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Full-potential nonorthogonal local-orbital minimum-basis band-structure scheme
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We present a full-potential band-structure scheme based on the linear combination of overlapping nonor-
thogonal orbitals. The crystal potential and density are represented as a lattice sum of local overlapping
nonspherical contributions. The decomposition of the exchange and correlation potential into local parts is
done using a technique of partitioning of unity resulting in local shape functions, which add exactly to unity in
the whole crystal and which are very easily treated numerically. The method is all-electron, which means that
core relaxation is properly taken into account. Nevertheless, the eigenvalue problem is reduced to the dimen-
sion of a minimum valence orbital basis only. Calculations onspand transition metals give results comparable
to other full-potential methods. The calculations on the diamond lattice demonstrate the applicability of our
approach to open structures. The consequent local description of all real-space functions allows the treatment
of substitutional disordered materials.@S0163-1829~99!09303-0#
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I. INTRODUCTION

During the past few decades enormous progress has
made in the computation of the solid state using dens
functional theory~DFT! within the framework of the Kohn-
Sham theory. It was enabled by the development of a num
of self-consistent band-structure schemes such as, e.g.
Korringa-Kohn-Rostocker~KKR! method,1 the augmented
spherical waves~ASW! method,2 the linear augmented
plane-waves~LAPW! method,3 and the linear muffin-tin or-
bitals ~LMTO! method.3 Due to the limited performance o
former computer facilities, the earlier methods were based
some approximations allowing rather realistic calculatio
with moderate numerical effort. A common feature of
those approaches is an approximate representation of
crystal potential. The crystal is subdivided into atom
spheres wherein a spherical potential is calculated and
interstitial region has a constant potential@muffin-tin ~MT!
or atomic-sphere approximation~ASA!#. Although this was a
rather inexact approximation, the results obtained were q
reasonable at least for close-packed structures. For o
structures additional empty spheres were introduced.

Later on, these methods were further improved by tak
into account the real potential shape within the whole crys
For most band structure methods there exist full-poten
versions @FPLAPW,4,5 FPKKR,6 FPLMTO,7 and FPASW
~Ref. 8!#. Meanwhile, Gaussian basis sets as used in quan
chemistry have been successfully applied to the sin
electron Kohn-Sham problem.9,10 With increasing compute
power these accurate methods became more and more
portant since many substances of interest have com
structures and exhibit complex physical behavior which
rather sensitive to the approximations made during the
culations. Gradient corrections to the widely used local-sp
density approximation~LSDA! demand a precise density an
potential representation. The crystal-field effects in 4f sys-
tems are strongly dependent on the quality of the determ
PRB 590163-1829/99/59~3!/1743~15!/$15.00
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potential. The magnetic properties of some materials
quite complex, including noncollinear spin alignment a
very small energy differences between different spin c
figurations. As was shown, for instance, in Ref. 11 and
will be seen in Sec. IV C of this paper, the magnetic m
ments are sensitive to the potential approximations made

Besides the above-mentioned band-structure scheme
lated to the ASA or MT construction, other approaches ex
that use a different potential representation. There are,
instance, the pseudopotential methods12–14which to a certain
degree are full-potential by construction.

Another approach was followed by the linear-combinati
of atomic orbitals~LCAO! scheme.15,16 In Ref. 15, the crys-
tal potential is represented by a sum of overlapping lo
spherical contributions. On the one hand, this construc
yields some nonsphericity within the atomic volume and,
the other hand, it provides a nontrivial potential shape in
interstitial region. It turned out that the LCAO method giv
rather good results for open structures~e.g., intercalates17!
and for crystal-field calculations.18 Furthermore, the numeri
cal effort of this method is moderate, which enables the tre
ment of rather large unit cells.

An application of the DFT to substitutionally disordere
materials is possible by including the coherent potential
proximation ~CPA! into the band-structure schemes in
charge self-consistent manner. Such CPA versions exis
the KKR and LMTO methods.19,20 By its very nature, the
CPA needs a treatment of the electronic structure in term
local ingredients. Therefore, tight-binding~TB! variants of
KKR ~Ref. 21! and LMTO ~Ref. 22! have been designed.

Recently, an LCAO-CPA~Ref. 23! was developed which
combines the advantage of the local formulation~necessary
for a description of substitutional disorder! with a good po-
tential representation. The underlying generalized Blackm
Esterling-Berk~BEB! CPA is well-suited to treat partial dis
order. Substitutional disorder at a site is in a certain sens
local effect. If any CPA theory is used to describe a dis
1743 ©1999 The American Physical Society
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1744 PRB 59KLAUS KOEPERNIK AND HELMUT ESCHRIG
dered material, a mechanism of distinguishing the influe
of the local occupancy on the potential and wave function
needed. Since plane waves are extended over the whole
tal, their usefulness in CPA schemes is limited.

Projection on local orbitals is needed for many other p
poses, for instance to extract model parameters from ba
structure calculations or to interpret the results in chem
terms. Chemical bonding can be analyzed using the con
of crystal orbital overlap population~COOP!.24 Projection on
local orbitals is never free from ambiguity in the choice
those orbitals. Our approach has the advantage that it fi
the best local orbitals of a minimum basis with respect
total energy minimization.

The present work describes a new full-potential non
thogonal local-orbital minimum basis band-structure sche
~FPLO!. It is based on the construction of the extended cr
tal wave functions via a linear combination of overlappi
nonorthogonal basis orbitals. The representation of the d
sity and potential is again as a lattice sum of local overl
ping contributions. But these contributions now exhibit no
sphericity via an angular momentum expansion. Thus,
total lattice sum of these local functions converges in a c
trolled manner to the real crystal density/potential with
creasing angular momentum cutoff. The core electrons
treated in the same manner as the valence electrons, w
results in an all-electron band-structure scheme. Never
less, an algebraic transformation based on the fact that
orbitals from different sites do not overlap reduces the c
culational effort considerably.

The use of local functions in real space is an import
presumption for the incorporation of the generalized BE
CPA. The method presented here therefore applies direct
our recent work.23 To achieve this local decomposition w
introduce the tool of partitioning of unity, resulting in shap
functions, which to the best of our knowledge were not us
before in this form ~Sec. II F!. The shape functions ar
strictly local, and their lattice sum gives exactly unity in th
whole crystal. These functions are smooth and may easil
calculated without sacrificing computer time. Other a
proaches to build shape functions were used by Becke25 and
by Stefanouet al.26 Related to the shape functions are t
fitting functions used in the linear combination of Gaussia
type orbitals-fitting function technique~LCGTO-FF!, see,
e.g., Refs. 10,27,28. The approach of Becke shows s
parallels to our construction, however the unity condition
achieved in different ways. Our method assures this co
tion from the beginning by definition, while Becke uses
normalization procedure to finally obtain the right sha
functions. In our opinion, this latter procedure is not we
suited for the application to extended solids and is mu
more time consuming than the method proposed here.

Due to the restriction to a minimum basis, the compu
tional effort is rather limited and comparable to MT or AS
approximations. Nevertheless, lattice parameters, b
moduli, and magnetic moments coincide very well w
FPLAPW results, and total energies per atom are system
cally a few mHartree above the FPLAPW values.

The paper is organized as follows. In Sec. II the conce
for the solution of the Kohn-Sham equation and the reca
lation of the crystal density and potential are explained. S
tions II C and II F are dedicated to the special tool of pa
e
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tioning of unity, resulting in two different kinds of shap
functions used to decompose the overlap density and
exchange and correlation potential into local contributio
Details of the actual numerical implementation are discus
in Sec. III. Finally, in Sec. IV we apply the scheme to typic
examples to compare calculated lattice constants, b
moduli, magnetic moments, and total energies with ot
band structure methods and with experiment.

II. THE METHODS

Our approach is based on the density-functional the
within the framework of the Kohn-Sham algorithm. This ta
splits into two parts: solution of the Kohn-Sham equati
and treatment of real space functions such as density
potential, including the solution of Poisson’s equation. Wh
the Kohn-Sham problem for a given potential may be solv
in various ways with sufficient accuracy, the recalculation
the true density and the potential requires more skill.
important point in going beyond approximate schemes ba
on cellular decompositions is to construct both the Koh
Sham wave functions and the density/potential by sim
means, trying to avoid expensive transformations betw
different numerical representations. This work uses a lin
combination of overlapping local orbitals to construct t
Kohn-Sham solutions. This implies the use of localized ov
lapping potential contributions to represent the crystal pot
tial. Above all, we will avoid the use of Fourier series, b
cause matrix elements between local orbitals and the Fou
transformed potential are time consuming.

The method will be formulated completely within a loc
language aiming at rather accurate but fast calculatio
Hence, the LCAO-CPA can be incorporated directly with
this scheme. Since the disorder theory was described in
tail elsewhere, here we will concentrate on the ordered c
tal only.

A. Nonorthogonal local-orbital basis

Denote a regular lattice byR1s, whereR is a Bravais
vector ands is a basis vector of the unit cell. For the cryst
potential we use the decomposition

v~r !5 (
R1s,L

vs,L~ ur2R2su!YL~r2R2s! ~1!

with YL being the real spherical harmonics. The sum o
L5 lm should converge under circumstances which will
elucidated below, and thus we approximate the crystal po
tial using a cutoffLmax. The definition of the local potentials
vs,L follows later.

To solve the Kohn-Sham equations we need a represe
tion of the extended crystal states, here chosen to be a
orthogonal local-orbital representation. This has several
vantages as we will see. One point was already mentio
above, the applicability to the generalized local-orbi
coherent-potential theory~FPLO-CPA!.

The extended states are expanded in terms of local
atomiclike basis orbitals

^r uRsL&5fs
l ~ ur2R2su!YL~r2R2s!. ~2!
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Several orbitals with the same angular momentumL are per-
mitted. In all that follows we understand a principal quantu
number or/and a spin quantum number as absorbed into
subscriptL. The basis orbitals are taken to be solutions o
Schrödinger equation with a single spherical potential chos
to consist of two parts:

vat~r !5
1

4pE v~r2R2s!dV 1vconf. ~3!

The first part is the spherically averaged crystal potent
while the second is the confining potential

vconf5S r

r 0
D 4

~4!

discussed extensively elsewhere.15,23 Its radius parameterr 0
has been shown in Ref. 15 to scale basically with the
power of the lattice constant, and hence we represent it

r 05S x0r NN

2 D 3/2

, ~5!

wherer NN is the nearest-neighbor distance and the new
rameterx0 is roughly independent of lattice spacing.

The confining potential serves to compress the local
lence basis orbitals. Those compressed orbitals have hi
energy levels and are more suitable for the construction
extended wave functions compared to their uncompres
counterparts. The confining potential is applied to the
lence states, which are distinguished from core orbitals
the definition that they are all orbitals not overlapping fro
different sites. The overlapping orbitals are the valence
bitals. The overlap between core and valence orbitals fr
different sites may of course be nonzero.

The extended state labeled by crystal momentumk and
band indexn is constructed as a linear combinations
Bloch sums:

ukn&5(
RsL

uRsL&cLs
kneik~R1s! . ~6!

Here, no distinction between core and valence orbitals
made. Inserting this ansatz into the Kohn-Sham equation

Hukn&5ukn&«kn ~7!

yields

(
RsL

@^0s8L8uHuRsL&2^0s8L8uRsL&«kn#cLs
kneik~R1s2s8!50.

~8!

The Hamiltonian and overlap matrices read
he
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H0s8Rs
L8L

5^0s8L8uHuRsL&, ~9!

S0s8Rs
L8L

5^0s8L8uRsL&. ~10!

These matrix elements are further simplified by the co
valence distinction. By definition, core orbitalsuRsc& obey

^R8s8c8uRsc&5dc8cdR81s8,R1s, ~11!

HuRsc&5uRsc&«sc . ~12!

A core orbital is so strongly localized that it does not notic
ably deform due to the difference between the true cry
potentialv(r ) of Eq. ~1! and its spherical average around t
orbital center. Basis orbitals for which this is not true a
treated as valence orbitals. It is clear that in this way
classification of orbitals as core or valence is dictated
accuracy demands.~For example, 3s and 3p orbitals of 3d
metals are often treated as valence orbitals.!

Further on, we use subscriptsc for core orbitals andv for
valence orbitals. If the distinction is not important, we useL.
Due to Eq. ~11!, the overlap matrix now contains fou
blocks:

S5S Scc Scv

Svc Svv
D ~13!

with

Scc5^R8s8c8uRsc&5dc8cdR81s8,R1s,

Scv5^R8s8c8uRsv&,

Svc5^R8s8v8uRsc&5Scv
† ,

Svv5^R8s8v8uRsv&.

The Hamiltonian matrix simplifies to

H5S Hcc HccScv

SvcHcc Hvv
D ~14!

with

Hcc5^R8s8c8uHuRsc&5«scdc8cdR81s8,R1s,

Hvv5^R8s8v8uHuRsv&.

~As a slight generalization to crystal-field-split core leve
Hcc5«sc8cdR81s8,R1s would pose no problems.! The actual
core-valence and valence-valence matrix elements consi
one-center and multicenter integrals. The on-site eleme
are
^sL8uHusL&5^sL8u2
D

2
1(

L1

vsL1
~ ur2su!YL1

~r2s!usL&1^sL8u (
R81s8~Þs!

L1

vs8L1
~ ur2R82s8u!YL1

~r2R82s8!usL& .

~15!

Here the second expression contains the off-site part of the crystal field contribution to the potential ats, which is a two-center
term. The off-site elements fors8ÞR1s are
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^s8L8uHuRsL&5^s8L8u2
D

2
1(

L1

vs8L1
~ ur2s8u!YL1

~r2s8!1(
L2

vsL2
~ ur2R2su!YL2

~r2R2s!uRsL&

1^s8L8u (
~s8Þ!R91s9~ÞR1s!

L1

vs9L1
~ ur2R92s9u!YL1

~r2R92s9!uRsL& , ~16!
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where in the first line each integral is a two-center term. T
last line, the three-center terms, are unavoidable in our
resentation, but due to the compression of local functi
they are rather limited in number and are possible to ca
late in moderate computer time. Details of the numerics
in Sec. III.

Now, we introduce an algebraic transformation29 to re-
duce the dimension of the problem using the special form
the Hamiltonian Eq.~14! and the overlap matrix Eq.~13!. It
applies to both lattice site and Bloch state representati
Since the core-core block ofS is the unit matrix, we may
perform a simplified Cholesky decomposition ofS

S5SlSr5S 1 0

Svc
l Svv

l D S 1 Scv
r

0 Svv
r D ~17!

implying the following relations:

Svc5Svc
l 5Scv

r†5Scv
† , Svv

l Svv
r 5Svv2SvcScv . ~18!

For later use in the secular equation, the inverse of
Cholesky decomposition is

Sl 215S 1 0

2Svv
l 21Svc Svv

l 21D , Sr 215S 1 2ScvSvv
r 21

0 Svv
r 21 D .

~19!

The matrix equation~8! reads

HC5SCE, ~20!

where C has matrix elementscLs,n(k) and E5diag(«kn).
This can be rewritten as

Sl 21HSr 21D5DE, D5SrC, ~21!

where D is the unitary matrix diagonalizingSl 21HSr 21.
Since thec-c block of this latter matrix is already diagona

Dcc51. ~22!

Moreover, thec-v block of Sl 21HSr 21 vanishes as is easil
seen from Eqs.~14! and ~19!, henceDcv50 ~even if Hcc
were not diagonal, in which case onlyDccÞ1), and we are
left with the reduced eigenvalue problem

Svv
l 21~H2SvcHccScv!Svv

r 21Dvv5DvvEv , ~23!

with an ordinary pseudo-Hamiltonian in parentheses. Fina
the wave-function coefficient matrixC is obtained as

C5Sr 21D5S 1 2ScvSvv
r 21Dvv

0 Svv
r 21Dvv

D . ~24!
e
p-
s
-

re

f

s.

is

,

Thus we have solved the eigenvalue problem Eq.~8! by ef-
fectively solving a much smaller problem Eq.~23!, since, at
least for heavy atoms, the number of core orbitals exce
the number of valence orbitals considerably.

B. The electron density

Next the density must be recalculated. The local orb
representation is

n5(
kn

occ

ukn&^knu ~25!

5(
kn

occ

(
RsL

R8s8L8

uRsL&csL
kneik~R1s2R82s8!cs8L8

†kn ^R8s8L8u. ~26!

This expression may be separated into on-site and off-
terms. Both classes again are split into core-core, co
valence, and valence-valence contributions. The core-c
density has only on-site terms and simplifies to

ncc5(
Rs

nRs
net,cc , ~27!

nRs
net,cc5(

c
uRsc&^Rscu1(

kn

occ

(
cc8

uRsc&csc
kncsc8

†kn^Rsc8u.

~28!

The first term of Eq.~28! is due to the left block column o
Eq. ~24! and the right term contains the coupling of co
orbitals into valence-band states via core-valence ortho
nalizations (Ccv). Here and further on, the band indexn is
restricted to valence bands only. The valence-valence on
term is

nRs
net,vv5(

kn
vv8

occ

uRsv&csv
kncsv8

†kn^Rsv8u. ~29!

Then, again because of nonorthogonality between core
valence orbitals, there is an on-site core-valence contribu

nRs
net,cv52 Re(

kn
cv8

occ

uRsc&csc
kncsv8

†kn^Rsv8u. ~30!

The on-site or net part of the electron density is the sum
those three contributions,

nRs
net5nRs

net,cc1nRs
net,vv1nRs

net,cv . ~31!
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Note that the orbitals are well-localized functions which f
off essentially to zero within the nearest-neighbor distan
Furthermore, the maximum angular momentum of the or
als is l 53 for f functions. Thus, the net charge density co
d
re
an
en
th

n

l
e.
t-
-

tains maximuml 56 contributions if projected onto a bas
of spherical harmonics.

Now consider the off-site terms of the density, the over
density. The core-valence contribution is
novl,cv5(
kn

occ

(
R81s8ÞR1s

cv8

uRsc&csc
kneik~R1s2R82s8!cs8v8

†kn ^R8s8v8u1(
kn

occ

(
R81s8ÞR1s

vc8

uRsv&csv
kneik~R1s2R82s8!cs8c8

†kn ^R8s8c8u

~32!

and the valence-valence term reads

novl,vv5(
kn

occ

(
R81s8ÞR1s

vv8

uRsv&csv
kneik~R1s2R82s8!cs8v8

†kn ^R8s8v8u. ~33!
r-

c.

p
ron

ial,
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tum
lti-
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All those terms entering the overlap expressions cannot
rectly be divided into local contributions, since they a
functions having small cusps at both the centers involved
are nonzero mainly in the region lying between the two c
ters. Here we have to make approximations concerning
treatment of real space functions, as follows.

C. Partitioning of multicenter terms

Our density treatment results in lattice periodic functio
with the structure

F~r !5(
i j

^r u i &^ j ur &, ~34!

where i and j denote a pair (i , j )5(R1s,R81s8) of lattice
sites. Introduce a rescaled difference coordinate

xi j 5~r2R2s!•P, P5
R81s82R2s

uR81s82R2su2
~35!

taking on values 0 and 1 at the sitesi andj, respectively. We
choose a real functionf with the properties

f ~x!1 f ~12x!51,

f ~x!51 for x<0, ~36!

f ~x!50 for x>1,

and write

^r u i &^ j ur &5 f i j ^r u i &^ j ur &1^r u i &^ j ur & f j i , ~37!

where

f i j [ f ~xi j !. ~38!

~Note xi j 512xji .) This yields immediately

F~r !5(
i j

2 Ref i j ^r u i &^ j ur &[(
i

Fi~r !. ~39!
i-

d
-
e

s

The point is that this functionFi is much more localized
around the centeri than the original construct( j^r u i &^ j ur &.

As a three-dimensional function,Fi(r ) must still yield a
sufficiently rapidly converging expansion in spherical ha
monics:

Fi~r !5(
L

FsL~r i !YL~r i !,

~40!

FsL~r i !5E Fi~r !YL* ~r i !dV i ,

r i5r2R2s. ~41!

Suitable choices off i j for this goal are considered in Se
II F, Eq. ~76! and ~77!.

D. The potential

Application of this partitioning method to the overla
density gives a local decomposition of the crystal elect
density

n~r !5 (
Rs,L

ns,L~ ur2R2su!YL~r2R2s!. ~42!

From this density we first construct the Coulomb potent
that is, the sum of the Coulomb potentials of the electr
density and of the nuclear charge. The angular momen
components of the local charge densities give rise to mu
pole moments

QsL5E
0

`

drr l 12nsL~r ! ~43!

which determine the behavior of the Coulomb potential
large distances,

vsL~r !}
QsL

r l 11
. ~44!
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The l 50 part is partially compensated by the nuclear cha
of the atomZs which gives a potential

vs0
Z ~r !52A4p

Zs

r
. ~45!

The excess multipole moments yielding long ranging pot
tial tails should be compensated by Ewald’s method firs
get converging lattice sums of local potentials and secon
get well-localized potential contributions. We introduce t
Ewald densities

nsL
Ew~r !5AsL

p3

Ap3
r le2r 2p2

~46!

with excess moments

AsL

4p
55

Zs

A4p
2Qs0 , l 50

2
QsL

Nl
, lÞ0

~47!

and normalization coefficients

Nl5
p3

Ap3E0

`

drr 2l 12e2r 2p2
. ~48!

The sum of the local electron densities and the Ewald d
sities gives the local Hartree potential

vsL
H ~r !5

4p

2l 11F 1

r l 11E0

r

dr8r 821 l ñsL~r 8!

1r lE
r

`

dr8r 812 l ñsL~r 8!G ~49!

with ñ5n1nEw. The local Coulomb potentials now read

vsL
C ~r !5vsL

H ~r !2
A4pZs

r
d0l ~50!

which indeed are well-localized functions. The Ewald co
tributions have to be subtracted again. We Fourier transf
the negative Ewald density:

nG
Ew52

1

Vuc
(

s
e2 iG•s(

L
AsLe2G2/4p2S g

2p2D l

YL~G!.

~51!

This gives a Fourier-transformed Ewald potential via t
Poisson equation

vG
Ew5

4p

uGu2
nG

Ew. ~52!

Our total electrostatic potential reads

v~r !5(
Rs

vsL
C ~r !YL~r2R2s!1(

G
vG

EweiG•r. ~53!

This form has a major disadvantage. To calculate matrix
ements between local orbitals including Fourier-transform
e

-
o
to

n-

-
m

l-
d

potentials is a tedious task concerning the calculation tim
Hence, we define a partitioning of unity in the lattice@Eq.
~66! below; details in Sec. II F# and apply it to the Fourier-
transformed part of the potential

vEw~r !5vEw~r !(
R1s

f s~r2R2s!

5 (
R1s

vs
Ew~r2R2s!,

~54!
vs

Ew~r2R2s!5vEw~r ! f s~r2R2s!.

The resulting local potentialvs
Ew is expanded in terms o

spherical harmonics. Thus we have achieved the Hartree
tential representation in the form Eq.~1!.

The exchange and correlation part of the crystal poten
remains. In the local-~spin!-density approximation~LSDA! it
is

vxc~r !5vxc@n~r !#, ~55!

where vxc@n# is a parametrization of the exchang
correlation potential of the homogeneous electron liquid
densityn. This nonlinear dependence on the electron den
requires a special treatment again to achieve the form
~1!. We apply the same partitioning of unity as for th
Fourier-transformed Ewald potential:

vxc~r !5(
Rs

vs
xc~r2R2s! ~56!

with

vs
xc~r2R2s!5vxc@n~r !# f s~r2R2s!. ~57!

The resulting local exchange-correlation potentials are ag
expanded in terms of spherical harmonics. Needless to
partitioning of vxc applies generally and not only for th
LSDA.

Collecting all terms we have the following local pote
tials:

vs
cry~r !5(

L
@vsL

C ~r !1vsL
Ew~r !1vsL

xc~r !#YL~r ! ~58!

whose sum expresses the total Kohn-Sham crystal poten

vcry~r !5(
Rs

vs
cry~r2R2s! ~59!

and thus we close the self-consistency cycle of the Ko
Sham theory. The maximuml to be taken into account is
determined first of all by accuracy demands. However,
expansion in terms of spherical harmonics is expected
converge sufficiently fast. At least the maximuml should be
twice the maximum orbital momentuml orb, since the maxi-
mum momentum which couples to the product of two orb
als at the same site is 2l orb.

E. The total energy

The DFT total energy is~with a5R1s)
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E@n~r !#5T@n~r !#1
1

2E E n~r !n~r 8!

ur2r 8u
drdr 8

2E (
a

Za

ur2au
n~r !dr

1
1

2 (
aÞb

ZaZb

ua2bu
1Exc@n#. ~60!

~We do not give a normalization factor. Eventually, we w
have lattice sums of local terms which give an extensive t
energy; dropping one lattice sum gives the total energy
n
a

a

ng

h
-

ice
al
er

unit cell.! The first term of Eq.~60! is the Kohn-Sham kinetic
energy and is represented using the solution of the Ko
Sham equation,

T@n~r !#5(
kn

occ

^knu2
D

2
ukn&5(

kn

occ

«kn2E drn~r !vcry~r !.

~61!

In this expression,n runs again over core and valence stat
with obvious simplifications for core states. The seco
term, the Hartree energy of the electrons and the third te
the interaction energy with the nuclei, may partially be co
bined,
ns. The
n

1

2E drn~r !F E dr 8
n~r 8!

ur2r 8u
2(

a

Za

ur2auG5
1

2E dr(
b

nb~r2b!F(
a

@va
C~r2a!1va

Ew~r2a!#G . ~62!

The last expression completely fits our potential and density representation in terms of lattice sums of local functio
remaining part of the electron-nucleus energy will be combined with the fourth term of Eq.~60!, the nucleus-nucleus repulsio
energy:

2
1

2(a
E dr

Za

ur2auF(b
nb~r2b!2(

bÞa
Zbd~r2b!G

52
1

2(a
E E dr 8dr

Zad~r 82a!

ur2r 8u
F(

b
ñb~r2b!2(

bÞa
Zbd~r2b!2nEw~r !G

52
1

2(a
ZaF E ña~r !

r
dr1va

Ew~0!1(
bÞa

~vb
C~a2b!1vb

Ew~a2b!!G . ~63!
e-

en-
of
The last line again corresponds to our localized represe
tion. Now the last term to be managed is the exchange
correlation energy,

Exc@n#5E drn~r !«xc„n~r !…. ~64!

The xc energy per unit cell may be expressed using the sh
functions

Exc
uc@n#5(

s
E dr f s~r2s!n~r !«xc„n~r !… ~65!

which are integrals over localized smooth functions falli
off rapidly, due to the properties off s .

F. The shape function

Our task is to find a partitioning of unity on a lattice wit
basis, that is to find a set$ f s% of three-dimensional real func
tions obeying

(
R1s

f s~r2R2s![1. ~66!

The subscripts labels theN basis vectorss.
We start with the Hessian form of the equations of latt

planes
ta-
nd

pe

g•r5dn , g5
G

uGu
, dn5

2p

uGu
n, ~67!

where G is a reciprocal-lattice vector andn runs over all
~positive and negative! integers. The sublattice planes corr
sponding to basis vectors are given by

g•r5dn1gs , gs5g•s, 0<gs<
2p

uGu
. ~68!

GivenG, there areN valuesgs , for which we find the mini-
mum distance

gG5min
s,s8

~1 !

ugs2gs8u, ~69!

excluding zero differences from consideration.
Finally, we find aG such thatgG is maximum:

g5max
G

gG5gGmax
. ~70!

For what follows we fix one suchG5Gmax. ~In case of point
symmetry there are several equivalent ones.!

Now we have a directiong and a coordinated in this
direction, on the scale of which the positions of the perp
dicular sublattice planes are given by a periodic repetition
N coordinatesds , with gs5dsmod 2p/uGu, with a minimum
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spacingg.0. @For special directionsg several planes may
have the same coordinateds ; this does not pose problems, i
in the following, pairs (s,s8) with ds5ds8 are excluded from
consideration.# We define

f s
~1!~r2s!5 f ~xs,s21

~1! ! f ~xs,s11
~1! !, xs,s8

~1!
5

d2ds

ds82ds

, ~71!

wheref (x) is the function Eq.~36!. ~Note that the scales fo
xs,s21 andxs,s11 may be different:f s

(1) need not be symmet
ric.! The result is obviously a partitioning of unity along th
directiong which is constant perpendicular to that directio
In the following,g is renamedg(1).

Our construction ensures that perpendicular tog(1) we
have for eachs a two-dimensional lattice with basis. Th
same construction as above in two dimensions provide
partitioning of unity

f s
~2!~r2s!5 f ~xs,s21

~2! ! f ~xs,s11
~2! ! ~72!

along a selected directiong̃(2) of a two-dimensional
reciprocal-lattice vector. Eachg̃(2) is the projection of a
three-dimensional reciprocal-lattice vector,g(2), onto this
plane. In fact, it is only necessary to chooseg(2) andg(1) to
be linearly independent. However, we expect the least an
tropic shape functions to be the construction which has
largest angle betweeng(1) andg(2). Now we have two classe
of planes giving for eachs a function

f s
~1!~r2s! f s

~2!~r2s! ~73!

which still is constant along the directiong(1)3g(2). This
direction just defines the crossing lines of the two classe
planes. For these one-dimensional lattices we chose a d
tion g(3) close tog(1)3g(2) and use a partitioning of unity

f s
~3!~r2s!5 f ~xs,s21

~3! ! f ~xs,s11
~3! !. ~74!

This step completes our task Eq.~66! with the exactresult

f s~r !5 f s
~1!~r ! f s

~2!~r ! f s
~3!~r !. ~75!

It remains to definef (x) of Eq. ~36!.
A very simple smooth solution of Eq.~36! is

f 1~x!5
1

2
~cospx11!, 0<x<1. ~76!

If a smoother solution is needed, one has at hand an infi
sequence

f n~x!512 f 1„f n21~x!…, n52,3, . . . . ~77!

Suppose thatf n21(x)1 f n21(12x)51 as in Eq.~36!. This
immediately implies

f n~x!1 f n~12x!

512 f 1„f n21~x!…112 f 1„f n21~12x!…

522 f 1„f n21~x!…2 f 1„12 f n21~x!…51. ~78!

Hence, the construction Eq.~77! is not limited to the form of
Eq. ~76! but is possible with every function Eq.~36!.
.

a

o-
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Following this procedure with open structures, it m
happen that, despite the minimax approach to the first s
rather elongated site cells result for certain sites. This i
clear indication of the beneficial introduction of empty sit
occupying the remote parts of the elongated cells. If o
wants to avoid empty sites, one can try the second bes
lection in Eq.~70!.

A final step is left to be made. For both symmetry reaso
as well as the desired minimal anisotropy off s(r ), one
would like to have

f Us~r !5 f s~u0r !, ~79!

whereU is any symmetry transformation of the lattice andu0
is its point symmetry content. LetM be the order of the poin
group of the lattice considered and form

f̄ s~r !5
1

M(
u0

f Us~u0
21r !. ~80!

Obviously, this again provides a partitioning of unity on th
given lattice with the wanted symmetry property.

A very important point is that we have not only a smoo
partitioning of unity on the lattice, Eq.~66!, but one where
every f s has compact support~the domain outside of which
f s50), which excludes all lattice sites from its interior ex
cept the center, and which approaches zero at the neighb
ing sites with any wanted power law by simply applying E
~77! sufficiently often. The second point is that the symm
trization Eq. ~80! may be carried out explicitly by using
transformation laws of the scalar productsg•r . Thus for each
lattice, we end up with a simple explicit expression of t
shape function whose calculation will be fast.

III. NUMERICS

In this section we focus on some numerical technicalit
used to implement an efficient code. All local functions a
represented numerically on a radial mesh starting at so
small nonzero radius. The spacing of successive mesh po
can be taken either to follow a logarithmic or a power la
Both work well. In actual calculations the radial function
have to be interpolated. We use the Neville algorithm w
degree 9.

Several on-site terms must be calculated. The on-
overlap and Hamiltonian matrix elements and the on-s
parts of the total energy expressions involve radial integ
tions and integrations over the unit sphere of products of
or three spherical harmonics. The latter integration redu
to orthogonality relations of the spherical harmonics
Gaunt coefficients, respectively. The radial integrations
done using Gauss quadrature. The expansion of the net
sity into spherical harmonics contains integrations of pro
ucts of three spherical harmonics, which again yields Ga
coefficients.

The two-site matrix elements in their most complicat
form are integrals over products of three radial functions a
spherical harmonics. These three-dimensional integrat
may be reduced to two-dimensional integrations by using
algebra of the angular momentum operator. This has the
vantage first of having to control only two mesh paramet
and second, by rearrangement of the formulas, a consider
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reduction of the number of operations needed. The exp
sions have the form~R is the vector pointing froma to b!

E dr f l
a~r !Ylm~r !(

L1

vL1
~r !YL1

~r ! f l 8
b

~ ur2Ru!Yl 8m8~r2R!.

~81!

Now introduce a rotationu of the coordinate system trans
forming the vectorR to the vector (0,0,R) (R5uRu),

ur5r 8, nR5~0,0,R!. ~82!

Then we may use spherical coordinatesr ,u,f or bipolar
coordinatesj,h,f about the axis (0,0,R), wheref repre-
sents the rotation angle about the axis.~For definition of the
bipolar coordinates see standard mathematical textboo!
The gain is that the argumentr b5ur2Ru no longer depends
on f. The rotation algebra of spherical harmonics gives

Ylm~r !5Ylm~ur 8!5(
m8

amm8
l Ylm8~r 8!, ~83!
ra
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whereamm8
l are the representation matrix elements. The n

step is to write the definition of our~‘‘real’’ ! spherical har-
monics

Ylm~u,f!5 i l Pl
umu~cosu!gm~f! ~84!

with

gm~f!5H sinumuf for m521, . . . ,2 l

cosumuf for m50, . . . ,l .
~85!

The onlyf-dependent parts of Eq.~81! are now those of the
YL . Hence, thef integration may be performed analytically
resulting in the selection rules

~m1m2m3!5E gm1
~f!gm2

~f!gm3
~f!df. ~86!

Now, we rewrite Eq.~81! ~using spherical coordinates!
i l 2 l 8 (
l 1 ,m1m2m3m4

E
0

`

r 2drE
0

p

d cosu f l
a~r !amm2

l Pl
m2~u!vm1

l 1 ~r !am1m3

l 1 P
l 1
m3~u! f l 8

b
~r b!am8m4

l P
l 8

m4~ub!~m2m3m4! ~87!
.
co-
rela-

ron

e-
f the
rties
ergy
m-
la-
w

th
with ub5(r cosu2R)/rb and r b
25r 21R222rR cosu. One

point offering the possibility to reduce the number of ope
tions is that the radial orbital functionsf l

a do not depend on
m. Furthermore, the vectors to the neighboring sites arouna
may be classified into shells containing vectorsR1s of the
same length, differing only inR. The two-dimensional inte-
grals Eq.~87! may be performed in bipolar coordinates
well. They are applicable to all two-center terms and also
the overlap density calculations. In the latter case, one ha
multiply by the multicenter partitioning functionf (x), which
after rotationu does not depend onf either. Then one cal-
culates for a number of radial mesh points theu integral
only, droppingvL1

and collecting thel 1m1 terms which are

the L1 components of the angular momentum expansion
the overlap density. Finally, the resulting radial functions
reinterpolated on the original radial mesh. This reduction
two-dimensional integrals is always possible, if all rad
functions involved do not depend onf after the rotationu.
The two remaining integrations are treated by Gauss
quadratures. The number of mesh points is determined by
requirement of a,1026 Hartree accuracy of the Hamil
tonian integrals, or a,1026 accuracy of the overlap inte
grals or density values measured with respect to the norm
ization.

The integrals in Eq.~49! are performed as Gaussia
quadratures too. Now, the remaining integrals are re
three-dimensional. First, there are the three-center contr
tions to the Hamiltonian matrix which are performed
spherical coordinates around the center of the potential u
Gaussian quadrature for the radial and theu part and an
equal weight integration for thef coordinate. The angula
momentum expansion of the local exchange and correla
-

o
to

f
e
o
l

n
he

l-

ly
u-

ng

n

potential Eq.~57! as well as the local Ewald potential Eq
~55! involving the shape functions are done in spherical
ordinates, too. The same holds for the exchange and cor
tion energy Eq.~65!.

All k integrations are performed using the tetrahed
method~cf. Ref. 15!.

IV. RESULTS

To illustrate the capability of our method, we report r
sults for a few cases chosen to check various aspects o
concepts developed above. The main focus was on prope
such as lattice constant, magnetic moment, and total en
to test the influence of the approximations involved. To co
pare data from the same spin density functional, all calcu
tions were done nonrelativistically with the LSDA of Perde
and Zunger.30 This holds also for the data obtained wi
other methods and given in Tables I–IV for comparison.

TABLE I. Aluminum: total energyEtot ~Hartree!, lattice con-
stanta0 ~a.u.!, and bulk modulusB ~Mbar!.

Etot a0 B

Present work 2241.461 7.56 0.84
FPLAPW ~Ref. 31! 2241.465 7.53 0.86
OPWa 2241.46305<Etot<2241.46285
FPKKR ~Ref. 35! 7.55 0.84
Expt.b 7.60 0.72

aSee the text.
bAll lattice constants~extrapolated to zero temperature! and bulk
moduli are taken from Ref. 36.
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A. Aluminum

We begin with the free-electron-like metal aluminum. A
valence orbitals we take 3s3p3d, where thed orbitals are
needed for completeness of the basis and are occupied
few tens of electrons. In Sec. II A we introduced a confini
potential (r /r 0)4, r 05(x0r NN/2)3/2, to tune the local valence
orbitals. The choice ofx0 determines the quality of the bas
set. Thus one would expect the total energy to be minimi
by taking optimal values for these parameters. In Fig. 1
variation of the total energy with respect tox0 is shown for a
fixed lattice constant and angular momentum cutoffLmax.
The 3s and 3p compression parameters are set equal si
the extent of these orbitals is comparable. Thus we have
values x0(sp) and x0(d). The figure contains two curve
representing the total energy change with respect to onx0
while fixing the other at its optimal value. Indeed, as can
seen, there exist optimal values for bothx0. The variation of
the sp parameter within65% gives a change in the tota
energy of about 1 mHartree. Thed parameter is less critica
because of the smalld-wave admixture in the occupie
Kohn-Sham states.

The preceding discussion was restricted to a minim
basis choice. Particularly, the subdivision of the orbitals i
core and valence orbitals was not yet checked. Applying
condition Eq.~11! we state that there is a rather small ove
lap of the semicore 2s2p orbitals from different sites. Thus
to check the influence of the core-valence subdivision
accuracy we performed calculations with a 2s2p3s3p3d va-
lence basis. Since they are strongly localized, the semi
states are nearly dispersionless. Moreover, they do not
much of the confining potential. Thus one would not exp
the total energy to be sensitive to the choice ofx0(2s2p).
We calculated an energy variation of about 1026 Hartree
with respect to thex0 range shown in Fig. 1. The total energ
is raised by 0.07 mHartree with respect to the minimum ba
result. There is no reason that the energy is lowered w

TABLE II. Aluminum: theoretical 0 K transition pressures~P in
GPa! and volumes (V/V300, V3005112 a.u.! for the fcc-hcp and
hcp-bcc phase transition. The lower experimental bound for
fcc-hcp transition is about 219 GPa.

fcc-hcp hcp-bcc
P V/V300 P V/V300

Present work 200630 0.51 235640 0.48
LCGTO-FF ~Ref. 33! 205620 0.51 565660 0.364
LMTO-ASA ~Ref. 37! 120 200
AP ~Ref. 38! 220 0.5 380 0.4

TABLE III. Copper: total energyEtot ~Hartree!, lattice constant
a0 ~a.u.!, and bulk modulusB ~Mbar!.

Etot a0 B

Present work 21637.932 6.73 1.75
FPLAPW ~Ref. 31! 21637.939 6.73 1.73
LCAO ~Ref. 16! 6.71 1.67
FPKKR ~Ref. 35! 6.71 1.75
Expt. ~Ref. 36! 6.82 1.37
y a
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adding overlapping semicore orbitals to the basis, since
neglect of core-orbital overlap in Eq.~11! introduces an error
of indefinite sign. Nevertheless, in the present case this e
is far below our accuracy demands, and the treatmen
2s2p states as core states is well justified~cf. Fig. 3!.

Having optimized the basis, we come to the second c
cial point in our method, namely the potential and dens
representation. Two approximations are to be checked,
cutoff angular momentumLmax and the steepness of th
shape function defined by the number of iterationsn used in
Eq. ~77!. In Fig. 2 the dependence of the total energy on b
parameters is shown. Two basic conclusions can be dra
First, the energy converges rather fast with increasingLmax.
Above Lmax56 the energy is almost unvarying for all shap
functions withn.2. The steepness of the shape function h
two competitive effects. The smoother the function is, t
faster the angular momentum series converges. On the o
hand, the shape function has to fall off sufficiently fast a
proaching the neighbor atoms. Additionally, it should
unity in as large a region near the nucleus as is possible
its extension over the crystal should be as small as poss
We find that, forn51, which is the most extended functio
~starting as 12r 2 at the nucleus!, numerical instabilities are
caused. It assigns too much of the potential near the nuc
to neighboring site contributions. From the figure we co
clude thatn53 seems to be the best choice.~For n52 the
screening of the neighbor sites is still not good enough,
may be seen by looking at the functions in real space.! A
further increase of the steepness only slows down theL con-

e

TABLE IV. Diamond: total energyEtot ~Hartree!, lattice con-
stanta0 ~a.u.!, and bulk modulusB ~Mbar!.

Etot a0 B

Present work 237.776 6.77 4.3
With empty spheres 237.794 6.69 4.6

FPLAPW ~Ref. 31! 237.797 6.68 4.7
Expt. ~Ref. 36! 6.74

FIG. 1. Variaton of the total energy with respect to the compr
sion parameters for fcc aluminum,Lmax56, spd basis.
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vergence. Finally, we may state that there is an uncerta
of the total energy of about 1 mHartree due to the sh
technique.

One remark should be made concerning the converge
of the potential and density with increasingLmax. We tested
how the total electron density converges with the cutoff m
mentum and found that already atLmax.6 the electron den-
sity deviates less than 1025 @electrons/~a.u.!3# from the
Lmax512 result. This is due to the fact that the net dens
has a maximal angular momentum 6~in the case off orbit-
als! and that the treatment of the overlap density is rapi
converging withL. In contrast, the shape treatment of t
exchange and correlation potential is more sensitive to
cutoff momentum, since the shape function Eq.~80! exhibits
the crystal point symmetry and therefore has more feature
the higher-order derivations than the quasi-one-dimensio
shape function Eq.~38!. We compared the total xc potentia
along various directions calculated directly from the elect
density with the result obtained from Eqs.~56! and~57!. We
found a maximum deviation of 2 mHartree forLmax512.
These deviations add up to zero over the whole unit c
since they originate from the neglect of higher angular m
menta, which are orthogonal to theL50 contribution.

In Fig. 3 we show the total energy curve with varyin
lattice constant. The results for the minimum basis and
the basis with semicore orbitals are presented. Table I s
marizes the calculated data in comparison with the res
produced by other methods and with experiment. Our lat
constant result deviates from the experimental value
about20.4%, which is the usual behavior of LSDA calcul
tions. Compared to the FPLAPW~Refs. 31 and 32! results,
our total energy lies higher by approximately 4 mHartre
atom. The lattice constant and bulk modulus are nearly
same. Additionally, we performed an orthogonalized pla
wave ~OPW! calculation. We tested the convergence of t
total energy with respect to the number of OPW’s. In Ta
I the tolerance interval for the energy is given. These bou
hold for more than 2000 OPW’s.

FIG. 2. Dependence of the total energy on the cutoffLmax and
the sharpness of the shape function,spd basis.
ty
e

ce

-

y

y

e

in
al

n

ll,
-

r
-

ts
e
y

/
e
-

e
e
s

B. Aluminum under pressure

To check the capabilities of our method further, we app
it to aluminum under high pressure. In a recent study of
fcc, hcp, and bcc phase of aluminum,33 a fcc-hcp phase tran
sition at about 200 GPa and a hcp-bcc transition at about
GPa were calculated. To compare with these results we
lowed the procedure of those authors.

We calculated the total energy at 12 lattice constants
tween 0.3V0 and 1.1V0 (V0 being the equilibrium volume!
for all three structures. For each volume we used an o
mized set of compression parametersx0. The changes of the
x0 about this large range of lattice parameters is less t
7%, which results in a maximal energy change of 1 mHart
compared to calculations with fixedx0. We used about 300k
points in the irreducible Brillouin zone, which gives con
verged results with respect to the number ofk points. As
exchange and correlation potential we chose the LSDA v
sion of Perdew and Zunger,30 that is derived from the bes
quantum Monte Carlo calculations for the electron gas av
able at present.

These total energy data were fitted to an equation of s
~EOS! of the functional form

E~a!52~E01E1!1E1S 11
a2a0

l DexpS 2
a2a0

l D .

~88!

Here, a0 is the zero pressure lattice constant,2E0 is the
ground-state energy,l is a scaling length, andE1 is related to
the bulk modulus.~The energy zero, of course, is arbitrary
the above equation.! This functional form gives a very good
fit to the total energy data. The derivative of the EOS w
respect to the volume gives the negative of the press
Figure 4 shows the dependence of the pressure on the
ume for all three structures compared to experimental d
As can be seen, the curves for the three structures are
very different. This is due to the fact that the total ener
curves are very similar. The agreement of the theoretical
the experimental results is quite good. In Ref. 33 a phon
contribution was added to the 0 K results to compare bette
with the experiments. However, the influence of this corr
tion was small.

FIG. 3. Total energy versus lattice constant for aluminum w
Lmax512.
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From the EOS the enthalpy may be calculated. The cro
ings of the enthalpy curves give the transition pressures
the various phase transitions. Table II gives our results
some data from other calculations. The errors are due to
uncertainty in the total energy of about 1 mRydberg. W
only show the physical transitions which are fcc-hcp a
hcp-bcc. Our result for the first transition pressure~fcc-hcp!
is well within the range of the results given in Table II. Th
LMTO-ASA value seems to be too small since the measu
ments in Ref. 34 found a stable fcc structure up to 219 G
Thus, our fcc-hcp transition pressure compares well w
other calculations and is not in contradiction to the expe
ment. The second phase transition~hcp-bcc! is predicted by
our calculation at a remarkably lower pressure, compare
other methods~except LMTO!. Since an experimental justi
fication of this static lattice phase transition is not y
present, we cannot discuss the validity of the results. A
test of our calculation we enlarged the basis set, includ
the 2s2p and 4s orbitals into the valence states. But this d
not change the results. As far as experimental data b
present for aluminum under high pressure, our results c
pare quite well with them.

C. Transition metals

The next example will be copper. The minimum basis
for copper is given by 4s4p3d. The semicore states ar
3s3p. Again, we determined the optimalx0 for the three
classes of orbitals 3s3p ~if treated as valence states!, 4s4p,
and 3d by energy minimization. The result wasx0(4s4p)
51.1 andx0(3d)51.3. The energy variation while changin
the compression parameters by about65% is less than 1
mHartree. If we add the semicore orbitals to the valence
the energy variation withx0 is of the order 1026 Hartree.
The effect of adding these orbitals is a constant energy s
of about 0.5 mHartree. Again the energy is raised.~See the
discussion above.! Table III gives the lattice constant an
bulk modulus in comparison with other results. The latt
constant and bulk modulus are the same as from FPLA
results, but our total energy is 7 mHartree/atom too high

FIG. 4. Pressure versus compression (V300/V, V3005112 a.u.
being the experimental 300 K equilibrium volume! for aluminum.
The lines are the theoretical results for 0 K. The open symbols
room-temperature diamond-anvil-cell measurements~Ref. 34! and
the filled symbols are derived from shock data~Ref. 39!.
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Next, we consider the magnetic elements, starting w
nickel. For nickel as well as for iron, the inclusion of th
semicore states 3s3p into the valence set is unavoidable du
to a significant overlap of the orbitals from neighboring site
So, the minimum basis for this elements is 3s3p4s4p3d.
Still, the bands corresponding to the semicore states are
most dispersionless. The change of the total energy w
varying the compression factor of these orbitals by620%
around the optimum value does not exceed 0.06 mHart
The remaining parameters for the 4s4p and 3d states are
determined both for spin-polarized and for non-sp
polarized nickel in Fig. 5. It can be seen there that, except
a constant shift, the curves are identical, and the optimumx0
values are the same:x0(sp)51.05 andx0(d)51.3. The shift
is the magnetization energy:Emag51.5 mHartree.

To test the completeness of our basis set, we perform
additional calculations using the 4d orbital as a supplementa
valence orbital. Figure 6 compares the total energy and
magnetization dependence on a single compression facto
both basis sets. The main conclusions are first that the en
variation becomes smaller when adding the 4d orbital, and
second the magnetic moment becomes almost a constan
susx0, a clear indication for the onset of basis completene
Furthermore, the energy is lowered as it should be wh
variational freedom is increased. Table V summarizes
total energy, lattice constant, bulk modulus, magnetizat
energy, and magnetic moment~at the theoreticala0) calcu-
lated by different methods.

One point may be stated~see iron below!. We find mag-
netic moments generally smaller than those calculated
MT or ASA approaches but which compare well with oth
full-potential results. In our view this difference is connect
with the treatment of the xc potential.~Compare the discus
sion about the effect of the linearization of the core xc p
tential on the magnetic moment in pseudopoten
methods.11! Thus, one effect of full-potential methods is
reduction of the calculated magnetic moments. This is qu
reasonable. The moments determined at the theoretical
tice constant are smaller than those calculated at the ex
mental a0. So, m should be smaller than the experimen
value. The trend in MT calculations is to get at least t

re
FIG. 5. Total energy versus compression parameter for nic

(Lmax512). The spin-polarized~upper panel! and non-spin-
polarized~lower panel! calculation.
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experimental or even higher value form. We think that the
smaller value given by a number of pseudopotential and f
potential methods is more likely the correct LSDA numbe

All the statements above concerning the results for nic
are rather similar for iron. The basis sets and compres
factors are the same, and the stabilization of the magn
moment with switching to the larger basis set~including 4d
orbitals! takes place the same way. Thus, we refer to Ta
VI for a summary of our results compared to other calcu
tions and experiment.

D. Diamond

Until now we found rather good results for simple meta
and closed-packed structures. However, if the full-poten
character of the scheme is to be taken seriously, open s
tures should be possible to be calculated as well. Surely t
are limitations due to the minimum basis, which does
comprise polarization orbitals.

FIG. 6. Total energy~lower panel! and magnetic moment~upper
panel! versus 3d compression factor for spin-polarized nick
(Lmax512) for two different basis sets.

TABLE V. Nickel: total energyEtot ~Hartree!, magnetization
energyEmag ~mHartree!, lattice constanta0 ~a.u.!, bulk modulusB
~MBar!, and magnetic moment~ mB),

Etot Emag a0 B m

Present work,spspdbasis 21505.869 1.5 6.53 2.41 0.55
Present work,spspddbasis 21505.870 1.5 6.53 2.30 0.55

Pseudopotential~Ref. 11! 1.3 6.50 2.39 0.60
FPLAPW ~Ref. 31! 21505.871 6.53 2.60 0.565
FPKKR ~Ref. 35!a 6.48 2.53
Expt. ~Ref. 36! 6.65 1.86 0.61

aScalar relativistic calculations.
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We present our results for diamond, which is a cubic l
tice, but has two vacancies along the~111! direction com-
pared to a closed-packed lattice.~If those vacancies were
occupied by atoms, the resulting structure would be bo
centered cubic.! As mentioned in Sec. II F, the constructio
of the shape function may give a hint where the em
spheres should be placed in the lattice. In the diamond st
ture the minimax condition Eq.~70! indeed produces cel
shapes which are rather compact except along the~111! axis.
On this axis the ratio of the distance to the neighboring
oms in opposite directions is 1/3. If we introduce two equa
spaced empty spheres on this axis, we arrive at a bcc-
filling of the lattice. Accepting the introduction of empt
spheres, one again has the rather isotropic cell shapes
duced by the bcc structure. To get more isotropic cell sha
without introducing empty spheres, one has to relax
minimax condition. Then one finds orthogonal cells whi
are centered around the atoms but still have the edge
1/~2.8!/~2.8!. After applying the space-group symmetry, o
ends up with centered shape functions having smooth
steplike features.

To test our approach we compared calculations for d
mond, both using the shape function described above
using empty spheres. Begin with the direct calculation wi
out empty spheres. As a valence set we took 2s2p3d. ~The
effect of treating the 1s orbital as a valence state was n
examined.! Then we found, via energy minimization, the o
timal values,x0(sp)51.3 andx0(d)51.3. The maximum
energy difference under65% variation of thex0 is 3
mHartree/atom. Testing the convergence of the energy w
the cutoffLmax and the shape function interation depthn, we
found an uncertainty of about 3–4 mHartree/atom. The c
culated lattice constant and bulk modulus are given in Ta
IV. Our lattice constant is about 1.0% too high.

The calculation for diamond including empty spheres w
performed with the 2s2p3d basis set for the carbon atom
and with the 1s2p basis set for the empty spheres. The lat
set should be large enough to ensure sufficient variatio
freedom at the vacancy positions. The compression par
eters are determined as described above@x0,C(sp)51.1,
x0,C(d)51.0,x0,em.sp.(sp)51.0], and the energy change wit
x0 is of the same order of magnitude as before. Since
shape functions for this calculation are much more spher
than in the former calculation, one would expect faster c
vergence of the energy withLmax andn. This is the case and
the uncertainty of the energy is about 2 mHartree/atom. A

TABLE VI. Iron: total energyEtot ~Hartree!, magnetization en-
ergy Emag ~mHartree!, lattice constanta0 ~a.u.!, bulk modulusB
~Mbar!, and magnetic moment (mB).

Etot Emag a0 B m

Present work,spspdbasis 21261.447 10.0 5.24 2.30 2.04
Present work,spspddbasis 21261.448 10.0 5.24 2.29 2.03

Pseudopotential~Ref. 11! 10.1 5.22 2.26 2.01
FPLAPW ~Ref. 31! 21261.451 5.25 2.26 2.17
FPKKR ~Ref. 35!a 5.22 2.41
Expt. ~Ref. 36! 5.42 1.68 2.22

aScalar relativistic calculations.
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1756 PRB 59KLAUS KOEPERNIK AND HELMUT ESCHRIG
ditionally, the charge density of this calculation is more p
cise than in the calculation without empty spheres, wh
leads to a decrease of the total energy by about 17 mHar
atom. Table IV shows the lattice constant, bulk modulus, a
energy. The former two agree now nearly perfectly w
FPLAPW results. Thus we can conclude that our meth
gives rather good results for this open structure even with
using empty spheres, and with empty spheres the qualit
the same as for close packed structures.

Finally, we present in Fig. 7 the band structure for d
mond at a056.75 a.u. Dashed lines are results witho
empty spheres while full lines are with empty spheres. F
the occupied bands the deviation between both cases is
cally 0.05 eV. For the conduction bands both results dev
from one another by up to 1 eV. Clearly, for applicatio
concerning the valence bands only the minimum appro
without empty spheres is sufficient.

V. CONCLUSION

We have presented a full-potential band-structure met
using only local functions to construct the extended wa

FIG. 7. Diamond: electron bands calculated with empty sphe
~full lines! and without empty spheres~dashed lines!.
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functions and the crystal density and potential. The meth
of linear combination of nonorthogonal overlapping local o
bitals has been shown to allow accurate and efficient ca
lations using a minimum valence basis set. Core relaxa
due to the change of the electron density is treated corre
in each self-consistency cycle. The potential was represe
as a lattice sum of local nonspherical contributions. It h
been verified that with increasing angular momentum cu
Lmax of the L expansion of these local contributions the p
tential is converging towards the exact crystal potential. T
means the scheme presented is full potential.

Calculations on simple structures result in a good agr
ment with other full-potential methods. The total energy d
ferences between our method and theWIEN95-FPLAPW-code
result are a few 10 mHartree/atom. The lattice consta
bulk moduli, and magnetic moments are essentially the sa
as given by FPLAPW.

The only limitations of our approach are due to the use
a finite basis set~which may be incomplete! and the cutoff
momentumLmax. However, as has been shown even
open structures such as diamond, the results are quite en
aging. If higher accuracy is needed, the introduction
empty spheres gives a considerable improvement.

An advantage of the present method is the rather
numerical effort. In particular, the dimension of matrices
be diagonalized is kept at the lower limit, which allows o
to treat large unit cells. Furthermore, there are some w
established approaches to disordered materials and cr
field calculations and disordered materials based on the m
framework used in this scheme, which allows for a dire
application of the present method to this problem.
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