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Size effect on chalcogen deep levels in Si quantum dots
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The deep levels and electron spin resonance spectra associated with S, Se, and Te impurities at the centers
of Si quantum dots are predicted as functions of dot size, for both the neutral and singly ionized states.
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I. INTRODUCTION II. APPROACH

We make three major approximatioris:the quantum dot

With the advent of experimental techniques for producingis assumed to retain tetrahedral shélpig. 1); (ii) the impu-
small semiconductor nanostructures having sizes rangingty is assumed to lie at the center of the cluster; 4iid
from a few atoms to bulk dimensions? the physics of small atomic relaxation around the impurity and in the dot itself is
guantum dots is assuming new importance. One area that hagored, in the interest of exploring the general trends as a
received little attention is the physics of impurities, espe-function of dot size.
cially “deep” levels. Historically, a deep level was origi- These approximations are justified by our results for all
nally defined as any level more than 0.1 eV from a bandbut the smallest quantum-dot sizes. The deep levels in ques-
edge, in the fundamental gap—Dbut it was soon realized thaton, being ofs-like symmetry and of radius<10 A, will
the proper definition was any level associated with theonly be weakly perturbed by changes in the quantum dot
central-cell potential of an impurityThis change of defini- more than~10 A distant from the impurity(See Figs. 2, 3,
tion was necessitated by the realization teaéryimpurity  and 4) Atomic relaxation around an impurity will rarely
produces deep levels, but that most of these levelsutside  change the deep energy level in the gap by as much as 0.3
the fundamental gap, resonant with the host energy bandey. Only for the smallest quantum dots, consisting of only a

For example, P in Si has, in addition to its shallow-donorfew shells of atoms, do the approximations introduce signifi-
Coulombic levels slightly below the conduction band cant errors, and in these small clusters the atoms often rear-
minima, an slike and a p-like deep level above the range themselves in a manner that is best treated by a change

conduction-band edge, which can be uncovered by perturtff total energy method, such as the local density approxima-
ing the Si so that its fundamental band gap is enlafgéd. ton.

When this happens, the P impurity changes fromnaype In addition to the three major approximations, we also
donor to a semi-insulating trap. Similarly, size reduction of atruncate the range of the defect potential at the central cell, as

quantum dot enlarges the fundamental gap, and should uln the Hjalmarsoret al. theory of deep levels in bulk semi-

cover many deep levels that were previously ignored, leadin onductors. Our general approach is based on the Hjalmar-

to interesting doping anomalies. For this reason, detailed in->. etal. theory of deep levels in the bufkbut draws as
eresting doping o » = well on a long history of studies of impurities in cluster’
vestigations of deep levels in quantum de&ssusdot size

il . and in the bulk®>~2*The dangling Si bonds at the surface of
should be especially interesting.

. . . the dot or cluster are terminatéttheoretically with H atoms,
In this paper, we study the chalcogen impurities S, Seyhich we know do not produce deep levels in the fundamen-
and Te and their deep levels in Si quantum dots, primarily) gaps of any size clustdt.Each Si atom in a cluster is

because electron spin resonaESR) studies of these im-  555umed to have @pst basis sef® Details of the calcu-
purities in bulk Si have produced some of the bestYata |ations, which invoke group theory to simplify the evalua-
for comparison with theory; making them prototypical deep tions of the electronic structures of rather large clusters, are
levels. Therefore, studies of these deep levels in quantunpcluded in the Appendix.

dots with decreasing size can provide touchstones for com- The quantities that we calculate di¢the deep-level en-
parison of deep-level charge densities with theory, and ouergies of 8, S&, Te®, S™, Se'?, and Te?l, and (i) the
theoretical predictions for chalcogen impurities in quantumwave functions(A;,R=0,n=1|#), (A;,R;,n=1|¢), and
dots should be tested against future measurements of chargek;,R;,n=2|), which are related to the hyperfine con-
densities obtained with ESR. stantsA, a, andb for the impurities S, Se", and T€, as

0163-1829/99/5@)/20455)/$15.00 PRB 59 2045 ©1999 The American Physical Society



2046 JIAN SONG, SHANG YUAN REN, AND JOHN D. DOW PRB 59

20

0

)

os"

a l>Sei

o ASe0

vV Te

9 1.5 a o QTC*
L o4 o CBM
? v Do g a

= B
= 1.0 < YV yvyvy vy Vv Vv v
A ®2 b b o b b B ®
o 44 94 4 4 4« 44 4 <
AA A A A A AA A A
00 o 0 0 © 00 ) o
0.5 L - . -
0 10 20 30 40 50
Diameter(A)

FIG. 3. Computed deep-level energies of %ircleg, Se'
(upward-pointing triangles Te* (left-pointing triangley S° (dia-
monds, Sé (right-pointing trianglels and T& (downward-pointing
. . - triangles vs Si quantum dot diametet (in A). The corresponding

FIG. 1. lllustrating the diamond crystal structure of S.' with a bulk binding energies relative to the CBM are 0.59, 0.52, 0.41,
black atom at the center of the cluster, dark atoms as its nearest

neighbors, and lighter atoms as second neighbors. The bonds t60'32’ 0.31, and 0.20 eV, respectively.

more distant neighbors, that would normally dangle, are deleted. ~ The charge-state splitting of E(S*)— E(SO) is rela-
tively constant(to within 1%) as a function of dot size, as
discussed in the Append#R:?” More precisely, we do not demonstrated in Fig. 3, and the differences in S, Se, and Te
actually compute deep-level energies in the bulk, but calcudeep-level energies change very little as wielaximum of
late the strengths of the bulk defect potentials that producé&%y), as shown in Fig. 3.
the observedenergies, and then we use these potential The electron-spin-resonance paramet&rs, andb (de-
strengths to predict the deep levels in the quantum dots. fined in the Appendixare displayed in Fig. 4, and exhibit
only a weak dependence on quantum dot diZa particular,
. RESULTS once the dot approaches the size of a five-atom cluster, the
deep level(which has antibonding character, with much of
Figure 2 displays the band edges and 8ledeep level its amplitude on the shell of first nearest neighbegins to
versusthe quantum dot diametet. Not unexpectedly, the show the effects of localization, and the amplitude of the
band edges recede from the fundamental band gap of bulk 8iave function on the central sitand nearbyincreases.
asd decreases. The deep level varies in energy less than the But a crude summary of our results is that the deep levels
band edges, reflecting its hostlike character, which is relaef S, Se, and Te in Si quantum dots are not affected much by
tively insensitive to the detailed positions of either thequantum confinement, until the dots become quite small—
conduction-band minima or the valence-band maximum. only a few atoms in size.
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FIG. 2. The comput_eq valence-band maxiitwBM; circles) Diameter(A)
and conduction-band minim&BM; squarefs and deep-level ener-
gies(in eV) of S impurities(diamonds} located at the centers of Si FIG. 4. Electron-spin-resonance hyperfine parametees. 27

quantum dots, against dot diametktin A). The zero of energy is (a) A, (b) a, and(c) b computed for $, Se", and T€, against
the VBM of bulk Si whose gaggRef. 25 is 1.17 eV(Ref. 29. quantum dot diameted (in A).
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APPENDIX: THEORY

1. General

+|h3182>+|h4182>+|h2183>+|h1!83>
+1hy,S5) +1h,,Sy) +[h3,Sy) +1hy, Sy,

where this is thed; combination of twelve outward-directed

We plan to compute the energy levels and wave function§YPrids centered on nearest-neighbor sites.
of deep levels in the fundamental gaps of Si quantum dots, as

a function of dot diameter. We shall employ the Hjalmarson

et al. theory of deep level$ modified to treat impurities in

2. Si Hamiltonian and defect potential

The host HamiltoniarH,, is the Voglsp®s* modef® of

clusters in addition to defects in bulk semiconductors. Thene electronic structure of Si. To this is added a defect po-

basis states will be localized linear combinationspf hy-
brids and an excitegd* orbital?®

tential V, which, strictly speaking, is based on a mixed basis

all centered on the same set of Lavdin orbitals® but which we approximate using the

shell of atoms, that transform according to a specific irreducgefect potential

ible representation of the tetrahedral group:

||1R:n>:

wherel labels an irreducible representatioh; (s-like), T,
(p-like), A,, E, or T;. Because we consider onk and
p-bonded impurities at the center of a Si cluster, onlyAhe

V=3|I,R=0,n=1)V(I){I,R=0,n=1].

Its only nonzero matrix elements are the diagonal elements
V(l=s or A;) and V(I=p,m or T,,m), where m runs
over three valuex, y, and z It follows that V(I) for the
defect in the bulk crystal determines the deep energy [Evel

and T, representations will be important in this work. The of the impurity in the bulk, or conversely, by knowing the

label n indexes the states transforming according to Ithe
irreducible representation at thth shell of neighbors. For

energies of the Band Sé defects in the bulk, for example,
we can determine two values ®(A;) that produce them,

example, forA;-symmetric states) may be as large as 6 for which in turn allows us to eliminaté(A;) as a parameter, in

R within the first 12 shells of neighbors; f&=0, there is
only then=1 state at the impurity site:

|A1,R=0,1)=3[|h;,5)+|h,,S)+|h3,5) +|hy, 9] =]s,S)
for S=0,
namely, the symmetric linear combination of the fap®
directed hybrids centered at the impurity si8=0, or
|s,S=0).
Here the hybrid orbitals centered on sBeare expressed
in terms of thes and p orbitals at that site:
lhy,S)=3[[s,9)+\|px,S)+\py, S+ |p2, )],
Ih2,9)=3[[s,S) +\|px.S) = APy .S =[Pz, )],
|h3,S>=%[|S,S)—)\|px,S>+)\|py,S>—)\|pZ,S)],
and
Ih4,9)=3[15,S) = \|px.S) = APy .S+ [P, )],

where we have\=+1 (—1) for atoms at nominal anion

favor of the known deep levels.

For the clusters or quantum dots, the Hamiltonian matrix
H=H,+V is diagonalized, producing the eigenvectpms
and energy eigenvaluds, .

3. ESR parameters

The parameters, a, andb, which can be compared with
ESR measurements ¢’

A=[(A;,R=0,n=1|)|*A,,
a=15/(I,Ry,n=1]4) +V3({l,Ry,n=2|)|?A;,,
and
b= 15[v3(I,Ry,n=1|)—(I,Ry ,n=2|4))|*By,.

Here|) is the defect state andl, is proportional to thdree
atomic hyperfine interactio(Fermi contact termof the S,
Se, or Te impurity:

Agx | ws,free atork R= 0)|2-
Ag is also proportional to (16/3) (us/1g) B, whereuandlg

(cation sites, and the impurity is assumed to be at an aniorare the magnetic moment and nuclear spin of tiierSe or

site. Next we introduce the label=s*, h;, h,, h;, orhy,
and our hybrid basis orbitals afeS).

Te), and B is the Bohr magneton. The hyperfine interaction
parameterA,, for the neighboring host sites to the impurity

Then=1 state at the first shell of nearest neighbors is (in shellR;) is
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Ah:(1677/3)(M5i/|3i),3|lﬂSi;free atom 3(0)|2, 5. Bulk crystal limit: Determination of V(I=s or A;)

In evaluating the band-edge energies and the deep levels
%5f substitutional chalcogens in bulk Si, it is convenient to
employ the Green’s-function secular equation method, to in-
4 _3 voke translational invariance, and to form the tight-binding
Bn=5(uj/1))B(r3p), orbitals for the bulk Si crystal from the hybrid orbitals cen-

where<r§p3) represents an average of the dipole-dipole inter-tereOI on site I(,v):

action over the electronic wave function.

We use the sign convention théd;,R=0,1|) is posi-
tive, which implies that(A;,Rq,2/¢) is positive and
(A1,Rq,1]#) is negative.

while we have the anisotropy parameter for the neares
neighbors sites:

|v,k,vg) =Ng 25 explik-L+ik-vg)|v,L,vp),

wherek is (in a reduced zone scheinany wave vector of
the first zinc-blende Brillouin zone. Hel, is the number of
unit cells and the site isl(,v;), wherev,=0 for anion sites
4. Alternative Green’s-function approach and v, is the position of the closest cation relative to the

An alternative approach to directly computing the impu-central anion site. o
rity energy levels and wave functions in a quantum dot is to Then the perfect Si crystal Hamiltonia, is the one-
employ the Green’s-function approach. This approach is acelectron tight-binding Hamiltonian of Voget al,?® and is
tually preferable in a bulk material. given in terms of the tight-binding basis statesk,vz) ob-

The seculafoperatoy equation is tained from localized 0rbital$u,S,vB) centered on thggth

site in the unit cell at
defl1-Gy(E)V]=0,
|v,k,vg)=Ng S explik- S+ik-vp)|v,S,vg).

where the unperturbe@mpurity-freg quantum-dot or host-
crystal Green’s operator is The k-space Hamiltonian is

|a)(al Ho(K)=3, 4lv,k, V) E(v,B8)(v,k Vgl
“E—E,’

Go(E)=(E—Hg) *=3
+ %E,HLH v, K,V ) T(va,uc){u,k,ve|+H.cl,

and E is to be replaced b¥+i»n, where 5 is a positive
infinitesimal, if E lies within a continuum of energy levels of

the host Hamiltonian operatdd,. The eigenvalues of the ~-~~. . .
P 0 g sites in the unit cell of S{B=a for the anion ang3=c for

host HamiltonianH, are E,, with eigenvector§a). The . T . ) .
guantum dots with the chalcogen impurities at their center;:he ca_nor)_. We distinguish bgtween anion and cation sites
ven in diamond-structure Si to emphasize that the theory

are assumed to have tetrahedral symmetry. Therefore, by ugven X .
ing projection operator techniques, and by selecting line pplies to ;lnc—blende semmonduc;ors such as GaAs as well.
combinations of hybrid orbitals that transform according to _he e_nerglesE(v,B) anq transfer |ntegra|§'(ya,,_uc) are
the irreducible representations of thg or tetrahedral group, given in Ref. 25, The eigenstates b, for bulk Si are the
the Green'’s operator matr@y(E) can be reduced to a direct Bloch wavesin,k), and the eigenvalue, (k) are the band

sum of matrices associated with each irreducible representgmfl_chturedmc bflk S"f lovina the tiaht-bindi bital d
tion. Only theA; representation has nontrivial solutions for € advantage ot employing the tight-binding orbita’s an

the deep level's energy. Hence for either a host crystal or éhe Grlc_eent_s fun;:t;gn sheCI:IaF: eq_llJtatlt_)n methog IS t(;w}{t the 1d(')
guantum dot, the Green’s-function secular equation for thggonaliization or the host Hamiltonian IS reduced 1o a

impurity’s energy level reduces to the scalar equation with 10 matnx.problem at each wave vectarand the elgen-
I=A,, for the deep level energs: value equation for the deep levélis scalar and simple.

The evaluation of the matrix elements of the Green’s-
function operator for the bulk Si reduces to evaluations of

where H.c. means the Hermitian conjugat@nd u label the
basis orbitalss, py, py, p,, ands*, andg is one of the two

(1,R=0,1|Go(E)|I,R=0,1)=V(I) L.

Go(E) is a matrix of considerable dimension in general, but Go(E)=3p [N, k)(n,K|(E=Epi) ",

it still can be reduced to a far more tractable dimension than ]

the full matrix, which has not been reduced by symmetryWhere the sum extends over the band indeand over the
For example, here we treat clusters as large as 49 A in diﬁrgt Brillouin zone pfk. The latter sum can be evaluated
ameter, involving 3108 Si atorsvith 5 orbitals each one  Using 60 special point.

chalcogen atont5 orbital9, and 852 hydrogen aton{852 Therefore the computation proceeds as foIIo‘(W$:The _
orbitalg, yet the matrix to be diagonalized féy,-symmetric ~ Green’s function for pulk Si is first evaluated, using spemal
states is only 834 834, not 16 39% 16 397. points, and the experimental valueBfis used to determine
The resulting deep impurity wave functids) with en-  V(S) for S, Se, or Te. This value of(s) is then employed in
ergy E has components in this model: the HamiltoniandH,+V for quantum dots of various sizes,
each containing a single chalcogen impurity at its center.
(,R,n|#)y=(1,R=0,1)){I,R,n|Gy(E)|I,R=0,1) These Hamiltonians are directly diagonalized, producing the

defect wave functiongy) and energy eigenvalues for the
x(1,R=0,1|Gy(E)|I,R=0,1)"1. various quantum dots.
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