , with a0 the WC lattice constant!, and DŨ

5 limq→0DU(qW )k l 0 /e2.
The physical interpretation ofLc is that it is the length

scale for coherent motion of patches of electrons in the lo
est collective mode, since forL!Lc the perturbation theory
is valid and the system responds much like a single oscill
to the excitation field. A conservative estimate ofLc for the
experiments of Refs. 15 and 16 shows that in practice
huge,Lc.1024a0 at n50.22, wherea0 is the lattice constan
of the WC. Thus, remarkably, in spite of the formal dive
gence in the thermodynamic limit, the perturbation theory
in fact controlled and valid for samples with physically re
evant dimensions, whereL;105a0!Lc . Thus our interpre-
tation of the WC response as one of an undeformable o
lator is indeed appropriate.

This article is organized as follows. In Sec. II we devel
the QHA used to compute the electromagnetic respons
the pinned WC. Section III develops the pseudospin
proach to the collective modes and shows how a perturba
theory may be developed around the uniformly pinned st
and the calculation of the depletionD is discussed. Section
IV discusses some details of the interface pinning mod
Readers interested in our results and not the details of
calculations may wish to proceed directly to Sec. V, wh
discusses results for different pinning models, includ
charged impurities in the electron layer and the interface p
ning model. Section VI discusses the relationship of t
work with results of other calculations, as well as seve
unresolved questions regarding the experimental results.
conclude with a summary in Sec. VII.

II. QUANTUM HARMONIC APPROXIMATION

In this section we will develop a quantum mechanic
generalization of the harmonic approximation, in which t
electrons are treated as distinguishable, so that the gro
e

-

-
er,
e
th
is

ich
nt.
.

-

-

or

is

s

il-

of
-
n

e,

l.
he

g
-

s
l
e

l

nd

state and low-lying excited states may be represented as
ear combinations of~unsymmetrized! products of single par-
ticle states. The single particle states we will use consis
angular momentum states, and we will find that it is an e
cellent approximation to retain only the lowest-lying on
when computing low-energy properties of the system. O
we have truncated the Hilbert space in this way, it becom
possible to numerically compute response functions for r
sonably large systems, which one may compare with exp
ment.

The ground state of two-dimensional charged particles
a very strong magnetic field is believed20 to be accurately
represented by a collection of distinguishable particles
Gaussian orbitals of the form

f0,RW i
~rW i !5S 1

2p l 0
2D 1/2

e2urW i2RW i u
2/4l 0

2
1 ~ i /2!ẑ•~RW i3rW i !/ l 0

2
.

In this state, the electron with coordinaterW i is maximally
localized within the lowest Landau level. Since the kine
energy of a collection of electrons in such orbitals is alrea
as small as possible, the ground state presumably will
found by minimizing the total potential energy with respe
to the parametersRW i . In the absence of disorder these shou
be chosen to lie on a perfect lattice, so that the charge
tribution in the limit of infinite magnetic field (l 0→0) ap-
proaches that of the ground state for a distribution ofclassi-
cal point particles. Disorder changes the optimal positio
for the electrons,30 but provided the disorder is not to
strong, the site centersRW i will presumably not be close to on
another on the scale of the magnetic lengthl 0 . In this situa-
tion, wave function overlaps among the individual electro
are negligible, so that a product of the single particle wa
packetsf0,RW i

(rW i) is an accurate representation of the grou
state, despite the fact that it is not explicitly antisymmetric20

Since we are interested in the electromagnetic respons
the system at low frequencies, it will be necessary to co
pute the low-lying excited states of the system. In a class
analysis, this is typically done by assuming the displa
ments of the electrons from their ground state positions
small, so that the energy may be expanded to second ord
displacements, allowing the normal modes of the system
be found in a relatively simple fashion. If we assume t
electrons are localized within a magnetic length of th
ground state positions, then the analog of the small displa
ments approximation is to allow individual electrons to
excited into higher angular momentum states localized ab
each lattice site. Provided the angular momentum is not
large, the charge densities associated with these states
given site will not overlap significantly with those of it
neighbors, so that exchange effects may continue to be
nored. Thus we consider a set of states for each site

fm,i~rW !5S 1

2p l 0
22mm!

D 1/2S z2Zi

l 0
D m

3e2urW2RW i u
2/4l 0

2
1 ~ i /2!ẑ•~RW i3rW !/ l 0

2
, ~3!

wherez5x1 iy is the electron position in complex notation
and Zi5Ri

x1 iRi
y . If we define creation operators for thes
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single particle statesami
† , then the Hamiltonian for the sys

tem may approximately be written in the form

H5(
i

(
mn

Vmn
i ami

† ani

1
1

2 (
iÞ j

(
minimjnj

Uminimjnj

i j ami i
† ani i

amj j
† anj j

.

Here,Vmn
i represents the interaction of an isolated elect

with a disorder potential, and the interaction matrix elem
is given by

Um1m2m3m4

i j 5E d2r 1d2r 2S 1

2p l 0
2D 2

3F 1

2l 0
2G ~m11m21m31m4!/2

3z1
* m1z1

m2z2
* m3z2

m4e2r 1
2/2l 0

2
2r 2

2/2l 0
2

3v~rW12r 2
W1RW i j !, ~4!

where for most cases we will study,v(r ) is the Coulomb
interactione2/kr , with k the dielectric constant of the hos
material for the electron layer.

To simplify our calculations, we will make certain a
sumptions about the form of the disorder enteringH. First,
we assume that although disorder certainly will cause
orbit centersRW i to vary from the positions of a perfect lattice
this variation does not affect the qualitative features of
absorption spectrum. Thus in practice ourRW i ’s take on the
values of perfect triangular lattice positions. It should
noted that this choice of theRW i ’s is not required to carry ou
the QHA, but by adopting it the numerical computation
Uminimjnj

i j is greatly simplified. Some details on how this

done in practice are discussed in the Appendix. The sec
simplification we introduce is to assume that the pinn
potential at the individual sites is circularly symmetric,
that in the ground state the electrons occupy thefm50,i or-
bitals and do not admix higher angular momentum sta
Again, the QHA may be developed without this assumpti
However, this simplification has the great advantage of
lowing an analytic specification of the ground state. In t
absence of this assumption one would need to find
ground state orbital occupations numerically, which presu
ably could be computed with sufficient accuracy using
static Hartree approximation. While such a calculation
clearly feasible, we believe that allowing asymmetric form
for Vmn

i will have little quantitative effect, provided the av
erage of this quantity over the sites restores the circular s
metry. Finally, to take full advantage of the symmetries
the system, we will impose periodic boundary conditions

A second caveat related to this is that in principle o
must retain fewer than seven orbitals on each site to h
each electron lie purely in them50 orbital in the ground
state. Even in the absence of disorder, the sixfold symm
of the lattice will in principle admix in states with angula
momenta equal to integral multiples of six. Although th
effect is extremely small,20 it can in principle lead to weak
n
t
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instabilities in the response function computed below wh
too many orbitals are included per site. As we will see,
the low-energy excitations~i.e., phonons! of the system are
accurately captured when onlytwo orbitals per site are re
tained, so that in practice this does not arise as a proble

With these simplifications, the Hamiltonian takes the fo

H5(
i

(
m

« i~m!ami
† ami

1
1

2(iÞ j
(

minimjnj

Uminimjnj

i j ami i
† ani i

amj j
† anj j

. ~5!

The zero of energy may always be chosen such
« i(m50)50, and we expect« i(m.0)>0. The choice of
$« i(m)% defines the specific disorder model we are studyi
We note that the greatest power of this method is that i
well suited to disorder potentials that vary on length scales
the order ofl 0 and smaller. The two pinning mechanisms w
study in detail — charged impurities and interface pinni
— both fall into this category.

The quantity we will calculate, from which either powe
absorption or frequency-dependent conductivity may
computed, is the response function

xm1m2m3m4
~ i j ;t!52^Ttam1i

† ~t!am2i~t!am3 j
† ~0!am4i~0!&,

~6!

where heret is imaginary time andami(t), ami
† (t) are the

usual time-dependent Heisenberg representations of the
nihilation and creation operators, andTt the time ordering
operator.31 The bracketŝ & represent a thermal average. Th
Fourier transform of this function with respect to imagina
time has poles at the collective mode frequencies. To ge
ate a closed formula forx, we employ an equation of motion
method similar to that used in Ref. 24. The time derivative
x satisfies the equation

]xm1m2m3m4
~ i j ;t!

]t
52^@rm1m2

~ i ;t!,rm3m4
~ j ;0!#&d~t!

2K Tt

]rm1m2
~ i ;t!

]t
rm3m4

~ j ;0!L ,

~7!

whererm1m2
( i ;t)5am1i

† (t)am2i(t). The time derivative ofr

may be computed from the Heisenberg equation of motio

]rm1m2
~ i ;t!

]t
5@H2mN,rm1m2

~ i ;t!#.

Note that the formal inclusion of the chemical potentialm is
necessary because of the use of the finite temperature for
ism; this means our formalism allows in principle for us
treat the situation in which there is more than one elect
per site. In what follows,m will be chosen such that there i
one electron per site in the ground state, and we will see
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any case that any formal dependence onm drops out of our
equations for the response functions, so that it does not n
to be explicitly computed. The relevant commutators in
equation of motion may be worked out using$ami ,an j

† %
5dmnd i j ~Ref. 32! from which one may show
s

on
e

on

rm
e
n

w
th
n
les
e

th
s
th
ed
e

@rm1m2
~ i !,rm3m4

~ j !#

5@rm1m4
~ i !dm2m3

2rm3m2
~ i !dm1m4

#d i j . ~8!

Combining Eqs.~5!, ~7!, and ~8!, the equation of motion
takes the form
]xm1m2m3m4
~ i j ;t!

]t
52@^rm1m4

~ i !&dm2m3
2^rm3m2

~ i !&dm1m4
#d i j d~t!1@« i~m1!2« i~m2!#xm1m2m3m4

~ i j ;t!

2 (
n1n2n3n4

(
l

Un1n2n3n4
8 i l ^Tt@rn1m2

~ i ;t!rn3n4
~ l ;t!dn2m1

2rm1n2
~ i ;t!rn3n4

~ l ;t!dn1m2
#rm3m4

~ j ;0!&.

~9!
rm

t to
the

be
er
re-

s.

se
re-
t.
is
is
the

d in
in-

e.
ted
at
HereUn1n2n3n4
8 i l 5Un1n2n3n4

i l (12d i l ). To obtain a closed form

for the equation of motion, we utilize a Hartree decompo
tion of the last term in Eq.~9!. This is very much in the spirit
of Ref. 24; however, because we are ignoring overlap am
single particle states located at different sites, it is unnec
sary~and in fact would be inappropriate! to include exchange
terms in the decomposition. We thus make the substituti

@rn1m2
~ i ;t!rn3n4

~ l ;t!dn2m1
2rm1n2

~ i ;t!rn3n4
~ l ;t!dn1m2

#

→@rn1m2
~ i ;t!dn2m1

2rm1n2
~ i ;t!dn1m2

#^rn3n4
~ l !&

1@^rn1m2
~ i !&dn2m1

2^rm1n2
~ i !&dn1m2

#rn3n4
~ l ;t!.

Substituting the above decomposition and Fourier transfo
ing Eq. ~9! with respect to imaginary time, we arrive at th
time-dependent Hartree approximation for the response fu
tion:

ivnxm1m2m3m4
~ i j ; ivn!

52@^rm1m4
~ i !&dm2m3

2^rm3m2
~ i !&dm1m4

#d i j

1@« i~m1!2« i~m2!#xm1m2m3m4
~ i j ; ivn!

1 (
n1n2n3n4

(
l

Un1n2n3n4
8 i l $@xn1m2m3m4

~ i j ; ivn!dn2m1

2xm1n2m3m4
~ i j ; ivn!dn1m2

#^rn3n4
~ l !&

1@^rn1m2
~ i !&dn2m1

2^rm1n2
~ i !&dn1m2

#

3xn3n4m3m4
~ l j ; ivn!%. ~10!

Once we have solved Eq.~10!, in principle we may compute
any response function we like. However, since ultimately
are interested in the conductivity or power absorption of
system for a spatially uniform electric field, it is convenie
to formulate the equation for a response function that is
cumbersome in terms of indices, but which may still be us
to compute the physical quantities of interest. Towards
end we just consider the center of mass response of the
tem. An operator corresponding to the displacement of
center of mass may be written in the form
i-

g
s-

-

c-

e
e
t
s
d
is
ys-
e

uW c.m.5
1

N (
m1m2

(
i

^m1 ,i urW2RW i um2 ,i &am1 ,i
† am2 ,i , ~11!

where um,i & is a ket-vector representation offm,i(rW). The
perturbation due to a time-dependent, spatially unifo
electric field ~e.g., microwaves! in terms of uW c.m. is
2eNEW 0•uW c.m., whereN is the total number of electrons. A
quantity whose response to this perturbation is convenien
study is the center of mass displacement itself, so that
response function we will actually focus on is

xc.m.
ab ~t!52^Ttuc.m.

a ~t!uc.m.
b ~0!&, ~12!

wherea,b5x,y.
The conductivity and hence power absorption may

written in terms of this quantity as follows. The time Fouri
transform of the spatially averaged current density in
sponse to an applied external field ReEW 0eivt is ^ jW(v)&
5 ier0vuW c.m.(v), with r0 the sheet density of the electron
In linear response theory, this takes the form~at zero tem-
perature! ^ jW(v)&52 ie2r0vN(bxc.m.

ab (v1 id)E0
b , where in

the usual way31 we have Fourier transformed the respon
function with respect to imaginary time, and made the
placementivn→v1 id to take the zero-temperature limi
The dot product of this quantity with the total electric field
proportional to the power absorbed. A minor complication
that one must include the screening field generated by
displacements of the electrons. Since we are intereste
the bulk current through the system, we assume that the
duced electric field may be replaced by its spatial averag33

Using a dipole approximation for the electric field genera
by the motion of the electrons, it is easily shown th

EW ind(t)5
e

2
auW c.m.(t), with a5( iÞ01/Ri

3 . Using EW tot5EW 0

1EW ind , one finds for the power absorption̂jW(v)&•EW tot

}(a,bEtot
a sab(v)Etot

b , with the conductivity matrix given by

s~v!52 ie2r0vNxc.m.~v1 id!@122aNxc.m.~v1 id!#21,

where here we are regardings and xc.m. as 232 matrices.
As has been pointed out before,34 the induced electric field
shifts the frequency of the peaks ins(v) from where they
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are found inxc.m.(v1 id). However, since the width of the
peak we will find inxc.m. is remarkably small, this shift may
be neglected for our purposes. Thus in this study we w
focus onxc.m. and its frequency dependence.

To compute the center of mass response, we define
intermediate response function

xm1m2

a ~ i ;t![(
j

(
m3m4

^m3 , j ur a2Rj
aum4 , j &xm1m2m3m4

~ i j ;t!
s

d
t

um
th

ha

t

t is
pe
-

ll

an

in terms of which

xc.m.
ab ~v!5

1

N2(i
(

m1m2

^m1 ,i ur a2Ri
aum2 ,i &xm1m2

b ~ i ;v!.

Combining the definition ofxm1m2

b ( i ;t) with Eq. ~10!, one

derives the equation of motion
ivnxm1m2

b ~ i ; ivn!5(
m

@^rmm2
~ i !&^mur bum1&2^rm1m~ i !&^m2ur bum&#1@« i~m1!2« i~m2!#xm1m2

b ~ i ; ivn!

1 (
n1n2n3n4

(
l

Un1n2n3n4
8 i l $@xn1m2

b ~ i ; ivn!dn2m1
2xm1n2

b ~ i ; ivn!dn1m2
#^rn3n4

~ l !&

1@^rn1m2
~ i !&dn2m1

2^rm1n2
~ i !&dn1m2

#xn3n4

b ~ l ; ivn!%. ~13!
hat

the
-

site

f

by

his
n-

e.
re-
. 3.

re
n is
gher
the
Note that the matrix elementŝmur bum1& are the same a
those appearing in Eq.~11!, evaluated forRW i50.

Equation ~13! may be solved if one knows the groun
state densitieŝrm1m2

( i )&. It is here that our assumption tha
all the electrons reside fully in the lowest angular moment
orbitals for their sites in the ground state becomes useful:
form of the densities is simplŷrm1m2

( i )&5dm10dm20 . Fur-
thermore, as shown in the Appendix, it can be proven t
( lUn1n2008 i l }dn1n2

, so that Eq.~13! is considerably simplified,
taking the form

ivnxm1m2

b ~ i ; ivn!

5^0ur bum1&dm202^m2ur bu0&dm10

1@ «̃ i~m1!2 «̃ i~m2!#xm1m2

b ~ i ; ivn!

1 (
n3n4

(
l

@U0m1n3n4
8 i l dm2,02Um20n3n4

8 i l dm1,0#

3xn3n4

b ~ l ; ivn!, ~14!

where«̃ i(m)5« i(m)1( lUmm008 i l . It is also easy to show tha
xm1m2

b 50 if either m1 and m2 are both zero, or if both are
nonzero. This is the equation we actually work with, and i
solved in a way closely analogous to the method develo
in Ref. 24. We regardxm1m2

b ( l ) as a vector whose compo

nents are labeled bym1 ,m2 ,l . Equation~14! may be written
schematically in the form

(
n1 ,n2 ,l

$@ ivn1D« i~m1 ,m2!#d~ i ,m1 ,m2!,~ l ,n1 ,n2!

1U ~ im1m2!,~ ln1n2!
D %xn1n2

b ~ l ; ivn!

[@ ivnd~ i ,m1 ,m2!,~ l ,n1 ,n2!2M ~ im1m2!,~ ln1n2!#

3xn1n2

b ~ l ; ivn!

5xm1m2

b 0 ~ i ; ivn!,
e

t

d

whereD« i(m1 ,m2)[«̃ i(m1)2 «̃ i(m2) is the energy required
to excite an electron on sitei from them1 orbital into them2
orbital when all the other electrons are static,

U ~ im1m2!,~ ln1n2!
D 5U0m1n3n4

8 i l dm2,02Um20n3n4
8 i l dm1,0

is the change in this energy difference due to the fact t
all the electrons are in fact dynamic, andxm1m2

b 0 ( i ; ivn)

5^0ur bum1&dm202^m2ur bu0&dm10 is the response function
in the absence of both electron-electron interactions and
disorder potential. The matrixM may be diagonalized nu
merically; it will have real eigenvaluesv j ~which may be
shown to come in pairs of equal magnitudes but oppo
signs! and eigenvectorsVj (m1m2l ). It can be shown that
when regarded as a matrix in the indicesj and (m1m2l ), V
has an inverseV21. Denotingv j as the diagonal matrix o
eigenvalues ofM , the solution to Eq.~14! may be written
schematically as

xW b~ ivn!5xW 0 b~ ivn!V@ ivn12v j #
21V21.

From this form, it may be seen that the poles ofx, and hence
the energies of collective modes of the system, are given
the set of eigenvaluesv j .

As a first example, as well as a check on whether t
method works, we consider the situation of a WC in an u
disordered environment. One only needs then to set« i(m)
50 for all i , m in Eq. ~14!, and proceed as described abov
A histogram of the collective mode energies, which rep
sents the density of states for the system, is shown in Fig
In this calculation, the number of electrons wasN5225, the
filling factor was set ton50.2, and five states per site we
retained. As may be seen, a broad peak near the origi
accompanied by three larger, well-separated peaks at hi
energy. The number of such sharp peaks appearing in
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density of states we find in general to be equal to the num
of orbitals per site above the ground state retained in
calculation.

The meaning of the sharp peaks may be interpreted if
notes that their positions are very close to the values
D« i(m,0) used in the equations of motion. This means t
the collective modes are only very weakly affected byUD ,
so that one may understand the modes as local excitatio
which an electron is excited to a high angular momentu
Thus, these peaks may properly be understood as an an
of Frenkel excitons in tight-binding models of electron sy
tems. Interestingly, these peaks have been previously n
in an approach that doesnot use a harmonic approximation.24

However, in that approach, the nature of these excitati
was unclear; the introduction of the harmonic approximat
allows us to understand why there is structure in the den
of states at these energies. A careful comparison of the p
positions forn50.25 found in Ref. 24~see Figs. 2 and 3 o
that work! with results from the method described he
shows that the energies of these peaks are nearly identica
the lowest-energy peaks.

Figure 4 illustrates the density of states for a calculat
with N5529, n50.2, and just two states per site retaine
As may be seen, the density of states is precisely what
expects for a phonon density of states in a magnetic field:
leading edge of the phonon density of states rises sha
consistent with theD(v)}v1/3 expected for the low-
frequency behavior of the density of states that results fr
the v(k)}k3/2 dispersion of the WC in a magnetic field.35

The peak contains a strong cusp structure consistent w
van Hove singularity, and the width of the peak is found
decrease with increasing magnetic field, consistent with
1/B dropoff expected for the phonon bandwidth.35

The quantitative agreement of these results with previ

FIG. 3. Collective mode density of states for an unpinned W
as calculated using the quantum harmonic approximation.N
5225, n50.2, and five states per site are retained in the calc
tion. The result illustrates that including higher-order angular m
mentum states introduces collective modes at high energy, w
may be interpreted as an analog of Frenkel excitons~see text!. Such
collective modes have little effect on the low-energy dynamics
the system, so that one may drop the high angular momentum s
without introducing serious errors in the pinning response of
system.
er
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calculations gives a strong indication that the QHA work
and we learn from the above calculations that all the lo
energy modes~i.e., phonons! of the WC can be captured b
retaining just two states per site. This considerable simp
cation allows one to treat fairly large numbers of electro
for the pinned WC; our largest calculations containN
51024 electrons. From this point onward we will adopt t
two-state approximation, and denote the energy differe
between the two states on a site asD« i(m51,0) asD« i .

Having established that the QHA gives sensible results
cases where the correct answer is known, we can now u
to investigate the case of the pinned WC. We defer deta
discussions of the results to Sec. V; however, they can
summarized extremely briefly. Essentially all of our center
mass response functions are dominated by a single collec
mode, the lowest excited state arising for any given disor
realization~e.g., Fig. 1!. For the weak disorder models@i.e.,
D« i!vB , wherevB is the bandwidth of the phonon densi
of states~Fig. 4!#, the position of the pinning frequency turn
out to be extremely close tov0 , the average pinning energ
per site. We find this form of the center of mass response
all our disorder models and system sizes studied, and the
no noticeable trend for the strength of this one mode to
crease with increasing system size within the sizes one
study using this model. One is led to conclude that the e
tromagnetic response of the WC in a strong magnetic fiel
zero temperature is extremely sharp, consistent with exp
ment but not with previous theoretical expectations. As
plained in the Introduction, this turns out to be a cons
quence of the long-range nature of the Coulomb interact
To see precisely how this result arises, as well as to as
whether it will survive in the thermodynamic limit, we nee
to develop an approach from which one may learn what h
pens to this mode for very large systems. This is the sub
of the next section.

-
-
ch

f
tes
e

FIG. 4. Collective mode density of states for an unpinned W
as calculated using the quantum harmonic approximation~QHA!.
N51024, n50.2, and two states per site are retained in the ca
lation. This has a form consistent with the phonon density of sta
for a classical, unpinned WC in a strong magnetic field, and de
onstrates that the QHA produces sensible results for the test ca
a WC in the absence of disorder.
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III. PSEUDOSPIN REPRESENTATION

The results of the QHA indicate that generically there i
sharp resonance in the low-frequency response of the m
netically induced WC for the finite size systems one is a
to handle with that method. While there is no indicati
within those calculations that the resonance either broad
or weakens with increasing system size, one cannot rule
based upon them the possibility that a broadening does
velop at very large system sizes. Thus one would like
develop models that are analytically tractable wherein
thermodynamic limit may be taken.

A. Quantum Spin Model

In this subsection we will develop a mapping of the ele
tron system onto an effective spin lattice system, and ob
couplings between these spins using an expansion inl 0 /a0 ,
with a0 the nearest neighbor distance. One important adv
tage of this formulation is that the resulting couplings are
more tractable than the matrix elements found in the QH
allowing us to make considerable progress analytically. T
spin waves of the model are the analog of the phonons
the WC, and it will be shown that the resulting dispersion
these spin waves is identical to the classical phonon s
trum of the WC, demonstrating that the mapping produ
sensible results.

We begin with the observation from the QHA analys
that essentially all the low-energy excitations of the magn
cally induced WC may be obtained in a model that reta
only two states per lattice site. This motivates an approac
which one may wish to consider the on-site degrees of fr
dom of each electron as an effective pseudospin, with
m50 angular momentum state representing a ‘‘spin u
state, and them51 a ‘‘spin down’’ state.~Note that we will
assume the real spins of the electrons are polarized by
magnetic field and do not represent a low-energy degre
freedom for the system.! The system is then mapped onto
quantum magnet, whose interactions we will see are o
magnetic dipole form, and whose spin waves will have
same dispersion relation as the phonon spectrum of the
derlying classical electron degrees of freedom. Formally,
mapping is given by

a0 j
† a0 j2a1 j

† a1 j→2Sj
z ,

a0 j
† a1 j→Sj

1 , ~15!

a1 j
† a0 j→Sj

2 .

To write an effective Hamiltonian for these pseudosp
degrees of freedom, it is convenient to employ a multip
expansion of the electron density, which becomes quan
tively accurate in the limitl 0 /a0!1 ~i.e.,n!1), wherea0 is
the nearest neighbor distance. Neglecting exchange eff
the interaction energy is formally

U5
e2

2 (
iÞ j

E d2r 1d2r 2

r~rW11RW i !r~rW21RW j !

uRW i1rW12RW j2rW2u
. ~16!

Writing r(rW1RW i)[r i(rW), the densities may be written i
terms of the pseudospin operators,
a
g-
e

ns
ut
e-
o
e

-
in

n-
r
,
e
or
f
c-
s

i-
s
in
e-
e
’

he
of

a
e
n-
e

e
a-

ts,

r i~rW !5uf0
2~rW !u2@ 1

2 1Si
z#1uf1

2~rW !u2@ 1
2 2Si

z#

1f0* ~rW !f1~rW !Si
21f1* ~rW !f0~rW !Si

1 ~17!

wheref0(1) are them50(1) orbitals localized around the
site of interest@Eq. ~3!#, and we have suppressed the expli
site labelsi ( j ). Substituting Eq.~17! into Eq. ~16!, expand-
ing the integrand to second order inr 1(2) /Ri j where Ri j

[uRW i2RW j u, and performing the integrations, one arrives

the formulaU5 1
2 ( iÞ jUi j , with

Ui j 5
e2

Ri j
1

3e2l 0
2

2Ri j
3

2
e2l 0

2

2Ri j
3 @Si

z1Sj
z#

1
2e2l 0

2

Ri j
3 @Si

i
•Sj

i23~Si
i
•RW i j !~Sj

i
•RW i j !/Ri j

2 #,

whereSi ( j )
i [(Si ( j )

x ,Si ( j )
y ,0). Note that the effective interac

tion between spins inUi j is of anXY dipole form, which is
not surprising given the fact that a smallr expansion for the
electron-electron interaction leads to an electric dipole in
action. The third term inUi j takes the form of an effective
magnetic field that tends to orient the spins in the1 ẑ direc-
tion; this reflects the fact that thef0 state is the ground stat
of an electron in a given site if all the other electrons a
fixed in their f0 states. The Hamiltonian for the effectiv
spin system thus may be written in the form

H5(
i

hiSi
z1(

a,b
(
iÞ j

Ji j
a,bSi

aSj
b , ~18!

wherea,b5x,y, Ji j
a,b5(e2l 0

2/Ri j
3 ) @da,b23Ri j

a Ri j
b /Ri j

2 #, and
hi52( j (Þ i ) (e2l 0

2/2Ri j
3 ) 1« i(m50)2« i(m51) is an effec-

tive magnetic field, which may be nonuniform due to t
pinning potential. Note that we have dropped an irrelev
constant from the Hamiltonian.

The low-energy collective modes of this model are sp
waves, and in the absence of a pinning potential their disp
sion relation should be identical to that of the phonon mo
of the underlying WC from which the pseudospin model w
derived. We thus begin our analysis by considering the c
« i(m)50. To derive the spin-wave spectrum, we rewrite t
spin operators in terms of bosonic degrees of freedom36 with
the approximate mapping

Si
z→

1

2
2bi

†bi ,

Si
1→bi , ~19!

Si
2→bi

† .

This mapping is an approximate form of the Holstei
Primakoff transformation,37 expanded for the situation
^bi

†bi&!1/2, wherê & is an expectation value for any of th
low-energy states that are of interest in the zero tempera
response function. A simple way to see that^bi

†bi& is small is
to write it directly in terms of the underlying electron cre
ation and annihilation operators:bi

†5a1i
† a0i ,bi5a0i

† a1i .
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One then finds@bi ,bi
†#5a0i

† a0i2a1i
† a1i . If the mapping

were exact, this commutator would be unity. However, to
extent that the ground state is well approximated by electr
in Gaussian orbitals,̂ a0i

† a0i&51 and ^a1i
† a1i&50 in the

ground state. Furthermore, the lowest excited states —
spin waves in the bosonic language — are described in te
of the electronic degrees of freedom by a single particle
cited out of them50 state into them51 state, averaged
with an appropriate phase factor over all the sites. Thus
expectation value of@bi ,bi

†# for the low-lying states is the
same as that of the ground state, up to corrections that va
in the thermodynamic limit. It should be noted that wh
quantum~or, at finite temperature, thermal! fluctuations are
important, then one must work with the exact mapping
tween spin and boson operators,37 and higher-order terms
in bi

†bi should be retained, introducing spin-wave intera
tions. Such terms are the analog of anharmonic terms in
Hamiltonian for the underlying WC degrees of freedom, a
we expect them to be very small at zero temperature for la
magnetic fields~small n), where placing the electron in
Gaussian orbitals at specified locations that minimize the
tential energy is thought to be an excellent approximation
the ground state.20 From this point onward we will ignore
spin-wave interactions, and our goal will be to understa
why disorder does not broaden the electromagnetic resp
associated with the quadratic Hamiltonian below.

In terms of the bosonic operators, the Hamiltonian
thus will consider takes the form

H5(
i

Uibi
†bi1(

iÞ j

e2l 0
2

Ri j
3

3H 2
1

4
~bi

†bj1bibj
†!2

3

4
@~ni j* !2bi

†bj
†1~ni j !

2bibj #J .

~20!

Here,Ui52hi , andni j 5(Ri j
x 2 iRi j

y )/Ri j is a complex rep-
resentation of the vector direction separating sitesRi andRj .
In the absence of pinning@« i(m)50#, H is diagonalized in
two steps. First, a canonical transformation from real to m
mentum space separates out the independent modes:

H5(
kW

F~kW !bkW
†
bkW 2(

kW
@G~kW !bkWb2kW1G* ~kW !b

2kW
†

bkW
†
#,

where bkW5(1/N1/2) ( ie
ikW•RW ibi , F(kW )5 1

2 ( j (e
2l 0

2/Rj
3)(1

2e2 ikW•RW j), and G(kW )5 3
4 (RW jÞ0(e2l 0

2/Rj
3)(nRW j

)2eikW•RW j . The
diagonalization of the Hamiltonian is then completed with
Bogoliubov transformation of the formgkW5ukWbkW1vkWb2kW

† ,

with uukWu22uvkWu251 guaranteeing that@gkW ,gkW
†
#51. The bo-

son Hamiltonian then may be written asH5(kWEkWgkW
†
gkW if

one chooses

ukW5coshukWe
ifkW /2,

vkW5sinhukWe
2 ifkW /2, ~21!

EkW5AF~kW !224uG~kW !u2,
e
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with G(kW )5eifkWuG(kW )u, and tanh 2ukW522uG(kW)u/F(kW).
EkW thus represents the spin-wave dispersion for t

model, and we need to confirm that it has the same form
the underlying electron degrees of freedom. For the WC
two dimensions in the absence of a magnetic field, the p
non dispersion is found by solving the eigenvalue equatio38

(
b

Cab~kW !eb5v2~kW !eb , ~22!

where

Cab~kW !52
e2

m* H (j
S 3Rj

aRj
b

Rj
5

2
da,b

Rj
3 D ~e2 ikW•RW j21!J

~23!

and m* is the effective mass of the electrons. For eve
value ofkW , Eq. ~22! has two eigenvalues, corresponding to
longitudinal modev l(kW ) and a transverse modev t(kW ). In the
presence of a magnetic field, the equations of motion for
electrons mix these two modes. One then obtains two dif
ent normal modes, one dispersing from the cyclotron f
quencyvc5eB/m* c, and the other having the form in th
strong field limit35 v(kW )5v l(kW )v t(kW )/vc . By solving Eq.
~22! and using Eq.~23!, one may show with some algebr
that v l(kW )v t(kW )/vc[EkW . Thus the spin waves of our pseu
dospin model faithfully reproduce the exact phonon sp
trum for the WC in a strong magnetic field, and we see t
our model quantitatively captures the low-energy dynam
of the WC.

B. Uniformly pinned Wigner crystal

In this subsection we will analyze the response funct
of a WC in which each site has precisely the same pinn
potential. We will find that the power absorption from a sp
tially uniform, time-varying electric field is sharp as a fun
tion of frequency. This result is hardly surprising as there
no disorder in this model. However, it will serve as the ba
for the perturbative treatment in the next subsection, and
is useful to analyze in some detail.

To introduce uniform pinning in the model, one on
needs to sethi52(RW Þ0(e2l 0

2/2R3)2v0 for all the sitesi in
Eq. ~18!. The representation of the spin wave Hamiltonian
terms of phonon degrees of freedom, and its diagonalizat
are formally identical to the steps used in the preceding s
section, provided one makes the replacement

F~kW !→F~kW !1v0[Fp~kW !.

The resulting~pseudo!spin wave for this model is thus

EkW
p
5AFp~kW !224uG~kW !u2. ~24!

In the limit k→0, EkW
p→v0 . Thus for collective modes in

which all the electrons move together, only the center
mass degree of freedom is relevant: electron-electron in
actions may be ignored, and one obtains the single elec
excitation frequency.21 The long wavelength dispersion o
Eq. ~24! may be obtained by evaluatingF(kW ) andG(kW ) us-
ing an Ewald sum technique.38 One finds
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F~kW !'2pe2l 0
2r0k1O~k2!, ~25!

G~kW !'pe2l 0
2r0~kx1 iky!2/k1O~k2!, ~26!

so that

EkW
p
'v012pe2l 0

2r0k1O~k2!. ~27!

The linear dispersion of the pinned collective mode spectr
is purely a result of the long-range nature of the Coulo
interaction. For a short-range interaction, the collective m
disperses instead ask2 from v0 . The linear dispersion, an
hence the long-range nature of the Coulomb interact
turns out to play a crucial role in allowing the sharp respo
of the uniformly pinned system to survive the introduction
disorder. This will be discussed more carefully in the ne
subsection.

Because one may exactly diagonalize the Hamiltonian
this model, it is convenient to compute the power absorpt
using Fermi’s golden rule. For an electric field of the for
EW (t)5ReE0( x̂1 i ŷ)eivt, one obtains for zero temperature

P~v!5Npe2E0
2l 0

2(
n

En
pz^nugkW50

† u0& u2d~v2En
p!, ~28!

whereu0& is the ground state of the system~no spin waves!,
and un& represents the set of single pseudospin wave exc
tions ~which in the present case may be labeled bykW rather
than n). For the uniformly pinned system, the matrix el
ment entering Eq.~28! is nonvanishing only forEkW

p
5v0 , so

that one obtains ad function response atv5v0 , as expected
Equation~28! is a good starting point for a perturbativ

treatment of disorder effects. In particular, the weight aris
from the matrix element̂ nugkW50u0& must remain propor-
tional to the system size in the thermodynamic limit for o
particular moden if the system is to retain the sharp respon
observed in Sec. II for an arbitrarily large system. In the n
subsection, we show that, at least for weak disorder, thi
indeed the case.

C. Weak disorder: Perturbative treatment

In this subsection, we will formulate a perturbation theo
for Eq. ~28!, in terms of deviations of the pinning potenti
from uniformity. The point of this analysis is to understa
how the sharpness of the response might survive the in
duction of disorder. Towards this end, we will focus on t
height of thed-function response found in the preceding su
section, and develop an expression to the lowest nontri
order in perturbation theory to see how much it is decrea
by disorder. The resulting expression, when disorder a
aged, will turn out to have a formal, logarithmic divergenc
which we interpret to mean that there is no trued-function
response in the thermodynamic limit. However, the div
gence is in fact cut off by the system size, and we will s
that even a conservative estimate of the integral for real
tem sizes indicates that it is in fact small, so that the per
bation theory is valid. The integral allows us to define
length Lc that is the characteristic size scale for electro
m
b
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moving together in phase in the lowest collective mode, a
we will see thatLc is extremely large compared to re
sample dimensions.

The quantity we will use for our perturbing paramet
is the deviation of the pinning potential from perfect unifo
mity, DUi , which is formally defined by the equationhi

52(RW Þ0 (e2l 0
2/2R3)2v02DUi . Note from its definition

that ( iDUi50, a property we will use below. The powe
absorption@Eq. ~28!# may be written via standard many-bod
manipulations31 in terms of a Green’s function, in the form

P~v!52e2l 0
2E0

2vImH(
mn

(
i j

dm
0 ~ i !dn

0~ j !*

3Gmn~ i j ;v1 id!J . ~29!

The Green function matrix entering above is given in ima
nary time by

Gm,n~ i j ;t!52^Ttbi
~m!~t!bj

~n!†~0!&, ~30!

with m,n51,2, bi
(1)5bi , and bi

(2)5bi
† . The c-numbers

dm
0 ( i ) entering Eq. ~29! are those that diagonalize th

pseudospin-wave Hamiltonian Eq.~20! for thekW50 mode in
the uniformly pinned case@i.e., d1

0( i )[vkW5050,d2
0( i )

[ukW5051, with u,v given by Eq.~21!#. Using the method
described in Sec. II and Eq.~20!, the equation of motion for
the Green function in imaginary time is found to be

2 ivnS G11~ i j ; ivn!

G21~ i j ; ivn!
D

52d i j S 1

0D 1DUiF21 0

0 1G S G11~ i j ; ivn!

G21~ i j ; ivn!
D

1(
k

F2Fp~RW i2RW k! 22G* ~RW i2RW k!

2G~RW i2RW k! Fp~RW i2RW k!
G

3S G11~k j ; ivn!

G21~k j ; ivn!
D , ~31!

where

Fp~RW !5
e2l 0

2

2 (
RW 8Þ0

1

R83
@dRW ,02dRW ,RW 8#~12dRW ,0!1v0dRW ,0 ,

~32!

G~RW !5
3e2l 0

2

4R3
nRW

2
~12dRW ,0!.

Note the the quantities in Eq.~32! are just the discrete
Fourier transforms of the quantitiesFp(kW ) andG(kW ) defined
in the preceding subsection. The matrix elementsG12 and
G22 may be found by usingG12( i j ; ivn)5G21* ( i j ;2 ivn)
andG22( i j ; ivn)5G11* ( i j ;2 ivn).

Equation~31! may be solved in a manner closely anal
gous to that of Sec. II: one needs to solve the eigenva
equation
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(
k

F2DUid ik2Fp~RW i2RW k! 22G* ~RW i2RW k!

2G~RW i2RW k! DUid ik1Fp~RW i2RW k!
G

3S d1
~ j !~k!

d2
~ j !~k!

D 5v j S d1
~ j !~ i !

d2
~ j !~ i !

D , ~33!

and then the solution may be expressed in terms of the
genvalues and eigenvectors. It is not difficult to prove s
eral properties of the solutions to Eq.~33! based on the sym
metry of the matrix.39 In particular, one may easily show tha
the eigenvalues come in pairs of equal magnitude and op
site sign,6v j . The eigenvector of the solution with neg
tive v j may be found from the solution with positivev j with
the transformation

d1
~2 !~k!5d2

~1 !* ~k!, d2
~2 !~k!5d1

~1 !* ~k!.

Because the matrix being diagonalized is not Hermiti
these two eigenvectors are not in general orthogonal to
another. If one imposes the normalization conditi
(k@ ud2

( j )(k)u22ud1
( j )(k)u2#51 for positive eigenvalues (v j

.0) and insists that the eigenvectors associated with e
pair of eigenvalues of the same magnitude obey the ab
relation, the inverse of the eigenvector matrix may
explicitly constructed. Writing this asem

( j )(k) so that

(m,kem
( j )(k)dm

( j 8)(k)5d j , j 8 , we find

e1
~ j !~k!52d1

~ j !* ~k!, e2
~ j !~k!5d2

~ j !* ~k!

for v j.0, and

e1
~ j !~k!5d1

~ j !* ~k!, e2
~ j !~k!52d2

~ j !* ~k!

for v j,0. With this explicit expression for the eigenvect
matrix inverse, it is possible to write the solution to Eq.~31!
as

Gmn~ ik; ivn!5(
j

dm
~ j !~ i !en

~ j !~k!

ivn1v j

for ~mn!5~11! and~21!. For ~mn!5~22! and~12!, the expres-
sion is the same as above, except one needs to take
complex conjugate of the numerator. Combining th
with Eq. ~29!, and noting that d1

0( i )50 so that
( ik(mndm

0 ( i )em
( j )( i )* dn

( j )(k)* dn
0(k) is purely real, it follows

that

P~v!5e2l 0
2E0

2vp(
j

F(
i

d2
0~ i !e2

~ j !~ i !* G
3F(

k
d2

0~k!* d2
~ j !~k!* Gd~v2v j ! ~34!

for v.0.
For a finite size system, Eq.~34! describes absorption b

the system into a discrete set of states, with a weight
may be interpreted as the square overlap of the mode b
excited with eigenvector of thekW50 mode for the uniformly
pinned case. In most situations, one expects as the the
dynamic limit is approached that the weight associated w
each mode vanishes with increasing system size, while
density of modes increases, to generate an absorption c
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that is a continuous function of frequency. What we ha
found in Sec. II seems to imply that the lowest mode in t
spectrum of the disordered system retains a much la
overlap than all the other modes, even for large systems
understand how this arises, we need to compute the ove
sum @( id2

0( i )e2
( j )( i )* #@(kd2

0(k)* d2
( j )(k)* # in Eq. ~34! for

the lowest-energy mode, and see how it scales with incre
ing system size. Although an exact calculation of this qu
tity is not possible for an arbitrary disorder strength and
bitrarily large system, we can at least estimate it for we
disorder to see if and when a finite overlap survives in
thermodynamic limit.

Towards this end, we compute the eigenvectors of
matrix in Eq. ~33! to second order inDUi . The method by
which this is done is identical to standard nondegene
perturbation theory in quantum mechanics.40 Denoting
„d1

( j )(RW 1),d1
( j )(RW 2), . . . ,d2

( j )(RW 1),d2
( j )(RW 2), . . . )[V( j ), we

may write the result of the calculation as

V~ j !5@12D~ j !#1/2V0
~ j !

1 (
k~Þ i !

V0
~k!F ^kuDUu j &

Ej
~0!2Ek

~0! 1O~DUi
2!G , ~35!

whereV0
( j ) ,Ej

0 are the eigenvectors and eigenvalues in
absence of the perturbation. The matrix element is given

^kuDUu j &5W0
~k!TS 2DU 0

0 DU DV0
~ j ! ,

with W0
(k)T representing a column vector of the for

„e1
( j )(RW 1),e1

( j )(RW 2), . . . ,e2
( j )(RW 1),e2

( j )(RW 2), . . . …, and DU
in the above matrix is anN3N diagonal matrix with entries
DUi on the diagonal. The relevant quantity for our purpose
the ‘‘depletion’’ D( j ), which one finds to be

D~ j !5 (
k~Þ j !

U ^kuDUu j &

Ej
~0!2Ek

~0!U2

1O~DU3!. ~36!

The zeroth-order eigenvectors and eigenvalues are e
evaluated, as these were already essentially found in the
ceding subsection. Thus the eigenvectors without disor
are conveniently labeled by a wave vectorqW and a sign6
denoting whether the positive or negative eigenvalue fo
given wave vector is being referred to. Thus we use
eigenvaluesEj

056EqW56@Fp(qW )224uG(qW )u2#1/2, and the

corresponding eigenvectors have the formd1
(qW )( i )

5 (1/AN) eiqW •RW ivqW ,d2
(qW )( i )5 (1/AN) eiqW •RW iuqW , with

uqW5uqW
1

5FFp~qW !1EqW

2EqW
G1/2

eifqW /2,

~37!

vqW5vqW
1

52
2uG~qW !u

A2EqW
F 1

Fp~qW !1EqW
G 1/2

e2 ifqW /2

for Ej
0.0, and
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uqW5uqW
2

52
2uG~qW !u

A2EqW
F 1

Fp~qW !1EqW
G 1/2

eifqW /2,

~38!

vqW5vqW
2

5FFp~qW !1EqW

2EqW
G1/2

e2 ifqW /2

for Ej
0,0. Since the factorsd2

0 appearing in the power ab
sorption@Eq. ~34!# are just the non-zero part of the eigenve
tors above forq50, it is easy to verify that the weight asso
ciated with excitations into the lowest collective mode
power absorption is just 12D(0) @i.e., there will be a con-
tribution to the sum over modes appearing in Eq.~34! pro-
portional to 12D(0).# ProvidedD(0)!1, this will remain a
d-function contribution at zero temperature, even as abs
tion into the other modes may merge into a broad ba
ground. ThusD(0) measures the depletion of the sharp p
ning mode response found for the uniformly pinned mode
should be noted that because of our choice of system aro
which we are doing perturbation theory, there are no corr
tions to the pinning mode frequency atO(DU); the first
nonvanishing correction is ofO(DU2), so that the frequency
of the pinning mode remains close to its uniformly pinn
value.

Using the forms for the uniformly pinned model in E
~36!, one finds

D~0!5
1

N(
qW Þ0

H uuqW
1u2uDU~qW !u2

@v02EqW #
2

1
uuqW

2u2uDU~qW !u2

@v01EqW #
2 J ,

~39!

with DU(qW )5 (1/AN) ( iDUie
iqW •RW i. The second term in Eq

~39! is always finite and is small provideduDU(qW )/Equ2 is
small. The first may potentially diverge even for sm
uDU(qW )u becauseEqW→v0 asqW→0, so that there is a vanish
ing energy denominator. However, for a given disorder re
ization, by our choice of the system around which we
performing perturbation theory, we haveuDU(qW )u}q2 for
smallq. The energy denominator, using Eq.~27!, behaves as
@v02EqW #

2'(2pe2l 0
2r0q)2, so that the integral remains fi

nite, and can be small ifDU(qW ) is small enough.
This is the central result of this section, and several co

ments are in order. First, the result of Eq.~39! is only finite
in this analysis because of the long-range nature of the in
action. For short-range interactions,@v02EqW #

2}q4, and one
ends up with a divergence no matter how smalluDU(qW )u
might be. Such a divergence indicates that one cannot sto
second order in the perturbation as we have done here,
that some self-consistent treatment is called for.7,18 Under
these circumstances, one expects the resulting response
broad, as is the case for most pinned CDW’s.6 As mentioned
in the Introduction, this is borne out by the QHA of Sec.
which shows that a broad response is indeed obtained if
uses a screened rather than long-range Coulomb pote
~cf. Fig. 2!. Secondly, in many calculations where one av
ages over disorder configurations, the simplest choice of
order models~white noise! introduces fluctuations at a

length scales, so that the disorder averageuDU(qW )u2

[uDUu2 is independent of wave vector. Thus, a disord
-
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average of Eq.~39! would eliminate the zero in the numera
tor asqW→0, and introduce a logarithmically divergent depl
tion in the thermodynamic limit, signaling a broadened rath
than sharp response.

In practice, however, we find that for physically releva
systems the response remains sharp. The reason for th
that the divergence only arises for truly infinite systems. W
can define a length scaleLc above which the depletionD(0)
is of order 1, so that thed-function response becomes si
nificantly broadened. To do this, one must solve the equa

15
1

r0
E

q.2p/Lc

d2q

~2p!2
uDUu2H uuqW

1u2

@v02EqW #
2

1
uuqW

2u2

@v01EqW #
2J .

~40!
We can break up this integral into singular and nonsingu
parts asLc→`, and so write Eq.~40! in the form

15
1

2pr0
E

2p/Lc

2pl dq

q

uDUu2

2pe2l 0
2r0

2
1h~ l !,

where we have used Eq.~27!. In the above equation,l rep-
resents a length scale above which the collective mode
persion for the uniformly pinned system is accurately rep
sented by Eq.~27! (l '10a0 would probably be sufficiently
large!, andh(l ) represents the nonsingular contribution
Eq. ~40!. One may now solve forLc , with the result

Lc5l expH ~2pr0!3~el0!4

uDUu2
@12h~ l !#J

5l expH n3

uDŨu2
@12h~ l !#J . ~41!

In Eq. ~41!, uDŨu2 is the disorder potential strengthuDU2u
written in units ofe2/k l 0 . For weak disorder,h(l )!1. We
will discuss the interpretation and consequences of Eq.~41!
further in Sec. V below; for now, however, we point out th
an estimate ofLc for physically relevant parameters show
that it is extremely large, much larger than the physical
mensions of any real sample. This means that in practice
depletionD(0) will be small for weak disorder, since th
sample size cuts off the divergence at length scales m
smaller than the one at which broadening becomes sig
cant.

It is interesting to consider what would happen if o
were to consider a model in which the displacement of el
trons from their lattice sites was included as an effect of
disorder. The essential change is that the electron centeRW i
appearing in Eq.~31! are no longer on lattice sites. For wea
disorder, if one neglects lattice defects such as dislocat
and disclinations, the effect of the lattice deformation may
described by writing Fp(RW i2RW j )→Fp(RW i ,RW j )5Fp

0(RW i

2RW j )1dFp(RW i ,RW j ) and G(RW i2RW j )→G(RW i ,RW j )5G0(RW i

2RW j )1dG(RW i ,RW j ) in Eq. ~31!, where Fp
0 and G0 are the

couplings between electron lattice sites in some perfect
erence lattice. One then may treatdFp anddG as perturba-
tions in precisely the same manner as we treatedDUi above.
The resulting depletionD( j ) has precisely the same form a
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in Eq. ~36!, with the only difference being that the matr
appearing in the definition of^kuDUu j & now has off-diagonal
matrix elements due todFp and dG. The resulting expres
sion for the depletion of the lowest collective modeD(0) has
the same form as Eq.~39!, although the precise form o
uDU(q)u2 will be more complicated than for the diagon
disorder model. The important point, however, is that
energy denominators in the perturbation theory will be un
fected, so that one still expects only a weak logarithmic
vergence if the disorder is not too strong, and a result
sharp electromagnetic absorption for a finite size syst
This demonstrates, albeita posteriori, that our assumption o
a diagonal disorder model does not alter the qualitative ph
ics of the system, at least for weak disorder.

As is clear from the above discussion, the precise res
for the length scaleLc depend upon the disorder model o
uses forDU(qW ). In the next section, we introduce a simp
model for this due to imperfections in the interface up
which the 2DEG resides.

IV. INTERFACE PINNING MODEL

In both the QHA and the perturbative analysis describ
above, one must make a specific choice for the~disorder!
pinning potential. In Sec. V we present results for three d
ferent models. The first is a simple white-noise type mod
in which some fixed fraction of the electrons are given
excitation energyv01DUi5Up between them50 and m
51 orbital states, and all other sites are unpinned. The s
plicity of this model allows a clear comparison of resu
obtained from the QHA and the perturbative analysis. A s
ond model we investigate is based on the idea that cha
impurities are likely to be present in the spacer layers
heterojunction systems, and that some of these impuritie
close enough to the 2DEG, will substitute for electrons in
lattice.26 By choosing a small number of lattice sites to ha
extremely large values ofUp , we can model this type o
disorder within the QHA. As will be seen, this leads to
band of collective excitations well above the phonon ba
corresponding to localized excitations of the strongly pinn
electrons. At low excitation frequencies, these electrons
essentially immobile, and so behave as if they were not
grees of freedom. This is by definition a strongly pinn
system; yet we will see in Sec. V that the resulting pinni
frequency is extremely small, and that an unacceptably la
number of such charged impurities must be present in
system to account for the experimentally observed ma
tude of the pinning frequency.

We thus focus on a pinning mechanism which, to o
knowledge, has not been previously discussed in the con
of the magnetically induced WC: interface disorder. The
terfaces between GaAs and AlAs at which the 2DEG’s res
are by design of very high quality in samples such as th
of Refs. 15 and 16. Nevertheless, they cannot be perfect,
it is generally accepted28 that such interfaces can only b
defined to within a single lattice constant of the host se
conductors. A simple idealization of this is to model t
interface as a series of pits and/or terraces, with the heigh
the interface fluctuating randomly up and down as illustra
in Fig. 5. The typical scale of the pits and terraces formed
the imperfect interface is generally thought28 to be of the
e
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order of several tens of angstroms. For the hole sample
Refs. 15 and 16, the interface has an additional corruga
structure with a size scale of 32 Å and a depth of 10.2 Å.17,41

There are several reasons for believing that this form
disorder may be important in the experiments of Refs. 15
16. First, the magnetic field at which one first sees a cl
resonance at the lowest available temperatures is rough
T, corresponding to a magnetic length ofl 0;90 Å, a very
reasonable length scale below which one might expect
interface structure to trap electrons. If we model the pits
the interface as flat depressions of depthDz as in Fig. 5, one
can estimate the trap potential for a large pit by assuming
electric field between the 2DEG and the charged remote
nors is uniform.42 In this case the the potential gained fro
placing an electron in a pit that is much larger than the m
netic length isDV52pr0e2Dz/k'4.35 K in temperature
units; k'12 here is the dielectric constant of the GaAs h
for the electrons, and we have takenDz510 Å. It should be
noted that for experimentally accessible magnetic fields
typical pit size will generally be much smaller than the ma
netic length, so that the pinning energy of an electron trap
in a single pit will be of orderDVs2/ l 0

2, considerably smaller
than the maximum possible value ofDV.

Because of the roughness of the interface, the WC in g
eral will distort slightly so that some or all of the electron
may take advantage of the interface potential. Ultimat
some fraction of the electrons will find equilibrium cente
for their ~ground statem50) Gaussian orbitals that are pa
ticularly low in energy. Because the first excited (m51)
state of each orbital is spatially far from the center of t
m50 state~in the sense thatl 0 is larger than the average p
size s0), the former state will not be correlated with th
disorder potential, and thus is not on average lowered
energy as is them50 state. It should also be kept in min
that for a given ground state configuration, the energy of
excitation of asingleelectron from them50 state to them
51 state, keeping all the other electrons fixed, will have
largest contribution from the electron-electron interacti
rather than from the interface disorder. Provided the disor
is not too strong, the potential well in which an individu
electron resides is thus to a first approximation circula
symmetric, so that the expansion in terms of angular mom

FIG. 5. Schematic representation of the interface disor
model. The interface has pits and terraces so that the setback
the ionized donor plane varies by a distance of orderDz. Electrons
localized by the magnetic field into wave packets in thex-y plane
of size scale; l 0 may lower their energy by moving their cente
close to pit centers, since in the area of the pit the electron will
closer to the donor layer. For larger pits or decreasing magn
length, more of the electron wave packet overlaps with the pit
gion, decreasing the energy of the wave packet.
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tum states used in this work is sensible.
To fully specify the interface disorder model, we need

find the energy due to the disorder to excite an electron
of its ground state orbital (m50) into the lowest excited
state (m51) for each site i , « i(m51)2« i(m50)5v0
1DUi . The distribution ofDUi depends upon the assum
tions one makes about the surface morphology of the in
face, as well as whether other pinning sources besides in
face roughness are present in the system. We plan to ma
fuller accounting of various possible models in the future43

here we will focus on one reasonable possibility that rep
duces both the magnetic field and density dependence o
resonance frequency observed in the experiments of Ref

In this model we make the plausible assumption that
strongest pinning in the hole samples comes from def
and disorder in the interface corrugations of these syste
~It may be shown that perfectly regular corrugations of t
sort lead only to very weak pinning.43! As a simple model of
this, we assume that the surface has pits of size scals0
530 Å and depthDz510 Å with a surface densityni . We
will assume the average distance between pits 1/Ani is
smaller than the nearest neighbor separation of the elect
a but larger than the magnetic lengthl 0 . This means that
each unit cell of the WC contains several pits in which
electron might be trapped, but when trapped an elec
wave packet covers one and only one pit. In what follows
will choose the densityni to fit the experimental data at th
lowest fields for which a resonance is observed; we t
need to go back and check that the resulting pit densit
consistent withl 0,1/Ani,a.

To estimate the density of pinned electrons, we use
collective pinning approach that has been very successfu
the context of vortices in superconductors44 and charge den
sity waves.7,13 The basic idea is to find a size scaleRc of
correlated domains, whose positions may adjust more or
independently of one another to take advantage of the
ning potential, at the expense of lattice distortion energy. T
average number of pins that may be found under elec
wave packets in a single domain if placed at a random lo
tion is given byNpin5r0Rc

2p l 0
2ni ; if we vary the position of

the domain a distance of the order of the disorder correla
length ~in this case, 1/Ani), one expects fluctuations in th
number of pinned electrons of orderANpin. Since the energy
gained by an electron wave packet when sitting over a p
DVs0

2/ l 0
2, in analogy with the Fukuyama-Lee-Rice~FLR!

model for charge density waves, the energy per elec
gained from the disorder potentialup

FLR is

up
FLR'DV

s0
2

l 0Rc
Fpni

r0
G1/2

.

The introduction of such distortions inevitably leads to
lattice distortion of amplitude 1/Ani over a distanceRc . Fol-
lowing Ref. 13, we assume the distortions are purely tra
verse, and so estimate the distortion energy per electron t

ud
FLR'

m

niRc
2r0

,

ut

r-
er-
e a

-
he
5.
e
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e
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e
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wherem is the shear modulus of the lattice. Minimizing th
total energyud

FLR2up
FLR with respect toRc , we arrive at the

optimum domain size

Rc5
2m l 0

DVs0
2~pni

3r0!1/2
. ~42!

The resulting pinning energy per particle is found by sub
tuting this value ofRc into our expression forup

FLR , leading
to the expression

up
FLR'

pDV2s0
4ni

2

2m l 0
2

.

To use this, we need an explicit form for the shear modu
This can be deduced from the transverse phonon disper
relation of the WC in the absence of a magnetic field, wh
has the formvT(q)25(m/m* r0) q2, wherem* is the elec-
tron effective mass. The transverse mode eigenfrequency
been shown38 in the classical harmonic approximation to b
given approximately by

vT~q!250.036vp
2~aq!2,

with vp
254pe2/A3m* ka3. Using the above equation, on

arrives at the estimate

m'0.3
e2

ka3
. ~43!

The resulting pinning energy per particle is finally given b

up
FLR'5.24

ka3DV2s0
4ni

2

e2l 0
2

. ~44!

In the perturbative regime, where the effective depth
the individual pinning centers,DVs0

2/ l 0
2, is much smaller

than the bandwidth of the phonon density of states, the p
ning frequency is just given by the average binding ene
per site, so that one findsvpin'v0'up

FLR , with up
FLR given

by Eq. ~44!. Note within this approximation,vpin} l 0
22}B,

which leads to a pinning frequency thatincreaseswith mag-
netic field, as seen in experiment. It is also interesting to n
that vpin}a3}1/r0

3/2, which is also consistent with exper
mental results.45 We will obtain quantitative estimates forv0
in the next section using the above expressions.

When the pinning potential for an electron trapped by
pit approaches the bandwidth of the phonon density of sta
the perturbative estimate above becomes quantitatively in
curate, and one needs to perform a QHA calculation to
tain reliable results forvpin . To do this, we need the prob
ability that a given electron will be trapped in a pit, which
this approach is given byup

FLR/DV(s0
2/ l 0

2). We are then led
to consider a distribution of pinning energies in which mo
electrons are unpinned, and a small fraction are pinned w
an effective potentialv01DUi5DVs0

2/ l 0
2. The resulting

model is then formally identical to the white-noise mod
mentioned above.
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V. RESULTS

In this section we describe in more detail the results
our study. As has been emphasized, the electromagneti
sponses computed in the QHA in all the models we h
studied are qualitatively the same: one finds a single sh
line dominating the absorption spectrum. This line is ve
robust in that its weight shows no discernible decrease w
increasing system size, and for models in which the pinn
potential of the individual electrons is small compared to
width of the phonon density of states~Fig. 4!, the frequency
of the resonance occurs at the average excitation energy
electron, as expected from the perturbative analysis of S
III. We begin by describing in more detail the results f
disorder that is in this sense weak.

A. Pinning by weak disorder

A particularly useful model for comparison of the QH
and perturbative analysis is one in which a fixed fract
npin5Npin /N of randomly chosen electrons is pinned, wi
each such site assigned the same pinning potentialv0
1DUi5Up . According to the perturbative analysis, the pi
ning frequencyvpin'npinUp , regardless of the precise dis
tribution of pinned sites. Figures 1 and 2 show typical resu
for this model, with half the sites pinned, usingUp
50.01e2/k l 0 . Figure 6 illustrates the values ofvpin as com-
puted in the QHA for five different disorder realizations ea
at several different values ofv01DUi5Up , for a smaller
density of pinned sites~10%!, andDUi50 for all other sites,
along with the prediction of the perturbative analysis~dotted
line!. For smallUp the agreement of the two approaches
quite good. Furthermore, there is almost no variation invpin
for a fixed value ofUp when it is small as the precise rea
ization of the pinned sites is changed. The interpretation

FIG. 6. Pinning frequencyvpin for a system ofN5529 elec-
trons, at filling fractionn50.2, as a function of the pit potentia
10% of the electrons are pinned at random sites with energyDU
5Up ; the remaining electrons are unpinned. Stars are the resu
the QHA for five different disorder realizations at each value
Up , with two states per site retained in each calculation. Dotted
is the expected pinning frequency as calculated in lowest-order
turbation theory. For small values ofUp the approaches agree qui
well; for larger values the perturbation theory sets an upper bo
on the pinning frequency.
f
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this observation is that, for smallUp ,vpin is determined al-
most exclusively by the restoring force on the WC wh
only the center of mass coordinate is moved with the latt
itself undistorted. Lattice distortions do introduce some d
viation in the resonance frequency, generally pushing it
low the value expected from the lowest-order perturbat
theory, in a way thatdoesdepend on the precise disord
realization as may be seen in the figure. However, for a
given disorder realization, a single mode always domina
the response; broadening is never observed for a fixed d
der configuration.

We note that with higher-order corrections to the pert
bation theory of Sec. III, more accurate predictions ofvpin

can be made for a given disorder realization. For exam
one of the configurations in Fig. 6 withUp50.003 hasvpin

52.3231024. ~The numbers for bothvpin andUp here are
in units of e2/k l 0 .! The lowest-order perturbation theor
predicts vpin'vpin

(0)5331024 at this density of pinning
sites, which is in error by approximately 35%. Using t
methods of Sec. III, the second-order correction may
computed for this particular disorder realization, with t
resultvpin'vpin

(0)1vpin
(2)52.1931024, which is within 5.6%

of the QHA result, a considerable improvement.~Note that
the first order correction inDUi ,vpin

(1) , precisely vanishes in
our perturbative approach.! Another significant point, as
stated above, is that the weight of this single mode sho
remarkably little size dependence. For example, using
parameters relevant to Fig. 1, the power absorption per e
tron at the frequency of the sharp peak in the inset of Fig
is proportional to xxx(vpin)vpin /N50.006 209, whereN
51024 for this calculation. For precisely the same syst
parameters, but N5529, one finds xxx(vpin)vpin /N
50.006 200, a slightdecreasefor the smaller system size
This decrease is almost certainly related to the fact that
disorder realizations in the two calculations are inevita
different, rather than to any systematic increase with incre
ing system size. Nevertheless, this result illustrates that
cannot discern a decreasing weight in the sharp respo
with increasing system size for the values ofN one may
handle in the QHA.

The important question remains: to what extent, and
der what conditions, does this response remain sharp for
tems of experimentally relevant sizes? To address this q
tion, we turn to the perturbative treatment of Sec. III. It w
shown there that it is convenient to compute the power
sorption by starting from a uniformly pinned state — i.e.,
pinning potential that is the same for all electrons in t
system — and computing perturbatively the corrections
this absorption spectrum due to the fact that the pinning
tential is not truly uniform. For the uniformly pinned system
it is not at all surprising that energy absorption from a sp
tially homogeneous~time-dependent! electric field is domi-
nated by a single mode: the collective modes have a w
defined wave vectorkW , and only thekW50 mode can couple
to the electric field. In principle thiskW50 mode is mixed in
among all the modes when disorder is introduced. Thus
discussed more carefully in Sec. III, we are led to a
whether there is a finite overlap between thekW50 collective

of
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mode for the uniformly pinned case and the lowe
frequency collective mode in a disordered system in the th
modynamic limit.

In Sec. III we showed that this overlap may be written
the form 12D, with D given to second order in perturbatio
theory by

D5
1

r0
E d2q

2p H uuqW
1u2uDU~qW !u2

@v02EqW
p
#2

1
uuqW

2u2uDU~qW !u2

@v01EqW
p
#2 J ,

~45!

with DU(qW )5 (1/AN) ( iDUie
iqW •RW i, and DUi is the devia-

tion of site i from the site-averaged value of the pinnin
potential,v0 . Explicit expressions foruqW

1 anduqW
2 are given

in Eqs.~37! and~38!, andEqW
p is the dispersion relation for th

uniformly pinned system, Eq.~24!. For smallq, as shown
above@Eq. ~28!#

EqW
p
'v012pe2l 0

2r0q1O~q2!,

so thatD diverges in the thermodynamic limit, ifuDU(qW )u2

→uDUu2.0 asq→0, as is typically the case for white-nois
potentials such as the one studied here. The meaning of
divergence is that essentially all the weight of theqW 50 mode
for the uniformly pinned system has been depleted by
disorder from the lowest-energy collective mode, and is d
tributed among the other collective modes. However,
practice D is only divergent in the thermodynamic limi
since the integral in Eq.~45! has an infrared cutoffqmin
52p/L, whereL is the linear dimension of the system siz
The depletion becomes significant (D'1) for system sizes
L.Lc , which in Sec. III was found to be@Eq. ~41!#

Lc'l expH n3

uDŨu2J , ~46!

whereuDŨu2 is the disorder-averaged square potential eva
ated in units ofe2/k l 0 for q→0, and 2p/l is a wave vector
below which the smallq expansion for the uniformly pinned
collective mode spectrum@Eq. ~27!# becomes reasonably ac
curate; presumablyl '10a0 , with a0 the interelectron lat-
tice spacing.

For system sizesL!Lc , the depletion remains small, s
that a single sharp resonance should still be present.
means that one may interpretLc as a length scale for which
the electrons in an infinite sample move together coheren
To estimate the width of the resulting resonance, we n
that the fluctuations in the pinning potential averaged ove
length scale ofLc will be npin@16a0 /Lc#(DU2)1/2, so that
the effectiveQ of the resonance would beLc/2a0 . If Lc is
very large, clearly this leads to an extremely narrow re
nance. In fact, even a conservative estimate ofLc shows that
it is larger than the physical dimensions of any real sam
Taking (DU2)1/2'10vpin , so that DŨ'10vpink l 0 /e2

'0.014, wherevpin is the observed15,16resonance frequenc
of 1.25 GHz, and we used a magnetic lengthl 0'81 Å ap-
propriate for a 10 T magnetic field.~We expect thatuDŨu is
considerably smaller than this.! At this field, the filling factor
for the experimental densities isn50.22, so that Lc
-
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;1024a0 , far larger than any real sample. The conclusi
then is thatLc@L in Refs. 15 and 16, and the electrons
zero temperature react essentially as a single domain in
sponse to the~spatially uniform! electric field. Furthermore
the depletionD is in fact small in spite of the formal diver
gence whenL→` at second order in perturbation theor
this accounts for the sharpness of the measured respon
the lowest temperatures.15,16

Finally, it must be emphasized that this effect aris
purely due to the long-range nature of the Coulomb inter
tion. For short-range potentials,EqW

p
2v0;q2, and the diver-

gence in Eq.~45! is much stronger. This observation leads
another interpretation of the result: for short-range inter
tions, the phonon density of states for a uniformly pinn
system at small frequencies is much larger than is the c
for long-range interactions.~In the former case the phono
density of states jumps at the band edge, whereas in the l
it rises linearly from zero.! Thus, if one displaces the cente
of mass of the system~i.e., creates aq50 excitation!, for
Coulomb interactions there are very few states into which
disorder can scatter this excitation. The calculations in t
work demonstrate that the suppression of the phonon den
of states at the band edge by the Coulomb interaction
sufficiently strong to leave a finite oscillator strength of t
pure center of mass (q50) mode in the lowest-frequenc
collective mode when disorder is included.

The observation that Coulomb interactions are crucia
getting the sharp response is consistent with the results o
QHA: Fig. 2 illustrates response for a single disorder re
ization when the Coulomb interaction is screened. For t
calculation, we took an electron-electron interaction of t
form

v~qW !52pe2/kAq21qc
2,

with qc52.0l 0
21 , N5225, and the parameters are otherw

the same as for Fig. 1. The broadening even for this re
tively small system is already apparent.

B. Pinning by charged impurities

A commonly accepted model for understanding the m
nitude of the depinning threshold observed in dc volta
current measurements4,12,46 is one in which charged impuri
ties close to the 2DEG become incorporated in the lattice
substitutions for electrons.26 This is a paradigm for a strongly
pinned system,7 where certain locations of the lattice are e
sentially ‘‘nailed down,’’ and eliminated as degrees of fre
dom. In CDW systems, the pinning frequency for this type
disorder is estimated as the frequency of a phonon mode
the pure system, evaluated at wavelengthq;2p/d, whered
is a typical separation between pinned sites. Using the Q
we can quantitatively investigate this model to test whethe
can account for the;1 GHz resonance as well.

The method for emulating the charged impurity mod
within the QHA is to choose a small number of sites f
which DUi is larger than the width of the phonon density
states. A typical collective mode density of states aris
from this type of disorder realization is illustrated in Fig.
Two peaks emerge, one at high frequency above the r
nance frequency of the individual pinned sites, the ot
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shifted slightly upward from the phonon density of states
the pure system. It is easily checked that the motion of
electrons in the lowest-energy modes leaves the pinned e
trons stationary, so that the magnitude of the pinning pot
tial on these sites is irrelevant for these modes; in prac
these electrons are removed as degrees of freedom.

Figure 8 illustrates the frequency of the lowest collect
mode as a function of pinned site density, with several d
ferent disorder realizations. As in all the results of this wo
the electromagnetic absorption is dominated for each rea
tion by only the lowest mode.47 At low densities, the fre-
quency is approximately linear in the pinning site density

FIG. 7. Density of states for a strongly pinned WC, compu
using the QHA, withN5529, n50.2, and two states retained p
site. 10% of sites have a pinning potentialv01DUi5Up

50.04e2/k l 0 , a relatively large pinning potential; the rest are u
pinned. A high-energy set of collective modes may clearly be s
separated above the main peak. These modes arise due to loc
collective modes of the strongly pinned electrons. For the mode
the lower, main peak, the pinned electrons are essentially station

FIG. 8. Pinning frequencyvpin for a system ofN5529 electrons
with strong pinning centers.vpin was computed using the QHA
with two states per site at filling fractionn50.2 as a function of
npin , the fraction of pinned sites, withv01DUi5Up50.04e2/k l 0

the potential of the pinned sites. (12npin of the sites are unpinned.!
Stars are the results for five different disorder realizations at e
value of npin . The computed frequencies are significantly low
than what is expected from an estimate based on strong pinnin
an elastic medium.
r
e
c-

n-
e

-
,
a-

a

result quite reminiscent of what was found for the weak p
ning model of Sec. V A. The magnitude of the pinning fr
quencies found is surprisingly small; if one extrapolates
linear behavior for small pinning densities, we find th
;13% of the sites would have to be pinned in order
achieve the 1.25 GHz resonance seen atn50.2. Such a high
density of charged impurity substitutions near the 2DEG
clearly inconsistent with the high mobilities these samp
exhibit in zero magnetic field. Furthermore, the pinning fr
quency is a monotonically decreasing function of field in th
model, contrary to experimental observation. It thus see
quite clear that this model cannot be the primary pinn
source relevant in electromagnetic absorption.

The behavior of the pinning mode at low impurity dens
ties is surprising in its similarity to the results of the we
pinning model above, given that this is intrinsically a stro
pinning mechanism. Indeed, the results of a strongly pin
CDW estimate grossly overestimate the pinning frequenc
the densities we have studied. For example, if we assum
pinned site fractionnpin50.05, then for filling factorn
50.2 the strong pinning estimate yields an expected pinn
frequency greater than 731023e2/k l 0 , while the frequency
found in the QHA is roughly 531024e2/k l 0 . This great
disparity between the strongly pinned CDW estimate and
result of a more realistic calculation we believe exemplifi
the limits of using CDW theory to quantitatively analyz
properties of the magnetically induced WC. Indeed, we
lieve the tendency for the system at lownpin to behave so
much like a weakly pinned WC may be understood if o
thinks of a strongly pinned electron as a charged impurity
which a vacancy in the WC has become bound. One t
may think of the strongly pinned WC as a weakly pinn
WC with point defects, and it is likely that a perturbativ
analysis of this system as in Sec. III would explain the sha
ness of the response found from the QHA. If so, the stron
pinned WC for the purposes of ac response is equivalent
weakly pinned, defective WC.

C. Interface pinning model

We now turn to the results of the interface pinning mod
defined in Sec. IV. As a first estimate, we use the pertur
tive resultvpin'v0'up

FLR , with up
FLR given by Eq.~44!. As

discussed in Sec. IV, we sets0530 Å, DV54.3K'90 GHz,
and takea5480 Å, andk512, as is appropriate for the
experiments of Ref. 15. To estimate the density of pitsni ,
we setv05up

FLR'1 GHz atB58 T,15 for which l 0'90Å,
and use Eq.~44! to solve forni ; the result isni'2.531011

cm22. The resulting average distance between pits is 1/Ani
'200 Å, which clearly falls into the range of validity of ou
model, l 0,1/Ani,a. We note with this estimate ofni , the
~Fukuyama-Lee-Rice! correlation lengthRc with the use of
Eqs. ~42! and ~43! is found to beRc'7.5a. Figure 9 illus-
trates the result of the perturbative estimate~solid line! as a
function of magnetic field for this set of parameters.

The actual potential for sites that are pinned turns ou
be large enough that the perturbative approach overestim
the value ofvpin noticeably. We thus turn to the QHA to ge
a more accurate estimate of the pinning frequency. As
cussed above, this requires us to find the what fraction
electrons is pinned; for the above parameters, this works

n
ized
in
ry.

ch

of



s

e
la
e

z

th
c

e

9
in
lu

ne
e
he

r
n
is
A
n
o

be
les

his
orp-
en-
the

ng
le
f-
ted

n
l-
uld
ed

be
nce
a

olar-
st
ans-
ns,
uc-
gi-
sity
, the
the

ot
inal;
ses

cu-
f-
ill

uch
be
n-
o-
the

is
ery
the
the
ue
in-
eso-

e
ss of

arlier
ave

rder
the

-
the

s

y
ea
on
nt
-

2138 PRB 59H. A. FERTIG
to npin5Npin /N5up
FLR/DV (s0

2/ l 0
2) '10%. It is interesting to

note that, sinceup
FLR} l 0

22 , the fraction of pinned electrons i
independent of magnetic field. Each pinned electron has
excitation energy ofUp5DV s0

2/ l 0
2 for these parameters. W

can then proceed with the QHA precisely as in the calcu
tions of Sec. V A. Using the parameters adopted for the p
turbative approach, we find atB58 T in the QHA vpin
50.84 GHz, slightly below the experimental value of 1 GH
This indicates that we should raise our estimate ofni , since
its value was chosen to match the experimental result for
particular magnetic field. We find that the pinning frequen
vpin'1 GHz in the QHA if the fraction of pinned sitesnpin is
raised to 11%; this can be achieved if we assume a pit d
sity of ni53.031011 cm22. The results of this calculation
are illustrated for several values of magnetic field in Fig.
As in Sec. V A, the perturbative result overestimates the p
ning frequency by an increasingly large amount as the va
of Up at the pinned sites increases; this leads to the subli
growth of vpin with magnetic field that is apparent in th
QHA result. It is interesting to note that experimentally t
variation ofvpin with B is indeed found to be sublinear.15

VI. DISCUSSION

The primary result of this work, that the zero-temperatu
response of a pinned, magnetically induced two-dimensio
WC to a spatially uniform, time-dependent electric field
sharp, to our knowledge is unanticipated in the literature.
we have seen, the key reason for this result is the long-ra
nature of the Coulomb potential. Early studies of a tw
dimensional CDW system in a magnetic field18 did note that

FIG. 9. Pinning frequencyvpin in the interface pinning model a
a function of magnetic field, forDV590 GHz corresponding to a
pit depth of Dz510 Å. The average pit sizes0530 Å, and the
electron density in this figure is fixed atr05531010 cm22. Solid
line illustrates the perturbative estimate ofvpin for a pit density of
ni52.531011cm22. The magnitude of the pinning frequency ma
be seen to increase linearly with magnetic field, due to the decr
ing magnetic length of the Gaussian orbitals in which the electr
reside in the ground state. Stars represent the results of a qua
harmonic approximation~QHA! calculation with the same param
eters except for a slightly increased pit density,ni53.031011cm22.
Results for five different disorder realizations are shown forB57,
9, 11, 13, and 15 T.
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for weak disorder potentials a calculation of the~static!
CDW domain size diverges when a 1/r interaction is in-
cluded. In Ref. 13 it was argued that this divergence may
removed by a careful treatment of the different energy sca
for longitudinal and transverse distortions of the crystal. T
treatment computed a lineshape for electromagnetic abs
tion by assuming the system may be thought of as indep
dent Fukuyama-Lee-Rice domains, with randomness in
pinning frequencies of the individual domains satisfyi
Dvpin /vpin;1. By noting that there must be a length sca
over which the variations in domain pinning frequency e
fectively decouple the domains, an estimate for the expec
line shape was found.

The model of Ref. 13 is in fact not very different tha
ours. One could think of the individual electrons in our ca
culations as FLR domains, and the model investigated wo
basically be the same. However, in that work it was assum
that the length scale over which Coulomb coupling may
ignored is the same as the FLR length, leading to a resona
with Q;1. This reasoning works well in the absence of
magnetic field, because each domain has two possible p
izations for their motion in a collective mode. For the lowe
frequency collective modes, the domains can execute a tr
verse motion that avoids long-range density fluctuatio
which are very high in energy. Such long-range density fl
tuations do appear when the motion of the domains is lon
tudinal, and so such modes contribute to the phonon den
of states at high frequencies. For the transverse modes
coupling of motion among the domains is weak, and
approximations of Ref. 13 make sense.

In the presence of a magnetic field, however, it is n
possible to separate modes into transverse and longitud
these modes are inevitably mixed. The magnetic field cau
the domains to move in a circular fashion, essentially cir
lating around their effective potential wells. However, if di
ferent domains circulate at different frequencies, there w
necessarily be long-range density fluctuations, so that s
modes will be high in energy. Low-frequency modes can
achieved if the coupling between domains is explicitly i
cluded, so that correlations in the motions of different d
mains may be introduced. This means in a magnetic field
system will have adynamicalcorrelation length that is dif-
ferent than thestatic ~FLR! correlation length, and in this
work we have seen that this dynamical correlation length
extremely large. We emphasize that this behavior is v
different than what occurs in most CDW systems, where
static and dynamic correlation lengths are basically
same.13,49 The new physics arises because of the uniq
combination of two dimensions, the long-range Coulomb
teraction, and a magnetic field, and leads to the sharp r
nance found in this work.

Experimentally, it is somewhat surprising that only th
most recent measurements have uncovered the sharpne
this resonance, whereas there have been a number of e
measurements of rf, surface acoustic wave, and microw
responses in this system8–10,12 which found broad reso-
nances. There may be several reasons for this. First, in o
to couple to the 2DEG, the experimental methods probe
system at a finitekW , not with a purely spatially uniform elec
tric field. From a practical viewpoint this is necessary, as
oscillator strength for transitions at smallkW is very small,
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making detection of the absorbed energy difficult. Howev
a repetition of the analysis of Sec. III shows that the abso
tion is sharponly for k50: the second-order correction i
perturbation theory diverges more strongly at finitek than for
k50, indicating that the response broadens ask increases.
This observation is supported by the results of Ref. 16,
which several absorption peaks are observed, presum
representing harmonics of the fundamental probing wa
length. The widths of these peaks are found to increase
increasing frequency. Thus it may be that some of the m
ods used in previous work coupled to or mixed in lar
enough values ofk to wash out the resonance.

A second important aspect of the result is that it app
only at zero temperature; clearly one expects thermal bro
ening of the resonance, which we have not addressed in
work. This means that one can only expect such sharp r
nances at the lowest temperatures. One study of the temp
ture dependence of the resonance16 indicates that it is only
apparent below 100 mK, and that it sharpens very rapidly
the range 50 mK→30 mK. It seems quite reasonable th
thermal broadening is responsible for the absence of
sharp resonance in previous experiments, especially sinc
temperature below which the sharp resonance settles in
be sample specific.

A number of open questions remain unresolved by t
work. First, because this is a zero-temperature study,
have not been able to understand the detailed absorption
shape of Refs. 15 and 16. Beyond thermal effects, the la
scale coherence of the electron motion at zero tempera
indicates that specific dissipation mechanisms — in part
lar, edge states17,48— of the WC may prove important in thi
context. Beyond the lineshape, some aspects of the mag
field dependence of the resonance remain unexplained: a
highest magnetic fields, the resonance shows little or no fi
dependence, while theQ of the resonance continues to in
crease with field. This work gives a natural explanation
how the frequency may be an increasing function of field
an interface pinning model; however, it is not clear how o
could obtain a field-independent resonance. Investigation
these issues are currently being pursued.

VII. SUMMARY

In this work, we studied the response of a tw
dimensional Wigner crystal in a strong magnetic field to
spatially uniform, time-dependent electric field, at zero te
perature, pinned by a disorder potential. An approach
computing the response functions of a localized electron
tem in the lowest Landau level was introduced, the quan
harmonic approximation. It was found that the response
sharp; i.e., there is a resonance that isnot disorder broad-
ened. For weak disorder, this effect was shown within p
turbation theory to survive for macroscopically larg
samples, because of the emergence of an extremely l
length scaleLc that represents the distance over which el
trons oscillate together in the lowest excited state of the s
tem. The fact thatLc is so very large was shown to resu
primarily from the long-range nature of the Coulomb inte
action. A model of interface pinning was shown to reprodu
both the magnitude and some aspects of the field depend
of the resonance as observed in experiment.
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The author has become aware of a recent investigatio49

of the pinning properties of the magnetically induced W
These authors are also able to explain the increase of
pinning frequency with increasing field observed in expe
ment. However, the work does not find the unbroaden
resonance at zero temperature that is the focus of the pre
paper.
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APPENDIX: COMPUTATION OF INTERACTION
MATRIX ELEMENTS

The interaction matrix elementsUm1m2m3m4

i j can be greatly

simplified by the use of the strict translational periodic
assumed in this work. In general, they may be written in
form

Um1m2m3m4

i j 5E d2r 1d2r 2E d2qv~q!e2 iqW •~r 1
W2r 2

W !fm1
* ~rW2RW i !

3fm2
~rW2RW i !fm3

* ~rW2RW j !fm4
~rW2RW j !,

wherefm(rW) is the mth angular momentum state center
around the origin. The quantityv(q) is the Fourier transform
of the electron-electron interaction, which for most of th
work will take the form 2pe2/q. @To describe a screene
Coulomb potential, one may takev(q)52pe2/Aq21qc

2.
This was the form used in the calculations leading to Fig.#
Because we are imposing periodic boundary conditions,
interaction needs to be replaced with one that is periodic
superlattice of unit cells, each withN electrons, whose posi
tions inside each cell are identical. This is accomplished
making the replacementsqW→GW , *d2q→ (1/vc) (GW in the
above expression, where$GW % are the reciprocal lattice vec
tors of the superlattice, andvc is the supercell area. Making
this replacement, and switching over to bra-ket notation,
have

Um1m2m3m4

i j 5
1

vc
(
GW

v~GW !^m1ue2 iGW •rWum2&

3^m3ueiGW •rWum4&e
2 iGW •~RW i2RW j !. ~A1!

Although for the unscreened Coulomb interactionv(GW ) di-
verges forGW 50W , we may formally set it to zero if one in
cludes the effects of a uniform neutralizing background. T
matrix elements^m1ue2 iGW •rWum2& may be computed with
some work analytically. The result is



y-

he

en
e
le

i-
e
e

ngth,
ort
the

n-

b-

c-

n

ve
e in-

en-

2140 PRB 59H. A. FERTIG
^m1ue2 iGW •rWum2&5Fm2!

m1! GF ~Gl0!2

2 G ~m12m2!2

3Lm2

m12m2S ~Gl0!2

2 D
3ei ~m22m1!S uGW 1

p
2 D2~Gl0!2/2, ~A2!

for m1>m2 , whereuG is the angle between the the vectorGW

and thex̂ axis, andLm2

m12m2 is an associated Laguerre pol

nomial. The expression form2.m1 may be obtained using

^m1ue2 iGW •rWum2&5^m2ue2 i (2GW )•rWum1&* . It is convenient to
write this result in the form

^m1ue2 iGW •rWum2&5ei ~m22m1!~uGW 1 p/2!Fm1m2
~G!,

with

Fm1m2
~G!5Fm2!

m1! GF ~Gl0!2

2 G ~m12m2!/2

3Lm2

m12m2S ~Gl0!2

2 De2Gl0
2/2

for m1>m2 . For m1,m2 , the expression forFm1m2
(G) has

the same form as above, only with the indicesm1 , m2 inter-
changed.

The interaction matrix element can now be written in t
form

Um1m2m3m4

i j 5
1

vc
(
GW

v~GW !e2 iGW •~RW i2RW j !Fm1m2
~G!Fm3m4

~G!

3~21!m42m3i um12m2u1um32m4u

3ei [m22m11m42m3]uGW ,

which is particularly convenient for calculations. For a giv
value of RW i2RW j one in practice can include a very larg
number of reciprocal lattice vectors in the sum; for examp
our calculations withN51024 electrons include approx
mately 60 000 different values ofGW in the sum. Because w
include so many of these, the QHA can accurately refl
,
a

am

nd

,

,

ct

what happens at length scales shorter than a magnetic le
allowing one to treat disorder potentials that vary on a sh
length scale. This is the advantage the QHA has over
method of Ref. 24, which is typically limited to several hu
dred values ofGW .

In the text, we took advantage of the sum rule

(
l

Um1m2008 i l [(
l

Um1m200
i l 2Um1m200

i i }dm1m2
, ~A3!

which we now demonstrate. We begin with the simple o
servation that

(
j

eiGW •RW j5N(
gW

dgW ,GW ,

where the$gW % are the reciprocal lattice vectors of the ele
tron lattice~i.e., not the superlattice!. Then

(
l

Um1m200
i l 5N(

gW
v~g!^m1ue2 igW •rWum2&^0ueigW •rWu0&.

From Eq.~A2! it is clear that̂ 0ueigW •rWu0& depends only on the
magnitude ofgW and not its orientation, so that the orientatio
angle enters the sum above througĥm1ue2 igW •rWum2&
}ei (m22m1)ugW. Since each reciprocal lattice vector has fi
others of the same magnitude oriented at angles that ar
tegral multiples ofp/3 away fromugW , it follows that the
phase factor will cause the above sum to vanish unlessm1
5m2 . Thus

(
l

Um1m200
i l }dm1m2

. ~A4!

Similarly, for Um1m200
i i we have

Um1m200
i i 5(

GW
v~G!^m1ue2 iGW •rWum2&^0ueiGW •rWu0&.

As above, the quantity entering the sum involves the ori
tation of GW only throughei (m22m1)uGW , so this sum must also
vanish unlessm15m2 . Together with Eq.~A4!, this proves
the sum rule Eq.~A3!.
.
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