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Vortex lattice effects on low-energy excitations ind-wave ands-wave superconductors
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Generic features of the low-energy excitations in the vortex lattice state are examined by comparatively
studying the self-consistent solutions of the quasiclassical Eilenberger theory bdth farwave ands-wave
pairings. This low-energy physics associated with a vortex core, nodal structure, and quasiparticle transfer
between vortices governs physical properties of the vortex such as the field dependences of the zero-energy
density of states, the internal field distribution, and the shrinkage of the core radius. Eminent differences
between two pairings are highlighted to help analyze experimental [(0463-182@09)00102-2

Much attention has been focused on a vortex structure iwas also studied by the Branet al. theory>° it can be

high-T. superconductors. Many researchers try to detect thapplied neaH ., since the pair potential &, is used in the
d,2_,2-wave nature of the superconductivity in the vortex calculation.

structure. The point is how the vortex structure is affected by The main purpose of this paper is to comparatively exam-
the anisotropy of the energy gap in ttig_>-wave pairing, ine low-energy excitations in the vortex lattice both for
particularly by its nodal structure. Voloviktheoretically dy2_2- ands-wave cases in order to extract the generic fea-
suggested that the zero-energy density of stdd€3S) N(0)  tures of the low-energy physics of the mixed state in connec-
depends on a magnetic fielth as N(0)xyH in the tion with items (1)—(3) mentioned above. Specifically we
dy2_,2-wave pairing andN(0)xH in the swave pairing. investigate various aspects of the vortex lattice structure
While a H-like behavior was observed in specific-heat based on the quasiclassical Eilenberger theory, which can be
experiment? it is uncertain whether it is exactlyH or ~ a@pplied in most regions of the mixed state. We calculate the
not. Deviations fronN(0)«H were also reported iswave  SPatial variation of the order parameter, magnetic field, and
superconductors® Low-energy excitations in the vortex LDOS in thed,> .- ands-wave pairings, focusing on the
state can be divided conceptually intd) those from the difference between the two pairings. As for the single vortex
continuum states associated with the nodal struct@ethe  case, the fourfold symmetric vortex core structure of the
core excitations from the bound states localized in a vorteslx2—y2-wave pairing was shown in Ref. 11. In this paper on
core, and(3) the quasiparticle transfer between vortices, i.e. the vortex lattice case, we can automatically include the ef-
vortex lattice effect. While Volovik’s calculation takes ac- fect of the quasiparticle transfer between vortices and study
count of only item(1), which is valid near the lower critical the field dependence of the vortex structure, suchNg),

field H,,, the other two are also indispensable when considfhe core radius, or form factors of the internal field distribu-
ering the low-energy physics of the vortex state in general. 140N

order to help establish the general features of the mixed state Our calculation is performed in the clean limit after the
both ind,z_,2- ands-wave cases, one needs to calculate thénethod of Refs. 12 and 13. The Fermi surface is assumed to
vortex structure by taking into account these three contribube cylindrical, which is appropriate to highs superconduct-
tions on an equal footing. Through these efforts we may gai's- In our ce}lculatlon,. where the magnetic field is gppl_led
a more valid and vivid picture of the vortex for whole region @0ng thec axis (or z axis), the shape of the vortex lattice is

of Hoy<H<H, (H¢, is the upper critical field fixed to be a square lattice tilted by 45° from theaxis.

Experimentally several important means to probe the vor-S,°me theoretical calculations suggested that this configura-

tex structure are now available such as muon spi ion of the vortex lattice has lower free energy than that of

esonanck (uSR_and smallangle neuron scaterng 12 SOSNIOnal 00 anauarlatice 1w regon o e
(SANS) through the field distribution or by scanning tunnel- g b

. . . for the d,2_,2-wave pairing'>**'*The STM experiment on
ing microscop§® (STM) through the local density of states YBaZCu367§(YBCO)paIsogsluggested this vortgx lattice con-
(LDOS) in various superconductors, including high-su- )

e figuration in thed,2_,2-wave casé.We calculate the vortex
perconductors. These data are often analyzed within convefiice structure of thesswave pairing by using the same

tional phenomenological theories such as Ginzburg-Landayqare Jattice to clarify the effect of low-lying excitations
(GL) theory or London theory. The GL theory is, strictly ggsociated with the gap anisotropy.

speaking, valid only near the transition temperaflige As First, we obtain the pair potential and vector potential
for the London theory, which is applied nedg;, the cutoff  self-consistently by solving the Eilenberger equation in the
procedure of the core radius is too rough an approximation tpatsubara frequencyw,=(2n+1)7T. We consider the
estimate the contribution of the vortex core. In this sense it iguasiclassical Green’s functiorg{iw,,6,r), f(iw,,6,r),
highly needed to develop a microscopic theory in order thndfT(iwn,a,r), wherer is the center-of-mass coordinate of
correctly analyze valuable experimental data. WINIED) a Cooper pair. The direction of the relative momentum of the
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Cooper pair,R=k/|k|, is denoted by an anglé measured
from thea axis in theab plane. The Eilenberger equation is
given by

\Y 2’7TA
pVEr| T A

0
=A(6,r)g(iwy,0,r),
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=A*(6,ng(iw,,0,r),
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where g(iwn,0,n)=[1—f(iw,,0,r)f (iw,,0,r)]"
Reg(iw,,0,r)>0, andve=v gk is the Fermi velocity. The
vector potential is written a®\(r)=3HXr+a(r) in the
symmetric gauge, whetd=(0,0H) is an external field and
a(r) is related to the internal field(r)=[0,0h(r)] ash(r)
=VXa(r). As for the pair potentiah (0,r) =A(r) ¢(0), we
set ¢(6) = \2cosd for the dy2_ 2-wave pairing andg(6)

=1 for thes-wave pairing. The self-consistent conditions for

A(r) anda(r) are given as

!
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where Ny is the density of states at the Fermi surface
V(0',0)=Vo(0')p(6) the pairing interaction, «
=[72(3)/72]Y(Ao/T,) kpcs With Rieman’s zeta function
£(3). And kgcs is the GL parameter in the BCS theotyy
the uniform gap atT=0. We set the energy cutofi,
=20T.. In the following, energies and lengths are measure
in unitS Of AO and gO:UF/AO:W§BCS (gBCS iS the BCS
coherence lengihrespectively.

By solving Eq.(1) in the so-called explosion methtd?
underA(r) anda(r) of the vortex lattice case, we evaluate
the quasiclassical Green’s functions atx#40 discretized
points in a unit cell of the vortex lattice. We obtain nér)
anda(r) from Egs.(2) and(3), and use them at the next step
calculation of Eq.(1). This iteration procedure is repeated
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N(E =0,5)/No

FIG. 1. Spatial variation of the LDOS foE=0 in the
d,2_,2-wave pairing. Contour plot oN(E=0,)/N, is presented.
(&) At low field H/H.,= 0.021. The region 1&,X 14¢&, is shown.
To clearly show the ridge structure, the contour lines are densely
plotted for small value of LDOS(b) At high field H/H.,=0.54.
The region 2.8,X 2.8¢, is shown. Thea axis andb axis are along
the horizontal and vertical directions. There is a vortex center at
each white area.

spatial average dfi(E=0,r). We confirm that the following
results are not changed qualitatively for smabtger

We start by discussing the spatial structure of the zero-
‘energy LDOSN(E=0y), which may be directly observed
by the STM experiments. In the-wave pairing at lower
fields, N(E=0y) is localized circularly in a small region
around each vortex core, as in the single vortex case. Since
the intervortex distance decreases with increadihgthe
dortex lattice effect appears N(E=0y) at higher fields, as
reported in Ref. 12. TherdN(E=0,) is suppressed along
the lines connecting two nearest-neighbor vortex centers.

These features are contrasted with those of the
dy2_y2-wave pairing. In the single vortex case, as shown in
Fig. 8d) of Ref. 11,N(E=0y) consists of the vortex core
contribution and four eminent tails extended from the vortex
center along lines of the node directiom=f 7w/4 and its
equivalent directions Strictly speaking, this low-energy

until a sufficiently self-consistent solution is obtained. Westate is not a bound state as the tails extend toward infinite
use the material parameters appropriate to YBCO, i.epoints!’ These tails arisen from the nodal structure of the

£pcs=16A andkges=100. ThenH,=66.7 T in thes-wave
pairing and 93.2 T in thed,2_2-wave pairing forT/T,

d,2_,2-wave pairing can be seen in our calculation of the
vortex lattice case at low field[Fig. 1(@ for H

=0.5.28 To study the field dependence, the calculations 0f=0.02HH,,]. It is noted, however, that each tail slightly

A(r) anda(r) are done for various fields at fixed tempera-
ture T/T.=0.5. The spatial variation of current and internal
fields is calculated frona(r).

Next, we calculate the LDOS for enerdy as N(E,r)
=Nof&"(d6/2m)Reg(i w,—E+i7,6,r). Typically, we
choosen=0.03. To obtaing(iw,—E+in,0,r), we solve
Eqg. (1) for »—iE instead ofw, using the self-consistently
obtainedA(r) anda(r). The zero-energy DO$(0), is the

splits into two ridges between vortices. This split is due to
the vortex lattice effect, i.e., the suppression along the line
between nearest-neighbor vortex centers. The vortex lattice
effect appears even from the lower fields in the_,.-wave
pairing. It means that the quasiparticle transfer between vor-
tices is large in thel,._2-wave case due to the tail structure
of N(E=0,). The split is enhanced on raising the field, as
shown in Fig. 1b) for H=0.54H.,. Therefore, the talil struc-
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FIG. 2. Field dependence df(0)/N in thed,2_,2- ands-wave FIG. 3. Field dependence of core radigis &,, and&; for the

pairings (¢ ). Solid and dotted lines are fitting lines. Experimental s-wave pairing. Maximum amplitude of the order parameXeris
data y(H)/y(H.,) are also plotted for CeRu@®) (Ref. 5 and  also plotted. The radius anil; are, respectively, scaled k& and
NbSe (O) (Ref. 19. Ay. Lines are guides for the eye.

ture along the node directions M(E=0,) is smeared by occur due to the Fermi-surface anisotropy instead of the gap
the vortex lattice effect at higher field, where the tails extendanisotropy, both of which give rise to a similar effect on
toward rather different directions. This may be a possibléN(0) in the result.
reason why we do not clearly detect the four tails of the node To understand the origin of the deviation frohtliner
direction around a vortex in the STM experiment on YB&O. behavior in thes-wave pairing, we show the field depen-
Let us analyze the field dependenceN(0) in view of ~ dence of the vortex core radius in Fig. 3. The radiysis
the above structure of low-energy excitations around a corééfined from the initial slope of the pair potential by fitting
for the d,2_,>- ands-wave pairings. According to Volovik ~ as|A(r)|=A;r/&; at the vortex center. Therd, is defined
for the d,2_,2-wave case, the contribution t(0) mainly ~ as the maximum ofA(r)| along the line connecting the
comes from the tail structure along the node direction innearest-neighbor vortex centers. The radiyss defined as
N(E=0,). The length of the tail is the order &f~¥? (lat-  the one where the screening current around a vortex has its
tice constant of the vortex lattizeAs the vortex density is maximum. When increasingl, both & and ¢, decrease
proportional to H, N(0) is roughly estimated af\(0)  similarly as seen in Fig. 3. The2_,2-wave case shows the
~H Y2 = \/ﬁ This estimate becomes uncertain at highersimilar decrease about the core radius. The shrinkage of the
field, since the tail structure along the node directions iscore radius was also reported by the experiments of STM
smeared by the vortex lattice effect as shown in Fig. 1. wdRef. 8 and uSR (Ref. 6. In the calculation of a single
present our result for the field dependenceé) in Fig. 2.  vortex?' zero-energy DOS per vorteX(0)/H is propor-
The difference between thé,z_,> ands waves is clearly tional to an area of the vortex core£s. In Ref. 21,
seen, where the latter has no tail structureN(E=0y).  the radius{z corresponds to ouf;. If &5 is independent of
However, the dependence in tdg._,>-wave pairing devi- H, we obtain the naively expected relatioN(0)«H.
ates fromyH behavior(the curve for,H is plotted by dotted However, it is not the case. In Fig. 3, we also plot the
line).!® The best fit is obtained bfl(0)/No=(H/H.,)%4* core radius &; estimated from N(O), where ¢&;
(solid line). Its exponent 0.41 is slightly smaller than 0.5 of =0.35(N(0)/No)/(H/H)1¥? with a fitting parameter
the Volovik theory. ExperimentallyN(0) is obtained from 0.35. The radiug; decreases similarly & with increasing
the coefficient of thd-linear term in the specific he&(T),  H. It means that the deviation froir linear in N(0) does
ie., N(O)OC)/(H):"mTHOC(T)/T_ So far, theyH behavior  reflect the field dependence of the core radius.

of ¥(H) was examined within the low-field regidr. The
deviation fromH is expected whery(H) is measured in
higher-field regions.

As for the swave pairing case, our data in Fig. 2 also
deviate from a naively expected relation thgi0) is propor-
tional to the vortex density, i.eN(0)x<H. The best fit is
obtained byN(0)/Ny= (H/H,) %% (solid line). In Fig. 2, we
also plot the field dependence ¢tH)/y(H,), which cor-
responds tdN(0)/Ng, for CeRy (Ref. 5 and NbSe (Ref.
19). These experimental data for typicswave supercon- 0.0 0.5 10
ductors apparently deviate frofd-linear behavior and fit H/Hc,
with a similar curve to our calculation of theewave pairing. FIG. 4. Field dependence of form factors. For the_,z- and

We note that the borocarbide superconductor LBMC g \ave pairingshy 1/h; gandh, o/h, o are plotted. Lines are guides
shows\H-like behavior of y(H),* that is, d-wave-like be-  for the eye. For thal,>_,.-wave pairing,hy ;/h; o increases with
havior of Fig. 2. While it is considered to be @wave  approachingH,, andh,q/h; o remains positive and approaches 0
superconductor, it has a highly anisotropic Fermi surfacéor H—H_,. For theswave pairingh, ;/h; o remains almost con-
with fourfold symmetryt>2° Then, \H-like behavior may stant at higher field, anti, o/h; o becomes negative faf— H.,.
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Lastly, we study the difference betweaty. - and ands-wave pairings by solving the quasiclassical Eilenberger
swave pairings in the internal field(r). The spatial varia- theory. The three low-energy features #t¢ from the con-
tion of h(r) is characterized by the form factr, , (m,n  tinuum state associated with the nodal struct(@gthe core
are integer. It is the Fourier component df(r) defined as  excitations from the bound states, a8l the quasiparticle
h(r)=HZ nhmn€Xplgm,n- 1) with reciprocal lattice vector transfer between vortices as identified and examined by em-
Omn=—NKy+mk,. The spatial variation ofh(r) shows  phasizing the importance upon the vortex physics. These fea-

fourfold symmetry around a vortex core if‘.m‘?i—ysza‘_’e tures give rise to the clear difference betweka_.- and

pairing, while it is circular |n'thes-wgve pairing:* This dif- __swave pairings in the field dependence Mf0) and the

ference becomes clear at higher field, and reflects the fiel rm factorsh, ; andh, 5. The vortex lattice effect gives the
11 2,0

dependence di, ; andh, g as shown in Fig. 4. We note that . . .
depe differencelz'ldoes Zhoot appear n o, hy.. and hyo.  deviation from VH behavior ofN(0) in the dyz_,2-wave

These differences can be detected by SANS, and may appe@/fing. As the vortex core radius decreases with increasing

also in the resonance line shape in th®R. We confirm that  field, N(0) deviates fromH-linear behavior in theswave

the results of Fig. 4 are not changed qualitatively in the tri-Pairing. The contribution of vortex core region and the vor-

angular lattice case. tex lattice effect(i.e., the quasiparticle transfer between vor-
In summary, we have extracted the generic features ofice9 are also important when we experimentally and theo-

low-energy excitations in the vortex lattice both fih>_,>-  retically investigate the detailed structure of the vortex state.
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