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From ultrasoft pseudopotentials to the projector augmented-wave method
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The formal relationship between ultrasdftS) Vanderbilt-type pseudopotentials and 8f¢is projector
augmented wavéPAW) method is derived. It is shown that the total energy functional for US pseudopotentials
can be obtained by linearization of two terms in a slightly modified PAW total energy functional. The Hamil-
ton operator, the forces, and the stress tensor are derived for this modified PAW functional. A simple way to
implement the PAW method in existing plane-wave codes supporting US pseudopotentials is pointed out. In
addition, critical tests are presented to compare the accuracy and efficiency of the PAW and the US pseudo-
potential method with relaxed core all electron methods. These tests include small molecules
(H,, H,0, Liy, N, F,, BF;, SiF,) and several bulk system@iamond, Si, V, Li, Ca, Caf Fe, Co, N.
Particular attention is paid to the bulk properties and magnetic energies of Fe, Co, and Ni.
[S0163-182608)00848-7

[. INTRODUCTION the charge distribution and moments of the AE wave func-
tions are well reproduced by the PS wave functigsse,
First-principles Kohn-Sham density-functional methodse.g., Ref. 9. Therefore, for elements with strongly localized
(see, e.g., Refs. 1 and 2mploying a plane-wave basis set orbitals (like first-row, 3d, and rare-earth elementthe re-
and the pseudopotentiaPP approximation are currently sulting pseudopotentials require a large plane-wave basis set.
among the most successful techniques in computationdlo work around this, compromises are often made by in-
chemistry and computational material scieiceThe big- creasing the core radius significantly beyond the outermost
gest merit of these methods is their formal simplicity, butmaximum in the AE wave function. But this is usually not a
unfortunately this simplicity has a price: first-row elements,satisfactory solution because the transferability is always ad-
transition metals, and rare-earth elements are computationersely affected when the core radius is increased, and for
ally demanding to treat with standard norm-conservingany new chemical environment, additional tests are required
pseudopotential®. Therefore, various attempts have beento establish the reliability of such soft PP’s.
made to generate soft pseudopotentials, and the most suc- An elegant solution to this problem was proposed by
cessful approach to date is the concept of ultrasoft PP introvanderbilt/ In his method, the norm-conservation constraint
duced by Vanderbilf. Bloch® has further developed the is relaxed and to make up for the resulting charge deficit,
US-PP concept by combining ideas from pseudopotentidbcalized atom-centered augmentation charges are intro-
and LAPW ! (linearized augmented-plane-waveethods in a duced. These augmentation charges are defined as the charge
conceptually elegant framework, called the projectordensity difference between the AE and the PS wave function,
augmented-wave methd®AW). Although Blcchl has indi-  but for convenience they are pseudized to allow an efficient
cated in his work that similarities between ultrasoft PP’s andreatment of the augmentation charges on a regular grid. The
his method exist, no formal relationship was established. Irtore radius of the pseudopotential can now be chosen around
the present work, we will derive this relationship, which half the nearest-neighbor distance—independent of the posi-
shows that the only difference between Vanderbilt's andion of the maximum of the AE wave functidisee Ref. 1D
Blochl's approach are simple one-center terms. We will als®Only for the augmentation charges a small cutoff radius must
indicate a simple way to implement the PAW method inbe used to restore the moments and the charge distribution of
existing plane-wave codes that use norm-conserving or ultrg¢he AE wave function accuratelfor details see Ref. 11
soft pseudopotentials. The pseudized augmentation charges are usually treated on a
Norm-conserving pseudopotentials were first introducedegular grid in real space, which is not necessarily the same
and used by Hamann, Sckdu, and Chian§.In their scheme, as the one used for the representation of the wave functions.
inside some core radius, the all-elect@E) wave function The relation between the ultrasoft PP method and other
is replaced by a soft nodeless pseu®9 wave function, plane-wave-based methods was discussed in detail by
with the crucial restriction that the PS wave function mustSingh®
have the same norm as the all-electron wave function within Vanderbilt's approach is now adopted quite wid&ly!®
the chosen core radius; outside the core radius the PS and Afd especially for the @ transition-metals savings in the
wave function are identical. It is now well established thatcomputer and improvements in the accuracy can be
good transferability requires a core radius around the outersignificant?® But the success of the method is partly ham-
most maximum of the AE wave function, because only therpered by the rather difficult construction of the pseudopoten-
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tials, i.e., too many parametefseveral cutoff radji must be
chosen and therefore extensive tests are required in order to E=2 fo(Wol =A%) +Ep[n+n]+Exfn]. (D)
obtain an accurate and highly transferable PP. "

Some of these disadvantages are avoided inctBl® Eu[n+n;] is the Hartree energy of the electronic charge
PAW method. Blehl introduces a linear transformation densityn and the point charge densities of the nuaiei,
from the PS to the AE wave function and derives the PAWEd n] is the electronic exchange-correlation energy, gnd
total energy functional in a consistent manner applying thigire orbital occupation numbers. We will first give a brief
transformation to the KS functional. The construction ofSummary of the basics of the PAW meth(@ke Ref. 8; in
PAW datasets is easier because the pseudization of the augeneral we also adopt the notation of Ref. B the PAW
mentation charges is avoided, i.e., the PAW method workénethod, the AE wave functioW, is derived from the PS
directly with the full AE wave functions and AE potentials. wave function¥,, by means of a linear transformatifn:
This is achieved using radial support grids around each atom
instead of regular grids. The decomposition into radial grid = ~ A\ e |
and regular grid isgcomplete, insofarpthat no cross termgbe- |q}“>_|\[r“>+zi (10 =[N B[ ¥n)- @
tween the grids must be evaluated. Despite these advantages, _
the method is not yet used very often, and in addition toThe PS wave function¥ , are the variational quantities. The
Blochl’'s own implementation of the method we are aware ofindex i is a shorthand for the atomic sif, the angular
only one second program supporting the PAW metfldd. momentum numberk=I,m, and an additional indek re-
This is partly due to the fact that the PAW approach waderring to the reference energy,. The AE partial waves,
introduced a few years after Vanderbilt's method, but an-are obtained for a reference atom, the PS partial Wayme
other reason is that—apart from its formal elegance—it wagquivalent to the AE partial waves outside a core radlus
not obvious at the time that the PAW method has significan d match continuously ont; inside the core radius. The

advantages over other frozen core approaches like the US- Bre radiusr'c is usually chosen approximately around half

approach. There are also some aspects itBl® work that he nearest-neiahbor distan@eThe proiector functiond.
deviate so significantly from conventional pseudopotentiaf gnix Al Proj Pi
gre dual to the partial waves:

methods, that the implementation and testing of the metho
seems to be fairly difficult. In this work, we will rewrite the — 1\
PAW total energy functional so that it resembles more (Bil #) = .

closely the usual expressions used in pseudopotential pr&tarting from Eq(2) it is possible to show that in the PAW
grams and we will establish the exact formal relationshipmethod, the AE charge density is given ther details we
between both the US-PP and the PAW method. Our resultgefer to Ref. §:

show that only very few additional terms must be evaluated

in order to implement the PAW method in programs support- n(r)=7i(r)+n(r)=A'(r), €)

ing US-PP’s. whereh is the soft pseudo-charge-density calculated directly

rearranged PAW total energy functional. Then we establis%rlosTc)tfhgep;s%lgdo—wave-funct|ons on a plane-wave g#d.

the formal relationship between the PAW and the US-P

method(Sec. Il B. The Hamilton operator and the forces for _ ~

the modified PAW functional are obtained in Sec. lll, and in A =2 F(Wolr)(r|T,). (4
Sec. IV the construction of our PAW datasets is discussed. "

Several critical tests for dimers, small molecules, and bulkThe onsite charge densitie$ andTil are treated on a radial

systemgincluding magnetic Fe, Co, and Nire presented in  support grid, that extends up t@,q around each ion. They
Sec. V. Discussions and conclusions are at the end. are defined aBEq. (16) of Ref. g

Il. THE PAW TOTAL ENERGY FUNCTIONAL ns(r) (% pii{ dilr)(r|;), 5

A. Basic PAW formalism and[Eq. (17) of Ref. §|

As a first step, we derive a modified form of the PAW ~ B
total energy functional. We do that in order to obtain a func- al(r)=> pii{ il r)(rle;). (6)
tional that resembles closely the functional for US-PP. Our (5

derivation follows Blahl's work closely? but the decompo- pij are the occupancies of each augmentation charipgl (

sition of the Hartree energy—the treatment of the core vaand they are calculated from the pseudo-wave-functions ap-
lence interaction particularly—and the treatment of the explying the projector functions:

change correlation differ somewhat. Although it would be

possible to start immediately from the final expression of the -~

PAW total energy functional in Ref. 8, we have decided to Pij :En: Fr Wl Bi) (B[ W) (7
rederive the modified PAW functional directly from the

Kohn-Sham density functional, because this makes the deror a complete set of projectors the charge derisityis
vation more concise and easier to follow. The exact Kohnexactly the same a8 within the augmentation spheres. In
Sham density functional is as usually given by addition, comparison with the work of VanderbilEgs.
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(18)—(20) of Ref. 7] shows that the definition of the total charge densitie®+T. andTi'+T. in order to reproduce

charge densityfEq. (3)] is in principle equivalent in the the correct multipole moments of the AE charge density

PAW and US-PP approach if the projector functignsare  +ny that is located in each augmentation region. Because

the same(see Sec. Il | Of course, in practice, the US-PP n,. andT. have exactly the same monopole Z;,,) and

method always adopts pseudized augmentation charges. vanishing multipoles, the compensation chafgenust be
From now on, we shall concentrate on the frozen corehosen so that

case. In order to do that, we restrict the sum over bands in o

Egs. (4) and (7) to the valence bands, and the guantifies n:+n

7it, n!, etc. shall denote valence only quantities. In addition,yas the same moments as the AE valence charge dertsity
we introduce four quantities that will be used for the descripithin each sphergthis definition is somewhat different
tion of the core charge densiti;, ic, Nzc, Tizc: ASNc We  from that of Blachl). We will come back to our particular
denote the charge density of the frozen core all-electroppgice for the compensation charge in Sec. Il E. We also
wave functions in the reference atom. The partial electronigygnt to point out that similar schemes relying on soft com-
core densityfi; is equivalent to the frozen core AE charge pensation charges are used for instance in the LAPW method
density outside a certain radingc. rpc lies inside the aug-  to handle the long-range electrostatic effétts.

mentation region. The partial core density is used in order to  Eyen without complicated algebra it is easy to anticipate
calculate nonlinear core corrections in the spirit of Louieihatti, describes the electrostatic interaction between differ-

et a'-?a (see Sec. Il & _ _ ent augmentation spheres and between the augmentation and
With nz¢, we denote the point charge density of the nU-the interstitial regions exactly. Only for on-site terii.,
clei nz plus the frozen core AE charge density: terms within one spheyeerrors are introduced that must be
corrected. We show this briefly here: for the Hartree energy
Nze=Nz+ N ®)  one obtains

Finally, the pseudized core densfly is a charge distribu- 1 1
tion that is equivalent to. outside the core radius and shall Z(np)(ny) = = (Fy) (A7) + (nE—Tid) (Tip)
have the same moment ag,.. inside the core region: 20 T AT T

1
[ nzndie= | fzmar, © Fpmom-fn, 1Y
Q Q

r r

where we have used a shorthand for the electrostatic energy

wherefQr stands for the integration on the radial SUpPOrty v veen two charge distributiomgr) andb(r):

grid. The total moment ofi,. andf,. is equivalent to the

ionic net charge- Z;,, (by convention, the charge of an elec- a(r)b(r’)
tron is +1).2* The pseudized core char@e, is used in the (a)(b)ZJ drdr’ ———. (12
decomposition of the Hartree energy in the next subsection. [r=r’]

In the following sections, quantities like;,Mc, Nz,  Because G —H1) has by construction ofi vanishing mo-

fizc,Ti*, n, andf will be used in the following way: on @ ments within each individual sphere and is zero in the inter-
plane-wave grid a sum over all ions is implicitly assumed,stitial region the second and the third terms contribute only
whereas on the radial grids only terms deriving from theyithin each augmentation sphere. However, the second term

local ion are taken into account. in Eq. (12) is problematic because it involves quantities de-
fined on the plane-wave grid and terms only calculated on
B. Hartree energy the radial grid *—T31). To simplify the calculations

The Hartree energy is treated rather similar as in Ref. 88l0ch” made one crucial approximation that we adoplt here
but because we want to derive a total energy functional thaf@0: it is convenient to replagey in the second term b,
resembles that of the US-PP method, the core valence intek€., the pseudo-charge-density is replaced by its on-site ap-
action is handled slightly different. The first step works Proximation. This is only exact for a complete set of projec-
along the same lines as in Ref. 8, i.e., the total charge densi#prs, and introduces an error in other cases, which is evi-

nt is decomposed into three terms: dently given by
1 1y = =1
ng=n+ng = (fz +h+ ﬁZc)‘i‘ (ny—n3)(Mr—N7). (13
— This error is discussed in Sec. VII[Eg. (108] of Ref. 8.
nr Using this approximation one obtains for the Hartree energy
(nl +nz) - (ﬁl + A+ fge) - the simple form
1 ~1 1 1 1
"T T 0 S@D@{D -5 BD@ED+5 (). (19
10

This particular decomposition into three terms was choserfhe notation(a)(b) means that the corresponding terms
by Blochl to allow an efficient treatment of the long-range must be evaluated on the radial grid within each augmenta-
electrostatic interactions. The crucial step is the introductiortion region (in these expressions the densitiés and ny

of a compensation charge, which is added to the soft contain only contributions arising from the ion centered in
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the spherg The final equation is convenient because theravas used. The reason for our choice is discussed below. We

are no interaction terms between the radial support grid andiant to stress that the partial electronic core chdaiges

the plane-wave part, but it should be kept in mind that for arentirely distinct from the pseudized core chaig@g.. The

incomplete set of projectors an approximation was made itater must reproduce the exact monopol@gf, whereas the

order to obtain this decompositigeee Eq.(13)]. former is constructed without this requirement. It is straight-
Up to now our derivation was generally similar to Ref. 8, forward to obtain the final result, which for a local or semilo-

but in the remaining lines we reformulate the three terms otal exchange-correlation energy and a complete set of pro-

Eq. (14) so that they resemble closely the usual expressionfgctors is given by

used in pseudopotential codes. Inserting the definitionof

andfi [see Eq.(10)] into Eq. (14) one obtains for the first E i+ A+T.]+Ent+n.]—E,[Al+A+7.], (19

term:

whereE means that the corresponding quantity is evaluated

1 1 . . s . :
ZRERA) R+ A) + (o) (R + )+ = (Fo ) (T on the radial grid within the augmentation region.
3 ) )+ (Tize)( )F 5 (ze)(Mizo) If the set of partial waves is not complete, an error is
1 1 introduced that is given bganologous to Sec. VII C of Ref.
= 5 (A+ A1) + (Fizo) (f+ ) + 5 (Fizo) (ize) 8):
+U(R, Zp), (15) Ex(M+A+Ti)+(nt+ny)— (Rt+A+T)]
and the second term becomes — Ex[A+A+Tc]— Ex[n'+nc]+ Ey [AT+A+TC].
1 ——— — 1 This term vanishes fofi—Ti'=0. Expanding this term in
— 5 (HR)A+1) = (Tize) AT+ 1) = 5 (Rze) (Mze)- orders offi—Ti? yields
(16)
In Eq. (15), the first term describes the electrostatic interac- f (Vg '+ Nl = vy AT +A+T])(R—T1)dr.
tions between the valence electrons on the regular grid, the @

second one that between the frozen pseudocore and the @zt nonlinear core corrections, the first term in the inte-
lence electrons, and the final one the interaction between th&ral would be ¢ [n'+n.]—uv.Jfl]). For our PAW
XC c XcCl '

frozen coresU(R,Z;,,) is the electrostatic energy of point

E% in an uniform electrostatic backgroufiiand 0”1 appreciable region of the augmentation sphere,
2(fizc)(Nz) is the self-interaction energy of the pseudized,ynich reduces errors due to the incompleteness of the partial
core charge distribution, which cancels against the similaayes in comparison to Bibl's approach. The improve-
term in Eq.(16). In going from the first line in Eq15) tothe  ent s particularly large for systems in which the core states
second, we have made the assumption that the core chargégend towards the boundary of the augmentation sphere. An
do not overlap, which is not always the case. But because §\ample for the improved behavior is given in Sec. V B. In
overlap of the electronic cores also introduces errors in othesqdition. we also found that the introduction of the partial
places(e.g., the kinetic energywhich are usually neglected ¢qre charge densifii, reduces numerical instabilities due to

in the PAW method, it seems reasonable to neglect the cofragient corrected functionals in the vicinity of the core.
responding terms here as well.

Finally, the third term in Eq(14) is rewritten in a similar
way to the other two and we obtain

datasetgsee Sec. IYTil+A+T, is very similar ton'+n,

D. Final expression for the total energy

The final expression of the total energy is most conve-
niently split up into three termé&imilar to Ref. 8,

1 1 1 1 1

5 (MDD + (g (M) +5 (N2 (7). (17)
_F 1_F1

The Hartree energy is given by Eq45), (16), and(17), but E=E+E-E, (20

in the final equations for the total energy we will not include

the core self-interaction term(n,.)(n;.) because it only
defines the zero of energy.

which are given by

E=> f (W, |- 3A|W )+ E[A+A+T]+Ey[Ti+A]
C. Exchange-correlation energy "

To decompose the exchange-correlation energy we insert +f P TR + f " '
the following charge density into the exchange-correlation vulfize][(A(r) +A(N]dr U (R, Zion), 2D

functional:

Ne+n=(A+A+Hy) +(n*+ny) — (A1+A+T,). (18 E1=“Ej) pij{Pil — 3A|B)) + Ex AL+ A+R ]+ En[Al+ ]

This expression differs from Ref. 8, where

+f vulTizel[AY(r)+A(r)]dr, (22
ne+n=(h)+(nt+n,) — (A Q
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E. The compensation charge

The compensation chargésmust be chosen so that
+f has exactly the same moments as the exact AE charge

E'= 3 piy(l — $A16y) +EdN ]

+—EH[n1]+f vulnzent(r)dr. (23) den_s_ityn1 within eac_h augmentation sphere centered at the
Q, positionR. This requires that
vy is the electrostatic potential of the charge denaity f (nt—ml—p)|r— R|'Y’,_‘(r/—\R)dr=0. (24

Q,

n(r’) The charge density difference between the AE and PS partial
UH[n](r):J mdr’, wave for each channel ) within the augmentation region
[see Eqgs(5) and(6)] is described by the functions

andEy[ n] is its electrostatic energy, which is given by Qij(n= ¢i*(r)¢j(r)—<~ﬁf(r)<~ﬁj(r), (25)
and their moments; are given b
c 1 _1Jd fd n(rn(r') %ij are g Y
win]=5mm)=5 | dr | dr T

os= jﬂ Qi (N|r—R['Y}(r—R)dr, (26)

The expressiolt is evaluated on a regular grid, wherd&s  herelL is a shorthand fot. = (I,m). Only certain combina-
andE* are calculated for each sphere individually on a radiakions of L andi = kilim;, j=k;l;m, based on the usual sum

support grid(only charge densities deriving from the central ryles will give nonzero contributions:

ion must be calculated in these tepmA few remarks are

required here to elucidate again the differences between m=m+m; and I=[l;=[,[li-1;|+2,...]i+];.
Blochl's and our work. The treatment of the kinetic energy is

equivalent, the Hartree energy is treated in a similar wayThe momentsqj; can be obtained easily using Clebsh-
with the only difference that we neglect core-core overlap inGordan coefficients and a radial integration. A compensation
these termsas it is implicitly done for all other terms in the charge that fulfills the requiremefEq. (24)] can then be
PAW method. An important (formal) difference concerns defined as a sum of one center terms

the construction of the compensation charge. In Ref. 8, the
compensation charge has the same multipoles’ash?
+ny., Whereas in our case it is chosen so that it reproduces
the multipoles oh!—Til. In the former case, the electrostatic
inteiactions between the cores are automatically included in Qh(f):qiLj9|(|f— R|)Y|_(r/—\R), (27)
En[N+N], whereas in our case the interaction between the

cores must be evaluated explicitly using an Ewald summawhereg,(r) are functions for which the momehis equal to
tion [U(R,Z;,n) In Eq. (21)]. At first sight our expressions 1. The actual functional form df,(r) that we have adopted
also do not include a term similar toin Ref. 8, but a second is discussed in Sec. IV A.

thought makes clear that,[Ti,.] accounts for this term be-

cause the shape ofy[Ti;.] is entirely free within the aug- F. Ultrasoft pseudopotentials

mentation sphergonly outside the core radius,[fizc] . .
= vu[Nye] Must hold. Before deriving the total energy functional for the US-PP

Significant differences occur for the exchange—correIatiorfnethOd’ we want to stress that the PAW method is an exact
energy. In our case, on the regular grid, the exchangeAE method for a complete set of partial waves. Therefore,

correlation energy is evaluated for the charge derfsityi ]Ehe metho;jh SthUId yield rAeéuItst:]hzzt ;’:Ir(tahlnglgtlggwsh%blg
including nonlinear core correctiofis, whereas Blohl uses ' or @1y Other frozen core AE MENod. In the Ls-Fr metho

only T to evaluate the exchange-correlation energy. As we"’ldd't'on"’lI approximations are made.

; . The equations for ultrasoft pseudopotentials can be ob-
have already stressed, this makes only a difference for an. i o
incomplete set of projectors, which is in practice alway:tr.éllnecj readily from the modified PAW total energy func-

adopted. In that case, we expect our treatment to be superiotfOnal given in Eqs(21)~(23) by linearization of Eqs(22)

Finally, we would like to compare our PAW total energy 2nd(23) around the atomic reference occupangigs Let us
functional with that of Holzwartfet al;2 but because this is  denote the densities obtained with those occupancieg as

a rather specialized topic we do this in the Appendix. fia, andn,. Linearization of the exchange correlation and
Another interesting point is the comparison with ultrasoftHartree term oE* [Eq. (23)] aroundn; yields
pseudopotentials. It is obvious th&tis similar to the total
energy functional of Ref. 7 ifi is associated with the pseud-
ized augmentation charges in the US-PP method. The only
differences are evidently the two additional on-site tefhs +f (vyd Ni+ng]+vuniDIni(r)—ni(r)1dr. (29
andE?, Egs.(22) and(23). We will come back to this point
in Sec. Il F. Using Eq.(5) for n1(r) we obtain for this expression

h= E PijQiLj(f),
(i,j),L

Exc(Ni+ne) +En(nd)
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C+“Zj) pii{ diloxdni+ncd+oplnille), (29 El—E1=(iEj) pii (il = 3l )) — (il — 3A[B;)).

whereC is a constant. The other two terms—xkinetic energylt is immediately obvious that the US-PP method is strictly
and electrostatic core-valence interaction—are already linearquivalent to the PAW method in this limiting case, and
in p;; and if we combine them with E¢29) we obtain forE!  therefore both approaches are then exact within the frozen
up to first order in the occupancies : core approximation. But in the US-PP method this would
require one to use the functions
El~C+ i il —3A+03 b)), 30 A ~ o~
2 pu(@l-tarode). 0 Q5(N=Qy(N=d* (N&(D-FOF1) (@9
with in the calculation of the compensation charge on the plane
wave grid[see Eq.(27)] and this is in practice not possible.
ver=UnlNa+ Nzel+vxd N+ ncl. (3 However this derivation indicates that the accuracy of the
The local potentiab?; is just the AE potential in the refer- US-PP can be improved systematically by increasing the ac-
curacy of the pseudized augmentation function. In other
words, if the AE-augmentation functiopgq. (35)] are used
for the augmentation, the US-PP approach is also an exact
frozen core AE method.
On the other hand, the derivation presented at the begin-

ence atom. A similar linearization can be done o, but
care must be taken that boitt andf depend on the occu-
panciesp;; . The final result therefore contains two terms:

E~C+ 2 | pij( il —3A+T%{ b))+ j Qh(r)ieﬁ(r)dr} ,  ning of the section shows that even if the augmentation func-
. D tions Qh(r) reproduce just the correct moments @f;(r),
with the US-PP method is stiéixact up to first ordefor changes
~a =l A = 1, A e of the charge-density distribution with respect to the atomic
Ueif=Unl[Mat NatTize] toxdMatfatNel. (32 reference system. This is probably part of the reason for the

73 is the local atomic pseudopotential in the reference atonf€liability of the US-PP method. However, in the US-PP
Combining the two linearized expressions wihaives method obviously, the transferability errors related to the
the foIIowinggtotaI energy functional'p 9 pseudization of the augmentation charges can be large for

systems with strong charge transfpolar or ionic binding,
changes of the atomic orbital occupatidhgbridization and

~ 1 ~
E=> fn(\lfn|—§A+Z BB G T ) promotion, strong polarizations(induction of dipole or
n () guadrupole moments at certain atomic gites large local
+Ex N+ A+M]+Ey[A+0] magnetic momentsgour tests in Sec. V will show that the

latter is in fact the most problematic cas&o obtain very
accurate results even for these problematic cases the func-
tions Q}; should approach the limiting case of E§5). This

is usually achieved by diredtdependent truncation of the

+ [ ol + () 10r + UR Zow. (39

with
AE-augmentation function®;;(r) at some radius,n, (see
GYS= (= LA+ 03] by — (D] — LA +T2| D Ref. 11. An alternative used by Kresse and Haffés to
1= (il =28+ verd ) (il =2 A +Terl ) first construct high quality norm-conserving partial waves
. ¢ (r):
- [ @smmnar @9 7

o _ - Gi(1) 1> omp
It is evident that the first equation is exactly the same as Eq. iNC(r)z | (36)

(1) in Ref. 11, if the compensation chargeis associated fi(r) T <reomp

with the pseudized augmentation charge in the US-PP ap- . . A L
proach. It is also simple to show that the first two terms of2"d to define the functlon@i"j. as the charge density differ-
Gi‘fs [Eq. (34)] are equivalent to the pseudopotential strengthence of the NC and US partial waves:
parameterD;; defined in Eq.(22) of Ref. 11[this can be N ~ ~
shown by ccl)mbining Eq(22), Eq. (20), Eq. (16), and Eq. Qij(N = ™ (N ) (N =g (N ;(r). (37)
(17) of Ref. 11]. The last term in Eq(34) corresponds to the A ys-PP's of the present work have been constructed in
usual unscreeningvhich is incorrectly specified in Eq24) 4t way.
of Ref. 11]. , _ To summarize, in the PAW method the compensation
We turn now briefly back to the PAW functional. If the cnharges can be rather extended, because the only requirement
s_um~cl)f the compensation charge and the pseudocharge d&8-that they restore the correct moment within the cutoff ra-
sity fi'+11 is equivalent to the onsite AE charge densify diusr’.. The correct shape of the AE wave function is recon-
e, if structed only on the radial support grids. In the US-PP
A=nl—hl method, “accurate and hard” augmentation charges are de-
' sirable for reliable pseudopotentials. This usually requires
and iffiz.=nz. andfi;=n;, only the on-site kinetic-energy that the AE augmentation functions are pseudized around the
terms contribute to the total energy: maximum of the AE wave functions, often resulting in rather
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contracted and localized compensation charges. For instancehis term accounts for the fact that the pseudowave function

whereas for 8 transition-metal compounds half the nearest-§ | does not have the same moments as the AE wave func-
neighbor distance and thus the pseudization radiusf the  tion W, , and the term thus corrects the long-range electro-
partial wavegand the extent of the compensation charges inatic behavior o ..

the PAW methodlis around 2 a.u., the maximum in the In the remaining two energy termist andE? only ex-

wave function is located around 1 a.u. demanding very lo- ressions with;, enter—either directlykinetic energy or

calized and computationally expensive compensatlorfl)ia nL, L, or f. Using Eq.(5), it is easy to show that the

charges. derivative ofE* [Eq. (23)] with respect to occupancigg; is
given by
Ill. HAMILTON OPERATOR AND FORCES
- = 1
A. Overlap operator and orthonormality ) I1J :ﬁ :<¢i| _ §A+Uéﬁ| ¢j>’
In the PAW approach, the pseudo-wave-functiohg _ N
must fulfill the following orthogonality condition: with
(TSI )= Snms (39) verlN]=vpln'+nz]+o dn*+nc]. (45)
where the overlap operator is defined by The result forE! is similar, and one obtains
= = 31 B 1A L~1 7 ~ AL
S[{R}]:l"”Ei 1Bi)aij (Bl (39 Dij:$:<¢i|_§A+veﬁ|¢j>+; ervef‘f(r)Qij(r)v
1] r
andgq;; is given by with
A= (il b))~ (Bl By) = Vamay (40) e =0 FH+ A+ Tizg] +o, [T+ 4Tl (46)
The first term in Eq.(46) derives from the variation with
B. Hamilton operator respect top;; andf', and the second one from the variation

To obtain the Hamilton operator for the modified PAW With respect tch. The termsDj; andDj; are evaluated on the
total energy functional the total energy must be varied withradial grid within each augmentation region: they are strictly
respect to the pseudodensity opergter= ,f | ¥, )(¥,,| and onsite and restore the correct shape of the AE wave function

one can formally write!? within the spheres. _ _
The final expression for the Hamilton operator is remark-
dE ably elegant and simple:
—=H (42
dp 1 ) 1_R1
The density operatds enters in several ways—directliike HIp.{R}H == 54+ Tet (.2,) [Pi)(Dij D5~ Dij){pjl.
in the kinetic-energy term in Eq(21)], via the pseudo- 47

charge-densitji or via the occupancies of each augmenta—AIthou h our expressions are very similar to those obtained
tion channelp;; defined in Eq.(7). If we treat these three 9 P y

contributions separately, the variation of the total ener cartl) y Blochl in Ref. 8, the comparison is not quite straightfor-
formallv be writtFe)n as Y, 9Y Callard. Part of the difficulties are due to the fact that we treat
y the exchange-correlation term slightly different, but &lbs
- equations are also more complex because he introduces very
il_i’_ _ QE _éE'_ on(r) dr 4+ Z ?ﬂ 8_P¢1 ) soft compensation charges, which are allowed to overlap. To
dp  0p Sn(r) 0Op o Opi; Op see the analogy between both expressions one has to rewrite
lr)v(rl ' |13.')v(13,'| all terms involving 3(r) in Egs. (37)—(40) of Ref. 8 into a
(42) closed expression. The result resemtibgs and the second
] - ] o term.!nDij, two expressions that are on first sight not present
We start with the ternE [Eq. (21)]. The partial derivative i Blgchl's equations. It seems to us that our arrangement of
with respect tdp yields simply the kinetic-energy operator terms is more symmetric and intuitively easier to understand:
—1/2A, and the variation with respect T(r) is the usual  The first two terms(kinetic-energy operator and effective
effective one-electron potentiaks(r): one-electron potentiplare usually present in the KS eigen-

value equation. The term involvin;; ,

Veg=vp[N+A+Tzc ]+ v [N+ N+N]. (43
In E, the occupancieg;; enter only via the compensation > (T DT f—ﬁ (r)OL(r)dr,
chargef, and we obtain with Eq(27): (L (ol (B ¥n) | Terr) Qs

describes the interaction of the compensation charge associ-
dr= f~ NOL(r)dr. ated with one electron with the effective one-electron poten-
; Derl 1) Qij (1) tial (long-range electrostatic effegtsThe remaining two
(44) terms are strictly onsite and account for the fact that the

. _ﬁﬁ_f SE  an(r)
U apy; on(r) dp;;
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potentialt . and the pseudo-wave-functidh, do not show conserving pseudopotentials is caused by the overlap opera-
the rapid variations usually present in the vicinity of the tor, whose position dependenideg. (39)] must be taken into
ionic cores. The symmetry and mutual cancellation betweeAccount too. The forces can be derived in several ways, but
Bilj [Eq. (46)] and the term- %A+Eeﬁ+2(i,j)|ﬁi>6ij<ﬁj| in the here we want to keep the derivation as S|mpI¢ as possible. To
Hamilton operator is obviouén fact the cancellation is ex- do tgatkwe s(tjart fror?%éa r:‘_or;:e theorﬁm ;lrst pzo(;’en by
act within the augmentation spheres for a complete set Ot?v%eoffhgreigrg'\;?sscgivexvﬁlé: states that the total deriva-
partial waveg

The Hamilton operator for US-PP’s can be obtained from _
Egs.(44)—(47) replacing the effective potentials in the aug- —=> fn<‘T’n I(HLp.{RH — enS{R}HD \"Ifn>
mentation regiorv Ly and%’; by the respective atomic po- dR 7 IR
tentialsv 3 [Eq. (31)] andv 3 [Eq. (322]. This means that in JU(R, Zion)
the US-PP method the terils; andDj; can be calculated t——r (51)
once—for instance during the pseudopotential generation—
and are kept constant during the calculation. The second line describes the forces between the ionic cores,
and we will not comment further on this terra, are the
C. Double counting corrections Kohn-Sham eigenvalues, and we assumed that we have de-

termined the ground-state wave functions so that the or-

In many band-structure codes, the total energy is evalumogonality constraint E¢(38) and the KS equations
ated as the sum of the Kohn-Sham eigenvalues minus double

counting corrections. It is relatively straightforward to derive H|\Tf Y=e S|‘T’ )

the required equations by rearranging the total energy func- nemnmeen

tional. The usual decomposition into three terms is also posare fulfilled. In Eq.(51), changes of the potentia&ﬁ,iéﬁ,
sible for the double counting corrections and one obtains anduv, in the Hamilton operatoH due to changes of one of

the densitieshi, n*, it, or A must not be calculated. The

Ege= —Ep[fi+A]+Ey [Ti+A+Ti] proof of this theorem is quite straightforward and based on
the fact that the first-order energy change is given by the sum
— f Uy A+ A+T](T+A)dr, of the change of the Kohn-Sham eigenvalues: any change of

the potentials due to changesfgfn®, fil, or i always cancel
against the changes of the double counting correctieas
Ei.=—En[n*]+E[nt+n ]—f vyd nt+nIntdr, Eq. (48)].
de . X ¢ o, ° ¢ From Eq.(51) the forces are very simple to derive and we
obtain three term&!, F2, andF3. The first contributionF!

El.= —E4[fl+A]+E R +A+R] derives from the change of the local potentig if the ions

are moved; the effective potential depends explicitly on the
_f v J T+ A+Ti](RE+A)dr. (48) ionic positions only vidy.:
Q,
6 Tr{Hp] 0vH[ﬁzC](r)}

The total energy is then given b F1=—f = dr. 52

o g y Svy[Mzcl(r) IR (52
E= f (T HIT N+ Byt EL ~EL +U(R,Z:o). Two terms must be considered here, the first one derives

; (Wl W)+ Bact Bae~ oot U(R Zion) from the change dF ¢ in Eq. (47), and the second from the

(49  change of in D;; [Eq. (49)]:

In the US-PP method&}. andE}, are constants and must be ) v u[Ml(r)
calculated only once during the pseudopotential generation.  F!= —f (ﬁ(r)+ E Qh(r)Pij) T R dr
(ij),L
D. Forces and stress tensor duy[Nizc](r)
————dr

IR (53)

= —f [7i(r)+A(r)]

The forces are usually defined as the total derivative of

the energy with respect to the ionic positions o _ .
The second contribution to the forces arises frbm [Eq.

dE (44)] due to changes of the compensation chaiyetthe
F=-4r" (50 jons are moved:

In the PAW method(as in the US-PP methadcomplica- 39, (Ir-=RDYL(T—R)

tions arise from the fact that the augmentation spheres and F2=— 2 5eff(f)PijqiLj IR dr.
compensation charges are allowed to move with the ions, DL (54)
which gives rise to additional terms in comparison with stan-

dard plane-wave codes. These terms are sometimes calléd andF? together describe the forces deriving from electro-
Pulay force€! although this is not quite correct because thestatic contributions.

plane-wave basis set is clearly independent of the atomic The final term is due to the change of the projecfrén

positions. Another difficulty in comparison to norm- Eq.(47), and is given by
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5 . 1 =1 are constructed. Loosely following Rappe, Rabe, Kaxiras,
FP=— > (Djj+D}—Dj — €. and Joannopould® (RRKJ) we expand the PS partial wave
nt) inside a cutoff radius, in terms of a linear combination of
~ AP ~ spherical Bessel functions
X Eo(Wol == ¥ ). (55 )

There is one additional term that is in fact not correctly Dr(r) = Zl aiji(gir), r=re (57)
treated by Eq(51). It derives from the dependency of the
exchange-correlation potential on the nonlinear core correc- di(r),

tion ﬁc gIVIng rise to one additional contribution that can be with the a; andqi chosen so that the PS partia| Wwﬁ%(r)
written as is two times continuously differentiable. A set of two spheri-
cal Bessel functiong (q;r) is always sufficient to satisfy this
nee. . _dng(r) condition (for details see Ref. 14
F __f Uxd i+ N+7] —o—dr. (56) The projectorsp; can be obtained using either Vander-
bilt's schemé or Blochl's Gram-Schmidt inspired scherfie.
This term is most easily obtained directly from the total en-It is straightforward to show that both methods resuleia
ergy functionalEq. (21)]. actly the samé®AW functional, but Blghl's scheme seems
One thing that is remarkable is that the forces for theto be numerically better suited because it automatically
PAW method are almost identical to those for US-PP’s. Allavoids too large or too small numbers.
differences are actually automatically absorbed in the defini- All PAW potentials and US-PP of the present work have
tion of (5” n Dilj _bilj) in Eq. (55). For US-PP’s the terms been generated with two partlal waves for tht_andp orb|t_-
als. In terms of computer time, these potentials are slightly
more expensive than potentials using only one projector, but
Cpotentials with two projectors are better transferable, easier
ground 'syate for the PAV.V method. . . to generate and generally speaking “saver” then those with
Realizing that the onsite terms only contribute in form of 5o hartial wave. The use of two projectors also parallels the
a change of the quantitieBj;— D (i.e., these quantities | APW method where the radial wave functions at some ref-
vary during the determination of the ground state, whereagrence energy and the energy derivatives of these wave func-
they are constant for US-PR;st is also easy to evaluate the tions are used for the expansion of the wave functions inside
stress tensor. We will neither give the full derivation nor thethe augmentation spheres. The PAW and the US-PP are
final results here, as the expressions are rather cumbersomewever somewhat less prone to linearization errors, because
and difficult to write in a compact form. But for further de- part of the properties of the potential are described by the
tails we refer to Ref. 12, where the stress tensor has bedgcal pseudopotential. In some cases and for small cutoff
derived for US-PP. The changes with respect to US-PP’s argdii, it is even possible to use only one projector in US-PP

r>r.

Dilj—f)ilj are constant and calculated once and forever
whereas they vary during the calculation of the electroni

trivial. and PAW method. For more details we refer to Ref. 10.
IV. PAW DATASETS C. The pseudized core charges and the local pseudopotential
A. General considerations The pseudized core char@g. enters only via the local

i ) " ionic pseudopotentiaby[T,.], and we prefer to construct
To define a PAW data set the following guantmes areine pseudopotentiad [fi,.] directly instead offi,.. We
required:(i) the AE and PS partial waves; and¢;, (i) the  have also already pointed out that the potentigifi,.] is
projector functiongp;, (iii) the core-charge density., the  entirely free within the augmentation sphere, whereas out-
pseudized core charge density. and the partial electronic = sijde the augmentation sphere it must be identical to the all-
core-charge densiffi. and (iv) the compensation functions electron potentiab [ n,.]. To obtain the local ionic pseudo-
gi(r). Our particular choices for these functions are dis-potential v[Ti,.], a local atomic pseudopotentiab? is

cussed in the following subsections. constructed first. The final ionic potential is obtained by un-
screening the local atomic pseudopotential. This intermediate
B. Construction of the partial waves and projectors step is reminiscent of standard pseudopotential methods and
- it is convenient because it allows for a check on the scatter-
The construction of the partial waves and projector®; ing properties of the pseudoatom.

proceeds along the same lines as in Ref. 14. First an all- |n fact, the local atomic PR3, mustdescribe the scatter-
electron calculation is performed for a spherical referencq:ng properties for angular components that are not included
atom. Then, for each angular quantum numbe0—1 (I in the set of partial waves. The most convenient choice for
=0-2 for heavy alkali, alkali earth, and element two  the |ocal potential is often @orm-conservingpseudopoten-
reference energies are chosen and the AE partial wavefy| constructed for the first angular-momentum quantum
¢i(r) are calculated. One of the reference energies alwaygumberl, which is not included in the set of partial waves
coincidences with the atomic eigenenergy of a valence Orf =2 or I=3). But unfortunately, this approach is often
bital. Finally smooth PS partial waves problematic, for instance for transition metals, because the
- resulting localf-PP is sometimes so attractive that ghost
G- (N=Y L (r—=R)du(|r—R]|) states in thes or p components are difficult to avord.In
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that case, a convenient choice for the local potential is a d |

“truncated” AE potential, in which we replace the exact grhain) =0, (63
(self-consistentatomic AE potentiab gy inside a cutoff ra- T comp

diusr .. by

and settinga! so that the equatiog,(r comp =0 and Eq(62)
SiN(Qoet ) are fulfilled. In our present work, the_radiug,,mpis us_ual_ly a
Ve=A———— for r<<ryy, (58  factor 1.2—-1.3 smaller than the radius of the radial integra-
r tion spherer 4. We have chosen this value because due to
the continuity condition the AE and PS charge density agree
almost perfectly up to this point. A less contracted compen-
aation charge could therefore spoil the transferability if the
core regions are allowed to overlap.
The particular form of the compensation functidr=y.
(61)] was chosen because it results in augmentation charges
that are strictly confined to a sphere of the radiys,,in real
sin(qyr) space, and because the compensation charges can be ex-
B,———. (59)  bressed accurately on a relatively coarse real-space grid. In
i=1,2 r our current implementation, this real-space grid is not neces-
sarily similar to the plane-wave grid used for fast Fourier

transforms of the pseudo-wave-functiols,. It contains
usually twice to three times more grid points. To interpolate
results from one grid to the other we use a dual grid tech-

corrected exchange and correlation functionals require th lque _thatl IS very ergll}':lr to ghat of La:casoneheﬂ. andl has

the charge density is at least two times continuously differ- een imp emente_ € ore_ y_on_e 0 u_s In the totaz_elgergy
entiable. program VASP(\_/lenna al_a initio simulation pacl_<a_g)e1

Finally, the local ionic pseudopotential is obtained by un- ' nerefore, we will only give a very short description of the
screening o2, [compare with Eqs(32) and (43)]; technique here. The charge density of the PS wave functions
eff Ti(r) is evaluated on the conventional plane-wave grid in real

space. Then the charge denditfr) is transformed to recip-
rocal space, transferred to a second grid with a larger plane-

For the PAW data sets used in the present work, the radius §fave cutoff, and Fourier transformed back to real sjjéus
the radial support grids,.q is set to the largest core radius three-step procedure corresponds to a Fourier interpolation

rL_ The partial core radius is set 1o~ 1.2, and the of Ti(r) from a coarse to a finer grid The compensation

local pseudopotential is adjusted so that the scattering pro;%‘arge density is calculated directly in real space and added

erties of all angular-momentum components ug #4 are fi on this fine_real-spacg grid. The Hartree pot(_ential,
described with high accuracy; due to the centrifugal Wal|exchange—correlat|on potential, and the local potential are

higher| quantum numbers are automatically described Ver@lso calculated on this second grid. The final local potential

well. Fors andp elements this was achieved by constructingf[‘; alsoti r?]quf';ﬁd |?|nrrt1ri1lf ﬁ?a:]rse;]r tﬁlacve—\\;va;/en gt?o(ij to gvaluate
a norm-conserving PP for the electrons, whereas for tran- € action ot the Hamiftonian on the wave functiaase Sec.

sition metals(and some alkali and alkali eajtblements the lll B). This is done again using a Fourier interpolation: in

local PP was, set to a truncated all electron potential withth'.S case the I.ocal potential Is flrs.t t_ransformed on the fine
el rad1.2. grid to the reciprocal space, then it is brought to the plane-

wave grid neglecting components, which do not exist on the

plane-wave grid, and finally it is Fourier transformed back to
D. Compensation charge, double grid technique real space.

The final quantities we want to discuss are the compensa- It is important to stress that the compensation charge

tion functionsg,(r). We construct eacly,(r) as a sum of added directly in real space, which avoids the complications
two spherical Bessel functions arising in the moving boxes technique proposed in Ref. 11.

The numerical effort for the work on the real-space grid
2 scales like ‘O(N)” whereas in the conventional Kohn—
al(r)=>, alji(qgr). (61)  Sham scheme the remaining operations scale asymptotically
i=1 like “ O(N®).” Already for an intermediate systerfsome
. | | . few ten atomsor a large number ok points the additional
The coefficientsy; and «; are chosen so tha(r) and its computational effort for the fine real-space grid is almost

first two derivatives are zero at a radiugmpand so thatthe  eqgjigible. Therefore, we have also not attempted to imple-

whereq,. andA are chosen so that the first derivative of the
potential is continuous.

The second quantity to be determined is the pseudize
partial electronic core-charge density. We expBptithin a
cutoff radiusr . in a set of two spherical Bessel functions

Jo:

\7

Outside the partial core radius,. the partial core-charge
densityTi.. is identical to the all-electron core chamgg, and

g; andB; are chosen so that the first two derivatives of the
partial core-charge density are continuougradient-

vnlTize] =03~ vulTia+ Ral —vxd i+ N+ Rc]. (60)

momentl is equal to 1: ment the method proposed in Ref. 8, where the compensation
charge is allowed to extend over several atomic sites and

fr“’m"g (Nr'*2dr=1 (62) short-ranged pair potentials are added to correct for the re-

0 : ' sulting errors. It should also again be stressed that the com-

pensation charges are very soft in the PAW method because
This can be accomplished by choositqy'gso that it is not required that they mimic the form of the real charge-
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density difference between the AE and PS partial wdag

PRB 59

TABLE I. Results for the bond length of several moleculasd

(39)]. Thus, even without the second support grid errors arg¢he bond angler in H,O) obtained with the PAW, US-PP, and AE

usually only around 1 meV fos andp elementdwhere the
moments of the augmentation charg;},p are small and 5
meV for d and f elements. If the second support grid has
twice or three times more grid points the resulting errors ar
usually negligiblg(less then 0.5 meV/atom fal metalg. We

approaches. Values in parentheses were obtained with a plane-wave
cutoff of 700 eV and “hard” US-PP’s and PAW datasets with a
core radius ofL.=1.1a.u. for C, N, O, F, and.=0.7 a.u. for H.
he parameters and cutoffs of the other PP’s are summarized in
able II.

found an independent support grid also advantageous for the

evaluation of the generalized gradient corrections where toa us-PP PAW AE
coarse grids often cause numerical problems. H, 1.447 1.447 1.44%6
Li, 5.127 5.120 5.170
E. Ghost states Be, 4,524 4.520 452
We want to discuss briefly the problem of ghost states 2% 2141 (25'16267)7 2141 (251'223 ) 152?

because authors have reported difficulties in the construction ’ : ' ' :

of PAW datasets for some elemeftsin contrast to their N 2.077(2.069 2.076(2.069 2.068
findings, we never encountered serious problems when em- F2 2.640(2.629 2.633(2.62) 2618
ploying the scheme outlined in the previous subsections, but P2 3.570 3.570 3.572
it is true that the construction must be done carefully. Fortu-  H20 1.840(1.834 1.839(1.839 1.838
nately, we had a well-tested database of US-PP fos,ail a(H;0) 105.31104.89 105.37104.89 105.0°
andd elements on which our construction of PAW datasets  BFs 2.476(2.470 2.476(2.470 2.464
could be based. SiF, 2.953(2.948 2.953(2.948 2.949

Our findings are that ghost-states tend to exist if an unz
. . — umoL, Ref. 32.

reasonable attractive local atomic pseudopotenfials cho- baaLSSIANGA Ref. 33
sen, which is in accordance with the observation of Gonze T
et al. (Ref. 3). Anyway for alls, p, andd elements we were
able to obtain a reasonable local atomic pseudopotential th
avoids ghost states and describes the scattering properties
high angular components$2) very accurately.

Another problem is the construction of accurate pseudo
potentials for elements with a large covalent radius and &
small ionic radius(e.g., K-Mn, Rb-Ru, Cs-Os In fact, it
seems to be impossible to construct PAW data sets and US- TABLE Il. Parameters of the PAW datasets and the US-PP’s
PP’s with a small # (approaching the ionic radiugor these used in the present work. In all cases, two partial waves are used for

elements if the B, 4p, or 5p semicore stategand some- the s and p orbitals (for Ca and the transition-metals two partial
times 3. 4s. or SS,stat,e$ are kept in the core. But this is in waves are used for tha orbitals, tod. “Valence” indicates which

no way unexpected and similar problems are well known inorbl'FaIs are treated as valence orbltaLsare the cutoff radii for the

| . .
the LAPW method® Let us consider, for example, Ca, for partial waves, and.,,are the cutoff radii for the norm-conserving

which the covalent radius is 3.7 a.u. For manv caloulations gartial waves used in the construction of the augmentation charges
; T y '.of the US-PP’s. If small indices are used, they indicate which cutoff

convenient core radius for this elements is around the ionlgvas used fos, p, andd partial wavesE, are the energy cutoffs
) ) cut

rad@us that equa[s 2'(_) a.u. _In the valence-band regign at th@nployed in the calculations with these pseudopotentials.
radius, the logarithmic derivatives of the states exhibit a

Rseudopotential generation and the PAW datasets and the
toff energies are summarized in Table Il. For the first-row
elements, additional hard PAW and US pseudopotentials
with a core radius of 1.1 a.u., which required a plane-wave
nergy cutoff of approximately 600—700 eV, were generated.

(albeit very weakcurvature towards the lower-lyinga3core Valence r(a.u) Momp(@U)  Ecy (€V)
states. A PAW data set or an US-PP constructed for the

valence-band region only will thus “see” the lower-lyingp3 H 1s 12 0.8 400
semicore state and the resulting potential posspsghost Li 1s2s2p 2.0 2.0 160
state. Once the8semicore state is treated as a valence state Be 2s2p 1.9 15 240
this problem is entirely removed, and very accurate ghost- B 2s2p 15,17, 1.2 400
state-free pseudopotentials can be obtained even with small C 2s2p  1.3,,1.5, 1.1 400
core radii. N 2s2p 13,15, 11 400
F 2s2p  1.3,15, 1.1 400
V. RESULTS Na 2p3s 2.2 1.5 210
Si 3s3p 1.9 15 240
A. Small molecules p 3s3p 1.9 15 240
To test the accuracy of our current implementation, and to Ca1) 3p4s3d  3.0,2.3; 15 230
illustrate the differences between US-PP’s, the PAW and re-Ca2) 3s3p4s3d 2.3 230
laxed core all-electron methods we have performed a series Vv 3p4s4p3d 2.3 2.1 260
of calculations for small test molecules for which accurate Fe 4s4p3d 2.2 1.9, 1.5 300
AE results have been publishésee Refs. 32 and 33The Co 4s4p3d 2.2 1.9 300
results of our calculations and a comparison with the AE Nj 4s4p3d 22 1.9 300

calculations are shown in Table I; the parameters for the
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For these potentials, the overlap between the core spheres is Finally, we want to point out that, our test calculations
negligible even for first-row dimers. Again two partial waves include two rather “difficult” molecules with a large elec-
per | quantum number were used, but for this small cordronegativity difference (Bfand Sif). The table clearly
radius, data sets with only one projector per angularshows that the PAW method and US-PP approach are ca-
momentum number yield results that are almost equivalent tgable of handling such difficult cases with good accuracy,
those obtained with potentials using two projectors. and even when soft potentials for the first-row elements are
In our calculations, the Ceperley and Aldftexchange- used(cutoff 400 eV, the errors remain well below 0.5%.
correlation functional as parametrized by Perdew and Zunger
(CA-P2) was adopted® A cubic box was used in all cases;
for the dimers the box size was six times the bond length of
the investigated dimelbut at least 8 A the box size for the To test our implementation for bulk systems we have cho-
three other molecules was 10 A. We have checked for sewsen the test systems of Ref. 21. These systems are represen-
eral molecules that neither an increase of the box size nor amtive of typical covalent, ionic, and metallic materials and
increase of the plane-wave cutoff changes the bond length byan be considered as a rather stringent test of the current
more than 0.1%. implementation. In our calculations, we have used
The results in Table | show first of all that there is virtu- 11X 11X 11k points in the full wedge of the Brillouin zone
ally no difference between the US-PP calculations and théor the metallic systems andx77 X 7 k points for insulating
corresponding PAW calculations, typical discrepancies beingystems(cubic-diamond structure and CAF The param-
around 0.1%. However, the generation of the Na US-PP wasters used for the pseudopotential generation and the cutoff
somewhat difficult, and we have in fact played a little bit energies are again summarized in Table II.
with the cutoff radiir'compof the augmentation charges tillwe  Our results—together with those of Ref. 21—are shown
were able to reproduce the PAW results. And even worse, foin Table Ill. The energies in Table 11l have been calculated
Li we were not able to construct an accurate US-PP wittas the energy difference between ttrn-spin-polarized
unfrozen &k states® and therefore the results for the Li atom for which the PAW dataset and the pseudopotential
dimer have been obtained with an US-PP for which tlse 1 have been constructed, and should not be compared directly
electron was kept in the frozen core. Table | indicates thawith experimental values. It is evident that the agreement
this PP is reliable for the dimer, but we expect it to be somebetween the results of the current PAW implementation and
what problematic for strongly ionic environments. The rea-the results of Ref. 2IPAW, and full potential linearized
son for the difficulties is rather easy to understand: The semiaugmented plane wav@&LAPW)] is excellent. Differences
core states are strongly localized and it is rather difficult toin the lattice constant, bulk modulus, and cohesive energy
obtain an accurate pseudized augmentation funcfien. are smaller than 0.5%, 5%, and 1%, respectively. The
(37)] for these states and th@lmost orthogonalvalence slightly larger discrepancies of the bulk moduli are probably
states, that can be described at the same time with a reasomlated to the fact that elastic properties are very sensitive to
able real-space support grid. Therefore, a delicate optimizehe choice of data points and the equation of state used in the
tion of the cutoff radius of the augmentation functions isfit of the energy-volume curve. Because of the huge differ-
required to balance accuracy versus computational effience in electronegativity the most difficult test case is £LaF
ciency. These problems are of course most severe for Li, fovery reliable results for this material can be obtained only if
which the Is orbitals are strongly contracted. the 3p semicore states are unfrozen. As can be seen, it does
We now turn to the comparison between ttrelaxed not matter whether the S3states are treated as valence or
core AE calculations and the frozen core PAW and US-PPcore states, but unless the 3tates are also treated as va-
method. The agreement is generally excellent, the errors itence states a rather large cutoff of 3.0 a.u. must be used for
the dimer bond length being smaller than 0.1%th the thes partial wave to avoid ghost states. Therefore, the sec-
exception of i for which the error is around 0.2%Similar  ond dataset with an unfrozers 3tate is more elegant and
agreement between plane-wave pseudopotential calculatiosgmmetric. The general conclusion of the bulk calculations is
and AE calculations can rarely be found in the literaturethat our current implementation of the PAW method is able
(plane-wave-based calculations that come close in terms @b describe bulk properties very accurately, the level of ac-
accuracy have been reported by Goedeekat®3 and An-  curacy is comparable to FLAPW calculations.
drewset al®’). In order to obtain this excellent accuracy, we ~ We now come to the comparison between US-PP’s and
had to decrease the core radius for the first-row elements tall-electron calculationstPAW and FLAPW. Table Il
1.1 a.u. and increase the cutoff energy at the same time tdearly shows that the US-PP’s give results that are almost
700 eV. But even with the “standard” 400-eV first-row indistinguishable from AE calculations. Even for the rather
pseudopotentials, in which the overlap between the core rdifficult CaF, no differences can be observed. But it should
gions is appreciable, the bond length errors are generallpe stressed that the construction of a suitable US-PP for Ca
smaller than 0.5%. In addition, these first-row pseudopotenwas again not as straightforward as the construction of the
tials yield reliable results even at 300 eV, the bond length?AW dataset. As we have already pointed out before, this is
errors are than 1% for )l CO, and K, which is probably a general obstacle we observed when constructing US-PP for
acceptable for many calculations. We want to stress that thalkali, alkali earth, and transition metals in which semicore
large overlap between the core regions is only allowed fosstates are treated as valence states.
our specific construction scheme using spherical Bessel func- Another point that we want to discuss here is the intro-
tions and one should not expect a similar behavior for otheduction of nonlinear core corrections. We have claimed in
schemegsee also Ref. 10 Sec. Il C that these corrections improve the robustness of the

B. Bulk
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TABLE lIl. Results for the equilibrium lattice constaat co-  without partial core corrections, the large overlap between
hesive energyE., (with respect to the non-spin-polarized atom the 2p and 1Is electrons is not treated correctly in the ex-
used for the PP constructipand bulk modulusB for several ma-  change correction part of the total energy resulting in rather
terials calculated with the PAW, US-PP, and the LAPW approachiarge errors.

Finally, we want to mention that we have undertaken sys-
a(A®)  Ean(@V) BI(GPd  tematic calculations with US-PP’s and the PAW method for
simple structuresfcc, bcc, sc, hep, cubic diamond, dimgers

Dlin;?g;curren) 3.535 ~10.12 461 for all S, p, .andd elements and found that the differences in
PAW(curreny 3535 1011 460 the eqwhbnum volumes usually do _not e>§ceed 1%. The Iarg_—
PAWA 354 _1016 460 est differences are found for materials Wlth a Iarge magnetic
LAPWA 354 ~1013 470 moment and we will come back to this point in the next

silicon secttrlloré. In all otr;_er (I:Ias_es_, :?SUIFS;OLHS%'T]FS' andlthe PgW

method are practically indistinguishable. This is a clear indi-
US-PRcurreny 5.40 —5.96 95 cation for the reliability of the US-PP approach, and it also
:Zﬁxgcurrenh 2'32 _Z'gg gg points to the close link between both approaches.
a

bCI;A\\/PW 541 —5.92 98 C. Fe, Co, and Ni
US-PRcurreny 2.93 —941 206 Recently, the accuracy of US-PP’s was investigated by
PAW(curren) 293 ~-9139 210 Moroni et al?° for spin polarized calculations in atoms,
PAWA 2.94 —9.39 200 dimers, and solids. Although a satisfactory agreement with
LAPWA 294 —9927 200 AE methods was found for most properties, a few discrepan-

bee Li cies remained. In view of the increased accuracy of the PAW
PAW(1s val) 3.363 2034 15.0 method in compa_rison to US-PP’s, we _have mvestlgated
PAW(1s frozen) 3.368 5037 15.0 whether the PAW improves upon these discrepancies.
PAW(s only) 3.368 —2.026 15.0 1. Pseudopotential generation
PAW(1s frozen, no pc) 3.349 —2.027 15.0
PAW(s only, no pc) 3.463 —1.711 12.6 The pseudopotentials are constructed in essentially the
AEP 3.36 15.0 same way as in Ref. 20, but here we have chosen the atomic

fcc Ca reference configurationss4°3d" 1 for the construction of
US-PRcurrent-1 5.34 —218 18.3 th_e _ps_eudo_potential_s for _Fe, Co, and_Ni. This configuration
PAW(current-1 5.34 _219 185 minimizes m@erc_onflguratlonal errors in atorfeee below.
PAW(current-2 534 218 185 The core radius is set to 2.2 a.u. for the us-pP and the PAW
PAWA 532 204 19 method. For the augmentation charges in the US-PP method
LAPW? 533 _290 19 a cutoff of 1.9 a.u. is chosefsee also Table )J or_1|y for the

CaF; d-au_gmentahon ch_arges of Fe a smaller rad|_us was u;ed.

US-PReurrent- 5.34 635 101 Partial core corrections and local psgudopotentlal are equiva-
' : lent to Ref. 20. For the LDA calculation we use the Ceperley

PAW(current-1 5.34 —6.35 101 and Aldef* exchange correlation as parametrized by Perdew

Eﬁwfurrent-a 2'23 _2'22 188 and Zunger(CA-P2).%® For the calculations based on the

. generalized gradient approximatig8GA), we also used the
LAPW 5.33 —6.30 110 CA parametrization for the LDA part and applied the gradi-
. . ) 38,39
*Holzwarthet al. (Ref. 20, ent corrections acco_rdlng to Perdew Wang 16P\V9Y).
bperdewet al. (Ref. 39 The spin interpolation of the correlation energy was done
' e either with the standard interpolation formy&toms or the

PAW method with respect to the completeness of the partiaf ©Sko-Wilk-Nusair(VWN) interpolation(bulk .
waves. That this is in fact true is shown for bcc Li. If the 1
electron is treated as a valence electron, our results agree
perfectly with the AE results of Perdeet al® If the 1s As a first test we calculated the interconfigurational en-
electrons are kept frozen and if tw® and two p partial ergy between two magneticM) configurations AE;.
waves are included"l s frozen”) very similar results are =E,,(4s'3d" 1) —E,,(4s?3d""?) and the energy differ-
obtained with nonlinear core corrections. Without nonlinearence between the magnetic ground state and one specific
core corrections the error is slightly largéfl s frozen, no  nonmagnetic (NM) configuration AE,,=Ey(4s*3d"™%)

pc”’). If p partial waves are, howevenpt used the results — Ey(4s*3d""1). All test calculations were performed for
without nonlinear core correctioris s only, no pc”) become  spherical atoms placed in a large cubic box. Although it is
unreliable, whereas those with nonlinear core correction reknown that calculations for spherical atoms will not repro-
main correct(*s only”). This behavior is easy to under- duce the correct experimental ground statee, for instance,
stand: Withoutp partial waves, the @ contribution of Li is  Refs. 41 and 42sphericity was assumed because it allows
handled by the local potential. This is no problgmar s  for a simple comparison with all-electron calculations. To
because the local potential can be chose so that thealculate the energy of the magnetic ground state
p-scattering properties are described very precisely. BuEy(4s*3d"*) the occupancies of theorbitalsx were var-

2. Atoms
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TABLE IV. Comparison of LSD and GGA PAW, US-PP and scalar relativistic all-electron calculations
for Fe, Co, and Ni atoms. In the AE calculation, all orbitals were allowed to relax. For each atom the
computed ground stai@s configuration the magnetic enerdyE,,= Ey(9s)— Exm(4s'3d"" 1), and inter-
configurational energhE;. (see text are listed. All energies are in eV. GGA results are in parentheses. The
results US-AE have been obtained with an US-PP in which the augmentation charges are very accurate and
hard(see texk

US-PP PAW AE
Fe gS 316.2431.8 3d6.24sl.8 3d6'2481'8
AE,, 2.75 (2.95 2.61 (2.77 2.60 (2.79
AE;, 0.47 (0.49 0.38 (0.39 0.37 (0.39
Fe gs 31624518
US-AE AE,, 2.61(2.79
AE;. 0.38 (0.42)
Co gS 3:17.7451.3 3d7.74sl.3 3d7.74sl.3
AE,, 1.27 (1.40 1.23 (1.32 1.22 (1.3
AE; —-0.40 (-0.32) —~0.42 (—0.43) —-0.41 (—-0.42)
Ni gs 3d%s! 3d%s? 3d%4s?
AE,, 0.47 (0.59 0.46 (0.52 0.45 (0.52
AE;, -1.20 (-1.17) ~1.22 (-1.23) -1.20 (—1.21)
ied till @ minimum in the total energy was found. The 3. Bulk

ground-state configuration has “nonphysical” fractional oc-
cupancies, but the essentlal point is that all three metho etic (FM) Fe, hcp NM Fe, hcp FM Co, and fcc FM Ni are
give the same occupancies. Our results for the ground-sta

. ) : i . Shown in Table V. To facilitate comparison with other cal-
configuration, the interconfigurational energy and the mag_culations we have used the spin-interpolation formula of
netic energy are presented in Table IV. P P

First, we want to comment on the small discrepancieiVOSko'W'lk'Nusa'ﬁ (VWN) here. This is also the interpo-

between our current results for US-PP's and those presentegton scheme usually applied in context of the PWS1 func-
in Ref. 20: The values differ by at most 0.02 dWith the tional, anq it increase the magnetization energy of bcc FM Fe
exception ofAE,, for Fe). The main reason for these discrep- PY @pproximately 40-50 meV. When comparing the current
ancies is that we have chosen a different reference configliesults with those of Ref. 20 some caution is required, be-
ration in the present work, and that the cutoff of thpart of ~ cause the standard interpolation formula was used in Ref. 20.
the augmentation function was smaller in the present work.Despite that the general agreement with Ref. 20 is very good,
From a first look it is obvious that the agreement betweerthe differences in the lattice constant are generally smaller
the (frozen coré PAW and the(relaxed core AE method is  than 0.5%. The main reason for the presently slightly smaller
excellent, the differences are at most 10 meV. Agreemeniattice constants is that in the current calculations, the cutoff
between the US-PP and the AE method is slightly worseradius for the pseudopotential was somewhat smaller.
The US-PP clearly overestimates the magnetization energies, The discrepancies between the US-PP and the PAW
the discrepancies being generally larger for the GGA calcumethod are—with the exception of bcc FM Fe—also minute.
lations. The most likely explanation for the latter observationAs for atoms the differences for FM Fe are larger for the
is that the GGA depends more strongly on the exact shape &GA than for LDA. We have already attributed this to the
the wave functions than the LDA. Whereas discrepancies artact that GGA functionals are more sensitive to the shape of
difficult and expensive to avoid in the US-PP method, thethe wave functions than LDA functionals. To double check
PAW is of course able to reproduce the shape of the ABur results we applied again the US-PP for Fe in which the
wave function exactly(including all nodes To check that augmentation charges and the partial core corrections are
the insufficient representation of the augmentation charges Isuncated around 0.5 and 0.3 a.u., respectively. The results
indeed responsible for the observed errors, we have gengier this ultrasoft pseudopotential are shown in the rows “US-
ated an US-PP in which the augmentation charges and th®E” in Table V. It is obvious that this pseudopotential
partial core corrections approach the AE quantifldS-AE).  yields essentially the same results as the PAW method, and
We found that we were able to reproduce the PAW and ARhis shows that the errors of our conventional US-@P
results with a radial pseudization radius of 0.5 a.u for thewhich the augmentation charges are pseudized around 1.5-
augmentation charges, and a partial core radius around 0139 a.u) are again clearly related to the insufficient represen-
a.u. With this setting the pseudocore and wave functiongation of the shape of the wave function within the core re-
exhibit the correct shape even in the region of tipee?ec-  gion. We performed several tests to find out how small the
trons. Although we obtained excellent agreement with thgruncation radius of the augmentation charges must be in
AE methods in that case, the calculations are rather experorder to obtain an accuracy that is comparable to the PAW.
sive for routine calculation because a very fine real-spacéhe results of that calculation showed again that the shape of
grid is required in order to represent the hard augmentatiothe d wave functions must be reproduced even in the region
charges. of the 2p electrons, putting an upper limit of around 0.5 a.u.

The results for the structural properties of bcc ferromag-
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TABLE V. Comparison of the equilibrium lattice constaat) ( bulk modulus B), and magnetic moment
(Mg) for bcc FM Fe, hcp NM Fe, hcp FM Co, and fcc FM Ni calculated with PAW, US-PP, and FLAPW
scalar relativistic calculationdhe GGA results are in parentheges

a (A) B (Mbar) Mo (g)
bec Fe FLAPVE 2.76(2.83 2.45(1.89 2.04(2.17
(FM) PAW 2.75(2.83 2.47(1.74 2.00(2.20

US-AE 2.75(2.83 2.45(1.79 2.01(2.19
US-PP 2.762.85 2.37(1.5)) 2.08(2.32
hcp Fe FLAPV 2.38(2.43 3.44(2.9))
(NM) PAW 2.38(2.43 3.46(2.89
US-AE 2.38(2.43 3.46(2.82
US-PP 2.392.43 3.38(2.79
hcp Co PAW 2.432.49 2.73(2.13 1.51(1.59
(FM) US-PP 2.432.50 2.67(2.07 1.52(1.62
fcc Ni FLAPW? (3.52 (2.00 (0.60
(FM) PAW 3.43(3.52 2.51(1.99 0.58(0.61)
US-PP 3.443.53 2.48(1.99 0.56(0.62

8FLAPW, Stixrudeet al. (Ref. 43.
PELAPW, Herperet al. (Ref. 44.

on the truncation radius of the augmentation charges. Ththe spin interpolation of the correlation energy, whereas in

error decreases very slow(glmost linearly until the cutoff ~ Ref. 20 the standard interpolation was applied resulting in a

radiusr c,mp reaches this value. reasonable but still somewhat too high transition pressure
To further illustrate the differences between the ‘“stan-with US-PP’s.

dard” US-PP and the PAW method, we show the structural

energy differences between FM bcc Fe, NM bcc Fe, NM fcc

Fe, and NM hcp Fe in Table VI. It is obvious that the agree- VI. DISCUSSION

ment between the PAW method, the US-AE pseudopotential . : .
method, and the FLAPW calculations is again almost per- In this work, we have presented a slighty modified PAW

fect. For nonmagnetic structures, the “standard” US_F,F,functlonal, which is rather easy to implement in programs

agrees also well with the other two calculations, but the dis_supportlng US-PP’s. The key modifications are, first, that the

agreement is large for the magnetic bcc phase. In the LD Hartyge energy is split in. a way that closely resembles the
the differences are a tolerable 50 meV, but in the GGA thﬁiradltlon of pseudopotential plane-wave codes, and second,

US-PP overestimates the magnetic energy by 120 meV. hat partial core corrections are included when the exchange-

look at Table IV shows that this is almost exactly half of the cgrr:lztrll(())n r?ntﬁ;gtyolsr et\r/:rlslltjs;[ggt oor} m‘; Zlagﬁé\éva;’_ig;r'gl'a:{\éi
error observed in the atom, it seems therefore likely that thg v ow L ou . X ge-« :
énergy is superior for an incomplete set of partial waves

overestimation of the magnetic energy is directly propor-~ ~. <7 ™. : -
tional to the magnetic moment on the Fe atom and amount@"’h'ch is in practice always adopgedSecause our existing

to approximately 60 me\lg . plane-wave program could handle two distinct FFT grids

As a final check we have evaluated the transition pressur(adOUble grid techniquewe have also avoided the introduc-

from the FM bcc to NM hep phase and we obtained a tran-t'on of very soft compensation charges extending over sev-

sition pressure of 11 GPa with the PAW method, which is ineral augmentation spheres. This makes t_he implementation
excellent agreement with other theoretical stud?$.n the of the PAW method very easy and convenient, without com-

present work, the transition pressure is seriously overesth oMisiNg the efficiency of the method seriously. In Sec. lIl,

mated with the “standard” US-PP. It should be stressed'€ Nave derived the Hamilton operator and the forces for this

; : : modified PAW functional and in our discussion we have
again that we have used the Vosko-Wilk-Nusair formula fOrtried to highlight the significance of individual terms in the

) ) energy, the Hamilton operator and in the forces. The imple-
TABLE VI. Energy differences between different phases of Fe.yentation of the stress tensor was also briefly discussed.
The_NM hcp phase was chosen as the energy @esults for GGA One important point of the present work is that we de-
are in parenthesgs rived the US-PP method proposed by Vandeftilt linear-
izing two terms in the PAW method. This derivation clearly

FLAPW? PAW US-AE us-PP reveals the close connection between the PAW and the
bce Fe NM 4123739 413 (372 413 (369 US-PP method. It also indicates that the US-PP method will
bcc Fe FM 133 ¢73) 139 (-73) 139 (-73) 81 (—191)  9ive results that are almost indistinguishable from that of the
fcc Fe NM 77 (79) 71 (61) 70 (62) 70 (62) PAW method for materials in which the charge-density dis-
hcp Fe NM 0 0 0 tribution closely resembles that of the reference system

within the core region. However, for materials with a strong
FLAPW, Stixrudeet al. (Ref. 43. electronegativity difference and systems with large magnetic
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moments, the US-PP method is more problematic and cargient technique to treat rapidly varying functions on radial

must be taken to construct pseudized augmentation functiorsipport grids. However, the PAW method offers an addi-
that restore the AE charge distribution with sufficiently hightional consistent and elegant framework for pseudopotential
accuracy. related methods.

The second part of the present work was concerned with a Finally, it is important to emphasis that—despite the pre-
comparison of the US-PP method, the PAW method and alyious discussed difficulties—the US-PP method yields very
electron approaches for small molecules and simple bulkeliable results for allp elements and most nonmagnetic
systems. With a maximum bond length error of 0.3%, thistransition metals. This is the case, because the construction

section shows clearly that the PAW method gives results th2f US-PP for these elements is relatively straightforward,
are in general as accurate as relaxed core all-electron calciil'C€ réasonably soft and accurate augmentation charges are

lations, indicating that all approximations of the PAW easy to obtain. We found however also several instances

method are well under control. These approximation areWhere the PAW method has distinctive advantages over US-

first, the use of a finite set of partial waves, and second, tth. In particular, for transition metals with a large magnetic

frozen-core approximation. The presented calculations shofioment(e-g., Fé very accurate results are difficult to obtain

that two partial waves per occupied orbital are sufficient toVith the US-PP approach with reasonably soft augmentation

obtain excellent results in the PAW methégke also Ref. charges. Another case where the PAW method seems to be

10). At first sight, the frozen-core approximation seems to pesuperior to the U.STPP method are the alkali and .alkgll-earth
a more severe restriction. However, we belief that this is if"etalS, and transition metals to the left of the periodic table.
fact not the case. Whenever necessary it is anyway possib e have already stressed that for accurate calculations in
to unfreeze semicore states in the PAW method. For severd]eSe materials the semicore states should be treated as va-

cases—for instance, most alkali and alkali-earth metals an(f"c€ States. Inhprinciple, this Tanf be achieved withri]n the
transition metals at the left side of the Periodic Tatdey., Us-PP approach, ‘r?md our results for G.alRd many other
Sc—Mn—it is in fact well known that the treatment of semi- results obtained with our code VASP for transition-metal

. TN . 7 . 48 . 49
core states as valence states is very desirable. FortunateRXides, silicides, and sulfidee.g., CoSK" Ti0,,** YSi,
the unfreezing of lower-lying core states is straightforward®"d transition-metal sulfide show that reasonable results

and very simple in the PAW method, because only one partan usually be obtained if the US-PP’s have been constructed
tial wave (and projector for the semicore state must be with care. Bu_t g_e_nerally spe_aklng, the construction of PAW
added. It is important to stress that the unfreezing of cordlatasets is significantly easier for these cases than the gen-

states also does not worsen or compromise the efficiency &ation of US-PP’s.
the method seriously. As an example let us consider,CaF
Since for this system, the energy cutoff and the size of the VIl. CONCLUSION
plane-wave basis set are determined by the “hard” F dataset, ) .
the unfreezing of the semicore states of Ca increases only the The PAW method is capable of handling even the most
number of occupied and calculated bands, whereas the sighfficult cases(strong magnetic moments, large electronega-
of the basis set remains unchanged. The same holds for mdéity differences with exceptional precision. The typical
compounds and molecules that contain Ca because the rond length errors are smaller than 0.5% even if rather soft
quired energy cutoff for Ca remains a rather modest 230 e\VP?AW data sets requiring less than 400 eV are used. This
even if the Ca 8 states are treated as valence states. It ilémonstrates both the efficiency and the reliability of the
worthwhile mentioning that accurate FLAPW calculations PAW method. The closely related US-PP method offers in
also require that semicore states are treated in the same wé§neral a similar precision, it is however less reliable for
as other valence stattsso that we expect that the PAW Magnetic systems.
method is in that respect as efficient as the FLAPW
method"® _ ACKNOWLEDGMENTS

We have also presented a thorough comparison of the
US-PP method and the PAW method. Our derivation of the We thank J. Hafner, M. Gillan, G. De Wijs, and D. Alfe
US-PP method shows that in the limit of very accurate augfor helpful discussions and comments. The support of
mentation charges the US-PP method should—and in fadtPSRC through Grants Nos. GR/L08946 and GR/L38592 is
does—reproduce the results of the PAW method. Differencegratefully acknowledged. Part of the work has been under-
between both methods are solely related to the pseudizatidaken within the Groupement de Recherche EueopéDy-
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and accurate pseudized augmentation charges are therefore
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troducing radial support grids. From that point of view, one In this appendix we compare our total energy functional
could say that the PAW method is just an elegant and effiwith that of Holzwarthet al?! In many respects, both func-

APPENDIX: COMPARISON WITH OTHER PAW
IMPLEMENTATIONS
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more symmetric. Part of the differences stem from the fact Y

that Holzwarthet al. have introduced a pseudized frozen- o ] ]
core charg@i.,«=Tiz., which does not have the same mul- to Eq.(9) of Ref. 21, as it is done in our caf@urth term in

tipole moments a®,.. Therefore in their case, part of the Eq. (.21)]' This is also the methqd Bl has used to ap-
: . . roximate the overlap between different spheres. The under-
long-range electrostatic core-core interaction has to be a

. . i . ying idea is that the soft pseudochaigé f+T. is equiva-
counted for by the compensation chaigeIn addition, in |6"t5 the exact all-electron charger n,, even within a

Ref. 21 the overlap of the core-charge densiigse int0  certain regiorwithin the augmentation spheteontinuity of
neighboring spheres is evaluated by means of the on-sitgq yerivatives at the sphere boundary, see Sec.)|\MhAs,
terms[for instance terms involving e in Egs. (10) and  the resulting errors are small. In view of the limited accuracy
(11) of Ref. 21]. Within the frozen-core approximation this is of the frozen-core approach, it also seems to us that the com-
in principle the most accurate approach, but it makes thejications arising from structure-dependent on-site terms are
on-site terms explicitly structure dependent, which is inconnot worth the additional effort, and as our tests show, the
venient for the calculation of forces. A simpler approach is tomore approximate treatment seems to be sufficiently accurate

tionals are in fact equivalent, but our arrangement is clearly AN Neord 1)
f er dr’ | a
r—r

add anyway.
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