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Scaling of exciton binding energy and virial theorem in semiconductor quantum wells and wires
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Recent numerical calculations@F. Rossi, G. Goldoni, and E. Molinari, Phys. Rev. Lett.78, 3527 ~1997!#
have revealed a shape-independent hyperbolic scaling rule for the exciton binding energy versus the exciton
Bohr radius in semiconductor quantum wires, and an enhancement in the exciton binding energy in a quantum
wire with respect to a quantum well for a given exciton Bohr radius. These findings were attributed to the
existence of a constant~shape- and/or size-independent! virial theorem value~potential- to kinetic-energy
ratio!, respectively, for the wires and wells, and its value was found to be larger~54! for wires than~52! for
wells. In order to elucidate the physics underlying the above results, we reexamine this subject by calculating
the exciton binding energy and the corresponding virial theorem value in quantum wells and wires with infinite
confinement barriers. We find the following.~i! The virial theorem value is nonconstant but approaches 2 from
above when reducing the finite extension of the electron and hole wave functions in the confined directions.
This is because the origin of the virial theorem value of 2 lies in the inverse square Coulomb force being the
only interaction seen by the electron and hole.~ii ! The scaling rule is nonhyperbolic, because the virial theorem
value is not a constant.~iii ! The virial theorem value and the exciton binding energy are larger in a wire than
in a well for a given exciton Bohr radius, because the wire exciton has a smaller kinetic energy in the
nonconfined direction.~iv! The origin of the shape-independent scaling rule for wires lies in the close similarity
of the effective Coulomb potentials for wires with different shapes and widths. The virial theorem value being
or not being a constant is irrelevant to the scaling rule.~v! There exists a more fundamental and practically
more useful shape-independent scaling rule.@S0163-1829~99!11803-4#
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I. INTRODUCTION

Excitonic states in quantum wells and wires formed
semiconductor heterostructures have attracted great atte
during the past three decades.1 Various approaches hav
been used to calculate the exciton binding energy in th
quasi-two-dimensional~2D! ~Refs. 2–5! and quasi-one-
dimensional ~1D! structures.6–9 Recently, Rossi, Goldoni
and Molinari10 showed numerically that the scaling of th
exciton binding energy (Eb) with the exciton Bohr radius
(aex) for quantum wires is independent of the shape of
wires, and thatEb is larger in a wire than in a well for a
given aex. They attributed these conclusions to their obs
vation that the virial theorem value~potential- to kinetic-
energy ratio! equaled 2 for wells~the same as that for a bul
isotropic exciton! and 4 for strongly confined wires, sinc
Eb52(11^K&/^V&)aex

21 ~where^K& and^V& are expectation
values of kinetic and potential energy, respectively!. Their
finding of different ~but constant! virial theorem values for
wells and wires is puzzling, since a realistic wire will evolv
into a well or the bulk as the confinement is gradually
laxed. It is also unclear as regards the reason why the v
theorem value in the well remains the same as that for
bulk while it changes abruptly to a larger value of 4 in t
wire. In addition, it is important to know if these results a
generic to reduced dimensionalities.

The purpose of this work is to explore the exciton scal
rule and the virial theorem in reduced dimensions in m
detail. We observe that a shape-independent scaling
does exist for quantum wires, but that the virial theore
value being or not being a constant is irrelevant. We sh
that the enhancement of the virial theorem value for
PRB 590163-1829/99/59~3!/2040~5!/$15.00
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quantum wires studied in Ref. 10 is not intrinsic to the r
duction in dimensionality, and the reason for the differen
in the virial theorem value for the quantum well and wire li
in the difference in the effect of a finite extension of th
exciton wave function in the confined direction~s! ~due to
nonzero well or wire width and/or finite barrier height! for
different dimensionalities. The virial theorem value is no
constant for either wires or wells.

II. MODEL AND RESULTS

For simplicity, we assume a two-band model, that t
barrier heights in wells and wires are infinite,2,3,6–9 and the
shapes or cross section of wires are either circular7,9 or
square.6,8 We shall focus our analyses on wells and wir
whose widths are smaller than the bulk exciton Bohr radi
so a frequently adopted approximation of neglecting the c
relation between the confined and nonconfin
directions3,5,7–9can be used to solve the exciton ground st
in such wells and wires. The wave function for the excit
ground state is written as

Cwell5ce~ze!ch~zh!w~x,y! ~1!

for a quantum well and

Cwire5ce~xe ,ye!ch~xh ,yh!w~z! ~2!

for a quantum wire, wherece andch are the wave functions
of the electron and hole confinement states,x5xe2xh , y
5ye2yh , z5ze2zh , andw(x,y),w(z) are the wave func-
tions of exciton relative motion for the well and wire, respe
2040 ©1999 The American Physical Society
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tively. The confinement is chosen to be along thez direction
for the well and in thex-y plane for the wire. The eigenvalu
equation for the exciton is

H 2S ]2

]x2 1
]2

]y2D1Vwell~x,y!J w~x,y!52Ebw~x,y! ~3!

for the well and

H 2
]2

]z2 1Vwire~z!J w~z!52Ebw~z! ~4!

for the wire, the units for the energy and length areE0

5me4/(2\2«0
2) and a05\2«0 /(me2), m is the exciton re-

duced mass in the nonconfined direction~s!, and «0 is the
dielectric constant. The effective 2D and 1D Coulomb pot
tials Vwell(x,y) andVwire(z) are defined as5,9

Vwell~x,y!522E uce~ze!u2uch~zh!u2

Ax21y21~ze2zh!2
dzedzh ~5!

and

Vwire~z!5 22E uce~xe ,ye!u2uch~xh ,yh!u2

A~xe2xh!21~ye2yh!21z2
dxedyedxhdyh .

~6!

For the electron-hole relative motion described by Eq.~3! or
Eq. ~4!, one can calculate the expectation values^V&
5^wuVeffuw& and ^K&5^wu2“

2uw& ~where Veff5Vwell or
Vwire!. Then, the virial theorem value is the ratio2^V&/^K&.
As in Ref. 10, we define the exciton Bohr radius as

aex5^Cur 21uC&21, ~7!

where r 5Ax21y21z2 and it follows thataex522^V&21.
Sinceaex depends only on the mean value rather than on
detailed features of the potential energy, it is logical to lo
for possible universal scaling rules usingaex as a variable.

The effective potentials, Eqs.~5! and~6!, for the well and
wire are obtained numerically.9,11 For the well, the varia-
tional wave functionw(x,y) is assumed to have the form o
a 2D hydrogenic wave function,3,5 whereas for the wire, the
eigenvalue equation is solved numerically. The effective
tential for a circular wire can be expressed as9

Vwire
circular~z!52

2

R
UcircularS z

RD , ~8!

in E0 and a0 units, whereR is the radius of the wire and
Ucircular is the ‘‘universal potential’’ defined in Ref. 9 for th
circular wire. For a square wire with a width 2R, one can
similarly obtain a ‘‘universal potential’’Usquare(z/R) and the
corresponding effective potentialVwire

square(z). Figure 1 shows
a comparison of these two potentials. One observes tha
the same value ofR, Ucircular(0).Usquare(0), which occurs
because the cross-section area of the circular wireAcircular
5pR2 is smaller than that of the square wireAsquare54R2,
and implies that the averaged electron-hole separatio
smaller in the circular wire. Thus, for the same widthR, the
exciton binding energy is expected to be larger in the circu
wire. However, we observe that for a square wire one
always find a smaller value ofR that gives an effective po
-
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tential whose magnitude is very close to that of a circu
wire that has a specified value ofR, as shown in Fig. 1. This
is the primary reason for the shape-independent scaling r

Figure 2 shows the exciton binding energy versus the
citon Bohr radius, where the different points correspond
values calculated for wells and circular and square wires
various widths. The two sets of data for circular and squ
wires lie almost on the same curve. Also shown in Fig. 2
the results of the virial theorem value as a function of t
exciton radius. Again, the two sets of data practically fall
the same curve. A more important observation is that
virial theorem value has a strong dependence on the exc
radius and approaches a value of 2 from above as the w
of the well or wire approaches zero. The fundamental ori
of the nonconstant virial theorem value lies in the coex
ence of single-particle confinement potentials with the tw
particle Coulomb interaction. Also, we would like to poin
out that an exact hyperbolic dependence and a constant v
theorem value of 2 occur in layer- and chain-type quasi-
and quasi-1D semiconductors, where there is no such c

FIG. 1. Effective Coulomb potentials for circular and squa
quantum wires.

FIG. 2. Exciton binding energy and virial theorem value as
function of exciton Bohr radius in quantum wells, and circular a
square quantum wires. The discrete points correspond to diffe
well or wire widths. From left to right, the well widths~in a0! are
0.01, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, and 1.2; the wire widths
0.02, 0.04, 0.06, 0.1, 0.15, 0.2, 0.3, and 0.4 to 1.8 in the 0.2 inter
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2042 PRB 59YONG ZHANG AND A. MASCARENHAS
finement potential. More detailed discussions on these s
tems will be given in next section.

Another important finding is that a square wire of a hal
width Rsquare is equivalent to a circular wire of a radius
Rcircular, whenRsquare/Rcircular5r0circular

/r0square
5a, where

r0
21[ K 1

r L [E uce~xe ,ye!u2uch~xh ,yh!u2

A~xe2xh!21~ye2yh!2
dxedyedxhdyh

~9!

and r5Ax21y2. In fact, a5Usquare(0)/Ucircular(0)
50.9136. This ratio will of course be different for wires with
different geometric shapes. Because of the above equ
lence, we find a new shape-independent scaling rule:Eb ver-
susr0 , as shown in Fig. 3. This new scaling rule is far mo
useful practically, because one only needs to know t
single-particle states in order to calculater0 .

III. DISCUSSIONS

A. Physical insights into the numerical results

The scaling rule given in Ref. 10,Eb5b/aex ~b being a
constant!, is essentially a plot of the exciton binding energ
versuŝ V&21, sinceaex522^V&21. Thus, if the virial theo-
rem value is a constant, as found for the structures calcula
in Ref. 10, a hyperbolic scaling rule will be the trivial resul
In Ref. 10, no physical reason was given for the value be
constant and having the specific value equal to 4 for wir
and 2 for wells. The physical origin of the virial theorem
value of 2 for ideal 2D and 3D systems lies in the inver
square Coulomb force being the only interaction seen by
electron and hole. This apparently does not hold true in
presence of coexisting confinement potentials for the el
tron and hole. In fact, it has been pointed out earlier
Campi and Villavecchia12 that in quantum wells the virial
theorem value does not equal 2 any more except for the
limit, which is supportive of our result but contradicts that o
Ref. 10. In an ideal 2D system, because the motion in
confined direction is completely inhibited, the inverse squa
force between the electron and hole is restored.

FIG. 3. Exciton binding energy and virial theorem value as
function of r0 in circular and square quantum wires. The wir
widths corresponding to the discrete points are the same as thos
Fig. 2.
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The deviation of the virial theorem value from 2 can
qualitatively understood from the following consideration
For an ideal 2D Coulomb interaction~zero well width!,
V2D(r)522/r, if one employs a variational wave functio
f (r)5A2/(pl2) exp(2r/l),13 the expectation value of the
kinetic energy iŝ K&51/l2, while the expectation value o
the potential energy iŝV&524/l. The virial theorem value
equals 2 becausel050.5 maximizes the binding energy
Since the effective 2D potentialuVwell(r)u,uV2D(r)u, a
larger value ofl0 is expected for a quantum well. Because
its 1/l2 dependence, the kinetic energy decreases faster
the potential energy when plotted as a function ofl. Thus, a
virial theorem value greater than 2 is expected for ca
where the electron and hole wave functions have a fin
extension in the confined direction, i.e., for finite well width
or finite barrier heights. For an ideal 1D Coulomb interacti
~zero wire width!, V1D(z)522/uzu, and if the variational
wave function f (z)5A1/l exp(2uzu/l) is used, we obtain
^K&51/l2 and ^V&5 infinity. However, if we allow a small
extension in thex-y plane, the Coulomb interaction 1/uzu is
‘‘regularized’’ to 1/(uzu1d),14,9 whered is a small positive
number. For this regularized potential,^V& becomes finite,
and the ratiou^V&1/̂ K& approaches 2 from above asd ap-
proaches zero. On increasingd or relaxing the confinement
the ratio increases. It is important to note that a larger vi
theorem value does not necessarily imply a larger bind
energy, since the binding energy is not maximized at
parameter value which gives the largest potential/kinetic
ergy ratio, and the exciton binding energy of the well or w
is not proportional to, but rather is inversely proportional
the virial theorem value, as depicted in Fig. 2. The const
virial theorem value of 4 for wires found numerically in Re
10 is at least not a universal number for all wires. Recen
Thilagam15 pointed out that having a constant virial theore
value of 4 is equivalent to having an effective 1D potential
the form of 1/Az. However, such a potential is incorrect
two limits z→0 and` ~it should be finite atz50 and ap-
proaches 1/z asz→`!.9

We have shown that there is indeed a shape-indepen
scaling rule for wires, even though the virial theorem value
not a constant. Its strong dependence on the exciton B
radius implies that the scaling rule is nonhyperbolic in ge
eral, although it was found to be hyperbolic for V- an
T-shaped wires in Ref. 10. Thus, it appears inappropriate
attribute the existence of the scaling rule to the const
virial theorem value as in Ref. 10. The primary reason for
shape-independent scaling rule is that two wires which h
different shapes and sizes can have very similar effec
potentials, and thus turn out to have very similar excit
binding energies and Bohr radii.

The reason that the virial theorem value is larger in a w
than in a well for a given exciton Bohr radius is revealed
considering the definition of the exciton Bohr radius. Ifaex is
used as a scaling variable for the virial theorem value,
difference in the virial theorem value for any two confine
systems must originate in the difference in^K& for these sys-
tems~sinceaex522^V&21 is fixed,^V& is the same for both
systems!. Figure 4 shows schematically the relative sca
~qualitative! of the ground state exciton Bohr orbitals fo
bulk, well and wire systems for an equal value of the excit
Bohr radiusaex. It is evident from Fig. 4 that for a given

in
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value ofaex, the average value of the electron-hole sepa
tion in the non-confined direction is largest for the wire a
smallest for the bulk. Therefore,^K& will be largest in the
bulk and smallest in the wire~becausêK& is inversely pro-
portional to the average electron-hole separation in the n
confined direction!. Thus, for a given exciton Bohr radius
we expect a larger virial theorem value for the wire than
the well.

In Fig. 2, the virial theorem value increases monotonica
with exciton Bohr radius for the wells and wires. Howeve
we expect that it should eventually decrease to approach
3D limit of 2 asaex→a0 or the well or wire size→`. The
wave functions given by Eqs.~1! and ~2! will never lead to
the correct 3D limit, since the correlation between the c
fined and nonconfined directions has been ignored. Ne
theless, we expect that the results shown in Fig. 2 at l
reveal the correct physical trend for these confined syst
For quantum wells, the major difference between our w
and that of Ref. 10 lies in the following three aspects:~i! the
finite or infinite barrier height,~ii ! the presence or absence
the correlation, and~iii ! the use of a variational or a numer
cal technique. Since the barrier height will not cause a
change in the basic physics of interest to us~for instance,
whether the virial theorem value is a constant equal to 2
not!, the first aspect could not be the reason for the qua
tive difference between the result of Ref. 10 and ours or t
of Ref. 12. In fact, the authors of Ref. 12 did not use t
infinite barrier height assumption either. The correlation
fect has been shown to be negligible for the region of sm
well width.3 Also, the disagreement could not be due to t
use of a variational technique, since the nonvariational
proach of Ref. 12 yielded a conclusion qualitatively simi
to ours. As regards the quantum wires, the correlation ef
is expected to be even smaller in the more confined sys
~quantum wires! than in the quantum wells, and for this ca
our results are obtained numerically too. A final differen
between our work and that of Ref. 10 lies in the aspect
lating to the use of a realistic or an idealized geome
shape. It is important to note that the shape- and s
independent constant virial theorem value of 4 obtained
Ref. 10 does fall in the range of our result. If this value
indeed a constant for all those V- and T-shaped wires,

FIG. 4. A schematic qualitatively showing the relative scale
the ground-state exciton Bohr orbitals for bulk 3D, quantum-w
~quasi-2D!, and quantum-wire~quasi-1D! systems, for an equa
value of the exciton Bohr radiusaex.
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value of 4 could only be a fortuitous result, since there
nothing special about this number.

To show the validity of the approximate wave functio
given by Eqs.~1! and ~2! for the wells and wires in the
region considered in Fig. 2, we examine the correlation
fect in the less confined system—the quantum well. The c
relation effect is included by generalizingw(x,y) in Eq. ~1!
to w(x,y,z). Accordingly, we define ^V&5^Cwell
u22/r uCwell& and^K&5^H&2^V&2Ee2Eh , whereH is the
total Hamiltonian andEe andEh are, respectively, the elec
tron and hole binding energy. A frequently used tr
function3,12,16 is adopted,

w~x,y,z!5
N

Apl1
2l2

exp~2Ar2/l1
21z2/l2

2!, ~10!

wherel1 andl2 are two variational parameters andN is the
normalization constant. Figure 5 shows the exciton bind
energy and virial theorem value as a function of excit
Bohr radius in quantum wells~with well width varying from
0.01 to 10a0!. As expected, with increasing the exciton Bo
radius or the well width, the exciton binding energy a
proachesE0 and the virial theorem value approaches t
value of 2 for the bulk isotropic exciton.

B. Scaling rule and virial theorem value in layers
and chain-type semiconductors

Layer and chain-type semiconductors represent ano
category of quasi-2D and -1D systems.17 For these type of
semiconductors, excitonic states can be modeled very
by a simple effective-mass theory with anisotropy in both
mass and dielectric constant.18–20 A model Hamiltonian for
an anisotropic exciton with uniaxial symmetry can be writt
as21

H 2
\2

2m'
S ]2

]x2 1
]2

]y2D2
\2

2m i

]2

]z2

2
e2

A«'e i~x21y2!1«'
2 z2J c5Ec, ~11!

f
l FIG. 5. Comparison of the exciton binding energy and vir
theorem value as a function of exciton Bohr radius in quant
wells with and without considering the correlation effect. For t
former, the well width varies from 0.01 to 10a0 ; for the latter, from
0.01 to 2.6a0 .
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2044 PRB 59YONG ZHANG AND A. MASCARENHAS
wherem'(«') and m i(« i) are exciton reduced masses~di-
electric constants! in the directions perpendicular and para
lel to the uniaxis, respectively.

Since the potential in the above equation satisfies the
lation ^r•“V&52^V&, because of the generalized viri
theorem 2̂K&5^r•“V&,22 the virial theorem 2̂K&52^V&
still holds true for these quasi-2D and -1D systems. Thus,
exciton binding energy scales asEb5aex

21. The major differ-
ence between semiconductor quantum well or wire and
layer or chain-type semiconductors is that the former hav
long-range confinement potential while the latter do not.

C. Scaling rule and virial theorem value in short-period
semiconductor superlattices

For semiconductor superlattices with a periodd
!(m* V0 /\2)21/2 such that the dispersion along the sup
lattice axis is nearly parabolic, Ivchenko and Pikus poin
out23 that the exciton binding energy can be obtained
solving Eq.~11!. Thus, the scaling rule and the virial the
rem value for the short-period superlattices are the sam
those in the layer and chain-type semiconductors.

IV. SUMMARY

In summary, we have studied the scaling rule for exci
binding energy versus exciton Bohr radius and the vi
theorem value in semiconductor quantum wells and wir
and compared them to closely related systems: layer
chain-type semiconductors and short-period semicondu
superlattices. While there is indeed a shape-independent
d,
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e

e
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n
l
s,
nd
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ing rule for exciton binding energies in semiconductor qua
tum wires, as observed in Ref. 10, we have found more g
eral properties regarding the scaling rule and the rela
virial theorem value in wells and wires, and provided phy
cal insights into these properties.

In general, the scaling rule is nonhyperbolic and the vir
theorem value is nonconstant. The deviation from hyperb
behavior is directly associated with the virial theorem va
being nonconstant, and the reason for the virial theor
value being nonconstant and greater than 2 is the finite
tension of the exciton wave function in the confined dire
tions. Because the wire exciton has a smaller kinetic ene
in the nonconfined direction, for a given exciton Bohr radiu
the virial theorem value and exciton binding energy a
larger in the wire than in the well. The shape-independ
scaling rule for quantum wires occurs because the effec
potentials for wires with different shapes can be appro
mately made equivalent to that for wires with a specifica
chosen shape but with different widths. A shape-independ
scaling rule that does not require directly solving the exci
equation is proposed.
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