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Multiple-histogram method for quantum Monte Carlo simulations
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An extension to the multiple-histogram meth@metimes referred to as the Ferrenberg-Swendsen method
for use in quantum Monte Carlo simulations is presented. This method is shown to work well for the two-
dimensional repulsive Hubbard model, allowing measurements to be taken over a continuous region of param-
eters. The method also reduces the error bars over the range of parameter values due to the overlapping of
multiple histograms. A continuous sweep of parameters and reduced error bars allow one to make more
difficult measurements, such as Maxwell constructions used to study phase separation. Possibilities also exist
for this method to be used for other quantum systdi86163-1829)09703-9

I. INTRODUCTION potentialu, let us assume we have a classical Hamiltonian,

When making calculations using the Monte Carlo method, H=E—puN, )
one often would like to make measurements of some observ-

able as a function of the parameters of the Hamiltonian. TQyhereE is the energy anill is the particle number. From this

do this the standard procedure is to perform a run at ongyamiltonian, one can derive a partition function for a par-
setting of the parameters until a measurement of the obseryixyar value ofu

able with sufficiently small error bars is produced. One then

moves on to another setting of the parameters, and so on

until a large discrete set of measurements of the observable is z,= > p(n)elrn, )
produced. This can require large amounts of computer time n

depending on the details of the Hamiltonian and the Monte

Carlo method one has chosen. Building an approximation oiherep(n) is a density of states, which for these purposes
a continuous function for the desired observable point bywe can leave undetermined, ands the particle density. We
point would require an even larger set of discrete points, andan also derive a probability to have a given density for this

a related increase in computer time. value of u,
Continuous functions of observables are useful for innu-
merable activities, such as verifying functional dependencies p(n)elun
and looking for phase separation using Maxwell P.(n)= — 3
constructions. The multiple-histogram methédMHM) al- "

lows one to produce these continuous functions for a classi- i . ,
cal Hamiltonian. In this paper, it will be shown that underSUbSt'tu“ng Eq(2) into Eq.(3) allows us to find the prob-

certain circumstances the MHM can also be applied tOability for a value ofn at an arbitrary value of the chemical
H I

guantum-mechanical Hamiltonians as well, for example thé)otennal,u '

two-dimensional Hubbard mod&l.Observables of this

Hamiltonian will be measured using standard quantum P#(n)eﬁ’w’—ﬂ)“
Monte Carlo(QMC) technique$and the MHM will be ap- P, (n)= / : 4)
plied to obtain observables as continuous functions of the > P, (n)eft# Tmn

n

parameters of the system. As in the classical case, the use of
overlapping histograms reduces the errors below those of a
single measurement. Furthermore, the MHM will be applied
specifically to the density and energy of the Hubbard model
as functions of the chemical potential to search for signs of Equation(4) can be extended for use with many histo-
phase separation. grams taken at varying parameters, as discussed in detail by
Ferrenberg and Swendsen in Ref. 2. Consider a situation
where we haven runs of a simulation labeled by an index
i={1, ... m}. We perform thath simulation at a chemical

In order to obtain a variable as a continuous function ofpotentialu;, and store the results as an unnormalized histo-
thermodynamic variables like the inverse temperaturggramN;(n).
B=(kgT) ! and the chemical potentiat, one can use a We follow the same general procedure as described above
technique originally used by Salsbugg al,® extended by for the single-histogram methdébr more details see Ref) 2
Valleau and Carf,and further extended by Swendsen andand acquire a function for the probability of a densifyat a
Ferrenberd:’ To see how this can be done for the chemicalchemical potentiak’ based all on alm runs.

lll. MULTIPLE-HISTOGRAM METHOD

Il. SINGLE HISTOGRAM METHOD
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calculation, it was found to be necessary to introduce a n
Gaussian cutoff of the form, ) . .
FIG. 1. A histogram of the particle density sampled after each

N (n, ) =N(n)exd — A (ui—w')?]. 7 sweep in a quantum Monte Carlo simulation of the Hubbard model
(o) =Ni(mexd = Aui = )7 @ on an 8 by 8 lattice withgt=8, U/t=8, and u=—1.10 and
f\]i(n”u’) is then used in place df;(n) in Eq. (5), andA is —1.30. One can see well-defined peaks at particle densities corre-

set to a fixed valug¢depending on the spacing pf’s) that ~ sponding with integer numbers of holes. It is also possible to see

allows only the nearest four to six histograms to contribute tdrow the two histograms at different parameters overlap each other,

a calculation for a given.'. allowing one to be normalized with respect to the other.

Using multiple histograms in this manner allows one to

increase the range of validity of the technique, and reducéow temperature, one observes peaks in the histogram corre-

the resulting error bars over the entire range of parameterssponding to states with integer numbers of holes. If these
states truly have a definite number of particles, the peaks

IV. MHM WITH THE HUBBARD MODEL should scale using the grand canonical distribution for runs

at different values ofw. In Fig. 2, the peaks at half filling

To demonstrate the use of this method for quantumn=1) are fit against the grand canonical probability
Hamiltonians, the Hubbard Hamiltoniwill be used

exd — B(En—uN)]

H=—t> > (¢l,¢,+clcip) P(N,u)= : ©)
i =Ty % ex — B(Ex—uN)]
- 1\~ 1 ~ A
U ”m—i)(nu—g)—ﬂzi (N +0;,), (8) 1

wheret is a parameter to set the strength of electron hopping o9 | o 0 holes (half-filling) .
(kinetic energy, c{!) is the annihilation(creation operator o5 Grand Canonical Fit ]
for an electron at sitewith spino={1]}, U is a parameter )
to set the strength of on-site Coulomb repulsipnjs the 07
chemical potential, and;,=c{,c;, . Clearly there are quan- 5 ¢ ]
tum operators in the Hubbard Hamiltonian, so the classicafz
derivation given earlier for the probability as a functionwof 3§ 5 7
will only hold if the system happens to be in states of definitene_ 0.4 i
particle number. In determinantal QMC, a Hubbard-
StratonovichHS) transformatiofileads to a bilinear fermion 0.3
form for the interaction. One sums over all possible fermion
states and then over the HS field. Thus, a given HS configu:
ration comes from a trace over all particle numbers so that it 01
is not guaranteed that a given HS configuration will have a , ,
definite particle number. It is this feature that distinguishes -2 -15 -1 -0.5

this problem from the classical statistical-mechanics prob- "

lem. However, if one finds that the various HS configurations . 2. Normalizing the peaks in histograms such as the ones
are indeed characterized by an integer-fermion occupatiohown in Fig. 1, yield the probability for a certain particle density.
then as we will discuss, one can proceed. Here, for the twoone can then change the used in the simulation and follow the
dimensional2D) Hubbard model near half filling, the charge relative probability of this peak as a function of If the states truly
gap provides an energy barrier to noninteger filling. As carhave a definite particle density they should follow a curve given by
be seen in Fig. 1, when one runs simulations at a sufficientlyhe grand canonical distribution, which is shown in the solid line.
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FIG. 3. The original points and the MHM method continuous

. . . FIG. 4. Original points and the resulting MHM method continu-
curves are shown for the particle dendity vs chemical potential g p 9

for tw | fthe i ; tuge All simulati ous curve are shown for the equal tirae antiferromagnetic spin-
() for two values of the inverse temperatyge SIMUations = yrrejation function[ S*4w,7)]. As the parameters are moved

are pgnformed on an 8 by 8 square IattlceUa@t=8. Errqr par; ON " Closer to half filling (w=0), the system begins to develop antifer-
the original data points are shown as bars with hats originating fro”?omagnetic order as shown by the increasing valu&dfs, )

th_e points, anc_i error bars on the_ MHM line are shown as bar he simulations are performed on an 8 by 8 square lattidd/at
without hats originating at regular intervals from the dashed line. 8. Error bars on the original data points are shown as bars with
hats originating from the points, and error bars on the MHM line
whereEy is the average measured energy for the states withre shown as bars without hats originating at regular intervals from
particle numbeiN. the dashed line.
Note that in Fig. 1, multiple histograms are presented in

order to emphasize the fact that the MHM allows one tocontinuous function ofi vs w with error bars shown as ver-
obtain even more information when several histograms arca| bars around the dashed line. The error bars are checked
used. By normalizing each histogram with respect to the oththrough both the bootstrap metH8dnd by incorporating the
ers, a continuous function of the desired observable may bgrrors due to correlations in the reweighted samples and their
obtained. In the results that follow, we have used many overfiite size!® To see how the line changes with different val-

lapping histograms in order to fully cover the range of simu-yes of the inverse temperatue the process is repeated at
lation variables of interest. Bft=A4.

In parameter regiméswhere these peaks are present in'" A5 one can see, the error bars on the MHM line are com-
the histograms of particle number, one can proceed to takgarable to those from the original points, and the MHM con-
any operator that conserves particle density and determine itgyously fits the original points. As the simulation tempera-
behavior as a continuous function af This can be done by  tyre decreaseflarge 8) the sign problert? becomes much
using a reduced number of simulations at different values ofgre severe. For the histogram method this means that while
w, as long as the respective histograms of particle densityere are peaks in the histograms fows u for configura-

overlap. To prevent unwanted overlap from very distant hisyions with positive signs, they are wiped out by nearly iden-

off. The cutoff reduces the effective weight of a histogram as |, Fig. 4, the MHM is applied to another interesting
the difference between the value pffor that histogram and  gpservable, the equal-time antiferromagnetic spin-corre-
the value ofu” at which the MHM method is run increases. |ation function S*4(m,m), the Fourier transform of
As an added benefit, the error bars for this continuous func{‘(nm—nil)(n”—n”)) taken at momentum«, 7). As the
t|_on of Iz will be reduced from tho_se obtal_ned from any onesystem moves closer to half fillingu(=0), the antiferro-
simulation, because one can use information about the OPergragnetic order increases as expedfed.

tor from all of the simulations performed.

VI. PHASE SEPARATION
V. RESULTS . . .
Recently, computational evidence for the existence of

In Fig. 3 one can see what happens when the MHM isshase separation in the strongly correlatedand Hubbard
applied to a set of histograms measuring the particle numbgfodels, both for and against, have been presented in the
during a QMC simulation of the Hubbard model. The chemi-jiterature'* One of the best ways to search for phase separa-
cal potentialu is varied over a range starting from half fill- tjon is through the use of a Maxwell constructibA Max-
ing (w=0 and, thusn=(n)=1) through increasingly nega- well construction consists in its simplest form as a graph of
tive values ofu. The individual runs are shown as points free energy vs density. As we let the temperature become
with associated error bars, and the MHM is applied to get amall, we can ignore the entropy term and just consider the
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vature of the line, however, when the MHM method is em-
ployed, the lack of any clear signs of upwards curvature
becomes much more apparent. Thus, it is possible to con-
clude that one does not see phase separation for this range of
parameters, a conclusion that would have been difficult to
make without using the full information from the histograms.
As further simulations are run at lower temperatures, it will
be interesting to see if phase separation develops. It is ex-
pected that the MHM will allow us to improve the quality of
the measurements, so that the simulations at these lower tem-
peratures will be possible.
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VII. CONCLUSIONS

In some circumstances, the MHM method can be used

099 e : effectively for Hamiltonians containing quantum operators,
n such as the Hubbard Hamiltonian just described. The ability
to generate continuous functions of an observable makes a

FIG. 5. Origin;al pOTtS and the rlzlesulting MHM n}ethod continu- nymber of analysis techniques much more feasible. For ex-
ous curve are shown for a Maxwell construction of energy vs pary e - in order to perform a Maxwell constructiba, con-
ticle density f1); some points have been omitted for clarity. Phase

in function of ener function of particl nsity i
separation would be indicated by a region of the curve with up-t uous function of energy as a function of particle density is

wards curvature, which appears in neither curve. Error bars for botheswed' Previously, a function like this would have been

the uncertainty in energy and particle density on the original datézonstructed laboriously one point at a time using the aver-

points are shown as bars with hats originating from the points, an("flgesb?f large Slmul;itlons’han? Cor.]dusmnf’dc:c.ravr\]m us:ngl reaa
error bars on the MHM line are shown as dotted bars without hat$°NaP!e guesses about what function would fit the calculate

originating from the dashed line. points.. Using the multiple—histogra_m method, the Iargg quan-
tity of information present in the histograms of each simula-
tion is brought to bear using simple statistical physics argu-
fents. The information from the simulations is thus used

energy, and S0 a phase-separated region Wlllzappear on tlilr?ore efficiently and smaller error bars and reasonable con-
graph as a region of upwards curvatu@H/Jdn?<0). In tinuous functions are produced

such a region the energy of the phase-separated state will be
lower than that of the homogeneous state, and phase separa-
tion is thus favored. It is of interest, therefore, to apply the
MHM to obtain continuous energy vs density measurements Support was received from the U.S. Department of En-
in order to investigate the possible existence of phase separgy under Grant No. DE-FG03-85ER45197, and computer
ration. In Fig. 5, a Maxwell construction for the 2D Hubbard time on the Cray T90 at SDSC was provided by NPACI.
model atBt=4 is shown. With just the original data points it Useful discussions and insights were generously provided by
is nearly impossible to say anything definitive about the curD. Scalapino, R. Sugar, D. Duffy, and E. Kim.

energy. Thermodynamics wants a system to minimize its fre
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