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Scaling of exciton binding energy and virial theorem in semiconductor quantum wells and wires
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Recent numerical calculation§. Rossi, G. Goldoni, and E. Molinari, Phys. Rev. L& 3527 (1997
have revealed a shape-independent hyperbolic scaling rule for the exciton binding energy versus the exciton
Bohr radius in semiconductor quantum wires, and an enhancement in the exciton binding energy in a quantum
wire with respect to a quantum well for a given exciton Bohr radius. These findings were attributed to the
existence of a constarishape- and/or size-independenirial theorem value(potential- to kinetic-energy
ratio), respectively, for the wires and wells, and its value was found to be larg@rfor wires than(=2) for
wells. In order to elucidate the physics underlying the above results, we reexamine this subject by calculating
the exciton binding energy and the corresponding virial theorem value in quantum wells and wires with infinite
confinement barriers. We find the following) The virial theorem value is nonconstant but approaches 2 from
above when reducing the finite extension of the electron and hole wave functions in the confined directions.
This is because the origin of the virial theorem value of 2 lies in the inverse square Coulomb force being the
only interaction seen by the electron and hgii¢.The scaling rule is nonhyperbolic, because the virial theorem
value is not a constantiii) The virial theorem value and the exciton binding energy are larger in a wire than
in a well for a given exciton Bohr radius, because the wire exciton has a smaller kinetic energy in the
nonconfined directior(iv) The origin of the shape-independent scaling rule for wires lies in the close similarity
of the effective Coulomb potentials for wires with different shapes and widths. The virial theorem value being
or not being a constant is irrelevant to the scaling r(¥¢.There exists a more fundamental and practically
more useful shape-independent scaling ri163-18299)11803-4

[. INTRODUCTION guantum wires studied in Ref. 10 is not intrinsic to the re-
duction in dimensionality, and the reason for the difference
Excitonic states in quantum wells and wires formed byin the virial theorem value for the quantum well and wire lies
semiconductor heterostructures have attracted great attentiom the difference in the effect of a finite extension of the
during the past three decaded/arious approaches have exciton wave function in the confined directish (due to
been used to calculate the exciton binding energy in theseonzero well or wire width and/or finite barrier heigfior
quasi-two-dimensional(2D) (Refs. 2—-5% and quasi-one- different dimensionalities. The virial theorem value is not a
dimensional (1D) structure$~° Recently, Rossi, Goldoni, constant for either wires or wells.
and Molinart® showed numerically that the scaling of the
exciton binding ene.rgyE(.b)_with the exciton Bohr radius Il. MODEL AND RESULTS
(aey for quantum wires is independent of the shape of the
wires, and that, is larger in a wire than in a well for a For simplicity, we assume a two-band model, that the
given a.,. They attributed these conclusions to their obser-barrier heights in wells and wires are infinftd®~°and the
vation that the virial theorem valuotential- to kinetic- shapes or cross section of wires are either cirédlar
energy rati¢ equaled 2 for well§the same as that for a bulk squaré’® We shall focus our analyses on wells and wires
isotropic exciton and 4 for strongly confined wires, since whose widths are smaller than the bulk exciton Bohr radius,
Ep=2(1+(K)/(V))a,! (where(K) and(V) are expectation S0 a frequently adopted approximation of neglecting the cor-
values of kinetic and potential energy, respectiyeljheir ~ relation between the confined and nonconfined
finding of different(but constantvirial theorem values for directions>’~°can be used to solve the exciton ground state
wells and wires is puzzling, since a realistic wire will evolve in such wells and wires. The wave function for the exciton
into a well or the bulk as the confinement is gradually re-ground state is written as
laxed. It is also unclear as regards the reason why the virial
theorem value in the well remains the same as that for the W el= Ye(Ze) Yn(zh) (X, Y) 1)
bulk while it changes abruptly to a larger value of 4 in the
wire. In addition, it is important to know if these results are for a quantum well and
generic to reduced dimensionalities.
The purpose of this work is to explore the exciton scaling W ire= Ye(Xe Ye) ¥Un(Xn . Yn) ¢(2) 2
rule and the virial theorem in reduced dimensions in more
detail. We observe that a shape-independent scaling ruler a quantum wire, wheré¢, and ¢, are the wave functions
does exist for quantum wires, but that the virial theoremof the electron and hole confinement states,x.— Xy, ¥
value being or not being a constant is irrelevant. We show=y.—v;, z=z,—z,, and ¢(X,y),¢(2) are the wave func-
that the enhancement of the virial theorem value for thedions of exciton relative motion for the well and wire, respec-
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tively. The confinement is chosen to be along #hdrection
for the well and in thex-y plane for the wire. The eigenvalue
equation for the exciton is

P 9P
—_ — J’_ —_—
( ( ax* " ay?

for the well and

+Vwe|l(xay)} ‘P(X:Y) = Eb(P(va) (3)

52
[ T2 +Vwire(z)] ¢(2)=—Epe(2) (4)

for the wire, the units for the energy and length &g
= ue*/(2h2s2) andag="h2sy/(ue?), u is the exciton re-
duced mass in the nonconfined direct®nand ¢, is the

dielectric constant. The effective 2D and 1D Coulomb poten-

tials Vyei(X,y) andVye(z) are defined &

o |¢e(ze)|2|$h(zh)|2
Vien(X,y)=—2 \/X2+y2+(ze—zh)2dzedzh (5)

and

|e(Xe .Y | % ¥n(Xn,Yn)|?
\/(Xe_ Xh)2+ (ye_yh)2+ z

Vire(2)= —2 deedyedxhdyh .

(6)

For the electron-hole relative motion described by &f.or
Eqg. (4), one can calculate the expectation valugg)
=(¢|Verle) and (K)=(¢|~V?|¢) (Where Ve=Vye O
Vuire)- Then, the virial theorem value is the ratig{V)/(K).
As in Ref. 10, we define the exciton Bohr radius as

aex:<q,|ril|\l,>7lr (7)
wherer = \x>+y?+ 2% and it follows thatae=—2(V)~*.
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FIG. 1. Effective Coulomb potentials for circular and square
guantum wires.

tential whose magnitude is very close to that of a circular
wire that has a specified value Bf as shown in Fig. 1. This
is the primary reason for the shape-independent scaling rule.
Figure 2 shows the exciton binding energy versus the ex-
citon Bohr radius, where the different points correspond to
values calculated for wells and circular and square wires of
various widths. The two sets of data for circular and square
wires lie almost on the same curve. Also shown in Fig. 2 are
the results of the virial theorem value as a function of the
exciton radius. Again, the two sets of data practically fall on
the same curve. A more important observation is that the
virial theorem value has a strong dependence on the exciton
radius and approaches a value of 2 from above as the width
of the well or wire approaches zero. The fundamental origin
of the nonconstant virial theorem value lies in the coexist-

Sincea,, depends only on the mean value rather than on thence of single-particle confinement potentials with the two-
detailed features of the potential energy, it is logical to lookparticle Coulomb interaction. Also, we would like to point

for possible universal scaling rules usiag, as a variable.
The effective potentials, Eq&) and(6), for the well and
wire are obtained numericalf*! For the well, the varia-
tional wave functionp(x,y) is assumed to have the form of
a 2D hydrogenic wave functiott whereas for the wire, the

eigenvalue equation is solved numerically. The effective po-

tential for a circular wire can be expressed as

. 2 Z
V\c]:\;;'rceular( z)=-— ﬁ U circular( ﬁ) ) (8)

in Eq and ag units, whereR is the radius of the wire and
U circular IS the “universal potential” defined in Ref. 9 for the
circular wire. For a square wire with a widthR2 one can
similarly obtain a “universal potential'U,,£2/R) and the

corresponding effective potentigf<'{z). Figure 1 shows

a comparison of these two potentials. One observes that fol ok : : - 1

the same value oR, U cyia{ 0)>Usquar0), Which occurs
because the cross-section area of the circular g .,
= wR? is smaller than that of the square Wikgqq& 4R?,

out that an exact hyperbolic dependence and a constant virial
theorem value of 2 occur in layer- and chain-type quasi-2D
and quasi-1D semiconductors, where there is no such con-
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FIG. 2. Exciton binding energy and virial theorem value as a

and implies that the averaged electron-hole separation i§inction of exciton Bohr radius in quantum wells, and circular and

smaller in the circular wire. Thus, for the same widRhthe

square guantum wires. The discrete points correspond to different

exciton binding energy is expected to be larger in the circulavell or wire widths. From left to right, the well widthén a,) are
wire. However, we observe that for a square wire one cam.01, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, and 1.2; the wire widths are

always find a smaller value d&® that gives an effective po-

0.02, 0.04, 0.06, 0.1, 0.15, 0.2, 0.3, and 0.4 to 1.8 in the 0.2 interval.
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3 - ; - 18 The deviation of the virial theorem value from 2 can be
1 qualitatively understood from the following considerations.
For an ideal 2D Coulomb interactiofzero well width,
Vop(p) = —2/p, if one employs a variational wave function
f(p) = 2/(7\?) exp(=p/\),*® the expectation value of the
kinetic energy iK)=1/\2, while the expectation value of
the potential energy i6V)= —4/\. The virial theorem value
equals 2 becausk,=0.5 maximizes the binding energy.
Since the effective 2D potentidV,qi(p)|<|Vap(p)|, a
larger value oh ; is expected for a quantum well. Because of
its 12 dependence, the kinetic energy decreases faster than
_ ] the potential energy when plotted as a functionofhus, a
s o1 02 Py o virial theorem value greater than 2 is expected for cases
b (2 where the electron and hole wave functions have a finite
extension in the confined direction, i.e., for finite well widths
FIG. 3. Exciton binding energy and virial theorem value as 207 finite barrier heights. For an ideal 1D Coulomb interaction

function of p, in circular and square guantum wires. The wire (zero wire W'dth’ Vip(2) = 217, anld if the varlatlon:?ll
widths corresponding to the discrete points are the same as those W2ve function ()= VLI exp(~|Z/\) is used, we obtain
Fig. 2. (K)y=1/\? and(V)=infinity. However, if we allow a small
extension in thex-y plane, the Coulomb interaction|2/ is
finement potential. More detailed discussions on these sysTegularized” to 1/(|z|+ 6),** where d is a small positive
tems will be given in next section. number. For this regularized potentigl/) becomes finite,
Another important finding is that a square wire of a half-and the ratiol(V)1(K) approaches 2 from above d@sap-
width Requare iS €quivalent to a circular wire of a radius Proaches zero. On increasi@gpr relaxing the confinement,
Reireular: WhenRequard Reircuta= Po,,..,. /Po_ = a, Where the ratio increases. It is important to note that a Iarger. V|r_|al
duare theorem value does not necessarily imply a larger binding
1 2 2 energy, since the binding energy is not maximized at the
p51§<_> = [#e(Xe,Ye) | ¥n(Xn Yn| dx.dyedx,dy;, parameter value which gives the largest potential/kinetic en-
p VXe=Xn) 2+ (Yo—Yn)? ere ergy ratio, and the exciton binding energy of the well or wire
9) is not proportional to, but rather is inversely proportional to,
the virial theorem value, as depicted in Fig. 2. The constant
and p=yx“+y% In fact, a=Usqak0)/Ucicual0)  virial theorem value of 4 for wires found numerically in Ref.
=_O.9136. This rat_lo will of course be different for wires Wlth 10 is at least not a universal number for all wires. Recently,
different geometric shapes. Because of the above equivarhijlagant® pointed out that having a constant virial theorem
lence, we find a new shape-independent scaling Ejeer-  yalue of 4 is equivalent to having an effective 1D potential in
Suspg, as shown in Fig. 3. This new scaling rule is far morene form of 14/z. However, such a potential is incorrect at
useful practically, because one only needs to know thguq |imits z—0 ande (it should be finite az=0 and ap-

—89— Circular Wire
—E&— Square Wire

Exciton Binding Energy (E,)
Virial Theorem Value

single-particle states in order to calculatg proaches ¥ asz—).2
We have shown that there is indeed a shape-independent
Ill. DISCUSSIONS scaling rule for wires, even though the virial theorem value is

not a constant. Its strong dependence on the exciton Bohr
radius implies that the scaling rule is nonhyperbolic in gen-
The scaling rule given in Ref. 1&,=B/a., (8 being a  eral, although it was found to be hyperbolic for V- and
constan, is essentially a plot of the exciton binding energy T-shaped wires in Ref. 10. Thus, it appears inappropriate to
versus(V) 1, sinceaq,=—2(V) 1. Thus, if the virial theo-  attribute the existence of the scaling rule to the constant
rem value is a constant, as found for the structures calculatedrial theorem value as in Ref. 10. The primary reason for the
in Ref. 10, a hyperbolic scaling rule will be the trivial result. shape-independent scaling rule is that two wires which have
In Ref. 10, no physical reason was given for the value beinglifferent shapes and sizes can have very similar effective
constant and having the specific value equal to 4 for wirepotentials, and thus turn out to have very similar exciton
and 2 for wells. The physical origin of the virial theorem binding energies and Bohr radii.
value of 2 for ideal 2D and 3D systems lies in the inverse The reason that the virial theorem value is larger in a wire
square Coulomb force being the only interaction seen by théhan in a well for a given exciton Bohr radius is revealed by
electron and hole. This apparently does not hold true in theonsidering the definition of the exciton Bohr radiusalf is
presence of coexisting confinement potentials for the elecused as a scaling variable for the virial theorem value, the
tron and hole. In fact, it has been pointed out earlier bydifference in the virial theorem value for any two confined
Campi and Villavecchi& that in quantum wells the virial systems must originate in the difference(i¢) for these sys-
theorem value does not equal 2 any more except for the 2Bems(sincea,,= —2(V) ! is fixed,(V) is the same for both
limit, which is supportive of our result but contradicts that of systemg Figure 4 shows schematically the relative scale
Ref. 10. In an ideal 2D system, because the motion in thé€qualitative of the ground state exciton Bohr orbitals for
confined direction is completely inhibited, the inverse squaréulk, well and wire systems for an equal value of the exciton
force between the electron and hole is restored. Bohr radiusa,,. It is evident from Fig. 4 that for a given

A. Physical insights into the numerical results
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FIG. 4. A schematic qualitatively showing the relative scale of
the ground-state exciton Bohr orbitals for bulk 3D, quantum-well ~FIG. 5. Comparison of the exciton binding energy and virial
(quasi-2D, and quantum-wirglquasi-1D systems, for an equal theorem value as a function of exciton Bohr radius in quantum
value of the exciton Bohr radius., . wells with and without considering the correlation effect. For the
former, the well width varies from 0.01 to &@; for the latter, from

value ofa.,, the average value of the electron-hole separap'ol 10 2.8,

tion in the non-confined direction is largest for the wire andyalue of 4 could only be a fortuitous result, since there is
smallest for the bulk. ThereforgK) will be largest in the nothing special about this number.
bulk and smallest in the wirébecaus€gK) is inversely pro- To show the validity of the approximate wave functions
portional to the average electron-hole separation in the norgiven by Egs.(1) and (2) for the wells and wires in the
confined direction Thus, for a given exciton Bohr radius, region considered in Fig. 2, we examine the correlation ef-
we expect a larger virial theorem value for the wire than forfect in the less confined system—the quantum well. The cor-
the well. relation effect is included by generalizing(x,y) in Eq. (1)

In Fig. 2, the virial theorem value increases monotonicallyto  ¢(x,y,z). Accordingly, we define (V)=(¥
with exciton Bohr radius for the wells and wires. However, | —2/r|¥ .} and(K)=(H)—(V)—E,—E,,, whereH is the

we expect that it should eventually decrease to approach thgtal Hamiltonian andE, andE,, are, respectively, the elec-

3D limit of 2 asae—a, or the well or wire size—». The  tron and hole binding energy. A frequently used trial
wave functions given by Eqsl) and(2) will never lead to  functior*?1¢is adopted,

the correct 3D limit, since the correlation between the con-

fined and nonconfined directions has been ignored. Never- N ————

theless, we expect that the results shown in Fig. 2 at least ¢(x,y,2)= \/Texp(— VPeINT+ZINS),  (10)
reveal the correct physical trend for these confined system. Tl

For quantum wells, the major difference between our workwhere\; and\, are two variational parameters aNds the
and that of Ref. 10 lies in the following three aspe¢isthe  normalization constant. Figure 5 shows the exciton binding
finite or infinite barrier height(ii) the presence or absence of energy and virial theorem value as a function of exciton
the correlation, andiii) the use of a variational or a numeri- Bohr radius in quantum wellgvith well width varying from

cal technique. Since the barrier height will not cause a big.01 to 1@,). As expected, with increasing the exciton Bohr
change in the basic physics of interest to (& instance, radius or the well width, the exciton binding energy ap-
whether the virial theorem value is a constant equal to 2 oproachesk, and the virial theorem value approaches the
not), the first aspect could not be the reason for the qualitavalue of 2 for the bulk isotropic exciton.

tive difference between the result of Ref. 10 and ours or that

of Ref. 12. In fact, the authors of Ref. 12 did not use the B. Scaling rule and virial theorem value in layers

infinite barrier height assumption either. The correlation ef- and chain-type semiconductors

fect has been shown to be negligible for the region of small | ayer and chain-type semiconductors represent another
well Wldth.3 AlSO, the d|Sagreement could not be due to thecategory of quasi_ZD and -1D Systeﬂﬁg_:or these type of
use of a variational technique, since the nonvariational apsemiconductors, excitonic states can be modeled very well
proach Of Ref 12 y|e|ded a COﬂClu.Slon qua“ta“vely S|m|lar by a Simp|e eﬁective_mass theory W|th anisotropy in both the
to ours. As regards the quantum wires, the correlation effegihass and dielectric constaft2° A model Hamiltonian for

is expected to be even smaller in the more confined systemin anisotropic exciton with uniaxial symmetry can be written
(quantum wiresthan in the quantum wells, and for this case g21

our results are obtained numerically too. A final difference
between our work and that of Ref. 10 lies in the aspect re- hZ [ 9?92 h? 92
lating to the use of a realistic or an idealized geomet.ric _H<W+ﬁ_y2)_ﬂﬁ
shape. It is important to note that the shape- and size-

independent constant virial theorem value of 4 obtained in
Ref. 10 does fall in the range of our result. If this value is -
indeed a constant for all those V- and T-shaped wires, the Ve, 6\\(X2+y2)+8522

e2

] y=Ey, (11)
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where u, (e,) and u(g;) are exciton reduced massei- ing rule for exciton binding energies in semiconductor quan-
electric constanjsin the directions perpendicular and paral- tum wires, as observed in Ref. 10, we have found more gen-
lel to the uniaxis, respectively. eral properties regarding the scaling rule and the related
Since the potential in the above equation satisfies the resirial theorem value in wells and wires, and provided physi-
lation (r-VV)=—(V), because of the generalized virial cal insights into these properties.
theorem ZK)=(r-VV),?? the virial theorem 2K)=—(V) In general, the scaling rule is nonhyperbolic and the virial
still holds true for these quasi-2D and -1D systems. Thus, théheorem value is nonconstant. The deviation from hyperbolic
exciton binding energy scales Bg=a_,'. The major differ- behavior is directly associated with the virial theorem value
ence between semiconductor quantum well or wire and th€eing nonconstant, and the reason for the virial theorem
layer or chain-type semiconductors is that the former have alue being nonconstant and greater than 2 is the finite ex-
long-range confinement potential while the latter do not.  tension of the exciton wave function in the confined direc-
tions. Because the wire exciton has a smaller kinetic energy
in the nonconfined direction, for a given exciton Bohr radius,
the virial theorem value and exciton binding energy are
] . . . larger in the wire than in the well. The shape-independent
For SETIE?/gdUCtOI’ superlattices with a periadl  gcaling rule for quantum wires occurs because the effective
<(mM*V,/%%)~"* such that the dispersion along the super-pqtentials for wires with different shapes can be approxi-
Iatnge axis is nearly parabolic, lvchenko and Pikus pointeqnately made equivalent to that for wires with a specifically
ouf® that the exciton binding energy can be obtained bychosen shape but with different widths. A shape-independent

solving Eq.(11). Thus, the scaling rule and the virial theo- g¢aling rule that does not require directly solving the exciton
rem value for the short-period superlattices are the same gguation is proposed.

those in the layer and chain-type semiconductors.

C. Scaling rule and virial theorem value in short-period
semiconductor superlattices
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