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Longitudinal effective mass and band structure of quasiperiodic Fibonacci superlattices
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A systematic study of the longitudinal effective mass associated with either shallow impurity states or
conduction Landau levels under in-plane magnetic fields is presented for Fibonacci superlattices. We analyze
the relation between the mean longitudinal effective masses and the localization length of the corresponding
electronic or impurity states. Under appropriate conditions we show that the mean longitudinal effective mass
weakly depends on the nature of the electron state and localization length, and is essentially related to the
Cantor-like energy spectra or ‘‘band structure.’’@S0163-1829~99!02003-2#
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I. INTRODUCTION

Quasicrystals have been intensively studied after their
covery by Shechtmanet al.1 in 1984, with special interest in
the electronic properties2–6 of these ordered but nonperiod
materials. Indeed, the ideal quasicrystal lattices follow q
siperiodic laws.7 For electrons, one-dimensional quasipe
odic systems have Cantor-set-like energy spectra with s
similar and critical wave functions.8–10 In semiconductor
physics great interest on quasiperiodic systems emerged
1985, when the first Ga-As-AlAs Fibonacci superlatti
~FSL! was grown and characterized.11 The study of conduc-
tion and valence electron states in GaAs-~Ga,Al!As FSL’s
were reported by Laruelle and Etienne,12 with a detailed
analysis of self-similar spectra and localization of wave fu
tions together with the identification of peaks in photolum
nescence excitation~PLE! spectra. Yamaguchiet al.13 inves-
tigated the electronic structure and the perpendicu
transport properties of photoexcited carriers in a GaAs-A
Fibonacci superlattice by means of PLE spectroscopy
picosecond luminescence measurements. Normal-incid
reflectance spectra of GaAs-~Ga,Al!As FSL were obtained
and characterized by Munzaret al.14 based on calculations o
the fractal-electronic spectrum. The electroabsorption
photorefractive properties of long-period GaAs-~Ga,Al!As
FSL’s were studied by Dinu, Melloch, and Nolte15 to assess
their potential use in broad-band diffraction devices. A d
tailed study of the dynamics of electronic-wave packets
semiconductor FSL’s was presented by Diezet al.,16 where
the authors show that propagation is determined by
fractal-like electron-energy spectrum. Theoretically, the
calization properties of electron wave functions of FSL
have received special attention,17,18and the effects of electric
fields have been calculated and analyzed.19–22However, little
attention has been dedicated to a possible extension o
useful effective-mass concept to quasiperiodic solids. In
respect, only few calculations of the effective mass for
bonacci superlattices have been reported,23–25 and a direct
relation of the effective mass with the energy-spectrum pr
erties of these systems has not been remarked.
PRB 590163-1829/99/59~3!/2057~6!/$15.00
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In the study of crystals the effective mass plays a cen
role since it contains relevant information about the ba
structure of such periodic systems, for which the Bloch th
rem applies.26 The energy-band structure is the base for th
oretical studies of electronic properties of the solid, and
periodicity of the system is an essential condition for t
existence of such bands together with the correspond
Brillouin zones. For semiconductor crystals in particular, t
effective mass for the band edges of the fundamental
describes most of the physics of carriers in both conduc
and valence bands. A longitudinal effective mass~LEM! as-
sociated to the first-energy miniband~for conduction elec-
trons, for instance! may be defined for periodic superlattice
The LEM value is apparent in electronic properties of the
structures under certain conditions such as small period
weak barriers. However, for an ideal quasiperiodic syst
the Cantor-set nature of the electronic spectrum excludes
existence of bands. Hence the LEM concept, if meaning
should not be introduced in the same usual way as for p
odic systems. Shung, Sander, and Merlin,23,24 following a
one-dimensional approach, proposed a LEM associate
impurity states in FSL’s. They also stated that this mass
possibly the relevant object for the cyclotron resonance
wave-packet propagation in quasicrystals. The calcula
LEM is a quasiperiodic function of the impurity position
and when averaged over the whole system becomes al
independent of the system size for long Fibonacci sequen
converging to a value that increases with the impurity size23

A detailed study of shallow-donor impurity states in sem
conductor FSL’s was recently reported by Bruno-Alfonso,
Dios-Leyva, and Oliveira25 within the effective mass and
parabolic band approximations. They present a full disc
sion of the effects of the quasiperiodic and self-similar pro
erties of the system on the 1s-like impurity states following
different variational approaches. The superlattices conside
are periodic stackings of a unit cell generated following
given Fibonacci sequence, and reach the quasiperiodic
tures for sufficiently large unit cells. A study of the LEM
was performed,25 by fixing the in-plane effective mass as th
GaAs bulk value, and determining a LEM for each impur
2057 ©1999 The American Physical Society
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position and corresponding binding-energy value. In
present paper we report a discussion on the physical in
pretations of the LEM associated with shallow-impur
states, together with a similar study of a LEM defined
Landau levels in the presence of in-plane magnetic fie
~without impurities!. The conditions for the LEM values to
be associated with parabolic envelope curves of the F
‘‘band structure’’ within a wide range of localization radii o
impurity or Landau states are discussed. The 1s-like impurity
density of states is calculated and it is shown to beco
independent of the Fibonacci-sequence size as this
grows, as predicted before.25

II. THEORETICAL FRAMEWORK

We deal with shallow-donor impurity states and condu
tion Landau states~for in-plane magnetic fields! in Fibonacci
superlattices that are actually periodic stackings of Fibona
sequences of semiconductor layers~cyclic boundary condi-
tions!. The unit cell for the FSL of ordern is the sequencevn
of the elementsa ~a layer of Ga12xAl xAs of thicknessda!
and b ~a layer of GaAs of thicknessdb!, beingv15a, v2
5b, and vn5vn21vn22. The electron states are treate
within the effective mass and parabolic-band approxim
tions, with a constant effective-mass value~taken as 0.067
m0! along the FSL.

The Hamiltonian of a single hydrogenic impurity in
GaAs-~Ga,Al!As superlattice~SL! with symmetry axis along
the z direction may be written as

Ĥ5
p̂2

2m*
2

e2

e rAx21y21~z2zi !
2

1VSL~z!, ~1!

where m* and e r are the effective mass and the stat
dielectric constant of GaAs, respectively, andzi is the impu-
rity position. The SL potentialVSL(z) is defined by the se
quence of wells and barriers, corresponding to GaAs
~Ga,Al!As layers, respectively. The trial carrier-envelo
wave function for the 1s-like state is chosen to be25

Ca~x,y,z!5N expS 2
1

a
Ax21y2Dca~z!, ~2!

whereN is a normalization factor,a is a parameter that wa
previously chosen25 to satisfy the bulk binding-energy limit
andca(z) is to be determined via a variational scheme t
minimizes the energy of the impurity ground-state given
Eq. ~1!. This procedure reduces the problem to a o
dimensional Schro¨dinger equation forca(z) with the Hamil-
tonian given by

Ĥ1D52
\2

2m*
d2

dz2 1Ua~z2zi !1VSL~z!, ~3!

where

Ua~z!5Ry* F S a*

a D 2

2
4a*

a
GS z

aD G , ~4!

with Ry* anda* being the GaAs effective Rydberg and Bo
radius, respectively, and
e
r-

r
s

L

e
ze

-

ci

-

d

t
y
-

G~x!5E
0

` 2te22t

At21x2
dt. ~5!

Notice that the second term in the 1D Hamiltonian cor
sponds to an effective one-dimensional potential for
electron-impurity interaction. Here, in contrast to the mod
by Shunget al.,23 the confining potential parameters are d
termined by the bulk-effective mass and dielectric consta
except for the variational parametera, which is determined
by minimizing the lowest eigenenergy ofH1D , for each im-
purity position. It should be noted that the later minimizati
scheme is needed for thick-barrier superlattices as poin
out by Ribeiro, Bruno-Alfonso, and Latge´.27

For the case of conduction-electron Landau states
FSL’s under in-plane magnetic fields a one-dimensio
Schrödinger equation is also obtained for the carrier dyna
ics in the system-growth direction, by using an appropri
gauge for the field.28–30 Here we solve the differential equa
tion by trigonometric Fourier expansion and diagonalizat
techniques,31 and take only the ground Landau level for ea
cyclotron-resonance center. For each center we determi
LEM ~the in-plane effective mass is taken as the GaAs b
value!, which accounts for theDE energy difference be-
tween the actual Landau ground state and the ground lev
the absence of magnetic field. For an effective anisotro
medium with in-plane effective massmr it is then easy to
show that the LEM for an in-plane magnetic fieldB is

1

mr
S \eB

2DED 2

. ~6!

Of course, as in the case of the LEM associated with im
rity states, the existence of a mean effective mass for
structure would be of great interest. This mass may be
tained, for instance, from an analysis of the absorption
photoluminescence spectra that present structures assoc
to van Hove–like singularities of the combined density
states. The intraband absorption coefficient of GaA
~Ga,Al!As FSL’s reported by de Dios-Leyvaet al.32 essen-
tially illustrates this situation, and the same applies for tra
sitions between donor and the conduction or valence sta
from which it would be possible to determine a mean LE
value. However, in the present paper we adopt a simple
proach in which the mean LEM value for the FSL may
associated either to the mean impurity binding energy o
the meanDE energy value, in the case of conduction Land
levels. In what follows we show that the mean LEM may
closely related to the SL ‘‘band structure’’ for different F
bonacci sequences.

III. RESULTS AND DISCUSSION

We first show in Fig. 1~a! the calculated donor shallow
impurity binding energy as a function of the impurity pos
tion in a GaAs-Ga0.8Al0.2As FSL with 144 elements~order
12!. The barrier and well thicknesses are 11.2 and 16.9
respectively, and the dielectric constant is chosen as 1
The quasiperiodiclike behavior is apparent in this cur
which can be seen as a Fibonacci sequence of well-defi
repeated patterns.25 The shallow-donor density of states33

~DOS! is displayed in Fig. 1~b! for the homogeneouslyn-
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type doped FSL. Some of the van Hove–like singularities
Fig. 1~b! may be associated with centers of local symme
for the FSL. One should notice that centers of local symm
try occur with different radii in FSL’s consisting of Fi
bonacci sequences of homogeneous semiconductor la
The FSL built-in potential has this property, and the cent
of symmetry in a one-dimensional approach would cor
spond to planes in a three-dimensional picture. A particle
such a plane of local symmetry will ‘‘feel’’ the same pote
tial in both directions away from a plane of symmetry, up
a distance of the order of the corresponding symmetry
dius. Of course, the centers of local symmetry are clos
related to the hierarchy and self-similarity of the Fibona
sequences. An essential condition for local symmetry cen
to exist in FSL’s is the symmetry of the elemental buildi
blocks ~a and b!, which is satisfied in our case of homog
neous semiconductor layers. Also, one has symmetric su
quences in a given Fibonacci cell such asbb, bab, aba, abba
abbabba, and so on. One then finds that following the hie
archical quasiperiodic structure of the Fibonacci sequen
different symmetric subsequences with size near those
low-order Fibonacci blocks appear in a given FSL, and t
equivalent subsequences are distributed following Fibon
lattices. The van Hove–like singularities@cf. Fig. 1~b!# cor-
respond to stationary points in the dependence of the im
rity binding energy on the impurity position along the FS
growth direction@Fig. 1~a!#. For 1s-like impurity states only
centers of local symmetry with radius larger than the imp
rity size ~i.e., localization radius of the bound carrier, whic
can be estimated as 3 times the effective Bohr radius! will be
apparent as local symmetry centers of the binding-ene
curves. Of course, these centers of symmetry are statio
points, and hence correspond to van Hove–like singularit
However, other stationary points with their correspond
van Hove–like singularities exist, which are not symme
centers for the impurity states with the same localization
dius, as it is the case of the upper and lower edges of
‘‘impurity band’’ in Fig. 1~a!.

Figure 2 shows the shallow-donor DOS forv12 as in Fig.

FIG. 1. ~a! Donor shallow-impurity binding energyEB as a
function of the impurity positionzi ~in units of the GaAs effective
radiusa* !, and~b! the associated shallow-impurity density of stat
~DOS!, in a GaAs-Ga0.8Al0.2As FSL with 144 elements~order 12!.
The barrier and well thicknesses are 11.2 and 16.9 Å, respectiv
and the dielectric constant is 12.5. In~b! the FSL is supposed to b
homogeneouslyn-type doped.
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1~b!, and also includes the DOS for the Fibonacci sequen
v13 and v14, with 233 and 377 elements, respectively.
may be seen that all curves essentially coincide, reflec
the independence of the DOS on the size of the FSL unit
for sufficiently large Fibonacci-sequence orders. This is
clear consequence of the quasiperiodic behavior of the
purity bands, as discussed in detail by Bruno-Alfonso,
Dios-Leyva, and Oliveira.25 Moreover, for the impurity
states, if one considers the cyclic boundary conditions
may be demonstrated that if one has the impurity band fo
FSL of a given order expressed as Fibonacci sequence of
pieces, then all FSL’s with larger order will have impuri
bands that may be seen as Fibonacci sequences of the
pieces of curve. The system DOS can be expressed as
sum of the DOS of each one of the two pieces times th
frequency in the Fibonacci cell, which are consecutive
bonacci numbers. Since the ratio of consecutive Fibona
numbers rapidly converges to the golden mean value,
normalized density of states becomes independent of the
of the FSL for sufficiently large systems. This property of t
DOS is associated to the convergence of both the me
impurity binding energy and related standard deviation as
size of the Fibonacci sequence increases, as discussed b

Figure 3~a! shows the mean-impurity binding energy as
function of the order of the Fibonacci sequence that gen
ates the unit cell. The FSL parameters are the same as a
in one case~e r512.5, which stands for the GaAs dielectr
constant!. Based on the assumption that it is the confini
Coulomb potential that essentially determines the locali
tion radius of the carrier,29 the dielectric constant is the ap
propriated variable to theoretically study the LEM depe
dence on the carrier ground-state localization radius~or
impurity size23!. Hence, we have included the results o
tained for a quite different dielectric constant, name
e r517.9, which would correspond to26 InSb. As may be seen
in Fig. 3~a!, curves for both dielectric-constant values co
verge rapidly as the unit-cell size grows. It should be
marked that the mean binding energy decrease as the di
tric constant and the localization radius rise. Figure 3~b!
displays how the standard deviation of the binding energy
the FSL also converges rapidly as the unit-cell size increa
As shown in this figure the standard deviation for short-u
cells is quite small, which is in close relation with the fa
that the corresponding short-period SL’s essentially ful
the conditions of applicability of an effective-masslik

ly,

FIG. 2. As in Fig. 1~b!, but for the Fibonacci sequence
v12, v13, andv14, with 144, 233, and 377 elements, respective



ty

ig
d
o

rs

er

in
on
h

ith
fo
a
n

S
re
ss
o

-
L
ua
-
M
tio
th

to
u

for
ese

y
y.

-
rgy
ite
,’’
gy

e.,

ds
for
e
olic
ll

on

with

e
e

-

2060 PRB 59BRUNO-ALFONSO, RIBEIRO, LATGE´ , AND OLIVEIRA
theory, which would give a unique value for the impuri
associated effective mass for all positions.23,25

From the shallow-donor mean binding energies of F
3~a! we may obtain~see Bruno-Alfonso, de Dios-Leyva, an
Oliveira25! the dependence of the mean LEM on the order
the Fibonacci sequence, as displayed in Fig. 4~a! for two
different values of the dielectric constante r . We also show
the LEM values corresponding to the curvature of the fi
FSL energy miniband~without impurities!, with the FSL
electron-energy minibands calculated following a transf
matrix technique.12 Notice that the first miniband LEM in-
creases quite rapidly with the Fibonacci order correspond
to the increasingly flat character of the first conducti
miniband23,25 ~within the present impurity LEM approac
this behavior would correspond to thee r→` limit !. Note
that the LEM values are plotted for FSL orders 1–14, w
the LEM values for orders 1 and 2 being the bulk values
Ga0.8Al0.2As and GaAs, respectively, which are taken
0.067m0. The agreement between all three LEM depe
dences is apparent in Fig. 4~a! for small-period SL’s~orders
3–5!. As commented before, this indicates that the first F
miniband contains the information to describe the cor
sponding shallow-impurity states within an effective-ma
like theory with a parabolic miniband. For larger periods
the FSL’s~orders 6–7! the nonparabolicity of the first mini
band enhances the shallow-donor LEM, whereas for FS
of orders 8–14 the many-miniband effects results in a q
siperiodic limit for the shallow-donor LEM. It should be re
marked that the specific behavior of the shallow-donor LE
depends essentially on the relation between the localiza
radius of the impurity states and the FSL unit-cell leng
Therefore, the smaller the dielectric constant~i.e., the smaller
the impurity size!, the lower Fibonacci order is needed
reach either the enhancement of the donor LEM or the q

FIG. 3. ~a! Mean shallow-donor binding energyĒB and ~b! the
corresponding standard deviationDEB as functions of the
Fibonacci-sequence order for different values of the dielectric c
stant e r . Squares~triangles! correspond toe r512.5 (e r517.9),
and dashed lines are guides to the eye.
.
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siperiodic regime. As the mean-donor LEM dependences
bothe r values appear to converge for order 14 we take th
values as the mean LEM’s for ideal FSL’s of order`. As
reported by Shung, Sander, and Merlin,23 the heavier elec-
trons ~larger LEM limit! are associated with larger impurit
sizes~or e r values!, but here this fact occurs in a subtle wa
To clearly show this, we display in Fig. 4~b! the Cantor-like
energy band structure for the GaAs-Ga0.8Al0.2As FSL of or-
der 11 ~89 elements!. Essentially identical curves are ob
tained for larger Fibonacci orders in these scales of ene
and wave number, and the spectrum in the limit of infin
Fibonacci order is the ideal-FSL energy ‘‘band-structure
which reflects the asymptotic stability of the FSL ener
spectrum as discussed by Macia´, Domı́nguez-Adame, and
Sánchez.34 The wave numberkz ranges from 0 top/dp ,
where dp is the fundamental quasiperiod of the FSL, i.
dp5da1tdb , with t5(11A5)/2 being the golden mean.28

This wave-number range corresponds29 to half of the first
‘‘Brillouin minizone’’ of the ideal FSL of order`. Also
shown in Fig. 4~b! are the curves for parabolic energy ban
associated to the quasiperiodic limits of the mean LEM
the differente r values. It is interesting to note that, in th
ranges of energy and wave number shown, both parab
curves essentially coincide~as a consequence of the sma
difference between the corresponding LEM values! and re-
produce the overall behavior of the FSL band structure.

- FIG. 4. ~a! Mean longitudinal effective mass~LEM! associated
to shallow-donor states~in units of the free-electron massm0! for a
FSL as a function of the Fibonacci-sequence order, together
the FSL first-miniband LEM~circles!. Squares~triangles! corre-
spond toe r512.5 (e r517.9), and lines are guides to the eye.~b!
v11-based FSL conduction-energy band-structure~solid line with
vertical steps at the minigaps! and parabolic approximations for th
energy, arising from the impurity-associated LEM limits. Th
dashed~dotted! line stands fore r512.5 (e r517.9). The layer
thicknesses are 11.2 and 16.9 Å for Ga0.8Al0.2As and GaAs, respec
tively.
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The same general conclusions arise in the study of
conduction-electron Landau levels in the FSL under in-pla
magnetic fields. Figure 5 shows the dependence on the
bonacci order of the mean LEM for three magnetic-field
tensities scaled28,32 by t 2. The magnetic field imposes
length scale characterized by the Landau radiusl B5A\/eB,
which increases when the field intensity is lowered. As d
cussed above for the LEM associated to shallow-donor st
in GaAs-~Ga,Al!As FSL’s heavier electrons in the ideal FS
are associated to larger localization radii. It is worth notici
that the length scales studied in Fig. 5 are quite differe
whereas the corresponding LEM limit values are very sim
lar: for thin barrier FSL’s, one obtains that the limiting LEM
varies less than 2% for quite different strengths of the c
fining potential ~Coulomb or magnetic!, i.e., localization
lengths. Therefore, all the corresponding LEM values m
be associated with the curvature of theE vs kz parabolas,
which essentially reproduce the Cantor-like structure of
extended scheme of the FSL energy spectrum@as may be
seen in Fig. 4~b!#. In that sense, therefore, for thin barrie
FSL’s, the mean LEM limit weakly depends on the nature
the conduction-electron~or impurity! state and localization
length, and is closely related to the fractal-like ‘‘band stru
ture.’’ On the other hand, it should be noticed in Figs. 4~a!
and 5 that, for FSL’s in the nonparabolic one-miniband
gime ~orders 6–7!, as expected heavier electrons are ass
ated to shorter localization radii in contrast with the res
obtained here for the quasiperiodic limit of large FSL cel

All results discussed above correspond to FSL’s with b
rier and well thicknesses ofda511.2 Å anddb516.9 Å,
respectively, which have two special properties: weak ba
ers anddb /da.t ~self-similarity condition!. Now, for com-
parison with the results in Fig. 4, we display in Fig. 6 t
LEM associated with shallow-impurity states in a FSL w
da5db533.9 Å. The above discussion for Fig. 4~a! also ap-
plies for Fig. 6~a!, except for the relative difference betwee
the LEM limit values, which is much larger. This fact
apparent in Fig. 6~b!, where the parabolic bands correspon
ing to those LEM limiting values separate and do not rep
duce the band structure so well, in contrast with the result

FIG. 5. Mean-longitudinal effective mass~LEM; in units of the
free-electron massm0! associated with the energy of th
conduction-electron ground-state Landau level for in-plane m
netic fields as a function of the Fibonacci-sequence order, toge
with the FSL first-miniband LEM~circles!. Diamonds, squares, an
triangles correspond to magnetic field values of 2.92, 7.64, and
T, respectively~field intensities are scaled byt 2!. Lines are guides
to the eye.
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Fig. 4~b!. As a matter of fact, the band structure of this FS
is so singular that no parabola would properly follow
overall behavior, but rather only its shape for small wa
numbers. So, the singular geometry of the FSL energy b
structure implies a larger dependence of the shallow-do
LEM on the localization length of the associated impur
states. In this respect, Fig. 7 displays the energy band st
ture for different GaAs-Ga0.8Al0.2As FSL’s in the first Bril-
louin minizones.29 As may be noticed, the energy-band stru
tures for thin-barrier FSL’s ~1–3! may be clearly
approximated by parabolic LEM-energy curves, whereas
thick-barrier FSL’s~4–5! the whole concept of a LEM be
gins to break down.

-
er

0

FIG. 6. As in Fig. 4, but here both the barrier and well thic
nesses are 33.9 Å.

FIG. 7. Conduction minibands of FSL’s generated by the
quencev11 ~89 elements in the unit cell! for different values of the
layer thicknesses. The Bloch wave number iskz anddp is the fun-
damental quasiperiod of the FSL. The barrier widths for curv
labeled 1–3~4–5! is 11.2 Å ~33.9 Å!, and the well thicknesses ar
11.2, 16.9, 33.9, 33.9, and 51.2 Å, for curves 1–5, respectiv
Vertical lines are guides to the eye at the minigaps.
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IV. CONCLUSIONS

We have calculated the energy of the shallow-impur
ground states as well as the energy of the ground conduc
Landau level ~under in-plane magnetic fields!, in GaAs-
~Ga,Al!As FSL’s. These SL’s consists of periodic stackin
of Fibonacci-sequenced unit cells, and we analyzed the q
siperiodic limit of large unit-cell sizes, and the relation b
tween the mean LEM and the localization length of the c
responding electronic or impurity states. For the me
energy of the impurity or magnetic states one associate
mean LEM, which weakly depends on the localization rad
of the corresponding wave functions. Heavier localized el
trons are associated with larger localization lengths. T
mean LEM experiences small changes for large variation
the localization radius in the case of thin-barrier SL’s, and
values are associated with parabolic envelopes of the
energy-band structure. As the barriers become thicker
regime breaks down and the singular geometry of the F
energy-band structure leads to an increasing dependen
l
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.

.

t

h

on

a-
-
-
n
a

s
-
e
of
s
L
is
L
of

the shallow-impurity LEM on the localization length of th
corresponding impurity states.

One should stress that the approach used in the pre
calculation is not restrictive to Fibonacci-like SL’s and sim
lar theoretical studies may be performed for other kinds
semiconductor heterostructures~periodic or aperiodic! of in-
terest such as Thue-Morse or random SL’s. Finally,
pointed out by Shung, Sander, and Merlin,23 the experimen-
tal observation of the effects of quasiperiodicity on the~elec-
tron or shallow impurity! longitudinal-effective mass could
be performed by far-infrared cyclotron-resonance measu
ments with in-plane magnetic fields~or far-infrared spectro-
scopic measurements on conduction-to-donor states tra
tions! on such SL’s so that electrons in a Landau~or
impurity! level tunnel through many SL layers.
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