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Thomas–Fermi–Dirac–von Weizsäcker hydrodynamics in laterally modulated electronic systems

B. P. van Zyl and E. Zaremba
Department of Physics, Queen’s University, Kingston, Ontario, Canada K7L 3N6

~Received 10 August 1998!

We have studied the collective plasma excitations of a two-dimensional electron gas with anarbitrary lateral
charge-density modulation. The dynamics is formulated using a previously developed hydrodynamic theory
based on the Thomas–Fermi–Dirac–von Weizsa¨cker approximation. In this approach, both the equilibrium
and dynamical properties of the periodically modulated electron gas are treated in a consistent fashion. We pay
particular attention to the evolution of the collective excitations as the system undergoes the transition from the
ideal two-dimensional limit to the highly localized one-dimensional limit. We also calculate the power absorp-
tion in the long-wavelength limit to illustrate the effect of the modulation on the modes probed by far-infrared
transmission spectroscopy.@S0163-1829~99!10403-X#
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I. INTRODUCTION

Two-dimensional electronic systems, as found in sin
heterojunction interfaces or in more complex structu
such as quantum wells, have been studied intensively
cause of their fundamental interest and for their poten
application.1–4 In particular, the two-dimensional electro
gas ~2DEG! with a spatially periodic modulation of its
equilibrium density has attracted considerable attention b
theoretically5–19 and experimentally.20–28 One way of
achieving these systems20 is to apply a voltage between
patterned gate and the 2DEG, thereby inducing a o
dimensional periodic modulation of the density. As the g
voltage is increased, electrons tend to ‘‘pool’’ near t
minima of the modulating potential and, in the limit of stron
modulation, the system transforms into a periodic array
1D quantum wires. It is clear that the restricted motion of
electrons along the wires will have a profound effect on
character of the plasma excitations in the system. Our m
focus in this paper will be to study the evolution of the
collective modes with increasing modulation of the 2DE
and in particular, the crossover from 2D to 1D behavior.

The theoretical approaches commonly used to discuss
lective excitations in charge-density-modulated systems
be classified broadly as being either hydrodynamic
nature,7–10,30,31or based on the random phase approximat
~RPA!.6,11–15,17–19The hydrodynamic approaches are appe
ing because of their relative mathematical and computatio
simplicity. Although they vary in their level of sophistica
tion, they all have in common the objective of describing t
dynamics of the electronic system in terms of a closed se
equations for the density and velocity fields. At the simpl
level of approximation,5,10,16 the current density in the elec
tron fluid is determined by a local conductivity, proportion
to the equilibrium electron density. Poisson’s equation
then used to relate the electric field driving the current to
fluctuating electron density. Rather than explicitly determ
ing the equilibrium properties of the electronic system,
equilibrium density is simply chosen to have some phy
cally reasonable form. We shall refer to such theories
‘‘classical’’ in that no explicit quantum-mechanical aspec
PRB 590163-1829/99/59~3!/2079~16!/$15.00
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are included in either the equilibrium or dynamical prope
ties.

Although the classical treatment is useful for obtaining
qualitative understanding of the collective modes in a mo
lated 2DEG, it has the shortcoming of not being able
account for nonlocal effects~e.g., in the magnetoconductiv
ity tensor!, which become important with increasing magn
tude of the plasmon wave vector. Nonlocal effects in t
plasmon dispersion can be included in the hydrodyna
theory through the introduction of an electron
compressibility.9,30 In this way some information about th
quantum-mechanical equation of state can be built into
theory. In this respect, these theories can be referred t
‘‘semiclassical.’’ The RPA on the other hand, provides
fully quantum mechanical description of both the equili
rium and dynamical behavior. However, being more gene
the computational demands for its implementation are s
nificantly greater. Furthermore, since it includes both sing
particle and collective aspects, it is sometimes difficult
cleanly identify excitations which are predominantly colle
tive in nature.29 For both of these reasons, it is still worth
while having available hydrodynamic based theories.

In this paper, we investigate the collective response o
modulated 2DEG using the Thomas–Fermi–Dirac–v
Weizsäcker ~TFDW! hydrodynamics previously develope
to treat magnetoplasma excitations in three-dimensio
parabolic wells32,33 and electron rings.34 One of the primary
virtues of this approach is that it is based on a reasona
accurate description of the ground-state properties of
electronic system, which are determined self-consiste
from the minimization of the TFDW energy functiona
Thus, unlike most earlier hydrodynamic treatments, the fo
of the equilibrium density is not chosen arbitrarily. Perturb
tions of the system away from the equilibrium state gener
internal forces which drive the system back towards equi
rium. These forces are consistently included in the TFD
hydrodynamic equations used to describe the dynamic
the system. Although somewhat more sophisticated,
present approach nevertheless retains much of the m
ematical simplicity of the usual hydrodynamic theories.

Our paper is organized as follows. In Sec. II we determ
the equilibrium properties of a periodically modulated 2DE
2079 ©1999 The American Physical Society
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2080 PRB 59B. P. van ZYL AND E. ZAREMBA
within the TFDW approximation. Section III A then provide
the mathematical formalism needed to study the dynamic
the collective modes and includes a derivation of the po
absorption which is typically measured in infrared transm
sion experiments. In Sec. IV, we consider in detail the cro
over from 2D to 1D behavior in the periodically modulate
2DEG, and finally in Sec. V, we present our concluding
marks.

II. EQUILIBRIUM PROPERTIES

The fabrication of mesoscopic devices often begins wit
2DEG in metal-oxide-semiconductor~MOS! structures or
epitaxially grown heterojunctions. In these systems,
strong confinement of the electrons in the direction norma
the interface leads to a discrete spectrum of quantized
band states, while motion in the lateral dimensions is ess
tially free. In the limit that electronic excitations take pla
within only a single subband, the system can be idealize
strictly two dimensional with no spatial extent in the norm
direction. In this situation, the electronic density has the fo
n(x,y,z)5n(x,y)d(z), where the planar densityn(x,y) is
defined by whatever additional lateral confining poten
vext(x,y) is imposed on the system.

To determine the equilibrium density distributionn(x,y),
we shall make use of the Thomas–Fermi–Dirac–v
Weiszäcker energy functional:

E@n#5E dr FC1n21C2

u¹n~r !u2

n~r !
2C3n3/2G

1
1

2 E drE dr 8
n~r !n~r 8!

ur2r 8u
1E dr vext~r !n~r !.

~1!

The first term in Eq.~1! is the Thomas–Fermi kinetic energ
the second term is the von Weizsa¨cker correction to the ki-
netic energy, and the third term is the Dirac local exchan
energy.35 For simplicity, we neglect any correlation contr
bution. The coefficients in Eq.~1! are given by~atomic units,
e2/e5m* 5\51, are used throughout!

C15
p

2
, C25

lw

8
, C35

4

3
A2

p
. ~2!

In the von Weizsa¨cker coefficientC2 , the parameterlw is
chosen to have the value 0.25, which was found in ot
applications36 to provide the best agreement between
TFDW and full density-functional theory calculations. Th
last two terms in Eq.~1! are the Hartree self-energy of th
electrons and the interaction with the external potential,
spectively.

The equilibrium properties are obtained by finding t
variational minimum of Eq.~1!. This leads to the Euler
Lagrange equation

dE@n#

dn~r !
2m50, ~3!

where the Lagrange multiplier~chemical potential! m serves
to fix the total number of electronsN. By introducing a wave
of
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function according to the prescriptionn(r )5c2(r ), a
straightforward calculation yields

2
lw

2
¹2c~r !1veff~r !c~r !5mc~r !, ~4!

where the effective potential is given by

veff~r !52C1c2~r !2 3
2 C3c~r !1f~r !1vext~r !. ~5!

Here,f(r )5*dr 8n(r 8)/ur2r 8u is the electrostatic potentia
arising from the electronic densityn(r ). Eq. ~4! is a nonlin-
ear equation inc(r ), and must be solved self-consistentl
The required solution to Eq.~4! is the ground-state wave
function, hereafter denoted byc0 , and the ground-state en
ergy eigenvalue definesm.

This formulation of the equilibrium properties of the ele
tronic system is quite general in the sense that the phys
situation is completely specified by the form of the extern
potential. For the case of 1D modulation, the poten
vext(x) will be assumed to be a smooth, periodic function
x with perioda. This potential can of course be represent
as a Fourier series, but we shall consider only the simp
form

vext~x!52V0 cosS 2px

a D ~6!

having a single Fourier component. This choice is suffici
to investigate the important effects of modulation on t
properties of a 2DEG, and has been applied successfully
other researchers14,15,28 to model laterally microstructured
field-effect devices used in far-infrared~FIR! experiments.

The translational invariance of the system along they di-
rection, together with the periodicity of the external confi
ing potential, implies that the solution to Eq.~4! will only
depend onx and will have the property thatc0(x1a)
5c0(x). Thus, we can restrict our calculation to the unit c
xP@2a/2,a/2#. For potentials such as Eq.~6! with inversion
symmetry about the center of the cell, the desired soluti
are those satisfying the boundary conditions

c08S 6
a

2D50. ~7!

To complete the determination ofc0(x), we must finally
impose the normalization condition

1

a E
2a/2

a/2

dx uc0~x!u25n̄2D , ~8!

wheren̄2D is the average electron density in the modula
2DEG.

Before discussing the nature of the ground state solu
to Eq.~4!, we first note some technical points involved in th
calculation. As is typical of density-functional theor
schemes, the solutions are obtained using an iterative pr
dure, and issues of numerical stability and converge
therefore arise. The usual source of numerical instabilitie
the long-ranged nature of the Coulomb interaction. In
course of iterating, a small deviation of the charge dens
from its true value leads to a change in the effective poten
that tends to induce an overcompensating screening ch
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on the next iteration. In our particular case, this results in
oscillation of the charge between the central and outer
gions of the unit cell, which inhibits the desired convergen
of the iterative procedure. This problem can be remedied
a combination of two strategies. First, we introduce an al
braic mixing of the effective potential

veff
~ i 11!5aveff@n~ i !#1~12a!veff

~ i ! , ~9!

whereveff
( i ) is the effective potential on theith iteration,n( i ) is

the density generated by this potential andveff@n( i )# is the
effective potential that this density would lead to. The m
ing parametera lies between zero and one and reducing
value reduces the change in the potential from one itera
to the next. This by itself will eliminate the instability in
some cases, as for example when the modulation period
relatively small. However, to access the physically relev
modulation periods (100 nm,a,1500 nm in GaAs!, an ex-
tremely small value ofa would have to be used, which re
sults in an unacceptably slow rate of convergence. This p
lem can be overcome by means of a second strategy in w
the long-range nature of the Coulomb potential is effectiv
screened. The screening is conveniently formulated in F
rier space using the algorithm

f~ i 11!~q!5
2pn~ i !~q!

Q
1S 12

q

QDf~ i !~q!, ~10!

wheref(q) and n(q) are the 2D Fourier transforms of th
electrostatic potential and 2D electron density, respectiv
Q5Aq21k2, andk is an artificial screening parameter. On
can check that the first term on the right-hand side of
~10!, in which the density acts as a source, leads to an ex
nentially decaying potential in real space. Nevertheless
self-consistency, f ( i 11)(q)5f ( i )(q)5f(q)[2pn(q)/q,
which is just the Fourier transform of the actual Coulom
potentialf~r !. By choosingk of order unity, we were able to
obtain convergence in all cases of interest witha.0.005.
Although these values ofa are still rather small, they pro
vided a rate of convergence that was significantly better t
that achieved with the algebraic mixing scheme alone.

The solution to Eq.~4! is shown in Fig. 1 for a range o
potential modulation amplitudes. It is useful to repres
these amplitudes in the dimensionless formV0 /Ef , where
Ef5

1
2 kf

2 is the Fermi energy of the uniform 2DEG and th

Fermi wave vectorkf is defined bykf
2[2pn̄2D . With an

application to GaAs in mind, typical densities are in t
range 1011– 1012 cm22. Using the effective massm*
50.067me and static dielectric constante513.0 of GaAs, the
atomic unit of length is the effective Bohr radiusa0* 5103 Å,
and the unit of energy is the effective RydbergRy*
5e2/2ea0* 55.4 meV. In these units, a density of 1011 cm22

is approximately 0.1(a0* )22; this is the value of the averag
density used to generate the density distributions in Fig
The equilibrium densities in this figure span the range fr
weak to moderate to strong modulation, and illustrate
way in which the cell-boundary density decreases with
creasing values ofV0 . In the extreme localized limit, the
system consists of isolated quantum wires, each of whic
confined within an approximately harmonic potential well
curvature 2p2V0 /a2. It can be seen that the density in th
n
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limit is similar to the semi-circular profile found in the clas
sical electrostatic approximation,16 and only deviates signifi-
cantly from this form at the edges of the quantum wire a
result of the quantum mechanical barrier penetration
cluded within the TFDW approximation.

In Fig. 2, we have constructed a ‘‘phase’’ diagram in t
(akf2V0 /Ef) plane that marks the boundary between loc
ized and delocalized solutions of Eq.~4!. To generate these
curves, we have used the criterionn0@6(a/2)#50.1n̄2D .
This condition is rather arbitrary, and a value somew
greater than or less than 1/10 could have been used to
erate a similar set of curves. The solid and dashed cu
correspond to average 2D densities ofn̄2D50.1 and n̄2D
51.0, respectively and span the range of densities of ph
cal interest. The open circles represent the phase bounda

FIG. 1. Equilibrium density profiles of Eq.~4! with vext given by
Eq. ~6!. The curves labeled by~a!, ~b!, ~c!, and ~d! correspond to
V0 /Ef56.4, 19.1, 28.6, and 41.4, respectively. The mean densit

all cases isn̄2D50.1.

FIG. 2. ‘‘Phase’’-diagram for the 2D→1D transition. The solid

and dashed curves include all interactions withn̄2D50.1 andn̄2D

51.0 respectively. The open circles correspond to the noninter
ing phase curve~i.e., a confined noninteracting Fermi gas!, which is
independent of the average 2D density.
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2082 PRB 59B. P. van ZYL AND E. ZAREMBA
the case of noninteracting electrons obtained by ignoring
electrostatic and exchange potentials in Eq.~5!. In this limit,
one can show from Eq.~5! that the scaled wave functio
kfc0(x) as a function of the scaled lengthx/a depends on
the density only through the two parametersakf andV0 /Ef .
As a result, the phase boundary in the (akf –V0 /Ef) plane is
a universal curve which is valid for any density. It can
seen that this scaling property of the wavefunction does
apply once interactions are included. We have also indica
by the labeled points the values of the parameters co
sponding to three of the density profiles in Fig. 1. These w
obtained for a density ofn̄2D50.1, so that the position of th
points relative to the solid curve in Fig. 2 is relevant; po
~b! is associated with a strongly modulated but extended d
sity while point ~c! is well into the localized region.

The parameterakf can be used to distinguish two regim
of interest: the rapidly varying regimeakf!1 where the
modulation period is small compared to the Fermi wa
length of the average density, and the slowly varying regi
akf@1. In the former limit, all of the curves approach a
asymptote which is weakly dependent on density. This li
of strong quantum confinement can be understood simpl
terms of the criterion that the potential barrier height,V0 , is
large compared to the quantum-mechanical zero point en
\2/ma2. We thus conclude that the phase boundary is gi
approximately byV0 /Ef;(akf)

22, which is consistent with
the numerical calculations. In this limit, the quantum kine
energy is deciding the question of localization. In the opp
site limit of a slowly varying potential (akf@1), the von
Weizsäcker kinetic energy becomes negligible and we
cover the Thomas-Fermi~TF! approximation. The experi
mental situations of interest are typically in this TF lim
The phase boundary now approaches a straight line with
slope in the noninteracting case~open circles! and finite
slope in the interacting case~solid and dashed lines!. The
behavior of the noninteracting curve follows from the T
density,nTF(x)5n̄2D1 (V0 /p)cos(2px/a), and our criterion
for localization impliesV0 /Ef.1, which is to be expected
when the energy of the gas is exclusively kinetic. On
other hand, the behavior of the interacting phase bounda
can be understood in electrostatic terms. The external po
tial vext(x) can be viewed as arising from a modulation of t
external positive background density about the average v
n̄2D : the amplitude of this density modulation,Dnext, is re-
lated toV0 by V05(2p/G) Dnext5aDnext. Since the elec-
trons simply neutralize the positive background locally in t
TF limit, the criterion for localization becomesV0.an̄2D ,
which implies V0 /Ef. (1/pkf) (akf). Thus, the phase
boundary has a slope inversely proportional to the squ
root of the average density, consistent with the results
Fig. 2.

We may also consider general solutions of Eq.~4! which
for the case of one-dimensional periodic modulation w
take the form of Bloch-like states in thex direction,
cnqx

(x)5eiqxxunqx
(x), whereunqx

(x) is a periodic function

of x, multiplied by a plane-wave factoreiqyy in the y direc-
tion. Here,qx is restricted to the first Brillouin zone,2p/a
<qx<p/a, and n is a band index. Theq50 state in the
lowest band is the ground statec0(x) considered previously
Although the significance of these general solutions is
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immediately apparent, we shall see that they have some
evance to the calculation of the collective excitations in
modulated 2DEG, which similarly exhibit a Bloch-like struc
ture. For the purpose of comparison with the plasmon ba
to be calculated, we show in Fig. 3 the TFDW energy ban
in thex direction for the case of moderate modulation@~b! in
Fig. 1#.

III. COLLECTIVE EXCITATIONS

A. Hydrodynamic equations

In order to determine the plasma modes in the modula
2DEG, we adopt the TFDW hydrodynamic approach dev
oped previously.32 This is based on the usual continui
equation

]n

]t
1¹•~nv!50, ~11!

and the momentum equation

nF]v

]t
1v•¹vG5nF2nv3vc , ~12!

whereF5Fint1Fext includes both the internal force acting o
the electrons,

Fint~r ,t !52¹Fveff~r ,t !2
lw

2

¹2c~r ,t !

c~r ,t ! G , ~13!

as well as any additional time-dependent external for
Fext(r ,t). The potential termveff in Eq. ~13! contributes the
expected force corresponding to the internal TF pressure
Coulomb-derived potentials, while the remaining term is
sociated with the von Weizsa¨cker kinetic energy. For com
pleteness, we have also included in Eq.~12! the magnetic
force due to an externally applied magnetic field,B, which
we shall take to be uniform and perpendicular to the 2D
~i.e., B5Bẑ). This force is expressed in terms of the cycl
tron frequency vectorvc5eB/m* c. Although we defer an
explicit treatment of magnetoplasma modes to a future pa

FIG. 3. The calculated TFDW energy bands along the direct
of modulation. This figure is evaluated for a moderate modulat
corresponding to~b! in Fig. 1.
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we shall develop the equations for this more general situa
as very little additional effort is needed to do so.

Self-consistent solutions to our hydrodynamic equatio
are obtained by linearizing the density in small deviatio
from equilibrium, viz., n→n01dn. If the time-dependen
density is represented asn5c2, the fluctuation of the von
Weizsäcker wave function,dc, is related to the density fluc
tuation bydn52c0dc. Retaining only first-order quantitie
~the velocityv is itself first order!, Eqs.~11! and ~12! yield

]dn

]t
1¹•~n0v!50, ~14!

and

]v

]t
5dF2v3vc , ~15!

where the fluctuating force is given by

dF52¹F dveff2
lw

2c0
¹2dc1

lw

2

¹2c0

c0
2

dcG1dFext,

~16!

with

dveff54C1c0dc2 3
2 C3dc1df. ~17!

The bracketed term in Eq.~16! will be denoted byf , so that
dFint52¹ f .

For the purpose of determining the normal mode frequ
cies of the system and the associated mode densities,dFext

can be set to zero. We shall later consider the response o
system to external fields in the calculation of the power
sorption. Due to the translational invariance in they direc-
tion, all of the fluctuating variables (dn, dc, f, andv) will
have the form of a propagating waveei (qyy2vt) with
x-dependent amplitudes. Making use of this depende
Eqs.~14! and ~15! can be expressed in the form

2 ivdn1 in0qyvy1
]

]x
~n0vx!50 ~18!

and

~v22vc
2!v5 ivdF2~vc3dF!, ~19!

respectively. In these equations, only thex-dependent ampli-
tudes are displayed. Recalling thatdF52¹ f , we have

vc3dF5~ iqyvcf !x̂2S vc

] f

]xD ŷ. ~20!

The use of Eq.~20! in Eq. ~19!, along with Eq.~18!, then
leads to

v~v22vc
2!dn5qy

2vn0f 2v
]

]xS n0

] f

]xD2vcqy

]n0

]x
f .

~21!

Equation~21! can also be expressed in terms of the flu
tuating wave function by usingn05c0

2 and dn52c0dc.
With this substitution, we find
n

s
s

-

the
-

e,

-

v~v22vc
2!dc5 1

2 qy
2vc0f 2vc08 f 82 1

2 vc0f 92vcqyc08 f ,
~22!

where derivatives with respect tox are now denoted by
primes. Noting thatc0f 95(c0f )92c09 f 22c08 f 8, Eq. ~22!
yields,

v~v22vc
2!dc5 1

2 qy
2v~c0f !1 1

2 v
c09

c0
~c0f !

2 1
2 v~c0f !92vcqy

c08

c0
~c0f !. ~23!

The advantage of this form is that the function (c0f ) and its
derivatives now appear on the right-hand side, where

c0f 5c0dveff1
lw

2 S c09

c0
1qy

2D dc2
lw

2
dc9

[M̂dc1ĥdc. ~24!

The operatorM̂ is defined byM̂dc[c0dveff and

ĥ52
lw

2 S d2

dx2
2qy

2D 1veff2m ~25!

is just the Hamiltonian~for qy50) determining the ground
state von Weizsa¨cker wave functionc0(x). Substituting Eq.
~24! into ~23! yields

v~v22vc
2!dc5vlw

21ĥ~ ĥ1M̂ !dc2vcqy

c08

c0
~ ĥ1M̂ !dc .

~26!

In the limit of vanishing magnetic field, this reduces to

lwv2dc5ĥ~ ĥ1M̂ !dc . ~27!

Due to the periodicity induced by the modulating pote
tial along thex direction, the fluctuating part of the wav
function will have the Bloch-like form

dc5eiqxx(
G

cGwG , ~28!

where cG is a Fourier expansion coefficient andwG

5(1/Aa) eiGx. These basis functions have been chosen
satisfy the orthonormality condition

E
2a/2

a/2

dxwG* ~x!wG8~x!5dGG8 , ~29!

where G5 (2pn/a) (n50,61,62, . . . ) is a one-
dimensional reciprocal lattice vector in thex direction. Sub-
stituting the Fourier expansion~28! into ~26!, we obtain the
equation

v~v22vc
2!cG52vcqy (

G8G9
AGG8M̃G8G9cG9

1v (
G8G9

BGG8M̃G8G9cG9 , ~30!
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2084 PRB 59B. P. van ZYL AND E. ZAREMBA
where the various matrices appearing in this equation
defined as

AGG85
i

Aa
~G2G8!ln c0@G2G8#, ~31!

BGG8[lw
21hGG8

5
1

2
@~qx1G!21qy

2#dGG81
1

lwAa
~veff2m!@G2G8#,

~32!

and

M̃GG85MGG81lwBGG8 . ~33!

In obtaining Eq.~31! we have used the identity (c08/c0)
5(d/dx) (ln c0), and denote the Fourier transform of a pe
odic function with an overline, e.g.,c0(x)5(Gc0@G#wG .

The remaining matrixMGG8 in Eq. ~33! consists of sev-
eral terms. From Eq.~24!, we have

M̂dc5c0dveff

54C1c0
2dc2 3

2 C3c0dc1c0df . ~34!

The last term in Eq.~34! involves thex-dependent part of the
total electric potential fluctuation,df. In terms of the den-
sity fluctuationdn, we have

df~r !5E dr 8
dn~r 8!

ur2r 8u

5E dr 8
2c0~x8!ei ~qxx81qyy8!(G8cG8wG8~x8!

ur2r 8u

5ei ~qxx1qyy!
4p

a (
GG8

eiGx

A~qx1G!21qy
2
c0@G2G8#cG8 ,

~35!

where we have noted that the 2D Fourier transform ofr 21 is
(2p/q). It is clear from this expression thatdf(r ) is pro-
portional toeiqyy and that thex-dependent part has the e
pected Bloch-like form. With this result, Eq.~34! yields

MGG85MGG8
K

1MGG8
X

1MGG8
H , ~36!

where

MGG8
K

5
4C1

Aa
c0

2@G2G8#, ~37!

MGG8
X

52
3C3

2Aa
c0@G2G8#, ~38!

MGG8
H

5
4p

a (
G9

c0@G2G9#c0@G92G8#

A~qx1G9!21qy
2

. ~39!

The superscriptsK, X, and H refer respectively to the ki-
netic, exchange and Hartree terms inc0dveff . It is clear that
rethe kinetic and exchange matrices depend onG2G8, but the
Hartree matrix, which is associated with a nonlocal opera
in position space, has the propertyMG1G0 ,G81G0

H (qx)

5MGG8
H (qx1G0).

Equation~30! is a nonlinear eigenvalue problem that mu
be solved numerically for the eigenvaluev and eigenvector
cW . In principle, the dimension of the eigenvalue problem
infinite, and for practical purposes, a truncation of the exp
sion to some finite number ofG vectors is required. How-
ever, one can always check that the results for the mode
interest have converged by systematically increasing
number of G vectors. Once the eigenvaluesv have been
determined, the corresponding eigenvectorscW can be substi-
tuted into Eq.~28! to determine the mode densities.

To close this section, we note some general conseque
of the equations we have obtained. In theqy→0 limit, Eq.
~30! reduces to

~v22vc
2!cG5 (

G8G9
BGG8M̃G8G9cG9 , ~40!

and the magnetic field appears explicitly only on the le
hand side of the equation. This implies that the magne
plasma frequencies have the property

vn
2~qx ,qy50;B!5vn

2~qx ,qy50;B50!1vc
2 , ~41!

that is, a simple cyclotron shift of the zero-field frequenci
vn(qx ,qy50;B50). In addition, the mode densities in th
limit have exactly the same spatial distribution as the cor
spondingB50 mode densities.

Another general property can be deduced from Eq.~27!
by making use of the Bloch-state basis,cnqx

(x), introduced

at the end of Sec. II. These states are eigenstates ofĥ with

eigenvalues«n(q)5En(qx)1 1
2 lwqy

22m, whereEn(qx) are
the 1D band energies and the chemical potentialm is equal to
E0(0), theq50 energy of the lowest band (n50). Expand-
ing dc as

dc5(
n

dncnqx
, ~42!

and substituting this expansion into Eq.~27!, we obtain the
eigenvalue problem in the alternate form

lwv2dn5«n~q!(
n8

@«n~q!dnn81Mnn8#dn8 . ~43!

By its definition, «0(0)50 for the lowest band, and as
result, Eq.~43! will have a nontrivial solution atq50 with
frequencyv50. In other words, the lowest plasmon ban
disperses from zero atq50 and, according to Eq.~41!, this
implies that there will be a magnetoplasmon branch that
perses fromvc .

B. Power absorption

The main method for studying the collective modes
these systems is by means of FIR absorpt
experiments.19–24,28To make contact with these experimen
we consider in this section the calculation of the power
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sorption which, in addition to the mode frequencies, conta
information about the oscillator strengths of the observ
excitations.

The instantaneous power absorption is given by37

P~ t !5E dr j ind~r ,t !•Eext~r ,t !, ~44!

wherej ind(r ,t) is the current induced by an external electr
magnetic field. For a uniform radiation field polarized in t
x direction and incident normally on the sample, the exter
field is spatially uniform and is given byEext(r ,t)
5 1

2 E0(e2 ivt1eivt) x̂. The physically relevant quantity is th
time-averaged power absorption, which is given by

^P& t5
1
2 E0E dr Re j x

ind~r ,v!. ~45!

Since the induced currentj x
ind for the situation of interest is a

periodic function of x and independent ofy, the time-
averaged power absorption per unit area is given by

^P& t

A
5

1

2Aa
E0 Re j x

ind@G50,v#, ~46!

where

j x
ind@G,v#5

1

Aa
E

2a/2

a/2

dx e2 iGxj x
ind~x,v! ~47!

is the Fourier coefficient of the induced current.
The current density is determined byj x

ind(x,v)5
2n0(x)vx(x,v) where the velocity is the solution of

]v

]t
52gv1dF2v3vc . ~48!

We have included in this equation a phenomenological
laxation rateg that accounts for momentum nonconservi
scattering processes of the electrons. Because of the r
ation rate, the frequencyv appearing in Eq.~19! is now
replaced byṽ5v1 ig. Noting that dF now includes the
additional termdFx

ext52E0 , we obtain the following ex-
pression for the current density atq50,

j x
ind~x,v!52n0~x!vx~x,v!

5
i ṽ

ṽ22vc
2

n0S ] f

]x
1E0D . ~49!

Taking theq50 limit of the continuity equation~18!, along
with Eq. ~49!, we find

v~ṽ22vc
2!dn52ṽ

]

]xS n0

] f

]xD2ṽE0

]n0

]x
. ~50!

Thus, the net effect of including the external driving fie
Eext is to convert the eigenvalue problem in Eq.~30!, into the
set of inhomogeneous equations

v~ṽ22vc
2!cG2ṽ (

G8G9
BGG8M̃G8G9cG952 i ṽGc 0̄@G#E0 .

~51!
s
d

-

l

-

ax-

Substituting Eq.~49! into Eq. ~47!, we obtain

j x
ind@G50,v#5

22ṽ

Aa~ṽ22vc
2!
(
G

Gc0@G# f G

1
i ṽE0

ṽ22vc
2
n0@G50#, ~52!

where, in deriving this result, we have used the fact t
(n0f ) is periodic,n05c0

2, andc0@2G#5c0@G#. The quan-
tity f G is the Fourier coefficient of (c0f ) defined in Eq.~24!,
and is related tocG by the equation

f G5(
G8

M̃GG8cG8 . ~53!

The substitution of Eq.~52! into Eq. ~46! provides our final
expression for the power absorption. Sincen0 @G50#

5Aan̄2D , the last term in Eq.~52! contributes an absorption
peak at the cyclotron frequency,vc , as found for a uniform
2DEG. This peak shifts tov50 for B50, and represents th
expected Drude-like absorption associated with the resis
losses in the 2DEG. The other term on the right-hand side
Eq. ~52! accounts for the density inhomogeneity and has
effect of reducing the amount of Drude absorption.

The cancellation of the Drude peak can be seen m
clearly by writing the power absorption in an alternate for
Starting with the continuity equation~18! with q50

ivdn1
]

]x
j x
ind50, ~54!

multiplying by x and integrating over a unit cell, we find

j x
ind@G50,v#5

iv

Aa
E

2a/2

a/2

xdn~x!dx1Aa j ind~a/2!.

~55!

The substitution of this expression into Eq.~46! then yields

^P& t

A
52 1

2 vE0 Im
1

a E
2a/2

a/2

xdn~x,v!dx

1 1
2 E0 Re j x

ind~x5a/2,v!. ~56!

In the localized limit, the boundary currentj x
ind(x5a/2,v)

vanishes and the power absorption is then determined by
induced dipole moment of the charge-density fluctuation.
this case, there is no absorption at the cyclotron freque
vc despite the appearance of the resonant denominato
Eq. ~52!. In the opposite limit of a weakly modulated system
the induced dipole moment will be small and the power a
sorption will be dominated by the second term in Eq.~55!.
We then recover the Drude absorption discussed previou

IV. 2D TO 1D CROSSOVER

In this section, we study the plasma modes of a 2D
subjected to the modulating potential given in Eq.~6!. Our
main interest is in the evolution of these modes as a func
of the strength of the modulation. The crossover from 2D
1D behavior will occur in the vicinity of the phase bounda
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illustrated in Fig. 1. Once the modulation is sufficient
strong, the electron layer separates into an array of quan
wires and we can expect very different behavior from
original 2D situation. Although the theory in Sec. III wa
developed with the inclusion of a magnetic field, we sh
restrict our investigation to the zero field limit, in which ca
Eq. ~30! reduces to

v2cG5 (
G8,G9

BGG8M̃G8G9cG9 . ~57!

All the mode frequencies presented in this section are ba
on an analysis of this equation.

A. Uniform 2DEG

It is useful for the purpose of orientation to begin with t
homogeneous 2DEG (vext50) as treated in the TFDW ap
proximation. The interaction matrices in Eqs.~37!–~39!, as
well as theB matrix in Eq.~32!, are diagonal in this case an
we readily obtain from Eq.~57! the plasmon dispersion re
lation

v0
2~q!52pn̄2Dq1S 2C1n̄2D2

3

4
C3An̄2DDq21

lw

4
q4

5kf
2q1S 1

2
kf

22
1

p
kf Dq21

lw

4
q4 . ~58!

At long wavelengths, this gives the expected 2D plasm

frequencyv2D5A2pn̄2Dq, which has the characteristicAq
dependence. At shorter wavelengths, the effects of the
(C1), exchange (C3) and von Weizsa¨cker (lw) energies be-
come of increasing importance. It is interesting to note t
the exchange interaction gives a negativeq2 coefficient
which counteracts the positive dispersion coming from
TF kinetic energy. As a result, theq2 coefficient goes to zero
at a density havingkf52/p.

B. Weak modulation

We now consider a weak modulating potential cor
sponding to the phase point~a! in Fig. 2, with coordinates
(akf531.71,V0 /Ef56.4). In Fig. 4 we illustrate the
qx-dispersion forqy50, as determined from Eq.~57!. Also
shown for comparison as the solid line is the uniform 2DE
dispersion relation given by Eq.~58!. The similarity of the
dispersion curves for the two cases is notable. The only
vious difference is the appearance of a gap in the plasm
dispersion at the zone boundary,qx5p/a, which is associ-
ated with the development of plasmon bands. This prob
was treated theoretically by Krasheninnikov and Chap5

using degenerate perturbation theory. They found that
size of the gaps induced by the density modulation is gi
by D;(uNnu/n̄2D)vn , wherevn is the unperturbed plasm
frequency for wave vectorqx[qn5np/a andNn is thenth
coefficient in the Fourier expansion of the 2D electron d
sity @Nn5n0 @2pn/a#/Aa in our notation; odd values ofn
give rise to zone boundary~ZB! gaps, while even values giv
rise to zone center~ZC! gaps#. Since their analysis is base
on a different formulation of the problem and includes on
the Hartree interaction, we present for completeness a
m
e
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n
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turbation theory calculation of the gaps within the TFD
hydrodynamics in Appendix A. We find that the gaps a
determined by the equation

v6
2 5v0

2~qn!6@v0
2~qn!2 3

8 C3An̄2Dqn
21 3

4 lwqn
4#

3Un0 @2pn/a#

n0 @0#
U , ~59!

which is consistent with the result of Krasheninnikov a
Chaplik5 in the long-wavelength limit where the Hartree in
teraction is dominant. In Fig. 15, we show some of the Fo
rier coefficientsn0 @2pn/a# as a function ofV0 /Ef . The
n0 @2p/a# coefficient is linear inV0 whereas the higher Fou
rier components are at least of orderV0

2 and are therefore
much smaller in the weakly modulated regime. This accou
for the relatively small magnitude of the gaps in Fig. 4
compared to the lowest zone boundary gap.

In Fig. 5, we show the plasmon dispersion in they direc-
tion ~i.e., perpendicular to the modulation direction! for
modes at the zone center (qx50, solid circles! and at the
zone boundary (qx5p/a, open circles!. Specific modes of
interest that will be referred to in the text are indicated
encircled numbers. Of theqx50 modes, there is one tha
starts at zero frequency~mode 1!, as explained at the end o
Sec. III A. To determine the small-qy behavior analytically,
we make use of the long-wavelength form ofM̃GG8 derived
in Appendix B. It is shown there that the 2D plasmon d
persion forqx50 with qy→0 is given byv2.2pn̄2Dqy ,
the usual plasma frequency of a uniform 2DEG. This is
general result independent of the degree of modulation of
2DEG. In other words, the modulation of the 2DEG has
effect on the long-wavelength dispersion of plasmons in t
direction. However, as discussed in more detail in Sec. IV
this is not the case for plasmons propagating in thex direc-
tion.

FIG. 4. The dispersion of mode frequencies with wave vectorqx

for the weakly modulated 2DEG. The solid curve is for the unifo
2DEG. A full explanation of the encircled numbers is given in t
text.
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There are several other notable features in Fig. 5. The
concerns the modes atqx5p/a, which behave asdn(x
1a)52dn(x) and have a periodicity of 2a. The two lowest
modes~the 2-8 and 3-7 branches! indicated by open circles
in Fig. 5 cross close toqy51. This implies that the gap at th
zone boundary first decreases to zero as a function ofqy ,
and then increases again. Such a crossing is possible
the two modes in question have different symmetries.
illustrate this more clearly, we show the induced char
density fluctuations for various modes in Fig. 6. The l
panel of this figure corresponds toqy50 while the right
panel is forqy53p/a. The sequence from top to bottom
illustrates the five lowest modes, starting with theqx50
mode in the top panel, followed by the twoqx5p/a modes
in the middle panel and finally the next pair ofqx50 modes
in the bottom panel. The right panel of Fig. 6 shows h
these mode densities change whenqy is increased to 3p/a.
It is the pair ofqx5p/a modes in the middle panel, whic
exhibits the frequency crossing in Fig. 5. Forqy values up to
the crossing point, the lower-frequency mode~the 2-8
branch! is symmetric with respect to reflections aboutx50,
while the next-highest mode~the 3-7 branch! is antisymmet-
ric. The ordering in frequency of these two modes is th
reversed at the crossing point, with the odd-parity mode
ing lower. Similar behavior was found for the model den
ties with weak modulation considered in Ref. 8, but f
strong modulation an anticrossing behavior was observ
As we shall see, the crossing behavior we find persists
even stronger modulations~see Fig. 9!.

A further examination of Fig. 5 shows the odd-pari
mode atqx5p/a approaching the lowest-lyingqx50 mode
with increasingqy ~points 6 and 7!. The reason for this can
be explained by comparing the mode density~6! in the top-
left panel of Fig. 6 with the odd-parity density~7! in the
middle-right panel. Both mode densities are seen to be lo
ized at the cell boundaries where the equilibrium density
lowest, and both have a very similar spatial profile in th
region. The near degeneracy of these modes for largeqy
indicates that there is a weak interaction between the den

FIG. 5. The dispersion of mode frequencies with wave vectorqy

for the weakly modulated 2DEG. Hereqx50 ~solid circles!, and
qx5p/a ~open circles!. A full explanation of the encircled number
is given in the text.
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fluctuations localized at adjacent cell boundaries and tha
a result, these modes effectively propagate independentl
each other. This behavior is analogous to the situation i
metallic slab where the symmetric and antisymmetric surf
plasmons become degenerate at large wave vectors. Th
calization of the mode density at the cell boundaries
creases with increasingqy , implying that the modes are
channeled in their propagation along the low-density par
the gas.

We also see a similar convergence of the otherqx5p/a
mode with the next-higherqx50 mode at largeqy . The
explanation for this is the same as given above. The den
fluctuation 8 shown by the solid line in the right-midd
panel of Fig. 6 is the even-parity version of the odd-par
density fluctuation 9 shown by the dashed curve in
lower-right panel. A similar pairing ofqx50 andqx5p/a
modes would also be expected for the higher-lying mode
Fig. 5. This behavior is in fact more evident when the mod
lation amplitude of the equilibrium density increases~see
Figs. 9 and 12!. We should emphasize that the convergen
of pairs ofqx50 andqx5p/a mode frequencies implies tha
these modes exhibit a very weak dispersion with respec
qx . The absence of an effect of theeiqxx phase modulation
from one unit cell to the next reflects the lack of interacti
between adjacent density fluctuations.

Returning to Fig. 4, we see that the gaps at the zone ce
are unobservably small for this case of weak modulati
However, each of the higher-lying modes atqx50 corre-
sponds to two distinct modes. This becomes apparent for
first excited qx50 modes in Fig. 5~starting at the point
labeled 4 and 5! where it is seen that the frequencies separ

FIG. 6. The mode densities in the weak modulation regime
various bands. The left panels are evaluated at fixedqy50 and the
right panels are evaluated atqy53p/a. The sequence for the pan
els from top to bottom isqx50, qx5p/a, andqx50. See the text
for full details.
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2088 PRB 59B. P. van ZYL AND E. ZAREMBA
with increasingqy . The lower-left panel in Fig. 6 shows th
mode densities for this pair of modes atqy50, and the
lower-right panel shows the densities atqy53p/a. One
mode has even parity with respect to the center of the c
and the other has odd parity. The latter mode eventu
evolves with increasing modulation into the lowest od
parity mode of an isolated wire. Since this mode has a fin
dipole moment, it will couple to an external radiation fie
and will contribute to the power absorption as indicated
Eq. ~56!. To illustrate this, we show in Fig. 7 the calculate
power absorption for different modulations of the 2DE
The lowest curve labeled~a! corresponds to the case of wea
modulation being considered here and shows a small pea
the frequency of the first excitedqx50 mode 4. This is es-
sentially a bulk 2D plasmon at a wave vectorq52p/a. In
principle, otherqx50 odd-parity modes should be obser
able, but their oscillator strengths are too small to show up
the power absorption. In fact, the dominant feature in
power absorption of curve~a! is the strong Drude peak a
v50 which is to be expected since the system is only wea
perturbed from a homogeneous 2DEG. We shall return
more systematic discussion of the power absorption late

C. Moderate modulation

As the modulation is increased, the equilibrium dens
profile becomes more localized@see the curve labeled by~b!
in Fig. 1#. The effect of this increased modulation on t
wavevector dispersion along thex direction is illustrated in
Fig. 8. A comparison of this figure with Fig. 4 reveals se
eral notable changes, the most dramatic being the increa
the magnitude of the gaps at both the zone center and
boundary. As we have already discussed in Sec. IV B,
size of the gap is related to the magnitude of the den

FIG. 7. Power absorption as a function of frequency. The cur
are ordered from weakest~bottom! to strongest~top! modulation
and are offset byDV051.0 a.u. The labels (a), (b), (c), and ~d!
are consistent with the notation adopted in Figs. 1 and 2.
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Fourier coefficients, so this result is to be expected. We a
notice that theqx dispersion of the lowest branch is muc
flatter than for the uniform gas. The explanation for this b
havior is once again found in Appendix B, where we sho
that the long-wavelength frequency of plasmons propaga
in the x direction is given by v2(qx ,qy50)
52pn̄2D(qx /mx), wheremx is the effective band mass a
the zone center. Sincemx increases withV0 , the dispersion
of the plasmon becomes weaker with increasing modulat

In Fig. 9 we present theqy dispersion analogous to tha
shown in Fig. 5 for the case of weak modulation. As e
pected, the characteristicAqy behavior is seen to persist~the
1-6 branch!, but now the 2D plasmon crosses the lowestqx
5p/a mode~the 2-8 branch!. At these crossing points, th
dispersion of the plasmon band as a function ofqx is weak
since the frequencies atqx50 andqx5p/a are coinciden-
tally equal. As for the case of weak modulation, we also
the lowest pair ofqx5p/a modes~branches 2-8 and 3-7!
crossing, implying that the lowest zone boundary gap clo
at some finite value ofqy . This again is possible due to th
different parities of these modes~2 and 3! in the middle

s

FIG. 8. As in Fig. 4, but for moderate modulation.

FIG. 9. As in Fig. 5, but for moderate modulation.
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panel of Fig. 10. The same behavior is now seen for the n
pair of qx5p/a modes which also have opposite parity. T
parity of the modes is of course preserved as a function
qy , but this is not the case as a function ofqx . The mode
density 1 atqy50 in Fig. 10 evolves continuously into th
mode density 2 asqx is increased from 0 top/a, and the
parity of the mode remains unchanged. On the other han
qy53p/a, the mode density 6 evolves continuously into
and thus a change in parity is observed as the mode disp
with respect toqx . This change in behavior is associat
with the crossing of the pair ofqx5p/a branches 2-8 and
3-7.

We again see in Fig. 9 the merging of zone boundary
zone center mode frequencies at largeqy values. This behav-
ior is even clearer than in the case of weak modulation
the explanation is the same. The mode densities of the low
two modes atqy53p/a are labeled 6 and 7 in Fig. 10; th
density profiles of these two modes have a very similar sh
near the cell boundaries where the equilibrium density
smallest, and only differ in the relative sign of the dens
fluctuation from one cell to the next. The weak interacti
between the density fluctuations localized at adjacent
boundaries accounts for the near degeneracy of these m
The same can be said of the pair of density fluctuations
beled 8 and 9.

The nature of the mode densities at the lowest zone ce
gap is shown in the lower-left panel of Fig. 10. The mo
labeled 4 is an odd-parity mode and contributes a peak to
power absorption nearv.0.25 a.u. as shown by the curv
labeled~b! in Fig. 7. It is this mode which eventually evolve
into the center of mass mode in the limit of isolated 1
wires. There is an additional weak peak atv.0.5 a.u. cor-
responding to the next odd-parity mode at the zone cente
is clear that increasing the modulation has led to a decre

FIG. 10. As in Fig. 6, but for moderate modulation.
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in the amplitude of the Drude peak atv50 and a transfer of
oscillator strength to the other zone center modes.

D. Strong modulation

The system is in the strong modulation regime when
phase point lies above the solid curve in Fig. 2. In particu
the phase point~c! corresponds to an equilibrium densi
which is made up of an array of isolated quantum wir
Since there is no appreciable density overlap between a
cent unit cells, we expect a relatively flatqx-dispersion for
the lower plasmon bands. In Fig. 11, we show theqx disper-
sion for this case of strong modulation. Notice that the lo
est plasmon branch has been pushed down tov'0 ~because
of the large effective band massmx) and is dispersionless
Somewhat surprisingly, the next-higher branch exhibits
dispersion that is larger than the next three branches ly
betweenv50.5 andv50.9 a.u. This would not be the ex
pected behavior in a tight-binding model of electronic ba
structure in which the dispersion of the bands increases w
increasing energy. This conventional band structure effec
beginning to be evident at the top of Fig. 11. As we shall s
the anomalous dispersion of the first excited band is due
interwire Coulomb interactions.

The dispersion of the plasmons in theqy-direction is
shown in Fig. 12. In contrast to the weak and moderat
modulated cases, there are now two gapless modes pres
the spectrum.38 The long-wavelengthAqy character of the
qx50 2D plasmon 1 is still clearly apparent but there is
second mode 2 withqx5p/a which has a linear
dispersion.39 This branch originates from the 2-8 branch
Fig. 9 and in fact corresponds to a 1D plasmon propaga
along each wire, but with a density fluctuation that chang
sign from one wire to the next. The two lowest curves in F
12 define the plasmon band for an array of quantum w
and is qualitatively similar to the results found previously f
a quantum wire superlattice based on the RPA~Refs. 6, 11!
or hydrodynamic models.8

The next mode 4 in Fig. 12 is the center of mass~CM!
mode for a 1D wire and the 4-9 and 3-7 branches define
CM plasmon band. This band is qualitatively similar to th
found by Eliassonet al.8 The density fluctuation atqx50

FIG. 11. As in Fig. 4, but for strong modulation.
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and qy50 is shown by 4 in Fig. 13 and, to an excelle
approximation, is simply the derivative of the equilibriu
density profile shown by curve~c! in Fig. 1. This is the
expected behavior of the ‘‘sloshing’’ CM mode for parabo
confinement.40–42 As one disperses alongqx to 3 at qx
5p/a, or along qy to 9 at qy53p/a, one sees that the
density fluctuations at all positions are essentially the sa
Thus, this mode is an intrawire mode with very little inte
action between the wires.

Another interesting feature in Fig. 12 is the way in whi
the plasmon band merges with the CM band for largeqy .
This is reminiscent of the mode dispersions found in
parabolic wells32 where the surface plasmon merges with t
CM mode at higher wave vectors. The reason for the me
ing is the same as in the weak and moderate modula

FIG. 12. As in Fig. 5, but for strong modulation.

FIG. 13. As in Fig. 6, but for strong modulation.
e.

g-
n

cases; the density fluctuations shown by 7 and 8 in Fig.
are symmetric and antisymmetric versions of each other w
very similar density profiles at the edge of the wires. At th
largeqy value, the density fluctuations on either side of t
wire interact with each other only weakly, as do the fluctu
tions on different wires.

We turn next to the explanation of the finite bandwidth
the 3-4 branch in Fig. 11. The origin of the dispersion is t
dipole-dipole interaction between the wires. We consider
limiting case where the wire widthW is small compared to
the interwire separationa. For qy50, the electric field expe-
rienced by thenth wire in the dipole approximation is

En5
2

a2 ( 8
s

pn1s

s2
, ~60!

wherepn is the dipole moment per unit length and the su
over s excludes thes50 term. We now suppose that th
dipole moment has a plane wave modulation in thex direc-
tion: pn5p0eiqxna. In this case, the electric field is given b

En5
2p0

a2 eiqxna ( 8
s

eiqxsa

s2
. ~61!

The quantitiespn andEn are connected through the relatio
pn5a(v)En wherea(v) is the dipole polarizability of the
wire. Since the confining potential for the wire is rough
parabolic, the polarizability is given bya(v)5l/(v0

2

2v2), wherel5an̄2D is the line density of the wire and
v0.A2p2V0 /a2 is the frequency of the harmonic potentia
Using this result in Eq.~61!, we find the following dispersion
relation for the CM band:

v25v0
22

4l

a2 (
s51

`
cos~qxas!

s2
. ~62!

This result is entirely consistent with the observedqx disper-
sion for the 3-4 branch shown in Fig. 11.

Finally, we discuss the FIR power absorption in Fig.
Each successive curve corresponds to a modulation incr
of DV051.0 a.u., starting atV052.0 a.u. The curves labele
~a! and~b! were discussed earlier in the context of weak a
moderate modulation, respectively. We note that an incre
in the strength of the modulation transfers oscillator stren
from the Drude peak to the higherqx50 modes having a
nonzero dipole moment. The two peaks which grow in inte
sity between curves~a! and ~b! evolve from theq52p/a
and q54p/a 2D bulk plasmons. Both peaks are redshift
with increasing modulation with respect to their positions
the uniform gas limit. Near the curve labeled~b!, this trend is
reversed and the peak frequencies begin to increase with
ther increase in modulation. At the same time, the oscilla
strength of the lower peak continues to increase, while t
of the higher-frequency peak begins to decrease. Beyond
point we also see a rapid reduction in the strength of
Drude peak atv50.

The change in behavior of the peak positions and inte
ties near the curve~b! occurs as the 2D-1D phase bounda
in Fig. 2 is being crossed. Thus, a signature of the 2D→1D
transition is the observation of a minimum in the fundame
tal resonance frequency as a function of modulation, and
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disappearance of the Drude peak. Beyond this minimum,
fundamental resonance grows in intensity as it evolves
the CM ~Kohn! mode40–42 for parabolic confinement. Fo
large modulations, the quantum wires are well separated
sit in an effectively harmonic potential with frequencyv0

.A2p2V0 /a2, which explains the increasing trend observ
in Fig. 7. This also explains why the fundamental resona
eventually exhausts the total FIR oscillator strength.

As an overview of our results, we plot in Fig. 14 the zo
boundary and zone center frequencies atqy50 as a function
of the strength of the modulating potential. Only the lowe
ZB modes exhibit a linear separation of the frequency w
V0 and is in accord with our perturbation theory results. T
lower branch is seen to tend to zero asV0 increases as this
mode evolves into the ZB~or out-of-phase! plasmon of a 1D
wire superlattice. The lowest ZC mode~indicated by solid
circles! tracks along the CM mode in Fig. 7 and, as discus
above, goes through a minimum at the transition from 2D
1D behavior. This behavior is qualitatively similar to th
observed,21,22 although it should be noted that in the expe
ments the average density of the gas decreased as a fun
of the gating potential, whereas our results are for a cons
density. The CM mode crosses the upper branch of the
ond ZB mode atV0 /Ef.20 and the pair then defines the C
band with its dipole induced dispersion. For the high
modes we see the merging of successive pairs of ZC and
modes in the 1D limit. The increasing frequency of the
modes is once again due to the increasing curvature of
confining potential. Figure 14 extends the variation of t
mode frequencies withV0 into the localized 1D regime
which is beyond that given previously.7,10 In particular, we
do not find the unphysical result claimed in Ref. 10 that
system does not support plasmons in the strong localiza
limit.

V. CONCLUSIONS

In this paper, we have demonstrated that the Thom
Fermi–Dirac–von Weizsa¨cker approximation provides a re

FIG. 14. Zone boundary~open circles! and zone center~filled
circles! frequencies~in a.u.! atqy50 as a function of the strength o
the modulating potential. The solid curves are the solutions gi
by Eq. ~A11! for n51.
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alistic description of the collective excitations in a modulat
2DEG. We have presented a detailed investigation of
equilibrium properties, and have numerically mapped out
parameter space that defines the transition from 2D to
behavior. We have also calculated the plasmon dispers
for propagation along and across the modulation direction
the weak, moderate, and strong modulation limits. In agr
ment with earlier work on this problem, the modulation
the equilibrium density leads to the appearance of gaps in
plasmon dispersion in the direction of the modulation; as
modulation becomes stronger the bands become narro
and the gaps larger. For propagation in a direction perp
dicular to the direction of modulation, we have shown th
the long-wavelength 2D plasmon is unaffected by the mo
lation potential. However, at shorter wavelengths, the pl
mon dispersions exhibit interesting behavior as a function
qy and the explicit calculation of the mode densities provid
a more complete understanding of the physical nature
these excitations.

The power absorption in the long-wavelength limit h
also been calculated for a range of modulation potentials.
have found that the oscillator strength is predominantly
the Drude peak for weak modulation and shifts to high
dipole modes as the modulation is increased. The reduc
of the Drude peak is one useful indicator to gauge the eff
tive dimensionality of the system. We have also shown t
the 2D bulk plasmon atq52p/a evolves continuously with
increasing modulation into the CM mode of a quantum w
superlattice. The frequency of the mode at first decrea
and then passes through a minimum as the 2DEG makes
transition from a continuous charge distribution to an ar
of isolated wires. This minimum is a second signature of
2D→1D crossover. At large modulations, the confining p
tential is effectively harmonic, and the FIR oscillato
strength resides in the CM mode in accord with the gene
ized Kohn theorem.

We are at present completing a detailed analysis of
magnetoplasma excitations in laterally modulated 2D s
tems. These results will be reported elsewhere.
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APPENDIX A: CALCULATION
OF PLASMON BAND GAPS

In this appendix, we determine the eigenvalue spectr
of a laterally modulated 2DEG in the weak modulation r
gime. The eigenvalue problem that we wish to solve is

v2cG5 (
G8G9

BGG8M̃G8G9cG9

5(
G8

NGG8cG8 , ~A1!

with

n



ip

A

e-
n

er

ain
s in
te

-

rge

r-
be-

m
a

2092 PRB 59B. P. van ZYL AND E. ZAREMBA
NGG8[(
G9

BGG9M̃G9G8 . ~A2!

In the absence of an external modulation, theN matrix is
diagonal. Denoting the matrices in this limit by a superscr
0, we have

BGG8
0

5 1
2 @~qx1G!21qy

2#dGG8 ,

M̃GG8
0

5F 4pn̄2D

A~qx1G!21qy
2

14C1n̄2D2 3
2 C3An̄2D

1
lw

2
@~qx1G!21qy

2#GdGG8 . ~A3!

With these results, we have atqy50,

NGG8
0

5(
G9

BGG9
0 M̃G9G8

0

5F2pn̄2Duqx1Gu1~2C1n̄2D2 3
4 C3An̄2D!

3~qx1G!21
lw

4
~qx1G!4GdGG8

[v0
2~qx1G!dGG8 . ~A4!

This equation gives the plasmon frequency in Sec. IV
With G taking on all possible values,qx can be restricted to
the first Brillouin zone,2p/a<qx<p/a.

The introduction of an external modulation lifts the d
generacies in the uniform gas spectrum at the zone ce
(qx50) and at the zone boundary (qx5p/a). At the zone
center~ZC!, the reciprocal lattice vectors coupling degen
ate modes are given by

FIG. 15. The first three Fourier coefficients of the equilibriu
charge density as a function of modulation strength. The curves

normalized with respect to the average areal densityn̄2D . Here
Gn52np/a, with n51 corresponding to the figure inset~solid
line!, n52 the short-dash–long-dash curve andn53 the dashed
curve.
t

.

ter

-

qx50, G15n
p

a
, G252n

p

a
, ~A5!

wheren is an even integer, while at the zone boundary~ZB!

qx5
p

a
, G15~n21!

p

a
, G252~n11!

p

a
, ~A6!

where n is an odd integer. At either ZC or ZB,uqx1G1u
5uqx1G2u5np/a[qn and (G12G2)52np/a52qn .

We now apply degenerate perturbation theory to obt
first–order corrections to the frequencies at these point
the first Brillouin zone. Retaining only the two degenera
modes of interest, we obtain the secular equation

v2cG1
5NG1G1

0 cG1
1NG1G2

1 cG2
,

~A7!
v2cG2

5NG2G1

1 cG1
1NG2G2

0 cG2
,

where NG1G2

1 5NG2G1

1 is the lowest-order off-diagonal cor

rection to theN matrix. It is given by

NG1G2

1 5BG1G1

0 M̃G1G2

1 1BG1G2

1 M̃G2G2

0 , ~A8!

where

M̃G1G2

1 5
8p

qn

An̄2D

a
c̄0@2qn#1

4C1

Aa
n̄0@2qn#

2
3C3

Aa
c̄0@2qn#2

2lw

An̄2Da
qn

2c̄0@2qn#,

~A9!

BG1G2

1 52
2

An̄2D

qn
2c̄0@2qn#.

In the above,c̄0@2qn# and n̄0@2qn# denote thenth Fourier
components of the ground-state wave function and cha
density, respectively~see Fig. 15!. Replacingc̄0@2qn# by

n̄0@2qn#/2An̄2D, Eq. ~A8! can be cast in the form

NG1G2

1 5@2v0
2~qn!1 3

8 C3An̄2Dqn
22 3

4 lwqn
4#F n̄0@2qn#

n̄0@2q0#
G .

~A10!

This implies that the eigenvalues of Eq.~A7! are given by

v6
2 ~qn!5N0@qn#6uN1@qn#u

5v0
2~qn!6uv0

2~qn!2 3
8 C3An̄2Dqn

21 3
4 lwqn

4u

3U n̄0@2qn#

n̄0@2q0#
U , ~A11!

whereN0@qn#[NG1G1

0 andN1@qn#[NG1G2

1 . The size of the

gap at the ZC or ZB is given by 2uN1@qn#u. We have tested
the validity of Eq.~A11!, and in the regime where the pe
turbative results are valid, we find excellent agreement

re
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tween the analytical and numerical calculations as illustra
in Fig. 14. In the Hartree approximation, we obtain t
simple relation

v6
2 ~qn!5v0

2~qn!S 16U n̄0@2qn#

n̄0@2q0#
U D . ~A12!

This result is entirely consistent with the one obtained
Krasheninnikov and Chaplik5 in the long-wavelength limit.

APPENDIX B: DETERMINATION
OF LONG-WAVELENGTH DISPERSIONS

A persistent feature of the dispersion relations we h
calculated ~see Figs. 4, 8, and 11!, is that the long-
wavelength limit of the lowest plasmon has the characteri
Aq dependence of the 2D-bulk plasmon, regardless of
modulation. In this section, we show analytically that t
long-wavelength behavior of the lowest plasmon branch
Aq for any modulation amplitude.

Once again, the eigenvalue problem that we are solv
has the form

v2cG5 (
G8G9

BGG8M̃G8G9cG9

5
1

lw
(

G8G9
hGG8M̃G8G9cG9 , ~B1!

wherehGG8 is the Hamiltonian which, forqy50, determines
the ground-state von Weizsa¨cker wave functionc̄0@G#. In
the long-wavelength limit, the dominant contribution to t
M̃ -matrix comes from theG950 component of the Hartre
matrix in Eq.~39!,
, G

-

tat

tat

y

d

y

e

ic
e

is

g

lim
q→0

M̃GG8. lim
q→0

MGG8
H .

4p

qa
c̄0@G#c̄0@G8# . ~B2!

With this result, and noting that (G8hGG8c̄0@G8#

5«0(q)c̄0@G#, Eq. ~B1! can be written as

lwv2cG5
4p

qa
«0~q!c̄0@G# (

G9
c̄0@G9#cG9 . ~B3!

The eigenvaluesv2 of Eq. ~B3! are thus given by

v2~qx ,qy!5
4pn̄2D

q
«0~q! , ~B4!

since n̄2D5a21(Guc̄0@G#u2. For small q we have«0(q)
. (lw/2) @(qx

2/mx) 1qy
2#, where mx is the effective band

mass due to the confining potential in the modulation dir
tion. Of interest here is the determination of the dispersio
in both theqx50,qy→0 and qy50,qx→0 limits. In these
two cases we have

v2~qx50,qy!52pn̄2Dqy , ~B5!

v2~qx ,qy50!5
2pn̄2D

mx
qx . ~B6!

Equation~B5! illustrates the fact that for any modulation, th
long-wavelength behavior of the 2D plasmon isAqy. Equa-
tion ~B6!, on the other hand, indicates that theAqx dispersion
is suppressed with increasing modulation as a result of
effective massmx .
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