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We present a full-potential band-structure scheme based on the linear combination of overlapping nonor-
thogonal orbitals. The crystal potential and density are represented as a lattice sum of local overlapping
nonspherical contributions. The decomposition of the exchange and correlation potential into local parts is
done using a technique of partitioning of unity resulting in local shape functions, which add exactly to unity in
the whole crystal and which are very easily treated numerically. The method is all-electron, which means that
core relaxation is properly taken into account. Nevertheless, the eigenvalue problem is reduced to the dimen-
sion of a minimum valence orbital basis only. Calculationspand transition metals give results comparable
to other full-potential methods. The calculations on the diamond lattice demonstrate the applicability of our
approach to open structures. The consequent local description of all real-space functions allows the treatment
of substitutional disordered material§0163-182809)09303-0

[. INTRODUCTION potential. The magnetic properties of some materials are
quite complex, including noncollinear spin alignment and

During the past few decades enormous progress has begary small energy differences between different spin con-
made in the computation of the solid state using densityfigurations. As was shown, for instance, in Ref. 11 and as
functional theory(DFT) within the framework of the Kohn- will be seen in Sec. IV C of this paper, the magnetic mo-
Sham theory. It was enabled by the development of a numbenents are sensitive to the potential approximations made.
of self-consistent band-structure schemes such as, e.g., the Besides the above-mentioned band-structure schemes re-
Korringa-Kohn-RostockeKKR) method! the augmented lated to the ASA or MT construction, other approaches exist
spherical waves(ASW) method? the linear augmented- that use a different potential representation. There are, for
plane-wavegLAPW) method® and the linear muffin-tin or- instance, the pseudopotential methéa¥ which to a certain
bitals (LMTO) method® Due to the limited performance of degree are full-potential by construction.
former computer facilities, the earlier methods were based on Another approach was followed by the linear-combination
some approximations allowing rather realistic calculationsof atomic orbitals(LCAO) schemé>'°In Ref. 15, the crys-
with moderate numerical effort. A common feature of all tal potential is represented by a sum of overlapping local
those approaches is an approximate representation of tlherical contributions. On the one hand, this construction
crystal potential. The crystal is subdivided into atomicyields some nonsphericity within the atomic volume and, on
spheres wherein a spherical potential is calculated and aie other hand, it provides a nontrivial potential shape in the
interstitial region has a constant potenfieduffin-tin (MT) interstitial region. It turned out that the LCAO method gives
or atomic-sphere approximatigASA)]. Although this was a rather good results for open structur@sg., intercalates)
rather inexact approximation, the results obtained were quitand for crystal-field calculation'$.Furthermore, the numeri-
reasonable at least for close-packed structures. For opeal effort of this method is moderate, which enables the treat-
structures additional empty spheres were introduced. ment of rather large unit cells.

Later on, these methods were further improved by taking An application of the DFT to substitutionally disordered
into account the real potential shape within the whole crystalmaterials is possible by including the coherent potential ap-
For most band structure methods there exist full-potentiaproximation (CPA) into the band-structure schemes in a
versions [FPLAPW;®> FPKKR? FPLMTO,” and FPASW charge self-consistent manner. Such CPA versions exist for
(Ref. 8]. Meanwhile, Gaussian basis sets as used in quantuthe KKR and LMTO method$®?° By its very nature, the
chemistry have been successfully applied to the single€PA needs a treatment of the electronic structure in terms of
electron Kohn-Sham probleft? With increasing computer local ingredients. Therefore, tight-bindin@B) variants of
power these accurate methods became more and more ilKKR (Ref. 21 and LMTO (Ref. 22 have been designed.
portant since many substances of interest have complex Recently, an LCAO-CPARef. 23 was developed which
structures and exhibit complex physical behavior which iscombines the advantage of the local formulatioecessary
rather sensitive to the approximations made during the caffor a description of substitutional disordexith a good po-
culations. Gradient corrections to the widely used local-spintential representation. The underlying generalized Blackman-
density approximatiofLSDA) demand a precise density and Esterling-Berk(BEB) CPA is well-suited to treat partial dis-
potential representation. The crystal-field effects ins§s-  order. Substitutional disorder at a site is in a certain sense a
tems are strongly dependent on the quality of the determineldbcal effect. If any CPA theory is used to describe a disor-
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dered material, a mechanism of distinguishing the influencéioning of unity, resulting in two different kinds of shape

of the local occupancy on the potential and wave function igunctions used to decompose the overlap density and the

needed. Since plane waves are extended over the whole cry@xchange and correlation potential into local contributions.

tal, their usefulness in CPA schemes is limited. Details of the actual numerical implementation are discussed
Projection on local orbitals is needed for many other purdn Sec. lll. Finally, in Sec. IV we apply the scheme to typical

poses, for instance to extract model parameters from ban@xamples to compare calculated lattice constants, bulk

structure calculations or to interpret the results in chemicamoduli, magnetic moments, and total energies with other

terms. Chemical bonding can be analyzed using the concep@nd structure methods and with experiment.

of crystal orbital overlap populaticfCOOP.?* Projection on

local orbitals is never free from ambiguity in the choice of Il. THE METHODS

those orbitals. Our approach has the advantage that it finds 0 his based the densitv-functional th
the best local orbitals of a minimum basis with respect to . ur approach Is based on the density-functional theory
total energy minimization. within the framework of the Kohn-Sham algorithm. This task

The present work describes a new full-potential nonor_splits into two parts: solution of the Kohn-Sham equation

thogonal local-orbital minimum basis band-structure schemgInd treatment of real space functions such as density and

(FPLO. It is based on the construction of the extended cryspOtential' including the solution (.)f Poisson’; equation. While
tal wave functions via a linear combination of overlappingf[he thn—Sham problem.fgr a given potential may be splved
nonorthogonal basis orbitals. The representation of the derf Yarous ways with sufficient accuracy, the recalculation of
sity and potential is again as a lattice sum of local overlap—.he tr;Je tden5|tty anq thE potedntlal req.wrets m(;re Sk'”L;) An d
ping contributions. But these contributions now exhibit non-'Mmportant point in going beyona approximaté Schemes base

sphericity via an angular momentum expansion. Thus, th ?] cellular dicon:_posmons ;ﬁ todcon_'i‘tr/uctt b?.thl tge K.Ohln'
total lattice sum of these local functions converges in a con: am wave functions an € density/potential by similar

trolled manner to the real crystal density/potential with in-Means, trying to avoid expensive transformations between

creasing angular momentum cutoff. The core electrons argﬁferent numerical representations. This work uses a linear

treated in the same manner as the valence electrons, whi mbination of o.verlappi.ng. Ioc.al orbitals to cong,truct the
results in an all-electron band-structure scheme. Neverth sohn-Sham solutions. This implies the use of localized over-

less, an algebraic transformation based on the fact that co gpping potential conftributi(_)ns to represent th_e cryst_al poten-
' tial. Above all, we will avoid the use of Fourier series, be-

orbitals from different sites do not overlap reduces the cal- : . .
culational effort considerably cause matrix elements between local orbitals and the Fourier
The use of local functions in real space is an importamtr""f]l_?]formet?1 pé)te_r;ltlgl afre t|rr;etcgnsum|lngt. v withi local

presumption for the incorporation of the generalized BEB- € method will be Tormulated completely within a foca

; : imi t rather accurate but fast calculations.
CPA. The method presented here therefore applies directly hguage aiming a . . .
our recent work2 To achieve this local decomposition we ence, the LCAQ-CPA can be incorporated directly within

introduce the tool of partitioning of unity, resulting in shape this scheme. Since the disorder theory was described in de-

functions, which to the best of our knowledge were not useqa" elsewhere, here we will concentrate on the ordered crys-

before in this form(Sec. Il B. The shape functions are al only.
strictly local, and their lattice sum gives exactly unity in the
whole crystal. These functions are smooth and may easily be A. Nonorthogonal local-orbital basis

calculated without sacrificing computer time. Other ap- penote a regular lattice bR+s, whereR is a Bravais

proaches to buildzeshape functions were used by BSaked  yector ands s a basis vector of the unit cell. For the crystal
by Stefanouet al° Related to the shape functions are thepotential we use the decomposition

fitting functions used in the linear combination of Gaussian-

type orbitals-fitting function techniquéLCGTO-FB, see,

e.g., Refs. 10,27,28. The approach of Becke shows some ()= 2, vsL([r=R=9)Y (r—R~—5) @
parallels to our construction, however the unity condition is R+sl

achieved in different ways. Our method assures this condi- . . . .
tion from the beginning by definition, while Becke uses aWlth Y, being the real spherical harmonics. The sum over
normalization procedure to finally obtain the right shape
functions. In our opinion, this latter procedure is not well-
suited for the application to extended solids and is muc

more time consuming than the method proposed here. vs follows later. .
Due to the restriction to a minimum basis, the computa- To solve the Kohn-Sham equations we need a representa-

tional effort is rather limited and comparable to MT or ASA tion of the extended. crystal states, .here chosen to be a non-
approximations. Nevertheless, lattice parameters bulQrthogonal local-orbital representation. This has several ad-

moduli, and magnetic moments coincide very well with vantages as we will see. One point was already mentioned

FPLAPW results, and total energies per atom are systemat00Ve: the applicability to the generalized local-orbital

cally a few mHartree above the FPLAPW values. coherent-potential theorfFPLO-CPA. . .
The paper is organized as follows. In Sec. Il the concepts The extended states are expanded in terms of localized

for the solution of the Kohn-Sham equation and the recalcu@tomiclike basis orbitals

lation of the crystal density and potential are explained. Sec- |
tions 1l C and Il F are dedicated to the special tool of parti- (rIRsL)=¢(|[r—R—g) Y (r—R—9). (2

L=Im should converge under circumstances which will be
elucidated below, and thus we approximate the crystal poten-
fial using a cutoffl .. The definition of the local potentials
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Several orbitals with the same angular momentuare per-
mitted. In all that follows we understand a principal quantum
number or/and a spin quantum number as absorbed into the UL
subscriptL. The basis orbitals are taken to be solutions of a Sosrs—(0S'L'[RsL). (10)
Schralinger equation with a single spherical potential chose
to consist of two parts:

L'L /
Hogrs=(0SL'[H|RsL), (9

Prhese matrix elements are further simplified by the core-
valence distinction. By definition, core orbitdRsc) obey

1 lal A7
va‘(r)=4—f v(r—R—9dQ +ypn () (R'S'C’|RSC) = 8crcOrr 1o Rtss (11)
a
The first part is the spherically averaged crystal potential, H|RsC)=|RsC)es - (12
while the second is the confining potential A core orbital is so strongly localized that it does not notice-
;4 ably deform due to the difference between the true crystal
pConf= (_) (4) potentialv (r) of Eq. (1) and its spherical average around the
lo orbital center. Basis orbitals for which this is not true are

discussed extensively elsewhd?é? Its radius parameter, treated as valence orbitals. It is clear that in this way the
has been shown in Ref. 15 to scale basically with the g/£lassification of orbitals as core or valence is dictated by

power of the lattice constant, and hence we represent it asccuracy demandgFor example, 8 and 3 orbitals of
metals are often treated as valence orbitals.

(xorNN)3’2 Further on, we use subscriptgor core orbitals an@ for
0~ )

2 () valence orbitals. If the distinction is not important, we lise

Due to Eq.(11), the overlap matrix now contains four
wherery is the nearest-neighbor distance and the new pap|ocks:

rameterx, is roughly independent of lattice spacing.

The confining potential serves to compress the local va- See S
lence basis orbitals. Those compressed orbitals have higher S= S (13
energy levels and are more suitable for the construction of ve v
extended wave functions compared to their uncompressedgith
counterparts. The confining potential is applied to the va-
lence states, which are distinguished from core orbitals by Sec=(R'S'C’|RSC) = ScrcOrr 15 R s
the definition that they are all orbitals not overlapping from o,
different sites. The overlapping orbitals are the valence or- Sew=(R'S'¢’|Rs),
bitals. The overlap between core and valence orbitals from _ T
different sites may of course be nonzero. S,c=(R'sv'|Rsc)=S, ,
The extended state labeled by crystal momentund L
band indexn is constructed as a linear combinations of S, =(R'Sv'|Rw).
Bloch sums: The Hamiltonian matrix simplifies to
|kn>=2 |RSL>Ckneik(R+s) ) (6) _( Hcc HCCSCU>
& Ls H= (14
SUCHCC HUU

Here, no distinction between core and valence orbitals i%vith
made. Inserting this ansatz into the Kohn-Sham equation

HIkn)=[kn)e, ) oo (RISCIHIR) = owborcdi o mes
n
yields H,,=(R's'v'[H|Rsv).
_ , (As a slight generalization to crystal-field-split core levels,
> [(0SL'|H|RsL)—(0s'L'|RsL)ek"ckNelk(R+s=s) =, Hee=es/cOrr+s rts WOUID pose no problemsThe actual
RsL core-valence and valence-valence matrix elements consist of
® one-center and multicenter integrals. The on-site elements

The Hamiltonian and overlap matrices read are
! ’ A ! ! ! ! /
(SL/[H[sL)=(sL'|= 5+ 2 vg (Ir=9) YL (r=9)[sLy+(sL’| X ver,(II=R'=s|)Y (r=R'=s)[sL) .
2 Ly R’+E’(#s)
1

(19

Here the second expression contains the off-site part of the crystal field contribution to the potantiddieh is a two-center
term. The off-site elements f& # R+s are
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! ! ! A / /
(SLIHIRSL)=(SL| = 5 + 2 va, (1=SDYL,(1=9)+ 2 va,(r—=R=5)¥,(1-R-9)IReL)
1 2

+(s'L’| > ver, (IF=R"=)Y_ (r—R"=s)|RsL) |, (16)
(s/¢)R"+Ls"<¢R+s)
1

where in the first line each integral is a two-center term. TheThus we have solved the eigenvalue problem @Byby ef-
last line, the three-center terms, are unavoidable in our refdectively solving a much smaller problem E@®3), since, at
resentation, but due to the compression of local functiondeast for heavy atoms, the number of core orbitals exceeds
they are rather limited in number and are possible to calcuthe number of valence orbitals considerably.
late in moderate computer time. Details of the numerics are
in Sec. Ill. B. The electron density

Now, we introduce an algebraic transformatiomo re- ) .
duce the dimension of the problem using the special form of Next the_ der_15|ty must be recalculated. The local orbital
the Hamiltonian Eq(14) and the overlap matrix Eq13). It ~ fepresentation is
applies to both lattice site and Bloch state representations. .
Since the core-core block @& is the unit matrix, we may _ _
perform a simplified Cholesky decomposition $f n—% [kn)¢kn| (25

(1 o\(1 s, oce
S=SS= 1 _ kn 4ik —R'—g') Tk Tl !
s. S./lo0 s, A1 =3 5 Ra)eeRE R ORI (g
R's'L’

implying the following relations:
This expression may be separated into on-site and off-site
_ad _arf_cetf | o _ _ - o

Soe=Sc= S =Ser SouSv =S~ SucSew - (18) terms. Both classes again are split into core-core, core-
For later use in the secular equation, the inverse of thivalence, and valence-valence contributions. The core-core
Cholesky decomposition is density has only on-site terms and simplifies to

_ r—1
g-1- 1 0 — 1 Sev S,y ncczz ngit,cc, 27)
~S,,'Sc S,/ o st o) =
(19 occ

The matrix equatior(8) reads nietee= |Rsc)(Rsc|+kE > |Rsc)ckiel Y Rse|.
¢ n cc

HC=SCE (20) (28)

The first term of Eq(28) is due to the left block column of
Eq. (24) and the right term contains the coupling of core
orbitals into valence-band states via core-valence orthogo-
S-HS!D=DE, D=S¢C, (21  nalizations C,). Here and further on, the band indexs
restricted to valence bands only. The valence-valence on-site
where D is the unitary matrix diagonalizing' "*HS "%, term is

Since thec-c block of this latter matrix is already diagonal,

where C has matrix elementg ¢,(k) and E=diag(ey).
This can be rewritten as

occ

Dec=1. (22) nnetey — % |Rsv) ke (Rsv|. (29)

!

Moreover, thec-v block of S ~*HS ~! vanishes as is easily vo

seen from Eqs(14) and (19), henceD., =0 (even ifHee  Then, again because of nonorthogonality between core and

were not diagonal, in which case orlc.# 1), and we are \5jence orbitals, there is an on-site core-valence contribution
left with the reduced eigenvalue problem
occ

SL;l(H—Suchcch)Szngvv:Dquu , (23 ngit'cvzz Re% |R$>C§?C;k,n< RSU’|. (30
with an ordinary pseudo-Hamiltonian in parentheses. Finally, cv’

the wave-function coefficient matri is obtained as The on-site or net part of the electron density is the sum of

those three contributions,

Cuv~vv

c=S"D=
O Slr};lDUU

(29)

1 -S s"low)

net_ . netcc netyv netcuv
Nre=NRs~+NR”’+NRa™’ . (31
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Note that the orbitals are well-localized functions which fall tains maximuml =6 contributions if projected onto a basis
off essentially to zero within the nearest-neighbor distanceof spherical harmonics.

Furthermore, the maximum angular momentum of the orbit- Now consider the off-site terms of the density, the overlap
als isl =3 for f functions. Thus, the net charge density con-density. The core-valence contribution is

occ occ
nOVl,Cvzz E |RSC>CIS(Cneik(RJrS*R”S')c;?(R'S’U'|+2 |RSU>C§?eik(R+sz',sr)C;r/kCn/<R,Srcr|
kn R/+S,¢R+S kn R/+S/#:R+S
cv’ ve!
(32
and the valence-valence term reads
occ
novl,vv:E 2 |RSU>C‘|;’Ielk(R+SfR’*S')CZ/I?/<RISIU/|. (33)

kn R/+s'#R+s

vv'

All those terms entering the overlap expressions cannot difhe point is that this functior; is much more localized
rectly be divided into local contributions, since they arearound the centerthan the original construcE(r|i)(j|r).
functions having small cusps at both the centers involved and As a three-dimensional functiof,;(r) must still yield a
are nonzero mainly in the region lying between the two censufficiently rapidly converging expansion in spherical har-
ters. Here we have to make approximations concerning themonics:

treatment of real space functions, as follows.

Fi<r)=§ Fa(r)Yo(ry),

C. Partitioning of multicenter terms

Our density treatment results in lattice periodic functions (40
with the structure
Falr)= [ F(nYErda,

F(n=2 (rliiln), (34 f=r—R-s @
wherei andj denote a pairi(j)=(R+sR’+s') of lattice  Suitable choices of;; for this goal are considered in Sec.
sites. Introduce a rescaled difference coordinate Il F, Eq. (76) and (77).

R'+s—R—-s D. The potential
xj=(r—R—9)-P, P=———0 (35) € potental
IR"+s'—R—§ Application of this partitioning method to the overlap
ity gi local iti f th | el
taking on values 0 and 1 at the sifesndj, respectively. We gggz:g gives a local decomposition of the crystal electron
choose a real functiohwith the properties
fx)+f(1-x)=1, n(r)=2, ng (Jr-R—9) Y (r—-R-5s). (42

Rs,L

f(x)=1 for x<0, (36 From this density we first construct the Coulomb potential,

that is, the sum of the Coulomb potentials of the electron
density and of the nuclear charge. The angular momentum
components of the local charge densities give rise to multi-
pole moments

f(x)=0 for x=1,
and write
(il =fi DG+l GIn (37) )
where QsL:fo drr'*2ng (r) (43

fij=f(x;j). (38 which determine the behavior of the Coulomb potential for

(Note xjj=1—Xx;;.) This yields immediately large distances,

F(n=2 2Re(rli)iInN=2 Fi(n. (39 vsL<r>°<rc.2—fL1- 49
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The excess multipole moments yielding long ranging poten

(49)

tial tails should be compensated by Ewald’s method first to
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=0 part is partially compensated by the nuclear charggotentials is a tedious task concerning the calculation time.

Hence, we define a partitioning of unity in the lattideg.
(66) below; details in Sec. Il Fand apply it to the Fourier-
transformed part of the potential

EW<r>=vEW<r>RE f(r—R—9)

get converging lattice sums of local potentials and second to

get well-localized potential contributions. We introduce the
Ewald densities

3

P 2.2
Ew _ | r
n3"(ry=Ag —re P (46)
sL sL \/?
with excess moments
Zg
—— , 1=0
Au . Qg
47)
A7 Qg
-, [#0
N
and normalization coefficients
Ny= \/—f drr2+2g-r%p’ (48)

=RE vEYr—R-s),
(54)
vEYr—-R—9=0v™(n)fy(r—R-9).

The resulting local potentiabEW is expanded in terms of
spherical harmonics. Thus we have achieved the Hartree po-
tential representation in the form E().
The exchange and correlation part of the crystal potential
remains. In the localspin-density approximatiolLSDA) it
is
XC(r

v n(n], (59

where v*{n] is a parametrization of the exchange-
correlation potential of the homogeneous electron liquid of
densityn. This nonlinear dependence on the electron density
requires a special treatment again to achieve the form Eq.
(1). We apply the same partitioning of unity as for the

The sum of the local electron densities and the Ewald denfourier-transformed Ewald potential:

sities gives the local Hartree potential

L[ 2417
rl—ﬂfodr’r’ ng(r")

+rfdr’ 1-p

with n=n+n&". The local Coulomb potentials now read

mz

H 40
(D= 511

r' (49

v§(N=v(r)- Sl (50)

which indeed are well-localized functions. The Ewald con-

tributions have to be subtracted again. We Fourier transform

the negative Ewald density:

[

Y (G).
(51)

___2 e~ IGSE A

UC S

o-cup?| 9
2p?

v*(r) =2 vir-R-9 (56)
with
v3(r—R—9)=vIn(r)]f(r—R—ys). (57

The resulting local exchange-correlation potentials are again
expanded in terms of spherical harmonics. Needless to say,
partitioning of v*° applies generally and not only for the
LSDA.

Collecting all terms we have the following local poten-
tials:

v?y<r)=§[v&(r)+v§LW<r)+v§f<r)]vL<r> (58)

whose sum expresses the total Kohn-Sham crystal potential

vcry(r)=; vM(r—R-9) (59

This gives a Fourier-transformed Ewald potential via the

Poisson equation

4
Ew Ew
Vg =— (52
G |(;|2 G
Our total electrostatic potential reads
v(r)= 2 vS (DY (r—-R- s)+2 vE%ei® . (53

This form has a major disadvantage. To calculate matrix el

and thus we close the self-consistency cycle of the Kohn-
Sham theory. The maximurmto be taken into account is
determined first of all by accuracy demands. However, the
expansion in terms of spherical harmonics is expected to
converge sufficiently fast. At least the maximuirshould be
twice the maximum orbital momentuti™®, since the maxi-
mum momentum which couples to the product of two orbit-
als at the same site id 2".

E. The total energy

ements between local orbitals including Fourier-transformed The DFT total energy iswith a=R+5s)
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1 n(r)n(r’) unit cell) The first term of Eq(60) is the Kohn-Sham kinetic
E[n(r)]=T[n(r)]+ —f f— drdr’ energy and is represented using the solution of the Kohn-
2 —r’ Sham equation,

occ occ
JE n(f)df T[n(r)]= 2 <kn|——|kn> 2 e fdrn(r)u“y(r).
(61)
+3 aEb = b| +Exdn]. (60 In this expressiom runs again over core and valence states,

with obvious simplifications for core states. The second
(We do not give a normalization factor. Eventually, we will term, the Hartree energy of the electrons and the third term,
have lattice sums of local terms which give an extensive totathe interaction energy with the nuclei, may partially be com-
energy; dropping one lattice sum gives the total energy pebined,

Jdrn(r) fdr I |r—a|

The last expression completely fits our potent|al and density representation in terms of lattice sums of local functions. The
remaining part of the electron-nucleus energy will be combined with the fourth term ¢6&gthe nucleus-nucleus repulsion
energy:

fdr}) Ny ( r—b)[z [vS(r—a)+v™(r-a)]|. (62

1

Z,
—32 fdﬂ —a

1 Z.,5(r'—a
:—_E J‘Jdr’er)
25 I

E ”b“‘b)‘;a zb(xr—b)}

b

> Fub(r—b)—bE zbfs(r—b)—nEW(r)}
#a

1 na(r
=—-> Z, f o )dr+u§W(0)+2 (vi(a—b)+vE%a—h))|. (63
2 a r b+#a
|
The last line again corresponds to our localized representa- G 2
tion. Now the last term to be managed is the exchange and gr=d,, 0= 1G[" dn=|a n, (67)
correlation energy,
where G is a reciprocal-lattice vector and runs over all
_ (positive and negatiyeintegers. The sublattice planes corre-
EXC[n]_f drn(r)ex(n(r)). (64) sponding to basis vectors are given by
The xc energy per unit cell may be expressed using the shape 20
functions g-r=d,+9gs, 9s=9'S, 0sgssi=r (68)

Gl

Given G, there areN valuesgg, for which we find the mini-
mum distance

Egcf[n]:ES f drig(r—s)n(r)ey(n(r)) (65

which are integrals over localized smooth functions falling (+)
off rapidly, due to the properties df,. Ye=min|gs— gyl (69)
s,s’
F. The shape function excluding zero differences from consideration.

Our task is to find a partitioning of unity on a lattice with ~ Finally, we find aG such thatyg is maximum:
basis, that is to find a s¢tfs} of three-dimensional real func-

tions obeying Y= mGax V6™ Yomax (70)
_ For what follows we fix one suct=G,,,. (In case of point
ng fs(r—R—g)=1. (66) symmetry there are several equivalent ones.
Now we have a directiory and a coordinatel in this
The subscrips labels theN basis vectors. direction, on the scale of which the positions of the perpen-

We start with the Hessian form of the equations of latticedicular sublattice planes are given by a periodic repetition of
planes N coordinatesl, with gs=dsmod 27/| G|, with a minimum
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spacingy>0. [For special directiong several planes may  Following this procedure with open structures, it may
have the same coordinade; this does not pose problems, if, happen that, despite the minimax approach to the first step,
in the following, pairs §,s') with ds=d. are excluded from rather_ elpnggted site cells r.e.sult. for certgln sites. Thls_|s a
consideratior].We define clear indication of the beneficial introduction of empty sites
occupying the remote parts of the elongated cells. If one
d—d wants to avoid empty sites, one can try the second best se-
fOr—9=fx_DFxX, ), xW=——=, (7)) lection in Eq.(70).

7 dy—ds A final step is left to be made. For both symmetry reasons
wheref(x) is the function Eq(36). (Note that the scales for @S Well as the desired minimal anisotropy fir), one
Xgs—1 @NdXxg¢41 May be differentfgl) need not be symmet- would like to have
ric.) The result is obviously a partitioning of unity along the fua(r) = f(Ugr) (79
directiong which is constant perpendicular to that direction. Us SLRon
In the following, g is renamedy(®. whereU is any symmetry transformation of the lattice ang

Our construction ensures that perpendiculargtt we s its point symmetry content. L&t be the order of the point
have for eacls a two-dimensional lattice with basis. The group of the lattice considered and form
same construction as above in two dimensions provides a
o : _ 1
partitioning of unity F(r) = ME FL(us ). (80)
(=)=t (x4 (72 N
=) ) ) Obviously, this again provides a partitioning of unity on the
along a selected dlrectlorg~ of a two-dimensional given lattice with the wanted symmetry property.
reciprocal-lattice vector. Each® is the projection of a A very important point is that we have not only a smooth
three-dimensional reciprocal-lattice vecta'?), onto this  partitioning of unity on the lattice, Eq66), but one where
plane. In fact, it is only necessary to choa$® andg® to  everyf has compact suppofthe domain outside of which
be linearly independent. However, we expect the least anisd=0), which excludes all lattice sites from its interior ex-
tropic shape functions to be the construction which has theept the centerand which approaches zero at the neighbor-
largest angle betweagt!) andg(®. Now we have two classes ing sites with any wanted power law by simply applying Eq.

of planes giving for eack a function (77) sufficiently often. The second point is that the symme-
L ) trization Eg. (80) may be carried out explicitly by using
fHr—9fP (-9 (73 transformation laws of the scalar produgts. Thus for each

lattice, we end up with a simple explicit expression of the

which still is constant along the directiogl®) x g®. This 0§hape function whose calculation will be fast.

direction just defines the crossing lines of the two classes
planes. For these one-dimensional lattices we chose a direc-
tion g® close togx g'?) and use a partitioning of unity IIl. NUMERICS

FO(r—9=f(x3_)f(xE, ) (74) In this section we focus on some numerical technicalities
s sis-1 s,;s+1/r used to implement an efficient code. All local functions are

This step completes our task E@6) with the exactresult ~ represented numerically on a radial mesh starting at some
small nonzero radius. The spacing of successive mesh points

f(r)=fP) 23 (r). (75  can be taken either to follow a logarithmic or a power law.
] ] Both work well. In actual calculations the radial functions
It remains to defind(x) of Eq. (36). _ have to be interpolated. We use the Neville algorithm with
A very simple smooth solution of E¢36) is degree 9.
1 Several on-site terms must be calculated. The on-site
fl(x)zz(cos mx+1), 0=x<1. (76)  overlap and Hamiltonian matrix elements and the on-site

parts of the total energy expressions involve radial integra-

If a smoother solution is needed, one has at hand an infinitgOnS and integrations over the unit spherg of prod_ucts of two
' or three spherical harmonics. The latter integration reduces

sequence . . . .

to orthogonality relations of the spherical harmonics or

f(x)=1—f;(f,_1(x)), Nn=23,.... (77)  Gaunt coefficients, respectively. The radial integrations are
. _ done using Gauss quadrature. The expansion of the net den-

Suppose thaf, 1(x)+f,_1(1—x)=1 as in Eq.(36). This  sity into spherical harmonics contains integrations of prod-

immediately implies ucts of three spherical harmonics, which again yields Gaunt
coefficients.
fa(X)+fr(1—x) The two-site matrix elements in their most complicated
form are integrals over products of three radial functions and
=1-f(fr100)+1—F1(Fn-1(1-X)) spherical harmonics. These three-dimensional integrations
=2—f,(F, (X)) —F(1—F,_1(x))=1. (79) may be reduced to two-dimensional integrations by using the

algebra of the angular momentum operator. This has the ad-
Hence, the construction E¢(7) is not limited to the form of  vantage first of having to control only two mesh parameters
Eq. (76) but is possible with every function E36). and second, by rearrangement of the formulas, a considerable
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reduction of the number of operations needed. The expresvherea, . are the representation matrix elements. The next
sions have the forniR is the vector pointing frona to b) step is to write the definition of out‘real” ) spherical har-
monics

f dr () Yim(1)S 01, (YL = R) Yy (= R)
' (81)

Now introduce a rotatiom of the coordinate system trans- with
forming the vectolR to the vector (0,&®) (R=|R|),

ur=r', nR=(0,0R). (82 gm(d)):{

Then we may use spherical coordinate®,¢ or bipolar
coordinates¢, n,¢ about the axis (0,&), where ¢ repre-  The only ¢-dependent parts of E¢B1) are now those of the
sents the rotation angle about the axior definition of the Y . Hence, thep integration may be performed analytically,
bipolar coordinates see standard mathematical textbpoksiesulting in the selection rules

The gain is that the argumen=|r —R| no longer depends
on ¢. The rotation algebra of spherical harmonics gives

Yim(6,¢)=i'P|™(cos 6)g( ¢) (84)

sinm| ¢ for m=-1,...,—I

(89

cogm|¢ for m=0,... .

(mympmg) = f O, ()G, ()T (H)dS.  (86)

Yim(N)=Yim(ur)=2 ag Yim(r'), (83 _ _ _ _
m’ Now, we rewrite Eq(81) (using spherical coordinates

Y “ m | m [ [ m b [ m
i Ilym%‘;msm fo r drfO d cos ¢9ff*(r)ammZPI 2(B)Unﬁl(r)arglmsPlf(a)f,,(rb)am,m4P|,4(6b)(m2m3m4) (87)

with 6,=(r cos6—R)/r, and ri=r2+R?—2rR cos¢. One  potential Eq.(57) as well as the local Ewald potential Eqg.
point offering the possibility to reduce the number of opera-(55) involving the shape functions are done in spherical co-
tions is that the radial orbital functiorfé¢ do not depend on ordinates, too. The same holds for the exchange and correla-
m. Furthermore, the vectors to the neighboring sites ar@und tion energy Eq(65). _

may be classified into shells containing vect&$s of the All k integrations are performed using the tetrahedron
same length, differing only iR. The two-dimensional inte- method(cf. Ref. 13.

grals Eq.(87) may be performed in bipolar coordinates as

well. They are applicable to all two-center terms and also to IV. RESULTS
the overlap density calculations. In the latter case, one has to _ -
multiply by the multicenter partitioning functiof(x), which To illustrate the capability of our method, we report re-

after rotationu does not depend o either. Then one cal- Sults for a few cases chosen to check various aspects of the
culates for a number of radial mesh points théntegral ~ concepts developed above. The main focus was on properties
only, droppinngl and collecting thé,;m, terms which are such as lattice constant, magnetic moment, and total energy

the L, components of the angular momentum expansion ofo test the influence of the approximations involved. To com-

the overlap density. Finally, the resulting radial functions are,f.’are data f&om the sarlms sptl_n cilens[tt)r/] {lﬁnct'gg‘i’ a;lllacalc;:ula—
reinterpolated on the original radial mesh. This reduction tg'o"'> WEre gone nonrefativistically wi © ot Feraew

two-dimensional integrals is always possible, if all radial and Zunger? This ht.)lds _also for the data obtame_d with
functions involved do not depend af after the rotationu, other methods and given in Tables I-1V for comparison.
The two remaining integrations are treated by Gaussian _ _
quadratures. The number of mesh points is determined by the TABLE 1. Aluminum: total energyE,, (Hartres, lattice con-
requirement of a<10® Hartree accuracy of the Hamil- Stanto (@.u), and bulk modulu$ (Mban.

tonian integrals, or a<10 ® accuracy of the overlap inte-

grals or density values measured with respect to the normal- Eoo v B
ization. Present work —241.461 7.56 0.84
The integrals in Eq.(49) are performed as Gaussian FpLAPW (Ref. 31) —241.465 753 0.86
guadratures too. Now, the remaining integrals are reallyypyp —241.46305< E,p< — 241.46285
three-dimensional. First, there are the three-center contribyspkkR (Ref. 35 755 0.84
tions to the Hamiltonian matrix which are performed in gy;b 760 0.72

spherical coordinates around the center of the potential using
Gaussian quadrature for the radial and theart and an 2See the text.

equal weight integration for the) coordinate. The angular PAll lattice constants(extrapolated to zero temperaturend bulk
momentum expansion of the local exchange and correlationmoduli are taken from Ref. 36.
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TABLE II. Aluminum: theoretic&0 K transition pressured in TABLE IV. Diamond: total energyE,, (Hartreg, lattice con-
GPa and volumes Y/V3q9, V300=112 a.u) for the fcc-hcp and  stanta, (a.u), and bulk modulus (Mbar).
hcp-bec phase transition. The lower experimental bound for the

fcc-hep transition is about 219 GPa. Eiot a, B
fcc-hep hep-bee Prgsent work —-37.776 6.77 4.3
= VIV 300 p VIV 300 With empty spheres —37.794 6.69 4.6
Present work 20830 051 23540 048  FPLAPW(Ref. 3] —37.797 6.68 4.7
LCGTO-FF(Ref. 33  205+20 051 56560 0364  CXpt(Ref. 36 6.74
LMTO-ASA (Ref. 37 120 200
AP (Ref. 38 220 05 380 0.4

adding overlapping semicore orbitals to the basis, since the
neglect of core-orbital overlap in E€L1) introduces an error
A. Aluminum of indefinite sign. Nevertheless, in the present case this error

L . , is far below our accuracy demands, and the treatment of
We begin with the free-electron-like metal aluminum. As 2s2p states as core states is well justified. Fig. 3.

valence orbitals we takes3p3d, where thed orbitals are Having optimized the basis, we come to the second cru-
needed for completeness of the basis and are occupied by.g,, point in our method, namely the potential and density
few tens of electrons. In Sec. Il A we introduced a Conﬁningrepresentation. Two approximations are to be checked, the
potential ¢/rq)*, ro=(Xor nn/2)* to tune the local valence ¢t angular momentuni_,, and the steepness of the
orbitals. The choice ok, determines the quality of the basis ¢hape function defined by the number of iterationssed in

set. Thus one would expect the total energy to be minimize@q_ (77). In Fig. 2 the dependence of the total energy on both
by taking optimal values for these parameters. In Fig. 1 thg)arameters is shown. Two basic conclusions can be drawn.
v_ariation.of the total energy with respectigis shown for a First, the energy converges rather fast with increasipg.

fixed lattice constant anq angular momentum cutgff,,. _ AboveLl =6 the energy is almost unvarying for all shape
The 3s and 3 compression parameters are set equal SiNCgnctions withn>2. The steepness of the shape function has
the extent of these orbitals is comparable. Thus we have tw@,, competitive effects. The smoother the function is, the
valuesxo(sp) and Xo(d). The figure contains two CUIVes gaster the angular momentum series converges. On the other
representing the total energy change with respect toX@ne pang, the shape function has to fall off sufficiently fast ap-
while fixing the other at its optimal value. Indeed, as can beproaching the neighbor atoms. Additionally, it should be
seen, there exist optimal values for bagh The variation of  ynjty in as large a region near the nucleus as is possible and
the sp parameter within=5% gives a change in the total s extension over the crystal should be as small as possible.
energy of about 1 mHartree. Thieparameter is less critical \ye find that, forn=1, which is the most extended function
because of the smali-wave admixture in the occupied (starting as -r2 at the nucleus numerical instabilities are
Kohn-Sham states. caused. It assigns too much of the potential near the nucleus

The preceding discussion was restricted t0 a minimumq neighboring site contributions. From the figure we con-
basis choice. Particularly, the subdivision of the orbitals into,,de thatn=3 seems to be the best choi¢Bor n=2 the

core and valence orbitals was not yet checked. Applying the reening of the neighbor sites is still not good enough, as
condition Eq.(11) we state that there is a rather small OVer-may be seen by looking at the functions in real spage.

lap of the semicore £2p orbitals from different sites. Thus g, ther increase of the steepness only slows dowr_then-
to check the influence of the core-valence subdivision on

accuracy we performed calculations with s2p3s3p3d va-

. . . . =7.6au.
lence basis. Since they are strongly localized, the semicore : Amfoan
states are nearly dispersionless. Moreover, they do not feel —241.451 .
much of the confining potential. Thus one would not expect
the total energy to be sensitive to the choicexgf2s2p). -241.453 ® x,(sp) with x,(d)=1 .
We calculated an energy variation of about”i0Hartree ¢ Ax,(d) with x,(sp)=1
with respect to the, range shown in Fig. 1. The total energy @ -241.455 - \ ]
is raised by 0.07 mHartree with respect to the minimum basisE \ yd
result. There is no reason that the energy is lowered wheny ——241457 \ ‘/ ]
& \
TABLE lIl. Copper: total energyE,, (Hartres, lattice constant 2 —241459 ¢ \ // ]
a, (a.u), and bulk modulus8 (Mbar). B A
° —241.461 | A - 1
Etot N B
-241.463 i
Present work —1637.932 6.73 1.75
FPLAPW (Ref. 30 —1637.939 6.73 1.73 —241.4650 85 0'95 105 15
LCAO (Ref. 16 6.71 167 compression factor x,
FPKKR (Ref. 35 6.71 1.75
Expt. (Ref. 36 6.82 1.37 FIG. 1. Variaton of the total energy with respect to the compres-

sion parameters for fcc aluminurh,,,,=6, spd basis.
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ap=7.6a.u. —241.48080 . .
-241.458
sharpeness of the shape ® minimum basis (3spd)
function A with semi-core (2sp3spd)
*—e?2 _ —241.46085 .
3 2
_ -241.459 R o4 R g
3 A—AS5 T A
[ =
5 &  —241.46090 //
L g \‘\_/A//
3 —241.460 . =
2 1 2
o —241.46095
E /
k<!
—241.461 | 1 e e
-1 mHartree —241.46100 : : ' '
75 7.52 7.54 7.56 7.58 76
lattice constant [a.u.]
241462 0 5 10 15 FIG. 3. Total energy versus lattice constant for aluminum with
L L max=12.

max

FIG. 2. Dependence of the total energy on the culgff, and
the sharpness of the shape functiepd basis.

B. Aluminum under pressure

To check the capabilities of our method further, we apply

it to aluminum under high pressure. In a recent study of the
vergence. Finally, we may state that there is an uncertaintjec, hcp, and bee phase of alumindia fcc-hep phase tran-
of the total energy of about 1 mHartree due to the shapeijtion at about 200 GPa and a hcp-bcc transition at about 565
technique. GPa were calculated. To compare with these results we fol-

One remark should be made concerning the convergendewed the procedure of those authors.

of the potential and density with increasihg,,,. We tested We calculated the total energy at 12 lattice constants be-
how the total electron density converges with the cutoff motween 0.3, and 1., (V, being the equilibrium volume
mentum and found that already Iat,,,>>6 the electron den- for all three structures. For each volume we used an opti-
sity deviates less than 18 [electronsfa.u)®] from the  mized set of compression parametegs The changes of the
Lmax= 12 result. This is due to the fact that the net densityXo about this large range of lattice parameters is less than
has a maximal angular momentum(ié the case of orbit- 7%, which results in a maximal energy change of 1 mHartree
al9 and that the treatment of the overlap density is rapidlycompared to calculations with fixed. We used about 300
converging withL. In contrast, the shape treatment of thePOINts in the irreducible Brillouin zone, which gives con-
exchange and correlation potential is more sensitive to th¥erged results with respect to the numberkopoints. As
cutoff momentum, since the shape function E&f) exhibits exchange and correlation potential we chose the LSDA ver-

the crystal point symmetry and therefore has more features ion of Perdew and Zungé‘?,that Is derived from the best_
the higher-order derivations than the quasi-one-dimensionaﬂuamum Monte Carlo calculations for the electron gas avail-
shape function Eq38). We compared the total xc potential able at present. , .

. e . These total energy data were fitted to an equation of state
along various directions calculated directly from the electron(EOS of the functional form
density with the result obtained from Ed86) and(57). We
found a maximum deviation of 2 mHartree far,,~=12.
These deviations add up to zero over the whole unit cell, 1+ ﬂ) exp{ 8% _
since they originate from the neglect of higher angular mo- | |
menta, which are orthogonal to the=0 contribution. (88)

In Fig. 3 we show the total energy curve with varying . . .

lattice constant. The results for the minimum basis and fonHere’ 8 Is the zero pressure lattice constastE, is the

the basis with semicore orbitals are presented. Table | su Jround-state energyjs a scaling length, anBl; 1S relat_ed to'
he bulk modulus(The energy zero, of course, is arbitrary in

. . . ﬁwe above equationThis functional form gives a very good
produced by other methods and with experiment. Our Iatt'C(?it to the totgl ene}:gy data. The derivati\g/e of the E)é)% with

constant result deviates from the experimental value b¥espect to the volume gives the negative of the pressure.

about—0.4%, which is the usual behavior of LSDA calcula- Figure 4 shows the dependence of the pressure on the vol-
tions. Compared to the FPLAP\Refs. 31 and 3presults,  me for all three structures compared to experimental data.

our total energy lies higher by approximately 4 mHartree/as can be seen, the curves for the three structures are not
atom. The lattice constant and bulk modulus are nearly thgery different. This is due to the fact that the total energy
same. Additionally, we performed an orthogonalized planecuyrves are very similar. The agreement of the theoretical and
wave (OPW) calculation. We tested the convergence of thethe experimental results is quite good. In Ref. 33 a phonon
total energy with respect to the number of OPW'’s. In Tablecontribution was added to ¢h0 K results to compare better

| the tolerance interval for the energy is given. These boundsiith the experiments. However, the influence of this correc-
hold for more than 2000 OPW's. tion was small.

E(a)=—(Eo+E)+E,;
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500 ; . a,=6.53
-1505.862 et .

@ —@x,(sp) with x,(d)=1.3
B x,(d) with X (sp)=1
&—@ x,(semi—cpre)

400 -1505.864 SP

-1505.866 -

300
-1505.868

total energy [Hartree]

-1505.870 f f { t t

200

pressure [GPa]

-1505.864 NSP 7

100
-1505.866 -

total energy [Hartree]

-1505.868 - b

~1505.870 e
0.85 0.95 1.05 1.15 1.25 1.35 1.45

compression factor x

FIG. 4. Pressure versus compressiMygg/V, Vaoi=112 a.u.

being the experimental 300 K equilibrium voluimier aluminum. FIG. 5. Total energy versus compression parameter for nickel

The lines are the theoretical results for 0 K. The open symbols arg| _ —12). The spin-polarized(upper panél and non-spin-
room-temperature diamond-anvil-cell measureméRsf. 34 and  polarized(lower panel calculation.

the filled symbols are derived from shock déRef. 39.

Next, we consider the magnetic elements, starting with

From the EOS the enthalpy may be calculated. The crossiickel. For nickel as well as for iron, the inclusion of the
ings of the enthalpy curves give the transition pressures fogemicore statess3p into the valence set is unavoidable due
the various phase transitions. Table Il gives our results angb a significant overlap of the orbitals from neighboring sites.
some data from other calculations. The errors are due to a8o, the minimum basis for this elements is3p4s4p3d.
uncertainty in the total energy of about 1 mRydberg. Westill, the bands corresponding to the semicore states are al-
only show the physical transitions which are fcc-hcp andmost dispersionless. The change of the total energy while
hcp-bee. Our result for the first transition presstie-hcp  varying the compression factor of these orbitals H20%
is well within the range of the results given in Table Il. The around the optimum value does not exceed 0.06 mHartree.
LMTO-ASA value seems to be too small since the measureThe remaining parameters for thes4p and 3 states are
ments in Ref. 34 found a stable fcc structure up to 219 GPajetermined both for spin-polarized and for non-spin-
Thus, our fcc-hep transition pressure compares well withpolarized nickel in Fig. 5. It can be seen there that, except for
other calculations and is not in contradiction to the experi-a constant shift, the curves are identical, and the optirgim
ment. The second phase transitidrep-bcg is predicted by  values are the samgg(sp) = 1.05 andxy(d) = 1.3. The shift
our calculation at a remarkably lower pressure, compared tf the magnetization energfmag= 1.5 mHartree.
other methodgexcept LMTQ. Since an experimental justi-  To test the completeness of our basis set, we performed
fication of this static lattice phase transition is not yetadditional calculations using thelbrbital as a supplemental
present, we cannot discuss the validity of the results. As galence orbital. Figure 6 compares the total energy and the
test of our calculation we enlarged the basis set, includingnagnetization dependence on a single compression factor for
the 2s2p and 4 orbitals into the valence states. But this did hoth basis sets. The main conclusions are first that the energy
not change the results. As far as experimental data beingariation becomes smaller when adding the arbital, and
present for aluminum under high pressure, our results comsecond the magnetic moment becomes almost a constant ver-
pare quite well with them. susx,, a clear indication for the onset of basis completeness.
Furthermore, the energy is lowered as it should be when
variational freedom is increased. Table V summarizes the
total energy, lattice constant, bulk modulus, magnetization

The next example will be copper. The minimum basis seenergy, and magnetic momefat the theoreticah,) calcu-
for copper is given by 44p3d. The semicore states are lated by different methods.
3s3p. Again, we determined the optimal, for the three One point may be state@ee iron beloyw We find mag-
classes of orbitals 8Bp (if treated as valence stajeds4p, netic moments generally smaller than those calculated by
and 3 by energy minimization. The result wag(4s4p) MT or ASA approaches but which compare well with other
=1.1 andxy(3d) =1.3. The energy variation while changing full-potential results. In our view this difference is connected
the compression parameters by abaui% is less than 1 with the treatment of the xc potentidiCompare the discus-
mHartree. If we add the semicore orbitals to the valence sesion about the effect of the linearization of the core xc po-
the energy variation with, is of the order 10° Hartree. tential on the magnetic moment in pseudopotential
The effect of adding these orbitals is a constant energy shifnethods:}) Thus, one effect of full-potential methods is a
of about 0.5 mHartree. Again the energy is raisg@ke the reduction of the calculated magnetic moments. This is quite
discussion abovg.Table Il gives the lattice constant and reasonable. The moments determined at the theoretical lat-
bulk modulus in comparison with other results. The latticetice constant are smaller than those calculated at the experi-
constant and bulk modulus are the same as from FPLAPWhentala,. So, u should be smaller than the experimental
results, but our total energy is 7 mHartree/atom too high. value. The trend in MT calculations is to get at least the

C. Transition metals
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a,=6.53 a.u. TABLE VI. Iron: total energyE,, (Hartreg, magnetization en-
T T T ergy Enag (MHartreg, lattice constant, (a.u), bulk modulusB

0.60 (Mbar), and magnetic momeniu(g).
2
E; 0.58 Etot Emag o B M~
€ os6 Present workspspdbasis —1261.447 10.0 5.24 2.30 2.04
§ Present workspspddbasis —1261.448 10.0 5.24 2.29 2.03
£
0.54 PseudopotentialRef. 11 10.1 5.22 2.26 2.01
’ ’ ’ FPLAPW (Ref. 31) —1261.451 5.25 2.26 2.17
-1505.862 |- a
° ® spspd FPKKR (Ref. 35 522 241
= ® spspdd Expt. (Ref. 36 542 1.68 2.22
-1505.864

8Scalar relativistic calculations.

-1505.866

We present our results for diamond, which is a cubic lat-
tice, but has two vacancies along ttiel1) direction com-
pared to a closed-packed latticgf those vacancies were
occupied by atoms, the resulting structure would be body
centered cubi¢.As mentioned in Sec. Il F, the construction
_1505.872 . : . of the shape function may give a hint where the empty

1 1.1 1.2 13 14 spheres should be placed in the lattice. In the diamond struc-

compression factor x, ture the minimax condition Eq(70) indeed produces cell

FIG. 6. Total energylower panel and magnetic momerigpper ~ Sh@pes which are rather compact except alongh# axis.
pane) versus @ compression factor for spin-polarized nickel ON this axis the ratio of the distance to the neighboring at-
(L= 12) for two different basis sets. oms in opposite directions is 1/3. If we introduce two equally
spaced empty spheres on this axis, we arrive at a bcc-like
filing of the lattice. Accepting the introduction of empty
|Spheres, one again has the rather isotropic cell shapes pro-

potential methods is more likely the correct LSDA number. duced by the bcc structure. To get more isotropic cell shapes

All the statements above concerning the results for nickeYithout introducing empty spheres, one has to relax the
are rather similar for iron. The basis sets and compressiofftinimax condition. Then one finds orthogonal cells which
factors are the same, and the stabilization of the magnetig'® centered around the atoms but still have the edge ratio
moment with switching to the larger basis $micluding 4d 1/2.8)/(2.8). After applying the space-group symmetry, one

orbitals takes place the same way. Thus, we refer to Tabl&ndS up with centered shape functions having smooth but
steplike features.

VI for a summary of our results compared to other calcula- . .
; ; To test our approach we compared calculations for dia-
tions and experiment. ; ) :
mond, both using the shape function described above and
_ using empty spheres. Begin with the direct calculation with-
D. Diamond out empty spheres. As a valence set we toeR3d. (The

Until now we found rather good results for simple metalseffect of treating the & orbital as a valence state was not
and closed-packed structures. However, if the full-potentiaBxamined. Then we found, via energy minimization, the op-
character of the scheme is to be taken seriously, open strumal values,Xo(sp)=1.3 andxq(d)=1.3. The maximum
tures should be possible to be calculated as well. Surely thenergy difference under=5% variation of thex, is 3
are limitations due to the minimum basis, which does notmHartree/atom. Testing the convergence of the energy with
comprise polarization orbitals. the cutoffL,,cand the shape function interation depihwe

found an uncertainty of about 3—4 mHartree/atom. The cal-

TABLE V. Nickel: total energyE,, (Hartred, magnetization culated lattice constant and bulk modulus are given in Table

energyE nag (MHartreg, lattice constangy, (a.u), bulk modulusB ~ 1V. Our lattice constant is about 1.0% too high.

-1505.868

total energy [Hartree]

-1505.870

experimental or even higher value for We think that the
smaller value given by a number of pseudopotential and ful

(MBar), and magnetic momeritug), The calculation for diamond including empty spheres was
performed with the 8p3d basis set for the carbon atoms
Eiot Emag @8 B “ and with the B2p basis set for the empty spheres. The latter

set should be large enough to ensure sufficient variational
freedom at the vacancy positions. The compression param-
eters are determined as described abpxgc(sp)=1.1,

Present workspspdbasis —1505.869 1.5 6.53 2.41 0.551
Present workspspddbasis —1505.870 1.5 6.53 2.30 0.559

PseudopotentigRef. 11 1.3 6.50 2.39 0.60 Xoc(d)=1.0,%XgemsSP)=1.0], and the energy change with

FPLAPW (Ref. 31 —1505.871 6.53 2.60 0.565 Xo is of the same order of magnitude as before. Since the
FPKKR (Ref. 352 6.48 2.53 shape functions for this calculation are much more spherical
Expt. (Ref. 36 6.65 1.86 0.61 thanin the former calculation, one would expect faster con-

vergence of the energy with,,,, andn. This is the case and
8Scalar relativistic calculations. the uncertainty of the energy is about 2 mHartree/atom. Ad-




1756 KLAUS KOEPERNIK AND HELMUT ESCHRIG PRB 59

functions and the crystal density and potential. The method
S/ of linear combination of nonorthogonal overlapping local or-
bitals has been shown to allow accurate and efficient calcu-
lations using a minimum valence basis set. Core relaxation
due to the change of the electron density is treated correctly
in each self-consistency cycle. The potential was represented
as a lattice sum of local nonspherical contributions. It has
been verified that with increasing angular momentum cutoff
L max Of the L expansion of these local contributions the po-
tential is converging towards the exact crystal potential. This

-5 S B
\< \<f means the scheme presented is full potential.
=

energy [eV]

L Calculations on simple structures result in a good agree-
15 | 1 ment with other full-potential methods. The total energy dif-
/ ferences between our method andwWien9s-FPLAPW-code
result are a few 10 mHartree/atom. The lattice constants,
25 X = X . bulk moduli, and magnetic moments are essentially the same
as given by FPLAPW.
FIG. 7. Diamond: electron bands calculated with empty spheres The only limitations of our approach are due to the use of
(full lines) and without empty spherdgashed lines a finite basis sefwhich may be incomplejeand the cutoff
momentumL,,,,. However, as has been shown even for
ditionally, the charge density of this calculation is more pre-open structures such as diamond, the results are quite encour-
cise than in the calculation without empty spheres, whichaging. If higher accuracy is needed, the introduction of
leads to a decrease of the total energy by about 17 mHartregmpty spheres gives a considerable improvement.
atom. Table IV shows the lattice constant, bulk modulus, and An advantage of the present method is the rather low
energy. The former two agree now nearly perfectly withnumerical effort. In particular, the dimension of matrices to
FPLAPW results. Thus we can conclude that our methothe diagonalized is kept at the lower limit, which allows one
gives rather good results for this open structure even withouo treat large unit cells. Furthermore, there are some well-
using empty spheres, and with empty spheres the quality igstablished approaches to disordered materials and crystal
the same as for close packed structures. field calculations and disordered materials based on the main
Finally, we present in Fig. 7 the band structure for dia-framework used in this scheme, which allows for a direct
mond atay=6.75 a.u. Dashed lines are results withoutapplication of the present method to this problem.
empty spheres while full lines are with empty spheres. For
the occupied bands the deviation between both cases is typi-
cally 0.05 eV. For the conduction bands both results deviate
from one another by up to 1 eV. Clearly, for applications
concerning the valence bands only the minimum approach The authors wish to acknowledge P. Novak's assistance
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