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Thomas-Fermi—Dirac—von Weizsaker hydrodynamics in laterally modulated electronic systems
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We have studied the collective plasma excitations of a two-dimensional electron gas waittiteary lateral
charge-density modulation. The dynamics is formulated using a previously developed hydrodynamic theory
based on the Thomas—Fermi—Dirac—von Waikea approximation. In this approach, both the equilibrium
and dynamical properties of the periodically modulated electron gas are treated in a consistent fashion. We pay
particular attention to the evolution of the collective excitations as the system undergoes the transition from the
ideal two-dimensional limit to the highly localized one-dimensional limit. We also calculate the power absorp-
tion in the long-wavelength limit to illustrate the effect of the modulation on the modes probed by far-infrared
transmission spectroscopy50163-182699)10403-X

[. INTRODUCTION are included in either the equilibrium or dynamical proper-
ties.

Two-dimensional electronic systems, as found in single Although the classical treatment is useful for obtaining a
heterojunction interfaces or in more complex structuregjualitative understanding of the collective modes in a modu-
such as quantum wells, have been studied intensively bdated 2DEG, it has the shortcoming of not being able to
cause of their fundamental interest and for their potentiabhccount for nonlocal effect@.g., in the magnetoconductiv-
application*™ In particular, the two-dimensional electron ity tensoj, which become important with increasing magni-
gas (2DEG) with a spatially periodic modulation of its tude of the plasmon wave vector. Nonlocal effects in the
equilibrium density has attracted considerable attention botRlasmon dispersion can be included in the hydrodynamic
theoretically™'° and experimentall{®?® One way of theory through the introduction of an electronic
achieving these Systemsis to app'y a Vo|tage between a CompreSSibility?'ao In thIS Way some information about the
patterned gate and the 2DEG, thereby inducing a oneduantum-mechanical equation of state can be built into the

dimensional periodic modulation of the density. As the gate‘t‘heory- In this ,r,espect, these theories can be referred to as
voltage is increased, electrons tend to “pool” near the semiclassical.” The RPA on the other hand, provides a

minima of the modulating potential and, in the limit of strong fully quantum mechanical description of both the equilib-

modulation, the system transforms into a periodic array of um and dynamical behavior. However, being more general,

1D quantum wires. It is clear that the restricted motion of thethe.3 computational demands for .'ts |mplementat|0n areé sig-
nificantly greater. Furthermore, since it includes both single-

electrons along the wires W'I.l hgve a profound effect on th_e article and collective aspects, it is sometimes difficult to
charac_ter O.f the p'aS”?a excitations in the syst(_em. Our malEleanly identify excitations which are predominantly collec-
focus in this paper will be to study the evolution of thesey; o iy natyre?® For both of these reasons, it is still worth-
coIIe_cuve modes with increasing modulation of the Z_DEG’whiIe having available hydrodynamic based theories.
and in particular, the crossover from 2D to 1D behavior. In this paper, we investigate the collective response of a
The theoretical approaches commonly used to discuss colpodulated 2DEG using the Thomas—Fermi—Dirac—von
lective excitations in charge-density-modulated systems capeizszker (TFDW) hydrodynamics previously developed
be classified broadly as being either hydrodynamic ino treat magnetoplasma excitations in three-dimensional
nature] '***3'or based on the random phase approximatiorparabolic welld233 and electron ring& One of the primary
(RPA).S11-1517-19The hydrodynamic approaches are appealvirtues of this approach is that it is based on a reasonably
ing because of their relative mathematical and computationalccurate description of the ground-state properties of the
simplicity. Although they vary in their level of sophistica- electronic system, which are determined self-consistently
tion, they all have in common the objective of describing thefrom the minimization of the TFDW energy functional.
dynamics of the electronic system in terms of a closed set ofhus, unlike most earlier hydrodynamic treatments, the form
equations for the density and velocity fields. At the simplestof the equilibrium density is not chosen arbitrarily. Perturba-
level of approximatiort;}*®the current density in the elec- tions of the system away from the equilibrium state generate
tron fluid is determined by a local conductivity, proportional internal forces which drive the system back towards equilib-
to the equilibrium electron density. Poisson’s equation isrium. These forces are consistently included in the TFDW
then used to relate the electric field driving the current to théhydrodynamic equations used to describe the dynamics of
fluctuating electron density. Rather than explicitly determin-the system. Although somewhat more sophisticated, the
ing the equilibrium properties of the electronic system, thepresent approach nevertheless retains much of the math-
equilibrium density is simply chosen to have some physi-ematical simplicity of the usual hydrodynamic theories.
cally reasonable form. We shall refer to such theories as Our paper is organized as follows. In Sec. Il we determine
“classical” in that no explicit quantum-mechanical aspectsthe equilibrium properties of a periodically modulated 2DEG
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within the TFDW approximation. Section Il A then provides function according to the prescriptiom(r)=?(r), a
the mathematical formalism needed to study the dynamics oftraightforward calculation yields

the collective modes and includes a derivation of the power

absorption which is typically measured in infrared transmis- Ay

sion experiments. In Sec. IV, we consider in detail the cross- - 7V2¢(r)+ueﬁ(r)¢(r)=,u¢(r), 4
over from 2D to 1D behavior in the periodically modulated ] o

2DEG, and finally in Sec. V, we present our concluding re-Where the effective potential is given by

marks. Ve(1)=2C102(r)— 3 Cah(r) + (1) +ve(r). (5

Il. EQUILIBRIUM PROPERTIES Here, ¢(r)=fdr'n(r’)/|r—r’| is the electrostatic potential
arising from the electronic density(r). Eq. (4) is a nonlin-

The fabrication of mesoscopic devices often begins with &ar equation iny(r), and must be solved self-consistently.
2DEG in metal-oxide-semiconductdMOS) structures or  The required solution to Eq4) is the ground-state wave
epitaxially grown heterojunctions. In these systems, thunction, hereafter denoted hy,, and the ground-state en-
strong confinement of the electrons in the direction normal tQyqy eigenvalue defines.
the interface leads to a discrete spectrum of quantized sub- Thjs formulation of the equilibrium properties of the elec-
band states, while motion in the lateral dimensions is esseRronic system is quite general in the sense that the physical
tially free. In the limit that electronic excitations take place gjyyation is completely specified by the form of the external
within only a single subband, the system can be idealized gotential. For the case of 1D modulation, the potential
strictly two dimensional with no spatial extent in the normalvext(x) will be assumed to be a smooth, periodic function of
direction. In this situation, the electronic density has the form, i perioda. This potential can of course be represented

n(xy,2)=n(x,y)8(z), where the planar density(x,y) is a5 a Fourier series, but we shall consider only the simplest
defined by whatever additional lateral confining potentialig,m,

Vexd X,Y) is imposed on the system.
To determine the equilibrium density distributiofx, y), X
we shall make use of the Thomas—Fermi—Dirac—von Vexd(X)=—VpCO a (6)

Weiszaker energy functional:
having a single Fourier component. This choice is sufficient

) |Vn(r)|? 3 to investigate the important effects of modulation on the
Cin +C2W—C3” properties of a 2DEG, and has been applied successfully by
other researchefs®? to model laterally microstructured
1 n(ryn(r’) field-effect devices used in far-infraréBIR) experiments.
+3 J’ drf dr’—,+J drveq(r)n(r). The translational invariance of the system alongttu-
r=r’| rection, together with the periodicity of the external confin-
(1) ing potential, implies that the solution to E@) will only
) ) _ o depend onx and will have the property thaty,(x+a)
The first term in Eq(1) is the Thomas—Fermi kinetic energy, —, (x) Thus, we can restrict our calculation to the unit cell
the second term is the von Weiz&ar correction to the ki- x e[ —al2,al2]. For potentials such as E€6) with inversion

netic Eneray. and the third term is the Dirac local exchang@ymmetry about the center of the cell, the desired solutions
energy>® For simplicity, we neglect any correlation contri- ;re those satisfying the boundary conditions
bution. The coefficients in Eq1) are given byatomic units,

e’/e=m*=#=1, are used throughout

E[n]=f dr

[ a
lﬂo( “—Lg) =0. (7)

T Aw 4 (2
Ci=35. Co=35 Ce=3\ - ) To complete the determination afy(x), we must finally
impose the normalization condition
In the von Weizseker coefficientC,, the parametek,, is

chosen to have the value 0.25, which was found in other 1 (a2 —
J',a/deWO(X)lZ:nZD , (8

application$® to provide the best agreement between the a

TFDW and full density-functional theory calculations. The _

last two terms in Eq(1) are the Hartree self-energy of the wheren,p is the average electron density in the modulated

electrons and the interaction with the external potential, re2DEG.

spectively. Before discussing the nature of the ground state solution
The equilibrium properties are obtained by finding theto Eg.(4), we first note some technical points involved in the

variational minimum of Eq.(1). This leads to the Euler- calculation. As is typical of density-functional theory

Lagrange equation schemes, the solutions are obtained using an iterative proce-
dure, and issues of numerical stability and convergence

OE[N] therefore arise. The usual source of numerical instabilities is

an(r) —n=0, (3 the long-ranged nature of the Coulomb interaction. In the

course of iterating, a small deviation of the charge density
where the Lagrange multipli€chemical potentialu serves  from its true value leads to a change in the effective potential
to fix the total number of electrori$. By introducing a wave that tends to induce an overcompensating screening charge
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on the next iteration. In our particular case, this results in an
oscillation of the charge between the central and outer re- @
gions of the unit cell, which inhibits the desired convergence
of the iterative procedure. This problem can be remedied by
a combination of two strategies. First, we introduce an alge-
braic mixing of the effective potential

2D

n

vl V=ave O]+ (1- a)oly, 9)

no(T)/”

wherev ) is the effective potential on thi¢h iteration,n) is

the density generated by this potential ang[n"] is the
effective potential that this density would lead to. The mix-
ing parametew lies between zero and one and reducing its
value reduces the change in the potential from one iteration
to the next. This by itself will eliminate the instability in
some cases, as for example when the modulation periods are -0.5 0 0.5

relatively small. However, to access the physically relevant x/a

modulation periods (100 nma<<1500 nm in GaAg an ex-

tremely small value ofx would have to be used, which re- g1 1. Equilibrium density profiles of EG4) with v given by
sults in an unacceptably slow rate of convergence. This probzq. (6). The curves labeled bgg), (b), (c), and (d) correspond to
lem can be overcome by means of a second strategy in whiof, /E,=6.4, 19.1, 28.6, and 41.4, respectively. The mean density in
the long-range nature of the Coulomb potential is effectivelyy cases ig,,=0.1.

screened. The screening is conveniently formulated in Fou-

rier space using the algorithm

limit is similar to the semi-circular profile found in the clas-

sical electrostatic approximatidfand only deviates signifi-

PV = ——+ #(q),  (10) cantly from this form at the edges of the quantum wire as a
Q result of the quantum mechanical barrier penetration in-

where ¢(q) andn(q) are the 2D Fourier transforms of the cluded within the TFDW approximation. _ .
electrostatic potential and 2D electron density, respectively, !N Fig. 2, we have constructed a “phase” diagram in the
Q= 9%+ «2, and« is an artificial screening parameter. One (2Ki—Vo/Ey) plane that marks the boundary between local-
can check that the first term on the right-hand side of Eqized and delocalized solutions of E@). To generate these
(10), in which the density acts as a source, leads to an exp@urves, we have used the criterion[ = (a/2)]=0.1n,p .

nentially decaying potential in real space. Nevertheless, athis condition is rather arbitrary, and a value somewhat
self-consistency, ¢(™1(q)=¢"(q)=¢(q)=27n(q)/q, greater than or less than 1/10 could have been used to gen-

which is just the Fourier transform of the actual Coulomberate a similar set of curves. The solid and dashed curves

potential¢g(r). By choosingk of order unity, we were able to correspond to average 2D densities mfy=0.1 andn,p

obtain convergence in all cases of interest withr0.005.  =1.0, respectively and span the range of densities of physi-

Although these values at are still rather small, they pro- cal interest. The open circles represent the phase boundary in

vided a rate of convergence that was significantly better than

that achieved with the algebraic mixing scheme alone. 40
The solution to Eq(4) is shown in Fig. 1 for a range of

potential modulation amplitudes. It is useful to represent

these amplitudes in the dimensionless foviy/E¢, where 30

Efzékf is the Fermi energy of the uniform 2DEG and the

Fermi wave vectok; is defined bykszwnZD. With an o
application to GaAs in mind, typical densities are in the N, 20
range 16'-102 cm 2. Using the effective massn* N
=0.067m, and static dielectric constaet13.0 of GaAs, the

atomic unit of length is the effective Bohr radia§ =103 A, 10
and the unit of energy is the effective RydbeRy*

=e?/2ea} =5.4 meV. In these units, a density of't@m™?

2 (q)

q
173

is approximately O.]z(z,‘)‘z; this is the value of the average 0 " I " I " I
density used to generate the density distributions in Fig. 1. 0 10 20 30 40
The equilibrium densities in this figure span the range from ak,

weak to moderate to strong modulation, and illustrate the

way in which the cell-boundary density decreases with in- FIG. 2. “Phase”-diagram for the 2B-1D transition. The solid
creasing values o¥,. In the extreme localized limit, the and dashed curves include all interactions with,=0.1 andn,p
system consists of isolated quantum wires, each of which is-1.0 respectively. The open circles correspond to the noninteract-
confined within an approximately harmonic potential well of ing phase curvéi.e., a confined noninteracting Fermi gashich is
curvature 2r?V,/a?. It can be seen that the density in this independent of the average 2D density.
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the case of noninteracting electrons obtained by ignoring the 1.0 e
electrostatic and exchange potentials in &j. In this limit, y T ——...
one can show from Eq5) that the scaled wave function 0.8 - Iy
Kio(X) as a function of the scaled lengitia depends on L
the density only through the two parametats andV,/E;. .
As a result, the phase boundary in tlak(—V,/E;) plane is 0.6 T o
a universal curve which is valid for any density. It can be 3 T e

seen that this scaling property of the wavefunction does not 0.4 ezl
apply once interactions are included. We have also indicated J """“""‘'""--««-~--.............,,,,,,3:I
by the labeled points the values of the parameters corre- 02
sponding to three of the density profiles in Fig. 1. These were ’

obtained for a density ai,p =0.1, so that the position of the
points relative to the solid curve in Fig. 2 is relevant; point 0.0 LA L IR B
(p) is a§sociqted wi_th a str.ongly modula}ted but gxtended den- 0.00 0.25 050 075 1.00
sity while point(c) is well into the localized region.

The parameteak; can be used to distinguish two regimes 9, (n/a)
of interest: the rapidly varying regimak;<<1 where the
modulation period is small compared to the Fermi wave- FIG. 3. The calculated TFDW energy bands along the direction
length of the average density, and the slowly varying regime®f modulation. This figure is evaluated for a moderate modulation
ak;>1. In the former limit, all of the curves approach an corresponding teb) in Fig. 1.
asymptote which is weakly dependent on density. This limit i
of strong quantum confinement can be understood simply ifimmediately apparent, we shall see that they have some rel-
terms of the criterion that the potential barrier heighg, is ~ €vance to the calculgtlon_of the collgqtlve exuta}tlons in a
large compared to the quantum-mechanical zero point ener%yodulated 2DEG, which S|m|IarIy exh|b_|t a Bloch-like struc-
#2/ma2. We thus conclude that the phase boundary is giverUre: For the purpose of comparison with the plasmon bands
approximately by, /E;~ (ak;) ~2, which is consistent with to be cal;ula;ed, we show in Fig. 3 the TFDW energy.bands
the numerical calculations. In this limit, the quantum kineticn théx direction for the case of moderate modulatjdi) in

energy is deciding the question of localization. In the oppo-F'g' 1.

site limit of a slowly varying potential dk;>1), the von

Weizsaker kinetic energy becomes negligible and we re- lll. COLLECTIVE EXCITATIONS
cover the Thomas-Ferm(iTF) approximation. The experi-
mental situations of interest are typically in this TF limit.
The phase boundary now approaches a straight line with zero In order to determine the plasma modes in the modulated
slope in the noninteracting cagepen circles and finite 2DEG, we adopt the TFDW hydrodynamic approach devel-
slope in the interacting cassolid and dashed lingsThe  oped _previousl)?? This is based on the usual continuity
behavior of the noninteracting curve follows from the TF eguation

density,nte(X) =n,p+ (Vo /) cos(2rmx/a), and our criterion on
for localization impliesVy/E¢=1, which is to be expected —+V-(nv)=0, 11
when the energy of the gas is exclusively kinetic. On the at

other hand, the behavior of the interacting phase boundarieghd the momentum equation

can be understood in electrostatic terms. The external poten-
tial vy (X) can be viewed as arising from a modulation of the
external positive background density about the average value

n,p : the amplitude of this density modulatiofs , IS re- : . . .
lated toV b)F/) Vo= (27/G) An =yaAn Sincnee)f[the lec. WhereF=F"+F®includes both the internal force acting on
0 0 ext ext- the electrons,

trons simply neutralize the positive background locally in the

TF limit, the criterion for localization becomeég,=an,p, ) A V2u(r,t)
which implies Vo/E;= (1/mk¢) (ak;). Thus, the phase F(r,t) = _V[Ueff(rat)_ 2 oD |
boundary has a slope inversely proportional to the square '
root of the average density, consistent with the results iras well as any additional time-dependent external force,
Fig. 2. F*(r,t). The potential termv in Eq. (13) contributes the

We may also consider general solutions of Ef).which  expected force corresponding to the internal TF pressure and
for the case of one-dimensional periodic modulation will Coulomb-derived potentials, while the remaining term is as-
take the form of Bloch-like states in the direction, sociated with the von Weizsker kinetic energy. For com-
z//nqx(x)ze'qXXuan(x), whereunq (X) is a periodic function  pleteness, we have also included in Ef2) the magnetic
of x, multiplied by a plane-wave fact@% in they direc-  force due to an externally applied magnetic fieft],which
tion. Here,q, is restricted to the first Brillouin zone; w/a ~ We shall take to be uniform and perpendicular to the 2DEG
=<qy<w/a, andn is a band index. The=0 state in the (i.e.,B=Bz). This force is expressed in terms of the cyclo-
lowest band is the ground statg(x) considered previously. tron frequency vectomw.=eB/m*c. Although we defer an
Although the significance of these general solutions is noexplicit treatment of magnetoplasma modes to a future paper,

A. Hydrodynamic equations

oV
—+v-Vv

n
Jat

=nF—nvX w, (12

(13
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we shall develop the equations for this more general situatiorb(wz_wz) Suy=1 qzw%f_w%f,_ L wipiof " — weQy bf
c y cHy !

as very little additional effort is needed to do so.

Self-consistent solutions to our hydrodynamic equations

(22

are obtained by linearizing the density in small deviationswhere derivatives with respect to are now denoted by

from equilibrium, viz.,n—ngy+ én. If the time-dependent
density is represented as= ¢, the fluctuation of the von
Weizszker wave functiongy, is related to the density fluc-
tuation by én=2yy6¢. Retaining only first-order quantities
(the velocityv is itself first ordey, Egs.(11) and(12) yield

aon
——+V-(ngv)=0, (14
at
and
N_ oF 1
E - —vX wC ) ( 5)
where the fluctuating force is given by
_ A 2 )\szl,bo ext
OF=—=V| Sven— 2_</;0V S+ 2 2 S|+ SF,
(16)
with
S eti=4C14o09— 3 C38Y+ 5. 17

The bracketed term in E¢16) will be denoted byf, so that
SFM=—Vf,

primes. Noting thatyof” = (of)” — ¢of —2¢4f’, EQq. (22)
yields,

o

o(w?—wd)sy=3 q§w( Yof) +3 w%(‘ﬁof)

()[f,
—%w<wof)"—wcqy¢—2<wof>. 23)

The advantage of this form is that the functiofy€) and its
derivatives now appear on the right-hand side, where

M Y0, N
Yof =dhodvent Vo +ay | oY= oY
=M Sy+hdy. (24)
The operatoM is defined byM Sy= iy v o and
D W'
h=—7w(§—q§ FUe M (29

is just the Hamiltoniar{for q,=0) determining the ground-
state von Weizszker wave functionjy(x). Substituting Eq.
(24) into (23) yields

For the purpose of determining the normal mode frequen- ,

cies of the system and the associated mode densi#ies!

can be set to zero. We shall later consider the response of the
system to external fields in the calculation of the power ab-

sorption. Due to the translational invariance in theirec-
tion, all of the fluctuating variablessh, &y, f, andv) will
have the form of a propagating wave (%Y~ ) with

w(wZ—w§)5¢=wxv;lﬁ(ﬁ+M)&ap—wcqy%(ﬁﬂ\h)&p.
0

(26)
In the limit of vanishing magnetic field, this reduces to

Ay@28y=h(h+M)sy. (27)

x-dependent amplitudes. Making use of this dependence,

Egs.(14) and(15) can be expressed in the form

. . J
—iwdén+ingqyuy+ 5(novx)=0 (18

and

(0?— w2)V=iwF— (e X 6F), (19

respectively. In these equations, only thdependent ampli-
tudes are displayed. Recalling th#=—Vf, we have

) R of\ .
w: X 6F=(iqywf)x— ( wc(?—x) y. (20
The use of Eq(20) in Eq. (19), along with Eq.(18), then
leads to

d

of an
_wg)an:qf,wnof—w—( noa_x) 0

— wcqyé’_Xf.
(21

w(w? ax

Equation(21) can also be expressed in terms of the fluc-

tuating wave function by usingo= 3 and 6n=24,5¢.
With this substitution, we find

Due to the periodicity induced by the modulating poten-
tial along thex direction, the fluctuating part of the wave
function will have the Bloch-like form

Sy=€"Y, cope, (28
G
where cg is a Fourier expansion coefficient andg

=(1/\/a) €®*. These basis functions have been chosen to
satisfy the orthonormality condition

(29

al2
f dX¢g(X) g (X)=bgar
al2

where G=(2wn/a) (n=0,£1,*2,...) is a one-
dimensional reciprocal lattice vector in tledirection. Sub-
stituting the Fourier expansiaf28) into (26), we obtain the
equation

0)((1)2_ wg)CG= - wcqy E AGG’ M GIGHCGN
G'G"

+w E BGG!MG!G!ICG!I y (30)

G'G"
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where the various matrices appearing in this equation arthe kinetic and exchange matrices dependsenG’, but the

defined as

i—(G—G')M{G—G’],
a

Ja

Ace' = (31)

Boe' =M 'haer

L0+ G+ 6lbaer+ ——(var WIG—C']
) Ox qy GG’ )\W\/a Ueff— M )
(32

and

MGG’:MGG’+)\WBGG' . (33)

In obtaining Eq.(31) we have used the identityyg/ i)
= (d/dx) (In ¢), and denote the Fourier transform of a peri-
odic function with an overline, e.gyo(X) =Zg o Gleg -

The remaining matrixM ¢ in Eq. (33) consists of sev-
eral terms. From Eq24), we have

M 8= 100 i

=A4C, Y580 — 3 Catho S+ g6 . (34)

The last term in Eq(34) involves thex-dependent part of the
total electric potential fluctuationj¢. In terms of the den-
sity fluctuationén, we have

on
5¢(r)=fdr’
r=r|

:f dr,ZlJ/o(X')

e (X TS - coipai(X)

[r—r’|

A eti _
=g@xtay) > —  _y[G-G'lce,
agg (qX+G)2+q§

(39

where we have noted that the 2D Fourier transform ofis
(27/q). It is clear from this expression thaip(r) is pro-
portional toe'%Y and that thex-dependent part has the ex-
pected Bloch-like form. With this result, E€34) yields

MGG’:MEG’+M)G(G’+MSG” (36)
where
4C1—
Mee = a6 =Gl (37)
3Cs—
Mg == ——=th[G-G'], (38)
GG 2\/5
47 YlG—G"Yg[G"—~G']
H 0 0
GG’:_ (39)

as  J(ax+G")+d)

The superscript¥, X, andH refer respectively to the ki-
netic, exchange and Hartree termsfigdv . It is clear that

Hartree matrix, which is associated with a nonlocal operator
in position space, has the propeng+G0’G,+Go(qx)

H
=Mge (dxtGo)-
Equation(30) is a nonlinear eigenvalue problem that must
be solved numerically for the eigenvalueand eigenvector

c. In principle, the dimension of the eigenvalue problem is
infinite, and for practical purposes, a truncation of the expan-
sion to some finite number d& vectors is required. How-
ever, one can always check that the results for the modes of
interest have converged by systematically increasing the
number of G vectors. Once the eigenvalues have been

determined, the corresponding eigenvectBrsan be substi-
tuted into Eq.(28) to determine the mode densities.

To close this section, we note some general consequences
of the equations we have obtained. In tpe—~0 limit, Eq.
(30) reduces to

(wz—a)g)CG= E BGG’MG’G”CG”I (40)
G!GH

and the magnetic field appears explicitly only on the left-

hand side of the equation. This implies that the magneto-

plasma frequencies have the property

®3(0y,dy=0;B)=i(q,,ay=0;B=0)+w?, (41

that is, a simple cyclotron shift of the zero-field frequencies,
on(dx,q,=0;B=0). In addition, the mode densities in this
limit have exactly the same spatial distribution as the corre-
spondingB=0 mode densities.

Another general property can be deduced from €q)
by making use of the Bloch-state basj/s,qx(x), introduced

at the end of Sec. II. These states are eigenstatésvith

eigenvalues: ,(q) =E.(0,) + 3 )\qu—,u, whereE,(q,) are
the 1D band energies and the chemical poteptied equal to
Eo(0), theq=0 energy of the lowest banah&0). Expand-
ing ¢ as

oY= ; dn’ﬂnqx ) (42)
and substituting this expansion into EG7), we obtain the
eigenvalue problem in the alternate form

Awwzdnzsn(q)z [£n(Q) Snnr + My 1dyy (43

n
By its definition, £¢(0)=0 for the lowest band, and as a
result, Eq.(43) will have a nontrivial solution ag=0 with
frequencyw=0. In other words, the lowest plasmon band
disperses from zero a&=0 and, according to Ed41), this
implies that there will be a magnetoplasmon branch that dis-
perses fronw,.

B. Power absorption

The main method for studying the collective modes in
these systems is by means of FIR absorption
experiment$-2428To make contact with these experiments,
we consider in this section the calculation of the power ab-



PRB 59

THOMAS—FERMI-DIRAC-von WEIZSEKER . ..

2085

sorption which, in addition to the mode frequencies, contains Substituting Eq(49) into Eq. (47), we obtain

information about the oscillator strengths of the observed

excitations.
The instantaneous power absorption is giveR' by

=f drj™d(r,t)- E®(r,t), (44)

wherej"(r,t) is the current induced by an external electro-

® —

——— >, Gy G]f

Ta(a? wg)%: ol Glfg
iwEy —

# oy G0l

|nd[G 0 (1)]

(52

magnetic field. For a uniform radiation field polarized in thewhere, in deriving this result, we have used the fact that

x direction and incident normally on the sample, the externa(ngf) is periodic,ng=

field is spatially uniform and is given byE®{(r,t)

¥4, andye[ —G1= y[G]. The quan-
tity f is the Fourier coefficient ofi,f) defined in Eq(24),

=1Ey (e "“'+e“Y)x. The physically relevant quantity is the and is related t@g by the equation

time-averaged power absorption, which is given by

<P>t:§Eof dr RejM(r, w). (45)
Since the induced currefif'” for the situation of interest is a
periodic function ofx and independent ofy, the time-
averaged power absorption per unit area is given by

<P>t 1 Sindr ~ _
- 2\/_ EoRej, [G=0w], (46)
where
|nd[G ]_ f —iGX; md(X a)) (47)
\/_ al2

is the Fourier coefficient of the induced current.
The current density is determined bjl'x”d(x,w)z
—ng(X)v4(X,w) where the velocity is the solution of

\
—=— W+ F-VvX ;. (48)

ot

We have included in this equation a phenomenological re-
laxation ratey that accounts for momentum nonconserving

fG:z MGG’CG" (53)
G!

The substitution of Eq(52) into Eq. (46) provides our final

expression for the power absorption. Sincg[G=0]

=.+an,p, the last term in Eq(52) contributes an absorption
peak at the cyclotron frequency,., as found for a uniform
2DEG. This peak shifts ta=0 for B=0, and represents the
expected Drude-like absorption associated with the resistive
losses in the 2DEG. The other term on the right-hand side of
Eq. (52 accounts for the density inhomogeneity and has the
effect of reducing the amount of Drude absorption.

The cancellation of the Drude peak can be seen more
clearly by writing the power absorption in an alternate form.
Starting with the continuity equatiofi8) with q=0

J
Iw5n+—j'nd 0, (54)

multiplying by x and integrating over a unit cell, we find

i G= Ow]—\/_f xon(x)dx+ aj(ar2).
(55)

scattering processes of the electrons. Because of the relaxhe substitution of this expression into Eg#6) then yields

ation rate, the frequencyw appearing in Eq(19) is now
replaced byw=w+iy. Noting that SF now includes the
additional termsFS'=—E,, we obtain the following ex-
pression for the current density @t 0,

J9(X, ) = = No(X)v (X, @)

iw
==——n
~2_ 20
w (.L)C

— +Eg]|. (49

ox

Taking theg=0 limit of the continuity equatior{18), along
with Eq. (49), we find

~_ dng

A
w(w? wg)on= wa noa

Thus, the net effect of including the external driving field

E®is to convert the eigenvalue problem in Eg0), into the
set of inhomogeneous equations

w(w —wZ)CG w 2 BGG’MG’G”CG”__IwGlpO[G]EO
GH
(51

(P) . 1 falz
—=—35 wEyIm—
A 2 0 a J-ar

+ L EqRejM(x=a/2,w).

XOoN(X,w)dx

(56)

In the localized limit, the boundary curremi‘d(x=a/2,w)
vanishes and the power absorption is then determined by the
induced dipole moment of the charge-density fluctuation. In
this case, there is no absorption at the cyclotron frequency
w. despite the appearance of the resonant denominators in
Eq. (52). In the opposite limit of a weakly modulated system,
the induced dipole moment will be small and the power ab-
sorption will be dominated by the second term in Esp).

We then recover the Drude absorption discussed previously.

IV. 2D TO 1D CROSSOVER

In this section, we study the plasma modes of a 2DEG
subjected to the modulating potential given in E6). Our
main interest is in the evolution of these modes as a function
of the strength of the modulation. The crossover from 2D to
1D behavior will occur in the vicinity of the phase boundary
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illustrated in Fig. 1. Once the modulation is sufficiently 1.0
strong, the electron layer separates into an array of quantum i
wires and we can expect very different behavior from the 0.8 -
original 2D situation. Although the theory in Sec. Il was '
developed with the inclusion of a magnetic field, we shall |
restrict our investigation to the zero field limit, in which case 0.6 -
Eq. (30) reduces to 3 .
0.4 @
(UZCG: 2 BGG/MG!GHCGH . (57) 1 ®
G'.6" 0.2 - ®
All the mode frequencies presented in this section are based .
. . ; z
on an analysis of this equation. 0.0 — 17—
A. Uniform 2DEG 0.00 0.25 0.50 0.75 1.00
It is useful for the purpose of orientation to begin with the q, (m/a)
homogeneous 2DEGv(,~=0) as treated in the TFDW ap-
proximation. The interaction matrices in Eq87)—(39), as FIG. 4. The dispersion of mode frequencies with wave vegor

well as theB matrix in Eq.(32), are diagonal in this case and for the weakly modulated 2DEG. The solid curve is for the uniform
we readily obtain from Eq(57) the plasmon dispersion re- 2DEG. A full explanation of the encircled numbers is given in the

lation text.
_ . 3 A . . L
200\ — _2e A 24 °W 4 turbation theory calculation of the gaps within the TFDW
©o(Q)=2mNzpa+| 2CiNzp— 7 Cs nZD)q T30 hydrodynamics in Appendix A. We find that the gaps are
determined by the equation
2 1 2 1 2 )\W 4
=qu+ Ekf—;kf q +Tq . (58

2_ 2 2 _3c.f 2, 3 4
At long wavelengths, this gives the expected 2D plasmon  @= = @0(dn) = [@5(dn) =5 CaVN2p0n+ 7 Ayl

frequencyw,p= \27n,pq, Which has the characteristi®q
dependence. At shorter wavelengths, the effects of the TF
(C,), exchange C3) and von Weizseker (\,,) energies be-
come of increasing importance. It is interesting to note that
the exchange interaction gives a negatiye coefficient
which counteracts the positive dispersion coming from th
TF kinetic energy. As a result, thg coefficient goes to zero
at a density havind;=2/7r.

ng[27n/a]

— . (59
no[0]

which is consistent with the result of Krasheninnikov and
e‘Chaplik'5 in the long-wavelength limit where the Hartree in-
teraction is dominant. In Fig. 15, we show some of the Fou-
rier coefficientsny[27n/a] as a function ofVy/E;. The
N[ 27/a] coefficient is linear iV, whereas the higher Fou-
B. Weak modulation rier components are at least of ordé§ and are therefore
We now consider a weak modu|ating potentia| Corre-mUCh smaller in the weakly modulated regime. This accounts
sponding to the phase poifa) in Fig. 2, with coordinates for the relatively small magnitude of the gaps in Fig. 4 as
(ak;=31.71V,/E;=6.4). In Fig. 4 we illustrate the compared to the lowest zone boundary gap. _
g,-dispersion forg,=0, as determined from E¢57). Also ~ In Fig. 5, we show the plasmon dispersion in theirec-
shown for comparison as the solid line is the uniform 2DEGtioONn (i.e., perpendicular to the modulation directiofor
dispersion relation given by E¢58). The similarity of the modes at the zone centeq,=0, solid circle$ and at the
dispersion curves for the two cases is notable. The only obzone boundary d,= m/a, open circles Specific modes of
vious difference is the appearance of a gap in the plasmotfterest that will be referred to in the text are indicated by
dispersion at the zone boundary=r/a, which is associ- encircled numbers. Of thg,=0 modes, there is one that
ated with the development of plasmon bands. This problengtarts at zero frequendynode 1, as explained at the end of
was treated theoretically by Krasheninnikov and Chaplik Sec. Il A. To determine the smalf; behavior analytically,
using degenerate perturbation theory. They found that theve make use of the long-wavelength formidf;s, derived
size of the gaps induced by the density modulation is giverin Appendix B. It is shown there that the 2D plasmon dis-
by A~(|Ny|/nyp)w,, Wherew,, is the unperturbed plasma persion forg,=0 with ay—0 is given bwa:ZTrnZqu,
frequency for wave vectay,=qg,=nw/a andN, is thenth  the usual plasma frequency of a uniform 2DEG. This is a
coefficient in the Fourier expansion of the 2D electron dengeneral result independent of the degree of modulation of the
sity [N,=ng[27n/a]/\a in our notation; odd values ai ~ 2DEG. In other words, the modulation of the 2DEG has no
give rise to zone boundalZB) gaps, while even values give effect on the long-wavelength dispersion of plasmons in this
rise to zone centefZC) gapd. Since their analysis is based direction. However, as discussed in more detail in Sec. IV C,
on a different formulation of the problem and includes onlythis is not the case for plasmons propagating inxluirec-
the Hartree interaction, we present for completeness a petion.
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FIG. 5. The dispersion of mode frequencies with wave vegjor . \‘ , 1 \\ /
for the weakly modulated 2DEG. Heg =0 (solid circles, and _1 \ / \
g,= 7/a (open circleg A full explanation of the encircled numbers L L
is given in the text. -0.5 0.0 0.5 -0.5 0.0 0.5
There are several other notable features in Fig. 5. The first x/a
concerns the modes a,=w/a, which behave assn(x
+a)=—on(x) and have a periodicity of& The two lowest FIG. 6. The mode densities in the weak modulation regime for

modes(the 2-8 and 3-7 branchedicated by open circles various bands. The left panels are evaluated at fixge0 and the
in Fig. 5 cross close tg,= 1. This implies that the gap at the right panels are evaluated @j=3/a. The sequence for the pan-
zone boundary first decreases to zero as a functiog, of els from top to bottom ig),=0, g,=7/a, andq,=0. See the text
and then increases again. Such a crossing is possible sinfm full details.
the two modes in question have different symmetries. To
illustrate this more clearly, we show the induced chargefluctuations localized at adjacent cell boundaries and that as
density fluctuations for various modes in Fig. 6. The lefta result, these modes effectively propagate independently of
panel of this figure corresponds tp,=0 while the right each other. This behavior is analogous to the situation in a
panel is forq,=3m/a. The sequence from top to bottom metallic slab where the symmetric and antisymmetric surface
illustrates the five lowest modes, starting with the=0 plasmons become degenerate at large wave vectors. The lo-
mode in the top panel, followed by the tveg= 7/a modes calization of the mode density at the cell boundaries in-
in the middle panel and finally the next pair@f=0 modes creases with increasingy, implying that the modes are
in the bottom panel. The right panel of Fig. 6 shows howchanneled in their propagation along the low-density part of
these mode densities change witgnis increased to 3/a. the gas.
It is the pair ofq,=m/a modes in the middle panel, which  We also see a similar convergence of the otiper 7/a
exhibits the frequency crossing in Fig. 5. Fgrvalues upto  mode with the next-higheq,=0 mode at largeg,. The
the crossing point, the lower-frequency modthe 2-8 explanation for this is the same as given above. The density
branch is symmetric with respect to reflections abowt 0,  fluctuation 8 shown by the solid line in the right-middle
while the next-highest modghe 3-7 branchis antisymmet- panel of Fig. 6 is the even-parity version of the odd-parity
ric. The ordering in frequency of these two modes is therdensity fluctuation 9 shown by the dashed curve in the
reversed at the crossing point, with the odd-parity mode lylower-right panel. A similar pairing ofj,=0 andq,==/a
ing lower. Similar behavior was found for the model densi-modes would also be expected for the higher-lying modes in
ties with weak modulation considered in Ref. 8, but for Fig. 5. This behavior is in fact more evident when the modu-
strong modulation an anticrossing behavior was observedation amplitude of the equilibrium density increaseee
As we shall see, the crossing behavior we find persists foFigs. 9 and 12 We should emphasize that the convergence
even stronger modulatior(see Fig. 9. of pairs ofq,= 0 andqg,= m/a mode frequencies implies that

A further examination of Fig. 5 shows the odd-parity these modes exhibit a very weak dispersion with respect to
mode atq, = 7r/a approaching the lowest-lying,=0 mode q,. The absence of an effect of tle&* phase modulation
with increasingg, (points 6 and Y. The reason for this can from one unit cell to the next reflects the lack of interaction
be explained by comparing the mode deng8yin the top- between adjacent density fluctuations.
left panel of Fig. 6 with the odd-parity densify) in the Returning to Fig. 4, we see that the gaps at the zone center
middle-right panel. Both mode densities are seen to be locakre unobservably small for this case of weak modulation.
ized at the cell boundaries where the equilibrium density idHowever, each of the higher-lying modes @gt=0 corre-
lowest, and both have a very similar spatial profile in thissponds to two distinct modes. This becomes apparent for the
region. The near degeneracy of these modes for lagge first excitedq,=0 modes in Fig. 5(starting at the point
indicates that there is a weak interaction between the densitpbeled 4 and pwhere it is seen that the frequencies separate
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0

(a)
. T . I . T . FIG. 8. As in Fig. 4, but for moderate modulation.

0.2 0.4 0.6 0.8 Fourier coefficients, so this result is to be expected. We also
oY) notice that theg, dispersion of the lowest branch is much
flatter than for the uniform gas. The explanation for this be-
havior is once again found in Appendix B, where we show
that the long-wavelength frequency of plasmons propagating
in the x directon is given by ?(d,d,=0)
=2mn,p(gy/my), wherem, is the effective band mass at
the zone center. Sinam, increases withV, the dispersion
of the plasmon becomes weaker with increasing modulation.
In Fig. 9 we present the, dispersion analogous to that
Fhown in Fig. 5 for the case of weak modulation. As ex-
ected, the characterist'ufq_y behavior is seen to persighe

FIG. 7. Power absorption as a function of frequency. The curve
are ordered from weakesgbottom to strongest(top) modulation
and are offset byAV,=1.0 a.u. The labelsa), (b), (c), and(d)
are consistent with the notation adopted in Figs. 1 and 2.

with increasinggy, . The lower-left panel in Fig. 6 shows the
mode densities for this pair of modes @j=0, and the
lower-right panel shows the densities @f=3w/a. One
mode has even parity with respect to the center of the cel

and the other has odd parity. The latter mode eventuall
party -6 branch, but now the 2D plasmon crosses the lowggst

evolves with increasing modulation into the lowest odd-— / de(th b h : . h
parity mode of an isolated wire. Since this mode has a finite,, 7' @ MO e(the 2-8 branch At these crossing points, the

dipole moment, it will couple to an external radiation field dispersion of the plasmon band as a functiorgeiis weak

and will contribute to the power absorption as indicated bySiNce the frequencies a,=0 andq,=/a are coinciden-
Eq. (56). To illustrate this, we show in Fig. 7 the calculated tally equal. As_ for the case of weak modulation, we also see
power absorption for different modulations of the 2DEG. the lowest pair ofg,=m/a modes(branches 2-8 and 3}7
The lowest curve labele@) corresponds to the case of weak CT0SSINg, implying that the lowest zone boundary gap closes
modulation being considered here and shows a small peak 8 SOme finite value od, . This again is possible due to the
the frequency of the first excitegl,=0 mode 4. This is es- different parities of these modd2 and 3 in the middle
sentially a bulk 2D plasmon at a wave vectpe2m/a. In

principle, otherg,=0 odd-parity modes should be observ- 1.0
able, but their oscillator strengths are too small to show up in 4 s
the power absorption. In fact, the dominant feature inthe /e
power absorption of curvéa) is the strong Drude peak at L
=0 which is to be expected since the system is only weakly
perturbed from a homogeneous 2DEG. We shall return to a 0.6
more systematic discussion of the power absorption later. 3

C. Moderate modulation

As the modulation is increased, the equilibrium density 0.2
profile becomes more localizédee the curve labeled i)
in Fig. 1]. The effect of this increased modulation on the
wavevector dispersion along thedirection is illustrated in
Fig. 8. A comparison of this figure with Fig. 4 reveals sev- 0 1 2 3
eral notable changes, the most dramatic being the increase in
the magnitude of the gaps at both the zone center and zone qy (/)
boundary. As we have already discussed in Sec. IV B, the
size of the gap is related to the magnitude of the density FIG. 9. As in Fig. 5, but for moderate modulation.
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b L in the amplitude of the Drude peak @at=0 and a transfer of
0.5 0.0 0.5 -0.5 0.0 0.5 oscillator strength to the other zone center modes.
x/a' D. Strong modulation
FIG. 10. As in Fig. 6, but for moderate modulation. The system is in the strong modulation regime when the

phase point lies above the solid curve in Fig. 2. In particular,
) . the phase poinfc) corresponds to an equilibrium density
panel of Fig. 10. The same behavior is now seen for the NeXjhich is made up of an array of isolated quantum wires.
pair of q,= m/a modes which also have opposite parity. The gince there is no appreciable density overlap between adja-
parity of the modes is of course preserved as a function ofent unit cells, we expect a relatively flag-dispersion for
qy, but thIS IS not the case as a func“onq:)(f. The mode the |ower p|asm0n bands' |n F|g 11, we showmdisper_
density 1 atq,=0 in Fig. 10 evolves continuously into the sjon for this case of strong modulation. Notice that the low-
mode density 2 as, is increased from O tar/a, and the est plasmon branch has been pushed down+® (because
parity of the mode remains unchanged. On the other hand, af the large effective band mass,) and is dispersionless.
q,=3m/a, the mode density 6 evolves continuously into 7, Somewhat surprisingly, the next-higher branch exhibits a
and thus a change in parity is observed as the mode disperséispersion that is larger than the next three branches lying
with respect tog,. This change in behavior is associated betweenw=0.5 andw=0.9 a.u. This would not be the ex-
with the crossing of the pair of,=w/a branches 2-8 and pected behavior in a tight-binding model of electronic band
3-7. structure in which the dispersion of the bands increases with
We again see in Fig. 9 the merging of zone boundary andhcreasing energy. This conventional band structure effect is
zone center mode frequencies at laggevalues. This behav- beginning to be evident at the top of Fig. 11. As we shall see,
ior is even clearer than in the case of weak modulation anthe anomalous dispersion of the first excited band is due to
the explanation is the same. The mode densities of the lowe#iterwire Coulomb interactions.
two modes atj,=3/a are labeled 6 and 7 in Fig. 10; the = The dispersion of the plasmons in thg-direction is
density profiles of these two modes have a very similar shapghown in Fig. 12. In contrast to the weak and moderately
near the cell boundaries where the equilibrium density ignodulated cases, there are now two gapless modes present in
smallest, and only differ in the relative sign of the densitythe spectruni® The Iong—wavelengtth—y character of the
fluctuation from one cell to the next. The weak interactiong,=0 2D plasmon 1 is still clearly apparent but there is a
between the density fluctuations localized at adjacent cebecond mode 2 withq,=w/a which has a linear
boundaries accounts for the near degeneracy of these modefispersior?® This branch originates from the 2-8 branch in
The same can be said of the pair of density fluctuations laFig. 9 and in fact corresponds to a 1D plasmon propagating
beled 8 and 9. along each wire, but with a density fluctuation that changes
The nature of the mode densities at the lowest zone centaign from one wire to the next. The two lowest curves in Fig.
gap is shown in the lower-left panel of Fig. 10. The model2 define the plasmon band for an array of quantum wires
labeled 4 is an odd-parity mode and contributes a peak to thend is qualitatively similar to the results found previously for
power absorption neap=0.25 a.u. as shown by the curve a quantum wire superlattice based on the RR&fs. 6, 11
labeled(b) in Fig. 7. It is this mode which eventually evolves or hydrodynamic model$.
into the center of mass mode in the limit of isolated 1D The next mode 4 in Fig. 12 is the center of m&€M)
wires. There is an additional weak peakaat=0.5 a.u. cor- mode for a 1D wire and the 4-9 and 3-7 branches define the
responding to the next odd-parity mode at the zone center. EM plasmon band. This band is qualitatively similar to that
is clear that increasing the modulation has led to a decreageund by Eliassoret al® The density fluctuation agj,=0
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cases; the density fluctuations shown by 7 and 8 in Fig. 13
are symmetric and antisymmetric versions of each other with
very similar density profiles at the edge of the wires. At this
large g, value, the density fluctuations on either side of the
wire interact with each other only weakly, as do the fluctua-
tions on different wires.

We turn next to the explanation of the finite bandwidth of
the 3-4 branch in Fig. 11. The origin of the dispersion is the
dipole-dipole interaction between the wires. We consider the
limiting case where the wire widtkV is small compared to
the interwire separatioa. Forq, =0, the electric field expe-
rienced by thenth wire in the dipole approximation is

2 ! pn+s
E,=— , (60)
0 1 2 3 " a? 2 s?
qy (rv/a) wherep, is the dipole moment per unit length and the sum
over s excludes thes=0 term. We now suppose that the
FIG. 12. As in Fig. 5, but for strong modulation. dipole moment has a plane wave modulation intrdirec-

tion: p,=poe'™"2. In this case, the electric field is given by
and q,=0 is shown by 4 in Fig. 13 and, to an excellent ,
apprQX|mat|<_)n, is simply the denv_atlve_ of the c_aql_J|I|br|um E :@éqxna , ﬂ‘
density profile shown by curvéc) in Fig. 1. This is the nT g2 Z 2
expected behavior of the “sloshing” CM mode for parabolic
confinemenf®*?> As one disperses along, to 3 at g, The quantitiep,, andE,, are connected through the relation
=mla, or alongq, to 9 atqg,=3n/a, one sees that the p,=a(w)E, wherea(w) is the dipole polarizability of the
density fluctuations at all positions are essentially the sameavire. Since the confining potential for the wire is roughly
Thus, this mode is an intrawire mode with very little inter- parabolic, the polarizability is given b)a(w)z)\/(wg

action between the wires. —?), wherex=an,p, is the line density of the wire and

Another interesting feature in Fig. 12 is the way in which wo=+272V,/aZ is the frequency of the harmonic potential.

the plasmon band merges with the CM band for lagge  ysing this result in Eq(61), we find the following dispersion
This is reminiscent of the mode dispersions found in 3Dyg|ation for the CM band:

parabolic well$? where the surface plasmon merges with the

CM mode at higher wave vectors. The reason for the merg- AN 2 codq,as)

ing is the same as in the weak and moderate modulation w2=w§— — —_— (62)

a2 &1 S2

! @/ This result is entirely consistent with the obseregdlisper-
T T ® sion for the 3-4 branch shown in Fig. 11.
0 Finally, we discuss the FIR power absorption in Fig. 7.

Each successive curve corresponds to a modulation increase
of AVy=1.0 a.u., starting a8fy=2.0 a.u. The curves labeled

(61)

-1 (a) and(b) were discussed earlier in the context of weak and
1 moderate modulation, respectively. We note that an increase
\@j in the strength of the modulation transfers oscillator strength
) | ! ) from the Drude peak to the higher,=0 modes having a
\E 0 VA— — = nonzero dipole moment. The two peaks which grow in inten-
) i VS i V7 sity between curvesa) and (b) evolve from theq=27/a
\/® \1®© andq=4m/a 2D bulk plasmons. Both peaks are redshifted
—1 AL AL

with increasing modulation with respect to their positions in
the uniform gas limit. Near the curve labeléa], this trend is

1
i 7
_ ® _ / reversed and the peak frequencies begin to increase with fur-
@ @) ther increase in modulation. At the same time, the oscillator

0 NV N\ K strength of the lower peak continues to increase, while that

of the higher-frequency peak begins to decrease. Beyond this
point we also see a rapid reduction in the strength of the
Drude peak atv=0.
-0.5 0.0 0.5 -0.5 0.0 0.5 The change in behavior of the peak positions and intensi-
ties near the curvéb) occurs as the 2D-1D phase boundary
x/a in Fig. 2 is being crossed. Thus, a signature of the-2ID
transition is the observation of a minimum in the fundamen-
FIG. 13. As in Fig. 6, but for strong modulation. tal resonance frequency as a function of modulation, and the
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alistic description of the collective excitations in a modulated
2DEG. We have presented a detailed investigation of the
equilibrium properties, and have numerically mapped out the
parameter space that defines the transition from 2D to 1D
behavior. We have also calculated the plasmon dispersions
for propagation along and across the modulation direction in
the weak, moderate, and strong modulation limits. In agree-
ment with earlier work on this problem, the modulation of
the equilibrium density leads to the appearance of gaps in the
plasmon dispersion in the direction of the modulation; as the
modulation becomes stronger the bands become narrower

and the gaps larger. For propagation in a direction perpen-
dicular to the direction of modulation, we have shown that
the long-wavelength 2D plasmon is unaffected by the modu-
lation potential. However, at shorter wavelengths, the plas-
mon dispersions exhibit interesting behavior as a function of
gy and the explicit calculation of the mode densities provides
a more complete understanding of the physical nature of
FIG. 14. Zone boundaryopen circley and zone centeffiled  these excitations.
circles frequenciegin a.u) atq,=0 as a function of the strength of The power absorption in the long-wavelength limit has
the modulating potential. The solid curves are the solutions giveralso been calculated for a range of modulation potentials. We
by Eq.(A1l) for n=1. have found that the oscillator strength is predominantly in

. . the Drude peak for weak modulation and shifts to higher
disappearance of the Drude peak. Beyond this minimum, thgisole modes as the modulation is increased. The reduction

fundamental resonance grows in intensity as it evolves intgf e prude peak is one useful indicator to gauge the effec-
the CM (Kohn) modé®** for parabolic confinement. For e dimensionality of the system. We have also shown that
Igrg_e modulatlo_ns, the quan;um wires are .WeII separated anglo op pulk plasmon a=2/a evolves continuously with
sit in an effectlvelly harmqnlc potgntlal vylth frequenay increasing modulation into the CM mode of a quantum wire
=y2m"Vo/a®, which explains the increasing trend observedgyperlattice. The frequency of the mode at first decreases,
in Fig. 7. This also explains why the f_undamental resonanc@ng then passes through a minimum as the 2DEG makes the
eventually exhausts the total FIR oscillator strength. transition from a continuous charge distribution to an array
As an overview of our results, we plot in Fig. 14 the zoney isolated wires. This minimum is a second signature of the
boundary and zone center frequenciegat 0 as a function  2p_,1p crossover. At large modulations, the confining po-
of the strength of the modulating potential. Only the lowestiantial is effectively harmonic, and the FIR oscillator
ZB modes exhibit a linear separation of the frequency withsirength resides in the CM mode in accord with the general-
Vo and is in accord with our perturbation theory results. Thejzed Kohn theorem.
lower branch i_s seen to tend to zero\Agincreases as this We are at present completing a detailed analysis of the
mode evolves into the ZBor out-of-phaseplasmon of a 1D magnetoplasma excitations in laterally modulated 2D sys-

wire superlattice. The lowest ZC modimdicated by solid tems. These results will be reported elsewhere.
circles tracks along the CM mode in Fig. 7 and, as discussed

above, goes through a minimum at the transition from 2D to
1D behavior. This behavior is qualitatively similar to that

observed;"**although it should be noted that in the experi-  The work was supported by a grant from the Natural Sci-
ments the average density of the gas decreased as a functigfces and Engineering Research Council of Canada. We

of the gating potential, whereas our results are for a constagfouid like to thank Dr. D. A. W. Hutchinson for useful
density. The CM mode crosses the upper branch of the segfiscussions.

ond ZB mode aV,/E;=20 and the pair then defines the CM
band with its dipole induced dispersion. For the higher
modes we see the merging of successive pairs of ZC and ZB
modes in the 1D limit. The increasing frequency of these

modes is once again due to the increasing curvature of the |n this appendix, we determine the eigenvalue spectrum
confining potential. Figure 14 extends the variation of theof 3 |aterally modulated 2DEG in the weak modulation re-

mode frequencies with/, into the localized 1D regime gime. The eigenvalue problem that we wish to solve is
which is beyond that given previousiy° In particular, we

do not find the unphysical result claimed in Ref. 10 that the
system does not support plasmons in the strong localization
limit.

0.0 — T ——
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APPENDIX A: CALCULATION
OF PLASMON BAND GAPS

H)ZCG: E BGG’MG'G”CG”
c'G"

V. CONCLUSIONS = NggCq' (A1)
Gl

In this paper, we have demonstrated that the Thomas—
Fermi—Dirac—von Weizs&er approximation provides a re- with



2092 B. P. van ZYL AND E. ZAREMBA PRB 59

0.2 . o -
1.0 // ax=0, Glznau Gzz_ng. (A5)
I PV / wheren is an even integer, while at the zone bound&R)
[~ I}
:N 0.0 — :/ v aw a
> 0 10 20 30 40 ‘/ qx:a’ Gl:(n_l)g’ GZZ_(n_'—l)g, (A6)
< 01 - /
N // wheren is an odd integer. At either ZC or ZBg,+ G|
N IR =|gy+G,|=nmwla=q, and G,— G,)=2nn/a=2q,.
- i /// N We now apply degenerate perturbation theory to obtain
/1 \\ first—order corrections to the frequencies at these points in
/7 N the first Brillouin zone. Retaining only the two degenerate
ey modes of interest, we obtain the secular equation
0.0 — T = T T T T
0 1
0 10 20 30 40 w’cg,=Ng ¢,Ce,+Ng,c,Co,
Vo/Ef (A7)

w?Cg,= Nézelceﬁ N8202062'

FIG. 15. The first three Fourier coefficients of the equilibrium
charge density as a function of modulation strength. The curves ar®/
normalized with respect to the average areal densijty. Here  rection to theN matrix. It is given by
G,=2n7/a, with n=1 corresponding to the figure insé&tolid

hereNg g, =Ng g, is the lowest-order off-diagonal cor-

I;E(re\)/,e.nzz the short-dash—long-dash curve amd 3 the dashed Néle: 5?31G1|T4(13162+ Bélemngz’ (A8)
where
N = B HM "G . A2
GG GE ce"Mare (A2) . YR ac,
M =—"\/ — o[ 29,]+ —=ng[ 2
In the absence of an external modulation, tematrix is ©1% g, a Yol 2an] Ja ol 20}
diagonal. Denoting the matrices in this limit by a superscript
0, we have 3C,_ 2Ny —
— —=#0l 20n]— —==03¢o[ 20],
BOe = [(0x+ G)*+ 48] dccr Ja Vizoa
_ (A9)
~ 44n — 2
0 _ 2D _ 3 J—
Mgg = +4C1nyp— 5 C3Vnyp Bélezz — —q%%0[ 20,].
VN2p

V(o +G)?+aq;

A — —
+ 7W[(Q><+ G)%+ qi] (A3) In the aboveo[ 29,] and ng[ 2q,,] denote thenth Fourier

components of the ground-state wave funcﬂon and charge

density, respectivelysee Fig. 1h Replacingyg[2q,] by
no[29,]/2Vn,p, Eg. (A8) can be cast in the form

NOGG/:E B(()BG”MOG”G’ n.

] Nol240,]

© Ng,6,=[— ©§(dn)+3 CaVnapds— 3 Ny [— :

No[ 20)0]

(A10)

5GG/ .

With these results, we have qf§=0,

=| 2N p|dy+ G|+ (2C:np— § C3Vnzp)
This implies that the eigenvalues of E@\7) are given by

Ay
X (Oxt+G) 2+ — (0 +G)*| S
(Gt O (4O | 2oo o2 (00 =NO[q, ] [N g, ]

_ 2

=wo(a+G)dgg (A4) = w3(0y) | wf(d) — § C3VNzp02+3 ol
This equation gives the plasmon frequency in Sec. IV A. 2
With G taking on all possible values, can be restricted to % E)[ Gn] ' (A11)
the first Brillouin zone,— w/a<q,</a. Nol 200]

The introduction of an external modulation lifts the de- 0 0 1 1 )
generacies in the uniform gas spectrum at the zone cent¥fnereN"[g,]=Ng ¢ andN*[q,]=Ng ¢,. The size of the
(g,=0) and at the zone boundarg,(=7/a). At the zone gap at the ZC or ZB is given by|Rl;[q,]|. We have tested

center(ZC), the reciprocal lattice vectors coupling degener-the validity of Eq.(A11), and in the regime where the per-
ate modes are given by turbative results are valid, we find excellent agreement be-
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tween the analytical and numerical calculations as illustrated o . " 4o
in Fig. 14. In the Hartree approximation, we obtain the imMgg = Iim MGG':E Yol Glo[G']. (B2
simple relation q-0 q-0
no[24,] With this result, and noting thatSg hge o[G']
2 (An) = wg(dn)| 12 |=—— (Al2)  —¢o(q)n i
®5(0n oldn)| L= : =¢go(9) Yol G], Eqg. (B1) can be written as
No[ 2d]
This result is entirely consistent with the one obtained by ) 41 — —
Krasheninnikov and Chapfikn the long-wavelength limit. Ay CG:E%(Q)%[G] GE bo[G"lcgr.  (B3)
APPENDIX B: DETERMINATION The eigenvalues)? of Eq. (B3) are thus given by
OF LONG-WAVELENGTH DISPERSIONS
A persistent feature of the dispersion relations we have 2( )= 4mNyp () (B4)
calculated (see Figs. 4, 8, and 1lis that the long- @™(Gx. Gy q o9

wavelength limit of the lowest plasmon has the characteristic o B

Jq dependence of the 2D-bulk plasmon, regardless of theince np=a =gl G]|%. For smallq we haveeq(q)
modulation. In this section, we show analytically that the= (\,/2)[(g2/m,) +q§], where m, is the effective band
long-wavelength behavior of the lowest plasmon branch isnass due to the confining potential in the modulation direc-

Jq for any modulation amplitude. tion. Of interest here is the determination of the dispersions
Once again, the eigenvalue problem that we are solvingn both theq,=0,,—0 andqg,=0,g,—0 limits. In these
has the form two cases we have
wZCG= E BGG!MG!GHCGH wz(qxzo,qy)IZWFZqu, (85)
G!GH
1 ~ 2 27TF2D
=)\— z hGG’MG’G”CG”' (Bl) w (qx,quO): —qX' (86)
w G/G// mX

wherehgg, is the Hamiltonian which, fogy =0, determines  Equation(B5) illustrates the fact that for any modulation, the
the ground-state von Weizseer wave functiony,o[G]. In long-wavelength behavior of the 2D plasmonyig,. Equa-

the long-wavelength limit, the dominant contribution to the tjon (B6), on the other hand, indicates that ttie, dispersion
M-matrix comes from th&”=0 component of the Hartree is suppressed with increasing modulation as a result of the
matrix in Eq.(39), effective massn, .
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