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Multiple-histogram method for quantum Monte Carlo simulations
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An extension to the multiple-histogram method~sometimes referred to as the Ferrenberg-Swendsen method!
for use in quantum Monte Carlo simulations is presented. This method is shown to work well for the two-
dimensional repulsive Hubbard model, allowing measurements to be taken over a continuous region of param-
eters. The method also reduces the error bars over the range of parameter values due to the overlapping of
multiple histograms. A continuous sweep of parameters and reduced error bars allow one to make more
difficult measurements, such as Maxwell constructions used to study phase separation. Possibilities also exist
for this method to be used for other quantum systems.@S0163-1829~99!09703-9#
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I. INTRODUCTION

When making calculations using the Monte Carlo meth
one often would like to make measurements of some obs
able as a function of the parameters of the Hamiltonian.
do this the standard procedure is to perform a run at
setting of the parameters until a measurement of the obs
able with sufficiently small error bars is produced. One th
moves on to another setting of the parameters, and so
until a large discrete set of measurements of the observab
produced. This can require large amounts of computer t
depending on the details of the Hamiltonian and the Mo
Carlo method one has chosen. Building an approximation
a continuous function for the desired observable point
point would require an even larger set of discrete points,
a related increase in computer time.

Continuous functions of observables are useful for in
merable activities, such as verifying functional dependenc
and looking for phase separation using Maxw
constructions.1 The multiple-histogram method2 ~MHM ! al-
lows one to produce these continuous functions for a cla
cal Hamiltonian. In this paper, it will be shown that und
certain circumstances the MHM can also be applied
quantum-mechanical Hamiltonians as well, for example
two-dimensional Hubbard model.3 Observables of this
Hamiltonian will be measured using standard quant
Monte Carlo~QMC! techniques4 and the MHM will be ap-
plied to obtain observables as continuous functions of
parameters of the system. As in the classical case, the u
overlapping histograms reduces the errors below those
single measurement. Furthermore, the MHM will be appl
specifically to the density and energy of the Hubbard mo
as functions of the chemical potential to search for signs
phase separation.

II. SINGLE HISTOGRAM METHOD

In order to obtain a variable as a continuous function
thermodynamic variables like the inverse temperat
b5(kBT)21 and the chemical potentialm, one can use a
technique originally used by Salsburget al.,5 extended by
Valleau and Card,6 and further extended by Swendsen a
Ferrenberg.2,7 To see how this can be done for the chemi
PRB 590163-1829/99/59~3!/1870~4!/$15.00
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potentialm, let us assume we have a classical Hamiltoni

H5E2mN, ~1!

whereE is the energy andN is the particle number. From thi
Hamiltonian, one can derive a partition function for a pa
ticular value ofm,

Zm5(
n

r~n!ebmn, ~2!

wherer(n) is a density of states, which for these purpos
we can leave undetermined, andn is the particle density. We
can also derive a probability to have a given density for t
value ofm,

Pm~n!5
r~n!ebmn

Zm
. ~3!

Substituting Eq.~2! into Eq. ~3! allows us to find the prob-
ability for a value ofn at an arbitrary value of the chemica
potentialm8,

Pm8~n!5
Pm~n!eb~m82m!n

(
n

Pm~n!eb~m82m!n

. ~4!

III. MULTIPLE-HISTOGRAM METHOD

Equation~4! can be extended for use with many hist
grams taken at varying parameters, as discussed in deta
Ferrenberg and Swendsen in Ref. 2. Consider a situa
where we havem runs of a simulation labeled by an inde
i 5$1, . . . ,m%. We perform thei th simulation at a chemica
potentialm i , and store the results as an unnormalized his
gramNi(n).

We follow the same general procedure as described ab
for the single-histogram method~for more details see Ref. 2!
and acquire a function for the probability of a densityn, at a
chemical potentialm8 based all on allm runs.
1870 ©1999 The American Physical Society
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Pm8~n!5

(
i 51

m

gi
21Ni~n!exp~bm8n!

(
j 51

m F(
n

Nj~n!Ggj
21exp~bm jn2 f j !

, ~5!

where f j is calculated self-consistently based on the defi
tion

exp~ f j !5(
n

Pm j
~n!, ~6!

andgj5112t j is defined by the autocorrelation timest j of
the successive measurements ofn.

In order to avoid histograms at values ofm i far removed
from the valuem8 being calculated from overwhelming th
calculation, it was found to be necessary to introduce
Gaussian cutoff of the form,

Ñi~n,m8!5Ni~n!exp@2L~m i2m8!2#. ~7!

Ñi(n,m8) is then used in place ofNi(n) in Eq. ~5!, andL is
set to a fixed value~depending on the spacing ofm i ’s! that
allows only the nearest four to six histograms to contribute
a calculation for a givenm8.

Using multiple histograms in this manner allows one
increase the range of validity of the technique, and red
the resulting error bars over the entire range of paramet

IV. MHM WITH THE HUBBARD MODEL

To demonstrate the use of this method for quant
Hamiltonians, the Hubbard Hamiltonian3 will be used

H52t(̂
i j &

(
s5$↑↓%

~ ĉis
† ĉ j s1 ĉ j s

† ĉis!

1U(
i

S n̂i↑2
1

2D S n̂i↓2
1

2D2m(
i

~ n̂i↑1n̂i↓!, ~8!

wheret is a parameter to set the strength of electron hopp
~kinetic energy!, ĉis

(†) is the annihilation~creation! operator
for an electron at sitei with spins5$↑↓%, U is a parameter
to set the strength of on-site Coulomb repulsion,m is the
chemical potential, andn̂is5 ĉis

† ĉis . Clearly there are quan
tum operators in the Hubbard Hamiltonian, so the class
derivation given earlier for the probability as a function ofm
will only hold if the system happens to be in states of defin
particle number. In determinantal QMC, a Hubbar
Stratonovich~HS! transformation8 leads to a bilinear fermion
form for the interaction. One sums over all possible ferm
states and then over the HS field. Thus, a given HS confi
ration comes from a trace over all particle numbers so th
is not guaranteed that a given HS configuration will hav
definite particle number. It is this feature that distinguish
this problem from the classical statistical-mechanics pr
lem. However, if one finds that the various HS configuratio
are indeed characterized by an integer-fermion occupat
then as we will discuss, one can proceed. Here, for the t
dimensional~2D! Hubbard model near half filling, the charg
gap provides an energy barrier to noninteger filling. As c
be seen in Fig. 1, when one runs simulations at a sufficie
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low temperature, one observes peaks in the histogram co
sponding to states with integer numbers of holes. If th
states truly have a definite number of particles, the pe
should scale using the grand canonical distribution for ru
at different values ofm. In Fig. 2, the peaks at half filling
(n51) are fit against the grand canonical probability

P~N,m!5
exp@2b~EN2mN!#

(
N

exp@2b~EN2mN!#

, ~9!

FIG. 1. A histogram of the particle density sampled after ea
sweep in a quantum Monte Carlo simulation of the Hubbard mo
on an 8 by 8 lattice withbt58, U/t58, and m521.10 and
21.30. One can see well-defined peaks at particle densities c
sponding with integer numbers of holes. It is also possible to
how the two histograms at different parameters overlap each o
allowing one to be normalized with respect to the other.

FIG. 2. Normalizing the peaks in histograms such as the o
shown in Fig. 1, yield the probability for a certain particle densi
One can then change them used in the simulation and follow the
relative probability of this peak as a function ofm. If the states truly
have a definite particle density they should follow a curve given
the grand canonical distribution, which is shown in the solid lin
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whereEN is the average measured energy for the states
particle numberN.

Note that in Fig. 1, multiple histograms are presented
order to emphasize the fact that the MHM allows one
obtain even more information when several histograms
used. By normalizing each histogram with respect to the o
ers, a continuous function of the desired observable may
obtained. In the results that follow, we have used many ov
lapping histograms in order to fully cover the range of sim
lation variables of interest.

In parameter regimes9 where these peaks are present
the histograms of particle number, one can proceed to
any operator that conserves particle density and determin
behavior as a continuous function ofm. This can be done by
using a reduced number of simulations at different values
m, as long as the respective histograms of particle den
overlap. To prevent unwanted overlap from very distant h
tograms, it was found necessary to introduce a Gaussian
off. The cutoff reduces the effective weight of a histogram
the difference between the value ofm for that histogram and
the value ofm8 at which the MHM method is run increase
As an added benefit, the error bars for this continuous fu
tion of m will be reduced from those obtained from any o
simulation, because one can use information about the op
tor from all of the simulations performed.

V. RESULTS

In Fig. 3 one can see what happens when the MHM
applied to a set of histograms measuring the particle num
during a QMC simulation of the Hubbard model. The chem
cal potentialm is varied over a range starting from half fil
ing (m50 and, thus,n5^n̂&51) through increasingly nega
tive values ofm. The individual runs are shown as poin
with associated error bars, and the MHM is applied to ge

FIG. 3. The original points and the MHM method continuo
curves are shown for the particle density~n! vs chemical potential
(m) for two values of the inverse temperatureb. All simulations
are performed on an 8 by 8 square lattice atU/t58. Error bars on
the original data points are shown as bars with hats originating f
the points, and error bars on the MHM line are shown as b
without hats originating at regular intervals from the dashed lin
th
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continuous function ofn vs m with error bars shown as ver
tical bars around the dashed line. The error bars are che
through both the bootstrap method10 and by incorporating the
errors due to correlations in the reweighted samples and t
finite size.11 To see how the line changes with different va
ues of the inverse temperatureb, the process is repeated
bt54.

As one can see, the error bars on the MHM line are co
parable to those from the original points, and the MHM co
tinuously fits the original points. As the simulation temper
ture decreases~large b) the sign problem12 becomes much
more severe. For the histogram method this means that w
there are peaks in the histograms forn vs m for configura-
tions with positive signs, they are wiped out by nearly ide
tical peaks with negative signs.

In Fig. 4, the MHM is applied to another interestin
observable, the equal-time antiferromagnetic spin-co
lation function Szz(p,p), the Fourier transform of
^(ni↑2ni↓)(nj↑2nj↓)& taken at momentum (p,p). As the
system moves closer to half filling (m50), the antiferro-
magnetic order increases as expected.13

VI. PHASE SEPARATION

Recently, computational evidence for the existence
phase separation in the strongly correlatedt-J and Hubbard
models, both for and against, have been presented in
literature.14 One of the best ways to search for phase sep
tion is through the use of a Maxwell construction.1 A Max-
well construction consists in its simplest form as a graph
free energy vs density. As we let the temperature beco
small, we can ignore the entropy term and just consider

m
rs

FIG. 4. Original points and the resulting MHM method contin
ous curve are shown for the equal timezz antiferromagnetic spin-
correlation function@Szz(p,p)#. As the parameters are move
closer to half filling (m50), the system begins to develop antife
romagnetic order as shown by the increasing value ofSzz(p,p).
The simulations are performed on an 8 by 8 square lattice atU/t
58. Error bars on the original data points are shown as bars w
hats originating from the points, and error bars on the MHM li
are shown as bars without hats originating at regular intervals f
the dashed line.
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energy. Thermodynamics wants a system to minimize its
energy, and so a phase-separated region will appear on
graph as a region of upwards curvature (]2E/]n2,0). In
such a region the energy of the phase-separated state w
lower than that of the homogeneous state, and phase se
tion is thus favored. It is of interest, therefore, to apply t
MHM to obtain continuous energy vs density measureme
in order to investigate the possible existence of phase s
ration. In Fig. 5, a Maxwell construction for the 2D Hubba
model atbt54 is shown. With just the original data points
is nearly impossible to say anything definitive about the c

FIG. 5. Original points and the resulting MHM method contin
ous curve are shown for a Maxwell construction of energy vs p
ticle density (n); some points have been omitted for clarity. Pha
separation would be indicated by a region of the curve with
wards curvature, which appears in neither curve. Error bars for b
the uncertainty in energy and particle density on the original d
points are shown as bars with hats originating from the points,
error bars on the MHM line are shown as dotted bars without h
originating from the dashed line.
a
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vature of the line, however, when the MHM method is em
ployed, the lack of any clear signs of upwards curvatu
becomes much more apparent. Thus, it is possible to c
clude that one does not see phase separation for this rang
parameters, a conclusion that would have been difficult
make without using the full information from the histogram
As further simulations are run at lower temperatures, it w
be interesting to see if phase separation develops. It is
pected that the MHM will allow us to improve the quality o
the measurements, so that the simulations at these lower t
peratures will be possible.

VII. CONCLUSIONS

In some circumstances, the MHM method can be us
effectively for Hamiltonians containing quantum operator
such as the Hubbard Hamiltonian just described. The abi
to generate continuous functions of an observable make
number of analysis techniques much more feasible. For
ample, in order to perform a Maxwell construction,1 a con-
tinuous function of energy as a function of particle density
desired. Previously, a function like this would have bee
constructed laboriously one point at a time using the av
ages of large simulations, and conclusions drawn using r
sonable guesses about what function would fit the calcula
points. Using the multiple-histogram method, the large qua
tity of information present in the histograms of each simul
tion is brought to bear using simple statistical physics arg
ments. The information from the simulations is thus us
more efficiently and smaller error bars and reasonable c
tinuous functions are produced.
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