PHYSICAL REVIEW B VOLUME 59, NUMBER 3 15 JANUARY 1999-1

Longitudinal effective mass and band structure of quasiperiodic Fibonacci superlattices
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A systematic study of the longitudinal effective mass associated with either shallow impurity states or
conduction Landau levels under in-plane magnetic fields is presented for Fibonacci superlattices. We analyze
the relation between the mean longitudinal effective masses and the localization length of the corresponding
electronic or impurity states. Under appropriate conditions we show that the mean longitudinal effective mass
weakly depends on the nature of the electron state and localization length, and is essentially related to the
Cantor-like energy spectra or “band structur¢3$0163-182609)02003-2

I. INTRODUCTION In the study of crystals the effective mass plays a central
role since it contains relevant information about the band
Quasicrystals have been intensively studied after their disstructure of such periodic systems, for which the Bloch theo-
covery by Shechtmaat all in 1984, with special interest in rem applie® The energy-band structure is the base for the-
the electronic propertiés® of these ordered but nonperiodic oretical studies of electronic properties of the solid, and the
materials. Indeed, the ideal quasicrystal lattices follow quaperiodicity of the system is an essential condition for the
siperiodic laws. For electrons, one-dimensional quasiperi-existence of such bands together with the corresponding
odic systems have Cantor-set-like energy spectra with selBrillouin zones. For semiconductor crystals in particular, the
similar and critical wave functior’5.° In semiconductor effective mass for the band edges of the fundamental gap
physics great interest on quasiperiodic systems emerged aftdescribes most of the physics of carriers in both conduction
1985, when the first Ga-As-AlAs Fibonacci superlatticeand valence bands. A longitudinal effective mé8sEM) as-
(FSL) was grown and characterizétiThe study of conduc- sociated to the first-energy minibaritbr conduction elec-
tion and valence electron states in Ga&=a,A)As FSL's  trons, for instancemay be defined for periodic superlattices.
were reported by Laruelle and Etienffewith a detailed The LEM value is apparent in electronic properties of these
analysis of self-similar spectra and localization of wave func-structures under certain conditions such as small period and
tions together with the identification of peaks in photolumi- weak barriers. However, for an ideal quasiperiodic system
nescence excitatiofPLE) spectra. Yamaguclet al®inves-  the Cantor-set nature of the electronic spectrum excludes the
tigated the electronic structure and the perpendicularexistence of bands. Hence the LEM concept, if meaningful,
transport properties of photoexcited carriers in a GaAs-AlAsshould not be introduced in the same usual way as for peri-
Fibonacci superlattice by means of PLE spectroscopy anddic systems. Shung, Sander, and Meffii? following a
picosecond luminescence measurements. Normal-incidename-dimensional approach, proposed a LEM associated to
reflectance spectra of GaA&a,A)As FSL were obtained impurity states in FSL's. They also stated that this mass is
and characterized by Munzat al* based on calculations of possibly the relevant object for the cyclotron resonance and
the fractal-electronic spectrum. The electroabsorption an@vave-packet propagation in quasicrystals. The calculated
photorefractive properties of long-period Ga&3a,A)As LEM is a quasiperiodic function of the impurity position,
FSL’s were studied by Dinu, Melloch, and Nditdo assess and when averaged over the whole system becomes almost
their potential use in broad-band diffraction devices. A de-independent of the system size for long Fibonacci sequences,
tailed study of the dynamics of electronic-wave packets inconverging to a value that increases with the impurity $ize.
semiconductor FSL's was presented by Dial,'® where A detailed study of shallow-donor impurity states in semi-
the authors show that propagation is determined by theonductor FSL’'s was recently reported by Bruno-Alfonso, de
fractal-like electron-energy spectrum. Theoretically, the lo-Dios-Leyva, and Oliveir® within the effective mass and
calization properties of electron wave functions of FSL’sparabolic band approximations. They present a full discus-
have received special attentibit®and the effects of electric  sion of the effects of the quasiperiodic and self-similar prop-
fields have been calculated and analyZ&d?However, little  erties of the system on thes-like impurity states following
attention has been dedicated to a possible extension of thdifferent variational approaches. The superlattices considered
useful effective-mass concept to quasiperiodic solids. In thigre periodic stackings of a unit cell generated following a
respect, only few calculations of the effective mass for Fi-given Fibonacci sequence, and reach the quasiperiodic fea-
bonacci superlattices have been repoffed® and a direct tures for sufficiently large unit cells. A study of the LEM
relation of the effective mass with the energy-spectrum propwas performed® by fixing the in-plane effective mass as the
erties of these systems has not been remarked. GaAs bulk value, and determining a LEM for each impurity
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position and corresponding binding-energy value. In the " 2t
present paper we report a discussion on the physical inter- G(X):f dt. (5)
pretations of the LEM associated with shallow-impurity 0 t2+x2
states, together with a similar study of a LEM defined for
Landau levels in the presence of in-plane magnetic fields Notice that the second term in the 1D Hamiltonian corre-
(without impuritie3. The conditions for the LEM values to sSponds to an effective one-dimensional potential for the
be associated with parabo"c enve|0pe curves of the Fsglectron-impurity interaction. Here, in contrast to the model
“pand structure” within a wide range of localization radii of by Shunget al.* the confining potential parameters are de-
impurity or Landau states are discussed. Taéike impurity ~ termined by the bulk-effective mass and dielectric constant,
density of states is calculated and it is shown to becomé&Xxcept for the variational parametar which is determined
independent of the Fibonacci-sequence size as this siZz®y minimizing the lowest eigenenergy bifyp , for each im-
grows, as predicted befofe. purity position. It should be noted that the later minimization
scheme is needed for thick-barrier superlattices as pointed
out by Ribeiro, Bruno-Alfonso, and Latgé

For the case of conduction-electron Landau states in

We deal with shallow-donor impurity states and conduc-FSL’s under in-plane magnetic fields a one-dimensional
tion Landau stateffor in-plane magnetic fieldsn Fibonacci  Schradinger equation is also obtained for the carrier dynam-
superlattices that are actually periodic stackings of Fibonacdcs in the system-growth direction, by using an appropriate
sequences of semiconductor layéeyclic boundary condi- gauge for the field®=3°Here we solve the differential equa-
tions). The unit cell for the FSL of ordar is the sequence,, tion by trigonometric Fourier expansion and diagonalization
of the elements (a layer of Ga_,Al,As of thicknessd,)  techniques! and take only the ground Landau level for each
andb (a layer of GaAs of thicknesd,), beingw,=a, w, cyclotron-resonance center. For each center we determine a
=b, and w,=w,_;0,_,. The electron states are treated LEM (the in-plane effective mass is taken as the GaAs bulk
within the effective mass and parabolic-band approximavalug), which accounts for theAE energy difference be-
tions, with a constant effective-mass val@iaken as 0.067 tween the actual Landau ground state and the ground level in
mg) along the FSL. the absence of magnetic field. For an effective anisotropic

The Hamiltonian of a single hydrogenic impurity in a medium with in-plane effective mass,, it is then easy to
GaAs{Ga,Al)As superlatticSL) with symmetry axis along show that the LEM for an in-plane magnetic fieBds
the z direction may be written as 1 ( heB

2 m, | 2AE
+Vsi(2), (1) Of course, as in the case of the LEM associated with impu-
rity states, the existence of a mean effective mass for the
where m* and ¢, are the effective mass and the static- Structure would be of great interest. This mass may be ob-
dielectric constant of GaAs, respectively, ands the impu-  tained, for instance, from an analysis of the absorption or
rity position. The SL potentiaV/s,(z) is defined by the se- Photoluminescence spectra that present structures associated
guence of wells and barrierS, Corresponding to GaAs an@p van Hove-like Singularities of the combined denSity of

(Ga,ADAs layers, respectively. The trial carrier-envelopestates. The intraband absorption coefficient of GaAs-

wave function for the &like state is chosen to B& (Ga,ADAs FSL's reported by de Dios-Leyvet al.** essen-
tially illustrates this situation, and the same applies for tran-

1 sitions between donor and the conduction or valence states,

Va(xy,z2)=N EXF{ —EVXZJF y?| a(2), (2)  from which it would be possible to determine a mean LEM
value. However, in the present paper we adopt a simple ap-

whereN is a normalization factora is a parameter that was proach in which the mean LEM value for the FSL may be
previously chosefl to satisfy the bulk binding-energy limit, associated either to the mean impurity binding energy or to
and ,(2) is to be determined via a variational scheme thatthe meam\E energy value, in the case of conduction Landau
minimizes the energy of the impurity ground-state given bylevels. In what follows we show that the mean LEM may be
Eg. (1). This procedure reduces the problem to a one<closely related to the SL “band structure” for different Fi-
dimensional Schidinger equation fory,(z) with the Hamil-  bonacci sequences.
tonian given by

Il. THEORETICAL FRAMEWORK

2

(6

N2

p
2m* ¢ \/x2+y2+(z— z)?

e
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Ill. RESULTS AND DISCUSSION

N h?  d?
Hip=— 5 g2z T Ya(z=2) +Vs(2), 3 We first show in Fig. 1) the calculated donor shallow-
impurity binding energy as a function of the impurity posi-
where tion in a GaAs-GggAly,As FSL with 144 elementgorder
oo . 12). The barrier and well thicknesses are 11.2 and 16.9 A,
U(2)=R*| [ 2] — 4a Z @ respectively, and the dielectric constant is chosen as 12.5.
a Y|\ a a all’ The quasiperiodiclike behavior is apparent in this curve,

_ _ _ which can be seen as a Fibonacci sequence of well-defined
with R} anda* being the GaAs effective Rydberg and Bohr repeated patterrfS. The shallow-donor density of statds
radius, respectively, and (DOY) is displayed in Fig. (b) for the homogeneousiy-
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FIG. 2. As in Fig. 1b), but for the Fibonacci sequences

FIG. 1. (a) Donor shallow-impurity binding ener as a A .
@ purity d OFs w1, w13, andwq,, With 144, 233, and 377 elements, respectively.

function of the impurity positiorg; (in units of the GaAs effective
radiusa*), and(b) the associated shallow-impurity density of states 1(b), and also includes the DOS for the Fibonacci sequences
(DOS), in a GaAs-GgeAlg As FSL with 144 elementforder 12. ) and w,,, with 233 and 377 elements, respectively. It
The barrlgr and_well thlckn_esses are 11.2 and.16.9 A, respectlvel)fnay be seen that all curves essentially coincide, reflecting
and the dielectric constant is 12.5.(lp) the FSL is supposed to be the independence of the DOS on the size of the FSL unit cell
homogeneousiy-type doped. for sufficiently large Fibonacci-sequence orders. This is a
clear consequence of the quasiperiodic behavior of the im-
type doped FSL. Some of the van Hove—like singularities inpurity bands, as discussed in detail by Bruno-Alfonso, de
Fig. 1(b) may be associated with centers of local symmetryDios-Leyva, and Oliveird> Moreover, for the impurity
for the FSL. One should notice that centers of local symmestates, if one considers the cyclic boundary conditions, it
try occur with different radii in FSL's consisting of Fi- may be demonstrated that if one has the impurity band for a
bonacci sequences of homogeneous semiconductor layeisSL of a given order expressed as Fibonacci sequence of two
The FSL built-in potential has this property, and the centerpieces, then all FSL’s with larger order will have impurity
of symmetry in a one-dimensional approach would correbands that may be seen as Fibonacci sequences of the same
spond to planes in a three-dimensional picture. A particle apieces of curve. The system DOS can be expressed as the
such a plane of local symmetry will “feel” the same poten- sum of the DOS of each one of the two pieces times their
tial in both directions away from a plane of symmetry, up tofrequency in the Fibonacci cell, which are consecutive Fi-
a distance of the order of the corresponding symmetry rabonacci numbers. Since the ratio of consecutive Fibonacci
dius. Of course, the centers of local symmetry are closelywumbers rapidly converges to the golden mean value, the
related to the hierarchy and self-similarity of the Fibonaccinormalized density of states becomes independent of the size
sequences. An essential condition for local symmetry centersf the FSL for sufficiently large systems. This property of the
to exist in FSL’s is the symmetry of the elemental building DOS is associated to the convergence of both the mean-
blocks (a andb), which is satisfied in our case of homoge- impurity binding energy and related standard deviation as the
neous semiconductor layers. Also, one has symmetric subssize of the Fibonacci sequence increases, as discussed below.
guences in a given Fibonacci cell suchbods bab, aba, abba, Figure 3a) shows the mean-impurity binding energy as a
abbabba and so on. One then finds that following the hier- function of the order of the Fibonacci sequence that gener-
archical quasiperiodic structure of the Fibonacci sequencestes the unit cell. The FSL parameters are the same as above
different symmetric subsequences with size near those dh one casde,=12.5, which stands for the GaAs dielectric
low-order Fibonacci blocks appear in a given FSL, and thatonstant Based on the assumption that it is the confining
equivalent subsequences are distributed following Fibonaca@oulomb potential that essentially determines the localiza-
lattices. The van Hove—like singularitigsf. Fig. 1(b)] cor-  tion radius of the carrie?® the dielectric constant is the ap-
respond to stationary points in the dependence of the impusropriated variable to theoretically study the LEM depen-
rity binding energy on the impurity position along the FSL dence on the carrier ground-state localization radiois
growth direction[Fig. 1(a)]. For Is-like impurity states only  impurity siz€®). Hence, we have included the results ob-
centers of local symmetry with radius larger than the imputained for a quite different dielectric constant, namely
rity size (i.e., localization radius of the bound carrier, which ¢,=17.9, which would correspond?InSb. As may be seen
can be estimated as 3 times the effective Bohr radiiisbe in Fig. 3(@), curves for both dielectric-constant values con-
apparent as local symmetry centers of the binding-energyerge rapidly as the unit-cell size grows. It should be re-
curves. Of course, these centers of symmetry are stationargarked that the mean binding energy decrease as the dielec-
points, and hence correspond to van Hove-like singularitiegric constant and the localization radius rise. Figuke)3
However, other stationary points with their correspondingdisplays how the standard deviation of the binding energy in
van Hove-like singularities exist, which are not symmetrythe FSL also converges rapidly as the unit-cell size increases.
centers for the impurity states with the same localization raAs shown in this figure the standard deviation for short-unit
dius, as it is the case of the upper and lower edges of theells is quite small, which is in close relation with the fact
“impurity band” in Fig. 1(a). that the corresponding short-period SL’'s essentially fulfill
Figure 2 shows the shallow-donor DOS ¢, as in Fig.  the conditions of applicability of an effective-masslike
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FIG. 3. (a) Mean shallow-donor binding enerdss and (b) the k, (A
corresponding standard deviatioAEg as functions of the
Fibonacci-sequence order for different values of the dielectric con- FIG. 4. (a) Mean longitudinal effective magéEM) associated
stant ¢, . Squares(triangleg correspond toe,=12.5 (¢,=17.9), to shallow-donor staten units of the free-electron masgy) for a
and dashed lines are guides to the eye. FSL as a function of the Fibonacci-sequence order, together with
the FSL first-miniband LEM(circles. Squares(triangles corre-
theory, which would give a unique value for the impurity spond toe,=12.5 (¢,=17.9), and lines are guides to the ey
associated effective mass for all positiGfig® wi-based FSL conduction-energy band-struct(gelid line with
From the shallow-donor mean binding energies of Fig.vertical steps at the minigapand parabolic approximations for the
3(a) we may obtainsee Bruno-Alfonso, de Dios-Leyva, and energy, arising from the impurity-associated LEM limits. The
Oliveira®®) the dependence of the mean LEM on the order ofdashed(dotted line stands fore,=12.5 (e, =17.9). The layer
the Fibonacci sequence, as displayed in Fig) 4or two  thicknesses are 11.2 and 16.9 A forg@al, As and GaAs, respec-
different values of the dielectric constagit. We also show tively.
the LEM values corresponding to the curvature of the first
FSL energy minibandwithout impuritie3, with the FSL  siperiodic regime. As the mean-donor LEM dependences for
electron-energy minibands calculated following a transferboth e, values appear to converge for order 14 we take these
matrix techniqué? Notice that the first miniband LEM in- values as the mean LEM’s for ideal FSL's of order As
creases quite rapidly with the Fibonacci order correspondingeported by Shung, Sander, and Meffrthe heavier elec-
to the increasingly flat character of the first conductiontrons(larger LEM limit) are associated with larger impurity
miniband®?° (within the present impurity LEM approach sizes(or €, values, but here this fact occurs in a subtle way.
this behavior would correspond to the—oo limit). Note  To clearly show this, we display in Fig(l#) the Cantor-like
that the LEM values are plotted for FSL orders 1-14, withenergy band structure for the GaAs«galAs FSL of or-
the LEM values for orders 1 and 2 being the bulk values forder 11 (89 elements Essentially identical curves are ob-
Ga AlgAs and GaAs, respectively, which are taken astained for larger Fibonacci orders in these scales of energy
0.067n,. The agreement between all three LEM depen-and wave number, and the spectrum in the limit of infinite
dences is apparent in Fig(a} for small-period SL's(orders  Fibonacci order is the ideal-FSL energy “band-structure,”
3-5. As commented before, this indicates that the first FSLwhich reflects the asymptotic stability of the FSL energy
miniband contains the information to describe the correspectrum as discussed by Maclaominguez-Adame, and
sponding shallow-impurity states within an effective-mass-Sanchez** The wave numbek, ranges from 0 tor/d,,
like theory with a parabolic miniband. For larger periods ofwhered,, is the fundamental quasiperiod of the FSL, i.e.,
the FSL's(orders 6-7 the nonparabolicity of the first mini- dy=d,+ 7d,, with 7=(1+ \J5)/2 being the golden medf.
band enhances the shallow-donor LEM, whereas for FSL'§his wave-number range correspofid® half of the first
of orders 8—14 the many-miniband effects results in a qua“Brillouin minizone” of the ideal FSL of orderw. Also
siperiodic limit for the shallow-donor LEM. It should be re- shown in Fig. 4b) are the curves for parabolic energy bands
marked that the specific behavior of the shallow-donor LEMassociated to the quasiperiodic limits of the mean LEM for
depends essentially on the relation between the localizatiothe differente, values. It is interesting to note that, in the
radius of the impurity states and the FSL unit-cell length.ranges of energy and wave number shown, both parabolic
Therefore, the smaller the dielectric constam., the smaller curves essentially coincid@s a consequence of the small
the impurity siz¢, the lower Fibonacci order is needed to difference between the corresponding LEM vajuasd re-
reach either the enhancement of the donor LEM or the quasroduce the overall behavior of the FSL band structure.
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The same general conclusions arise in the study of the 30 —— :
conduction-electron Landau levels in the FSL under in-plane 0.00 0.01 0.02 0.03
magnetic fields. Figure 5 shows the dependence on the Fi- k, (A")
bonacci order of the mean LEM for three magnetic-field in-
tensities scaléd®? by 72. The magnetic field imposes a  FIG. 6. As in Fig. 4, but here both the barrier and well thick-
length scale characterized by the Landau ratijus\%#/eB,  nesses are 33.9 A.
which increases when the field intensity is lowered. As dis-_ .
cussed above for the LEM associated to shallow-donor statddd. 4b). As a matter of fact, the band structure of this FSL
in GaAs{Ga,A)As FSL'’s heavier electrons in the ideal FSL is S0 singular that no parabola would properly follow its
are associated to larger localization radii. It is worth noticingoverall behavior, but rather only its shape for small wave
that the length scales studied in Fig. 5 are quite differentfumbers. So, the singular geometry of the FSL energy band
whereas the corresponding LEM limit values are very simi-Structure implies a larger dependence of the shallow-donor
lar: for thin barrier FSL'’s, one obtains that the limiting LEM LEM on the localization length of the associated impurity
varies less than 2% for quite different strengths of the constates. In this respect, Fig. 7 displays the energy band struc-
fining potential (Coulomb or magnetic i.e., localization ture for different GaAs-GgeAlo As FSL's in the first Bril-
lengths. Therefore, all the corresponding LEM values mayouin minizones® As may be noticed, the energy-band struc-
be associated with the curvature of thevs k, parabolas, tures for thin-barrier FSL's (1-3 may be clearly
which essentially reproduce the Cantor-like structure of theétPproximated by parabolic LEM-energy curves, whereas for
extended scheme of the FSL energy Spect[am may be thick-barrier FSL,S(4—5) the whole Concept of a LEM be-
seen in Fig. #)]. In that sense, therefore, for thin barriers gins to break down.

FSL'’s, the mean LEM Ilimit weakly depends on the nature of

the conduction-electrofor impurity) state and localization 400 7
length, and is closely related to the fractal-like “band struc- . ]
ture.” On the other hand, it should be noticed in Fig&)4 < 300 ]
and 5 that, for FSL's in the nonparabolic one-miniband re- “E’ .
gime (orders 6-7, as expected heavier electrons are associ- ~ 200 | 3
ated to shorter localization radii in contrast with the result 5 [
obtained here for the quasiperiodic limit of large FSL cells. 2 100}

All results discussed above correspond to FSL’s with bar- o ;
rier and well thicknesses ai,=11.2 A andd,=16.9 A, oL -
respectively, which have two special properties: weak barri- 0 /2 n
ers andd, /d,= 7 (self-similarity condition. Now, for com- k,d,

parison with the results in Fig. 4, we display in Fig. 6 the
LEM associated with shallow-impurity states in a FSL with £ 7. conduction minibands of FSL's generated by the se-

d,=d,=33.9 A. The above discussion for Figa#also ap- quencew,; (89 elements in the unit celfor different values of the
plies for Fig. Ga), except for the relative difference between |ayer thicknesses. The Bloch wave numbekjgndd, is the fun-

the LEM limit values, which is much larger. This fact is damental quasiperiod of the FSL. The barrier widths for curves
apparent in Fig. @), where the parabolic bands correspond-labeled 1-34-5) is 11.2 A(33.9 A), and the well thicknesses are
ing to those LEM limiting values separate and do not repro-11.2, 16.9, 33.9, 33.9, and 51.2 A, for curves 1-5, respectively.
duce the band structure so well, in contrast with the results ivertical lines are guides to the eye at the minigaps.
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IV. CONCLUSIONS the shallow-impurity LEM on the localization length of the
corresponding impurity states.

We have calculated the energy of the shallow-impurity One should stress that the approach used in the present

ground states as well as the energy of the ground conductiogycyation is not restrictive to Fibonacci-like SL's and simi-
Landau level(under in-plane magnetic fielllsin GaAs- |5 theoretical studies may be performed for other kinds of
(Ga,Al)As FSL's. These SL's consists of periodic stackingsgemiconductor heterostructurggeriodic or aperiodicof in-

of Fibonacci-sequenced unit cells, and we analyzed the qugarest such as Thue-Morse or random SL's. Finally, as
SiperiOdiC limit of Iarge unit-cell Sizes, and the relation be- pointed out by Shung, Sander, and Meﬁ?[’n:he experimen_
tween the mean LEM and the localization length of the cor+a| observation of the effects of quasiperiodicity on takec-
responding electronic or impurity states. For the mearnron or shallow impurity longitudinal-effective mass could
energy of the impurity or magnetic states one associates Ige performed by far-infrared cyclotron-resonance measure-
mean LEM, which weakly depends on the localization radiuaments with in-plane magnetic fielder far-infrared spectro-

of the corresponding wave functions. Heavier localized elecscopic measurements on conduction-to-donor states transi-
trons are associated with larger localization lengths. Théions) on such SL's so that electrons in a Landéor
mean LEM experiences small changes for large variations ampurity) level tunnel through many SL layers.

the localization radius in the case of thin-barrier SL’s, and its
values are associated with parabolic envelopes of the FSL
energy-band structure. As the barriers become thicker this
regime breaks down and the singular geometry of the FSL This work was partially supported by Brazilian agencies
energy-band structure leads to an increasing dependence BAPERJ, FAPESP, FAEP-UNICAMP, and CNPq.
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