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Size effect on chalcogen deep levels in Si quantum dots
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The deep levels and electron spin resonance spectra associated with S, Se, and Te impurities at the centers
of Si quantum dots are predicted as functions of dot size, for both the neutral and singly ionized states.
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I. INTRODUCTION

With the advent of experimental techniques for produc
small semiconductor nanostructures having sizes ran
from a few atoms to bulk dimensions,1–4 the physics of small
quantum dots is assuming new importance. One area tha
received little attention is the physics of impurities, esp
cially ‘‘deep’’ levels. Historically, a deep level was orig
nally defined as any level more than 0.1 eV from a ba
edge, in the fundamental gap—but it was soon realized
the proper definition was any level associated with
central-cell potential of an impurity.5 This change of defini-
tion was necessitated by the realization thatevery impurity
produces deep levels, but that most of these levels lieoutside
the fundamental gap, resonant with the host energy ba
For example, P in Si has, in addition to its shallow-don
Coulombic levels slightly below the conduction ban
minima, an s-like and a p-like deep level above the
conduction-band edge, which can be uncovered by pert
ing the Si so that its fundamental band gap is enlarged6–8

When this happens, the P impurity changes from ann-type
donor to a semi-insulating trap. Similarly, size reduction o
quantum dot enlarges the fundamental gap, and should
cover many deep levels that were previously ignored, lead
to interesting doping anomalies. For this reason, detailed
vestigations of deep levels in quantum dotsversusdot size
should be especially interesting.

In this paper, we study the chalcogen impurities S,
and Te and their deep levels in Si quantum dots, prima
because electron spin resonance~ESR! studies of these im-
purities in bulk Si have produced some of the best data9–11

for comparison with theory,12 making them prototypical dee
levels. Therefore, studies of these deep levels in quan
dots with decreasing size can provide touchstones for c
parison of deep-level charge densities with theory, and
theoretical predictions for chalcogen impurities in quant
dots should be tested against future measurements of ch
densities obtained with ESR.
PRB 590163-1829/99/59~3!/2045~5!/$15.00
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II. APPROACH

We make three major approximations:~i! the quantum dot
is assumed to retain tetrahedral shape~Fig. 1!; ~ii ! the impu-
rity is assumed to lie at the center of the cluster; and~iii !
atomic relaxation around the impurity and in the dot itself
ignored, in the interest of exploring the general trends a
function of dot size.

These approximations are justified by our results for
but the smallest quantum-dot sizes. The deep levels in q
tion, being ofs-like symmetry and of radius,10 Å, will
only be weakly perturbed by changes in the quantum
more than;10 Å distant from the impurity.~See Figs. 2, 3,
and 4.! Atomic relaxation around an impurity will rarely
change the deep energy level in the gap by as much as
eV. Only for the smallest quantum dots, consisting of only
few shells of atoms, do the approximations introduce sign
cant errors, and in these small clusters the atoms often r
range themselves in a manner that is best treated by a ch
of total energy method, such as the local density approxim
tion.

In addition to the three major approximations, we al
truncate the range of the defect potential at the central cel
in the Hjalmarsonet al. theory of deep levels in bulk semi
conductors. Our general approach is based on the Hjalm
son et al. theory of deep levels in the bulk,5 but draws as
well on a long history of studies of impurities in clusters13,14

and in the bulk.15–23The dangling Si bonds at the surface
the dot or cluster are terminated~theoretically! with H atoms,
which we know do not produce deep levels in the fundam
tal gaps of any size cluster.24 Each Si atom in a cluster is
assumed to have ansp3s* basis set.25 Details of the calcu-
lations, which invoke group theory to simplify the evalu
tions of the electronic structures of rather large clusters,
included in the Appendix.

The quantities that we calculate are~i! the deep-level en-
ergies of S0, Se0, Te0, S11, Se11, and Te11, and ~ii ! the
wave functions^A1 ,R50,n51uc&, ^A1 ,R1 ,n51uc&, and
^A1 ,R1 ,n52uc&, which are related to the hyperfine con
stantsA, a, and b for the impurities S1, Se1, and Te1, as
2045 ©1999 The American Physical Society



t
lcu
uc
tia

lk

ela
he

s
Te

it

the
of

he

els
by

ll—

a
re
s

d.

-
i

41,

2046 PRB 59JIAN SONG, SHANG YUAN REN, AND JOHN D. DOW
discussed in the Appendix.26,27 More precisely, we do no
actually compute deep-level energies in the bulk, but ca
late the strengths of the bulk defect potentials that prod
the observedenergies, and then we use these poten
strengths to predict the deep levels in the quantum dots.

III. RESULTS

Figure 2 displays the band edges and theS0 deep level
versusthe quantum dot diameterd. Not unexpectedly, the
band edges recede from the fundamental band gap of bu
asd decreases. The deep level varies in energy less than
band edges, reflecting its hostlike character, which is r
tively insensitive to the detailed positions of either t
conduction-band minima or the valence-band maximum.

FIG. 1. Illustrating the diamond crystal structure of Si with
black atom at the center of the cluster, dark atoms as its nea
neighbors, and lighter atoms as second neighbors. The bond
more distant neighbors, that would normally dangle, are delete

FIG. 2. The computed valence-band maxima~VBM; circles!
and conduction-band minima~CBM; squares!, and deep-level ener
gies~in eV! of S0 impurities~diamonds! located at the centers of S
quantum dots, against dot diameterd ~in Å!. The zero of energy is
the VBM of bulk Si whose gap~Ref. 25! is 1.17 eV~Ref. 29!.
-
e
l

Si
the
-

The charge-state splitting of S,E(S1)2E(S0) is rela-
tively constant~to within 1%! as a function of dot size, a
demonstrated in Fig. 3, and the differences in S, Se, and
deep-level energies change very little as well~maximum of
1%!, as shown in Fig. 3.

The electron-spin-resonance parametersA, a, and b ~de-
fined in the Appendix! are displayed in Fig. 4, and exhib
only a weak dependence on quantum dot sized. In particular,
once the dot approaches the size of a five-atom cluster,
deep level~which has antibonding character, with much
its amplitude on the shell of first nearest neighbors! begins to
show the effects of localization, and the amplitude of t
wave function on the central site~and nearby! increases.

But a crude summary of our results is that the deep lev
of S, Se, and Te in Si quantum dots are not affected much
quantum confinement, until the dots become quite sma
only a few atoms in size.

st
to

FIG. 3. Computed deep-level energies of S1 ~circles!, Se1

~upward-pointing triangles!, Te1 ~left-pointing triangles!, S0 ~dia-
monds!, Se0 ~right-pointing triangles!, and Te0 ~downward-pointing
triangles! vs Si quantum dot diameterd ~in Å!. The corresponding
bulk binding energies relative to the CBM are 0.59, 0.52, 0.
0.32, 0.31, and 0.20 eV, respectively.

FIG. 4. Electron-spin-resonance hyperfine parameters~Ref. 27!
~a! A, ~b! a, and ~c! b computed for S1, Se1, and Te1, against
quantum dot diameterd ~in Å!.
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APPENDIX: THEORY

1. General

We plan to compute the energy levels and wave functi
of deep levels in the fundamental gaps of Si quantum dots
a function of dot diameter. We shall employ the Hjalmars
et al. theory of deep levels,5 modified to treat impurities in
clusters in addition to defects in bulk semiconductors. T
basis states will be localized linear combinations ofsp3 hy-
brids and an exciteds* orbital,25 all centered on the sam
shell of atoms, that transform according to a specific irred
ible representation of the tetrahedral group:

u l ,R,n&,

where l labels an irreducible representation:A1 ~s-like!, T2
~p-like!, A2 , E, or T1 . Because we consider onlys- and
p-bonded impurities at the center of a Si cluster, only theA1
and T2 representations will be important in this work. Th
label n indexes the states transforming according to thel th
irreducible representation at theRth shell of neighbors. For
example, forA1-symmetric states,n may be as large as 6 fo
R within the first 12 shells of neighbors; forR50, there is
only then51 state at the impurity site:

uA1 ,R50,1&5 1
2 @ uh1 ,S&1uh2 ,S&1uh3 ,S&1uh4 ,S&] 5us,S&

for S50,

namely, the symmetric linear combination of the foursp3

directed hybrids centered at the impurity siteS50, or
us,S50&.

Here the hybrid orbitals centered on siteS are expressed
in terms of thes andp orbitals at that site:

uh1 ,S&5 1
2 @ us,S&1lupx ,S&1lupy ,S&1lupz ,S&],

uh2 ,S&5 1
2 @ us,S&1lupx ,S&2lupy ,S&2lupz ,S&],

uh3 ,S&5 1
2 @ us,S&2lupx ,S&1lupy ,S&2lupz ,S&],

and

uh4 ,S&5 1
2 @ us,S&2lupx ,S&2lupy ,S&1lupz ,S&],

where we havel511 ~21! for atoms at nominal anion
~cation! sites, and the impurity is assumed to be at an an
site. Next we introduce the labeln5s* , h1 , h2 , h3 , or h4 ,
and our hybrid basis orbitals areun,S&.

The n51 state at the first shell of nearest neighbors is
e

l-
s

r

e

s
as
n

e

-

n

uA1 ,R1 ,1&5
1

2
@1uh1 ,S1&1uh2 ,S2&1uh3S3&1uh4 ,S4&]

for shell R1 ,

the linear combination of foursp3 inward-directed hybrids,
centered on the four nearest-neighbor sitesSi , i 51,2,3,4@in
the ~1,1,1!, ~1,21,21!, ~21,1,21!, and ~21,21,1! direc-
tions#; and we have, again for shellR1 :

uA1 ,R1,2&5~12!21/2@ uh2 ,S1&1uh3 ,S1&1uh4 ,S1&1uh1 ,S2&

1uh3 ,S2&1uh4 ,S2&1uh2 ,S3&1uh1 ,S3&

1uh4 ,S3&1uh2 ,S4&1uh3 ,S4&1uh1 ,S4&],

where this is theA1 combination of twelve outward-directe
hybrids centered on nearest-neighbor sites.

2. Si Hamiltonian and defect potential

The host HamiltonianH0 is the Vogl sp3s* model25 of
the electronic structure of Si. To this is added a defect
tential V, which, strictly speaking, is based on a mixed ba
set of Löwdin orbitals,5 but which we approximate using th
defect potential

V5S l u l ,R50,n51&V~ l !^ l ,R50,n51u.

Its only nonzero matrix elements are the diagonal eleme
V( l 5s or A1) and V( l 5p,m or T2 ,m), where m runs
over three valuesx, y, and z. It follows that V( l ) for the
defect in the bulk crystal determines the deep energy levE
of the impurity in the bulk, or conversely, by knowing th
energies of the S0 and Se1 defects in the bulk, for example
we can determine two values ofV(A1) that produce them,
which in turn allows us to eliminateV(A1) as a parameter, in
favor of the known deep levels.

For the clusters or quantum dots, the Hamiltonian ma
H[H01V is diagonalized, producing the eigenvectorsua&
and energy eigenvaluesEa .

3. ESR parameters

The parametersA, a, andb, which can be compared with
ESR measurements are26,27

A5u^A1 ,R50,n51uc&u2A0 ,

a5 1
16 u^ l ,R1 ,n51uc&1)^ l ,R1 ,n52uc&u2Ah ,

and

b5 1
16 u)^ l ,R1 ,n51uc&2^ l ,R1 ,n52uc&u2Bh .

Here uc& is the defect state andA0 is proportional to thefree
atomic hyperfine interaction~Fermi contact term! of the S,
Se, or Te impurity:

A0}ucs,free atom~R50!u2.

A0 is also proportional to (16p/3)(ms/I s)b, wherems andI s
are the magnetic moment and nuclear spin of the S~or Se or
Te!, andb is the Bohr magneton. The hyperfine interacti
parameterAh for the neighboring host sites to the impuri
~in shell R1! is
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Ah5~16p/3!~mSi /I Si!bucSi;free atom 3s~0!u2,

while we have the anisotropy parameter for the near
neighbors sites:

Bh5 4
5 ~m j /I j !b^r 3p

23&,

where^r 3p
23& represents an average of the dipole-dipole int

action over the electronic wave function.
We use the sign convention that^A1 ,R50,1uc& is posi-

tive, which implies that ^A1 ,R1,2uc& is positive and
^A1 ,R1,1uc& is negative.

4. Alternative Green’s-function approach

An alternative approach to directly computing the imp
rity energy levels and wave functions in a quantum dot is
employ the Green’s-function approach. This approach is
tually preferable in a bulk material.

The secular~operator! equation is

det@12G0~E!V#50,

where the unperturbed~impurity-free! quantum-dot or host-
crystal Green’s operator is

G0~E!5~E2H0!215Sa

ua&^au
E2Ea

,

and E is to be replaced byE1 ih, where h is a positive
infinitesimal, ifE lies within a continuum of energy levels o
the host Hamiltonian operatorH0 . The eigenvalues of the
host HamiltonianH0 are Ea , with eigenvectorsua&. The
quantum dots with the chalcogen impurities at their cen
are assumed to have tetrahedral symmetry. Therefore, b
ing projection operator techniques, and by selecting lin
combinations of hybrid orbitals that transform according
the irreducible representations of theTd or tetrahedral group
the Green’s operator matrixG0(E) can be reduced to a direc
sum of matrices associated with each irreducible represe
tion. Only theA1 representation has nontrivial solutions f
the deep level’s energy. Hence for either a host crystal o
quantum dot, the Green’s-function secular equation for
impurity’s energy level reduces to the scalar equation w
l 5A1 , for the deep level energyE:

^ l ,R50,1uG0~E!u l ,R50,1&5V~ l !21.

G0(E) is a matrix of considerable dimension in general, b
it still can be reduced to a far more tractable dimension t
the full matrix, which has not been reduced by symme
For example, here we treat clusters as large as 49 Å in
ameter, involving 3108 Si atoms~with 5 orbitals each!, one
chalcogen atom~5 orbitals!, and 852 hydrogen atoms~852
orbitals!, yet the matrix to be diagonalized forA1-symmetric
states is only 8343834, not 16 397316 397.

The resulting deep impurity wave functionuc& with en-
ergy E has components in this model:

^ l ,R,nuc&5^ l ,R50,1uc&^ l ,R,nuG0~E!u l ,R50,1&

3^ l ,R50,1uG0~E!u l ,R50,1&21.
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5. Bulk crystal limit: Determination of V„ l 5s or A1…

In evaluating the band-edge energies and the deep le
of substitutional chalcogens in bulk Si, it is convenient
employ the Green’s-function secular equation method, to
voke translational invariance, and to form the tight-bindi
orbitals for the bulk Si crystal from the hybrid orbitals ce
tered on site (L ,vb):

un,k,vb)5Ns
21/2SL exp~ ik•L1 ik•vb!un,L ,vb),

wherek is ~in a reduced zone scheme! any wave vector of
the first zinc-blende Brillouin zone. HereNs is the number of
unit cells and the site is (L ,vb), whereva50 for anion sites
and vc is the position of the closest cation relative to t
central anion site.

Then the perfect Si crystal HamiltonianH0 is the one-
electron tight-binding Hamiltonian of Voglet al.,25 and is
given in terms of the tight-binding basis statesun,k,vb& ob-
tained from localized orbitalsun,S,vb& centered on thebth
site in the unit cell atS

un,k,vb&5Ns
21/2SS exp~ ik•S1 ik•vb!un,S,vb&.

The k-space Hamiltonian is

H0~k!5Sn,bun,k,vb&E~n,b!^n,k,vbu

1 1
2 Sn,m@ un,k,va&T~na,mc!^m,k,vcu1H.c.#,

where H.c. means the Hermitian conjugate,n andm label the
basis orbitals,s, px , py , pz , ands* , andb is one of the two
sites in the unit cell of Si~b5a for the anion andb5c for
the cation!. We distinguish between anion and cation sit
even in diamond-structure Si to emphasize that the the
applies to zinc-blende semiconductors such as GaAs as w
The energiesE(n,b) and transfer integralsT(na,mc) are
given in Ref. 25. The eigenstates ofH0 for bulk Si are the
Bloch wavesun,k&, and the eigenvaluesEn(k) are the band
structure of bulk Si.

The advantage of employing the tight-binding orbitals a
the Green’s function secular equation method is that the
agonalization of the host Hamiltonian is reduced to a
310 matrix problem at each wave vectork, and the eigen-
value equation for the deep levelE is scalar and simple.

The evaluation of the matrix elements of the Green
function operator for the bulk Si reduces to evaluations o

G0~E!5Sn,kun,k&^n,ku~E2En,k!21,

where the sum extends over the band indexn and over the
first Brillouin zone of k. The latter sum can be evaluate
using 60 special points.28

Therefore the computation proceeds as follows:~i! The
Green’s function for bulk Si is first evaluated, using spec
points, and the experimental value ofE is used to determine
V(s) for S, Se, or Te. This value ofV(s) is then employed in
the HamiltoniansH01V for quantum dots of various sizes
each containing a single chalcogen impurity at its cen
These Hamiltonians are directly diagonalized, producing
defect wave functionsuc& and energy eigenvalues for th
various quantum dots.
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