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An approach for particle-hole correlation functions, based on the so-called self-consistent random-phase
approximation is developed. This leads to a fully self-consistent RPA-like theory that satisfiesuherule
and several other theorems. As a first step, a simpler self-consistent approach, the renormalized RPA, is solved
numerically in the one-dimensional Hubbard model. The charge and the longitudinal spin susceptibility, the
momentum distribution, and several ground-state properties are calculated and compared with the exact results.
Especially at half-filling, our approach provides quite promising results and matches the exact behavior apart
from a general prefactor. The strong-coupling limit of our approach can be described analytically.
[S0163-182698)03748-3

I. INTRODUCTION stands that it is numerically very demanding. We therefore
choose to apply it to the one-dimensional Hubbard model for
The advent of highF, superconductivity, which remains several reasongi) The exact solution of the ground state is
unexplained theoretically in its essence, has spurred an endtrown from the Bethe ansa¥zTherefore, a direct compari-
mous quest for developing many-body approaches capable son of the SCRPA results is possibi@) The numerical
describe strongly correlated fermion systems. Various foreffort in one dimension may be expected to be more modest
malisms have been applied in the past, each with its strengttiban in higher dimensiongiii) The experience gained in
and deficienciesfor a review see Ref.)1 the one-dimensiondlLD) case may help us to attack higher
However, contrary to standard mean-field theory, which isdimensions in the future.
a commonly accepted lowest-order many-body approach, for The price to pay for this strategy is that one-dimensional
correlation functions, such a generic method is missing s@roblems are notoriously difficult to describe because of
far. In this respect, any new and promising vistas are worththeir extreme quantum character. As our method is not spe-
while to be pursued and elaborated. Indeed, in the recentfically designed for one dimension, we cannot expect it to
past, a theory for two-body correlation functions has beeneproduce particularities, such as Luttinger liquid behavior.
developed bearing the characteristics of a generalization of As we will see, our approach nonetheless permits us to
Hartree-Fock theory to two-body clusters. In its roots thisobtain interesting results in one dimension. They should,
theory goes back rather far in time and has been promotelowever, be judged in light of the fact that in this first ap-
independently by several groups. In the literature, it is  plication to the Hubbard model we did not solve the SCRPA
known under various names such as the self-consistemtquations in full but applied a rather obvious and from the
random-phase approximatiatsCRPA, cluster mean field numerical point of view very simplifying approximation.
(CMF), and equation of motion methd8OM).?~°In itself it Nevertheless, this approximation, known in the literature un-
is an approximation to the so-called Dyson equation apder the name of renormalized RPA, keeps the essentials of
proach (DEA) to correlation functions where one replacesthe self-consistency aspects.
the full mass operator by its instantaneous part. However, We demonstrate in this paper that the formalism allows
only recently this method has found the attention and formafor the self-consistent solution of a fully closed system of
developments it deserves with, indeed, very promising renonlinear equations for two-body correlation functions.
sults. The most outstanding of those is certainly the exadvloreover, important formal theorems are respected. Among
reproduction of the lowest spin-wave excitation spectrumthose, we, for instance, cite the fulfillment of thesum rule
o= (m/2)|sink|, known from the Bethe ansatz, of the anti- (energy weighted sum rulend of the Luttinger theorem.
ferromagnetic Heisenberg chdimMMoreover, also some sim- Other interesting results concern the strong-coupling re-
pler models have been treated successfully in this approactgime of the half-filled chain. For example, the self-
Encouraged by these results, we thought it worthwhile taconsistently calculated momentum distribution can be found
apply the method to the strongly correlated electron problenanalytically in the largdd limit. It obeys ny=cosk with a
within the single-band Hubbard Hamiltonian with on-site re-proportionality factor of 4J instead of 8 In 4J of the exact
pulsionU. result, known from the largé} expansion of the Bethe an-
Since the SCRPA approach is based on nonlinear equ&atz solution, resulting in an error smaller than 30%. This
tions for nonlocal two-body correlation functions, one under-result is the more astonishing as it was obtained with the
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renormalized RPA approach. It can be expected that it wilcomponents are again chosen according to the problem in

be substantially improved once the full SCRPA solution isquestion. For the derivation of a Dyson equation, however,

available. we will chooseB=A". The caseB# A" needs further con-
The paper is organized as follows. In Sec. Il, in order tosiderations that may be important for the derivation of inte-

make our paper self-contained, we will give a brief overviewgral equations for vertex functions.

of the SCRPA theory starting from the equation of motion The time dependence of the operators is given in the

for a completely general Green’s function. In particular, theHeisenberg pictureX(t)=e'M'Xe ™Mt where the Hamil-

explicit form of the self-consistent and renormalized RPAtonianH is also completely general. It may describe relativ-

particle-hole propagators is derived in terms of a closed sysdstic or nonrelativistic Fermi, Bose, or spin systems or any

tem of nonlinear self-consistent equations. In Sec. Ill, oursystem for which a Hamilton operator exists.

approach is applied to charge- and spin-correlation functions At equilibrium the two time Green’s functiori&) depend

in the Hubbard model. In Sec. IV, we solve numerically theonly on the time difference such that their Fourier transforms

set of self-consistent equations for the renormalized RPAare only functions of one frequency. These are the quantities

response functions for different fillings and interaction for which we want to derive a Dyson equation. As the deri-

strengths. Our results are compared with the Bethe ansatation is the same for either causal or retarded Green'’s func-

solution and with quantum Monte Carlo calculations. Fortions we will from now on omit the upper indices.

half-filling and largeU, analytic expressions are given for  Let us establish the equation of motion B g(t,t'):

the momentum distribution function and the susceptibilities

of our theory. In Sec. V, we draw some conclusions and give _d Cmseraay ,

an outlook on some improvements that are planned to be : E«A(t)’B(t )))=08(t—t'){[AB]-)
implemented in our approach. In Appendix A, we outline the ,
connection between the SCRPA and a variational ansatz that +{([AH](1);B(t))), ()

minimizes the energy weighted sum rule. Appendix B Pro-or in energy representation
vides the explicit expressions for the free particle-hole sus- ' '
ceptibility in one dimension. In Appendix C, we show how w((A;BY),=([AB]_)+{([AH]B)),. (4)
the analytic expressions that we derived for the strong-

coupling limit of our theory at half-filling, are a rigorous On the right-hand sidérhs) of Eq. (4) the commutator
solution of the renormalized RPA equations.

N:=([A,B]_,) 6)
Il. DYSON EQUATION APPROACH plays the role of a norm matrix, afd[A,H];B)),, is a gen-
TO MANY-BODY GREEN'S FUNCTIONS eral Green’s function containing the interaction once explic-

itly. For fermionlike operator®\ andB we will use the an-
ticommutator Green’s functioneE —) and for bosonlike
operatorge.g., a product of an even number of fermion op-
ratorg the commutator Green’s functior€ +).

Under the assumption that the inversg 04;B)),, exists,

In this section, we briefly want to review the Dyson equa-
tion approachDEA) to correlation functions.The DEA is
increasingly used in the many-body community and has re
cently produced interesting results in various domains of
many-body physicé:’ N e :

Let us start with the definition of a general caugithe- N effective “Hamiltonian”7{,p(w) can be defined as
ordered or retarded many-body Green’s function at zero _ ] o1
temperature and at equilibriufthe generalization to finite Has(@)=([AHLB)).((AB)), ™ 6)

temperature, using the Matsubara technique, is straightfofrhe equation of motiori4) can thus be transformed into a

ward), Dyson equation,
Chatt)=(AL;B)) O((AB)), =N+ Hag(0)((AB)).,. @
:=—i(0|TA(t)B(t')[0), (1) we stress again that the products on the rhs of Ejsand
et et (7) are understood to be matrix multiplications.
Gar(Lt)=(A(1);B(t"))) As we do not yet know how to determine the effective
=—10(t—t")(O[[A(t),B(t")]_.|0), I(-|7:;1miltonian Hag(w), the solution of the Dyson equation
2 '
where |0) is the exact ground state arkl Wick's time- ({A;BY) ,={w—Hag(w)} N, 8

ordering operator. ]

Here, A(t) andB(t') are arbitrary operators built out of rémains for the r_npment completely for_mal. In order to de-
any number of annihilation and/or creation operators ofVé @ more explicit and useful expression fHfhg(w), we
Bosons or Fermions or mixtures of both. Usuallyand B insert the inverse of the formal soluti@8) into Eq. (6):
will depend on one or several indices, and the notation _ _ 1
((A;B)) has to be considered as a shorthand for the matrix Hag(@)=(([AH]:B)), N {o—Hag(w)}
Green’s function((A,;Bg)) where @ and 8 run over the =M\ g(w)— Hig(w). (9)
whole set of quantum numbers. The operatdrandB can
also be spin operators or even more general operators such@ise first part,H'AB(w)E(([A,H];B))wN‘ lw, can be ob-
multicomponent operator&=(A;,A,,...) where the single tained from the equation of motion for the higher Green’s

p p 1,72 g
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function({[A,H];B)),, which is set up from “the right” this The same scenario remains valid if we take foand B
time (i.e., derived with respect t0 instead oft): more complicated operators such as, e.g., the density opera-
tor a, a,, . Again only the (Jp— 1h) irreducible parts of the
(([AHI]:B)),o=([[AH],B]-)+{(({[AHL[H.B])),- 2p—2h Green'’s function in Eq(10) contribute to the effec-
(10 tive Hamiltonian.

If we adopt B=A", the second part of the effective ) o
Hamiltonian, HRB(w)E«[A,H]; B)) N Y s(w), con- A. Self-Consistent random phase approximation
tains onlyn-line reduciblecontributionst® with n being the As discussed above, the effective Hamiltonian splits, also
number of fermion operators . Further, it can be showh  in the general case, in an instantaneous and an energy depen-
that the sole function oH')\B(w) is to cancelall reducible  dent part. The instantaneous part can be considered as a gen-
contributions of Hyg(w). As the double commutator eralized Hartree-FockHF) Hamiltonian(see below. There-
([[A,H],B]_.) has no reducible contributions, we just have fore, as a first approximation, one can try to solve this “HF
to put an index “irreducible” on the Green’s function on the problem,” neglecting the resonant part of the effective
rhs of Eq.(10) to obtain as the final expression for the effec- Hamiltonian. As we will see later, this allows us to solve,

tive Hamiltonian e.g., the two-body problem on the level of a Salinger-like
. equation for a single-frequency Green'’s function, in contrast
Hag(w)={{[[AH],B]_ )+ {([AH][H,B)MN T to the Bethe-Salpeter case where a three-frequency Green'’s
L SC L a res function has to be determined. This means that we can intro-
=Hzgt Hap(w). 11 duce two-particle states with shifted energies. Therefore, the

) o ) _ consideration of the instantaneous part of the effective
We see that the effective Hamiltonidhl) splits up in @ pamiltonian can be understood as a direct generalization of
natural way in an instantaneous part and in a truly dynami¢e common single-particle HF approximation to the more-
(resonantpart. The latter contains scattering processes leadsoqy or cluster case. In the past, this has been called cluster
ing to imaginary potentials and corresponding real ones with, o4 field CMF) (Ref. 5 or SCRPA*® In the remainder of
a frequency dependence. this paper, we will adopt SCRPA as shorthand for our ap-

To obtain a better understanding of the various terms COM3roach, which, for the two-body case, can be connected to a
tributing to the effective Hamiltonian, let us analyze Etl) | aiational priﬁciple(see Appendix A '

for the well-known case of the single-particle propagator, |, analogy to the single-particle Green’s function we thus
that is,A=a;, andB=a,,. Since later we want to restrict can define a generalizettbody mean-field propagator by
ourselves to a nonrelativistic fermion system let us considegubstituting the instantaneous part of the effective Hamil-
a typical Hamiltonian, tonian35 back into the formal solution of the Dyson equa-
1 tion (8):
_ Faot — — o

H % t10a; a; 2 1;340123@1 a, a4as, (12 (ABY = (0= HSS) A
wherea,a™ are fermion destruction and creation operators. ={o—([[AHL.Bl_oN 1}V (19
The matrix elements$;, and v 1534= v 1534~ U 1243 Of the ki- o i . )
netic energy and the two-particle interaction, respectivelyYsully it is possible, as we will illustrate in an example
are expressed in an arbitrary single-particle basis which conélow, to close the system of equations in the following

prises for example quantum numbers for momentum, spirSense: For a full set of operatofs and B agg for a two-
isospin, and so on. particle interactiorall expectation values itz can be de-

The norm matrix(5) is thus given byN;; = 814 . In this termined self-consistently from the Green'’s functidd) via
case, the effective Hamiltonian is the sum of the singlethe spectral theorem. For retarded Green's functions, the

particle energy and the full self-energy. The static part of theésPectral theorem at temperatyse= 1/(ksT) reads*
effective Hamiltonian, expressed by the double commutator

<[[a1,H],a1+,]+>, yields the Hartree-Fock or mean-field (AB)’=(AB)—(A){B)
Hamiltonian. We thus have recovered an important piece of 1 e (¢ A B
the single-particle Dyson equation. Working out the second - f dw m{( ’7>>w
part of the effective Hamiltonian in Eq11) yields the fol- T )2 1—ee Po
lowing 2p—1h Green'’s function:

1 — + + + inr— —>THO — i oodou Im((A‘B))’et

Z 2234 V1234 ((85 @483)1;(85,8,,821) 7))y Vargrorr - 7 Jo 2w

2'3'4"
(13) L e

As mentioned above, in E¢13), all reducible contributions ([ABl-9=—— f,wdw Im((A;B))¢" (15

to the effective Hamiltonian are removed and we obtain the

usual irreducible self-energy 1 (w) of the single-particle The first of the Eqgs.(15 is the well-known fluctuation-
Dyson equation by putting an index “irreducible” on the dissipation theoremThe superscript indicates that we cal-
2p—1h Green’s function in Eq(10). culate a correlated expectation value, i.e., fluctuations of
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(AB) around their classical mean val{#)(B). This expec- o((A;BY)YSC= N+ ([[AH],B]_ JN L(A;B))SC (18
tation value is known asumulantor, in the sense of Feyn-
man graphsconnectedaverage? As indicated in Eq(15), rather than Eq(4). Again, the norm matrix and the double
the Fermi function in the spectral theorem for correlationcommutator on the rhs are real andndependent. Inserting
functions (AB)° reduces to a step function a&—0. The Eq.(18) into Eq.(17) and applying the spectral theordab)
commutator expectation values, such(pa,B]_,), depend yields the norm matrix on the rhevhich is canceled by
only implicitly on temperature, since the Green’s function A" 1).
occurring in the spectral theoreth5) is temperature depen- From the above we see that, because of the double com-
dent. mutator structure of the effective Hamiltoniak>¢, the

From now on, we will restrict ourselves to the=0 case, SCRPA Green’s function fulfills the energy weighted sum
leaving the finite-temperature consideration to forthcomingule (17) practically by construction.
investigations.

C. Particle-hole propagator

B. E igh I . .
nergy weighted sum rule As a concrete example, we will derive the SCRPA expres-

The well-known energy weighted sum rule osum rule -~ sjon for a particle-hole Green’s functidia, ay;a,,ap))e'
connects the imaginary part of the exact Green's functiony, 4 fermionic system with general two-body interactions as
((A;B)), to the expectation value of the double commutatorgescribed by the HamiltoniafL2). Since the operators de-
([[AH],B]-.). Sometimes it is possible to choose opera-fining the Green’s function are pairs of fermions, we will use
tors A and B such that the double commutator the commutator Green’s functior€ +1).

([[AH].B]_.) can be evaluated analytically. In this case, For a homogeneous system, the kinetic energy is diagonal
the sum rule may be used as a rigorous check for any agy momentum space,

proximative Green'’s function.

Let us recall briefly the derivation of the sum rule. We can ti = Sk Excs (19)
compute([[A,H],B]_,) using the spectral theore(5) for
the higher Green'’s functiof{[A,H];B)),,, with k standing for momentum and other quantum numbers
such as spin.

1 0 .. .
__ = . ret The norm matrix is also diagonal,
(TAHIBY 3=~ | do m(anTBYE.

(16) Nkpkrp,E([a;ak,a;ap,],>
Inserting the equation of motio@) on the rhs and supposing = St S (N 2
the norm matrix to be real, we find the well-known energy ki Opp' (M~ M, 20
weighted sum rulé? where
1 o0
([[AH].B]-9=—— J do o Im((A;B))e (17) nk=(ay a) (21

stands for the occupation numbers. The effective SCRPA
We will now show that the sum rulél?) also holds for  Hamiltonian, introduced in Eq11), can be worked out for
the SCRPA Green’s functio(A;B))5°. From Eq.(14) we  the Hamiltonian(12). Using summation convention, this
see that(A;B))>C satisfies the equation of motion yields

Higk'p'EQ[a;ak,H],a;’apr],)(np/—nk,)‘l

= B Oppr (€k— €p) F (Np— NV ik p
1 o ot cpl — + o+ c
12 GppUkaya50,{ B Bq,8a,20,) “+ 7 eV, 0,050( Aa, g, 3a,2p7)
1 tat cy 17~ + 4t c
+ 5Uprkazay( B p Bq,8q,) + 30q,q,pk(Aq, A AuBpr)

_ + 4t c_T— + _+ c . —1
vquqsk’<apaq2aq3ap’> Up’q2q3p<ak'aqzaq3ak> 1(ngr=ner) ™7, (22

where ¢, denote the Hartree-Fock corrected single-particleAs we will see in Sec. Il D, the second term in E§2),
energies, (Np—= NV ke Will lead us to a RPA-like theory. We will
use the term RPA in a slightly broader sense than usual and
already account for the exchange term of the interaction, see
€= &kt Ukgkdg - (23)  Eg.(23). The term in brackets, in contrast, contains exclu-
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sively correlated expectation valuegi.e., cumulant D. RPA and self-consistent RPA

average¥), We now analyze the contributions to the SCRPA Green’s

function by rewriting Eq(7) as an integral equation:
+ 41 C— + 41
( aqlaqzaqga%) _<aq1aq2aq3aq4>

+ + + + gSC, ,(w):go (@)
~[(@g,2q,)(aq,8q,) ~(aq,2q,){(2q,2q,)] kpk'p kpk'p
24 . SC ,
. " klzpl gkpklpl(w)lcklplkzngkzpzk’p'(w),

not taken into account by the usual RPA-like theories.

kop
The SCRPA Green’s function, 2

(30

SC _ + At SC

Gieplepr (@) = {({Bp A 808p1)) 7 (25) where ggpk,p,(w) has the structure of a free particle-hole
defined in Eq.(14), can now be obtained by inverting the Green’s function,
matrix[w—Hisk,p,]. Once it is determined, all elements of
the effective Hamiltoniar§22) and the norm matrix20) can
be calculated via the spectral theorétd). Moreover, it is
possible to derive an explicit expression for the occupation
numbersn, by summing the diagonal elements of the normThe integral kerneVCfl‘f)1k2p2 represents the interaction oc-

matrix, np—ny, over the index. curring in the effective Hamiltoniaf22),
With the commutator spectral theored5 and the

k-space volume

np_nk
w—(«sk—ep)~l—i0+ '

Groirpr (©) = S Sppy (31

SC _ -1 SC
]Ckpk,p,—(np_nk) [Hkpk’p’_ékk' 5pp’(6k_ Ep)].

(32
V=21, 26 _ _ .
3 Since the kernek’SC splits up into a RPA-like part
we get for the occupation numbers _
ngpplzvp'kk’p (33
1 1 * + + ret H H i
np=)—} Ek n,— py ; dw Im{(a, ag;a, ay)),, - and a remaindeiC®, which only contains correlated two-

5 body densities, it is convenient to rewrite E§0) in a dif-
27) ferent way(using matrix notatioj

In a continuous system, it is necessary to introduce a cutoff

in order to keep th&-space volume’ finite. In lattice sys- GSC= GRPAL GRPAKCSGSC, (34)
tems, as will be seen in Sec. 1l is finite, since thek sum
is restricted to the first Brillouin zone. GRPA= G0+ GOJCRPAGRPA (35)

The correlation function$a§la;2aq3aq4>° in Eq. (22) are
connected to those, which are accessible via the spectréit this point, we emphasize that E35) has exactly the

theorem(15), same structure as the usual RPA equation. However, in our
theory the occupation numbers can and will, even at zero
<(a§laq4) : (aq+2aqs)>cs(aglaq“a;za%)—<a;1aq4><a;2aq3)_ temperature, be different from the Hartree-Fock values
(28 HF
o ne =0 (Er—€y). (36)
This yields k Pk

1 (= In the following, we will consider the Eq35) as generic
<a; a; ag.ag,)’=—— f dow Im((ag ag ;a; ag yyret for the RPA whatever the occupation numbers will be. We
1T ™ Jo 1o will label it pure RPAif the occupation numbers are fixed to
o o their HF values(36). In contrast, a theory in which the oc-
<aqlaq3>[5q2q4 <aq23q4>]' (29 cupation numbers are determined self-consistently from the

RPA Green'’s function or contain correlations in any other
where for a homogeneous system the last term on the rhs \Iﬁay will be calledrenormalized RPA

related to the occupation numbers by momentum conserva- In SCRPA, Eq.(34) is coupled to the RPAEq. (35)]
tion. upgrading the(renormalized RPA to the self-consistent

to self-consistency. We therefore start with an assumptio
for the expectation values ¢ and N. The SCRPA
Green’s function, obtained by matrix inversion, then allows

us to calculate new values for the elements of the effective

Hamiltonian and the norm matrix by applying the spectral G (w)=[1-G(@) K> w),

Egs.(27) and(29). The newH>C and N lead us to the next

approximation for the Green'’s function and so forth. GRPA ) =[1-G%(w) KRPA1"1G% w). (37

to the self-consistent RPA:
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The improvement contained in the integral keri€lcan be The single-band Hubbard Hamiltonian describes electrons
interpreted by the following connected diagrams: hopping on a lattice with an on-site interactibn!*

(39) wherea;’ anda;, denote the creation and destruction opera-

The hatched circle represents a correlated particle-holfrs for an electron with spir on sitei, respectively. The
propagator and the dot stands for the antisymmetrized inteRCcupation number operator on siteis defined asf,,
actionv. The crosses represent Kronecker symbols in mo=2;,ai,- In the following, we will restrict ourselves to
mentum and other quantum numbers, afdunctions in  nearest-neighbor hopping,

time. We see that the first graph in E§8) corresponds to a

coupling of the single-particle motion to the density fluctua- tij=—t(5)i+1t 95i-1), (43
tions, i.e., a self-energy correction, whereas the second graph o . ]
describes an inducegcreeneylinteraction. Of course analo- "€Pulsive interactions)>0, and zero temperature. We will
gous graphs exist where the interaction is attached to th@ork with =1, set the lattice spacing to unitp 1) and
hole line. Again, we want to emphasize tfaitterms in Eq.  Measure energies in units of the hopping integtal ).

(38) are instantaneous. We obtain the second-order contribu- After Fourier transformation, the Hamiltonian reads
tions in replacing the hatched circle in E&8) by an inter-

action dot:

U
: o H=k2 @y s+ N kzpq a8k qi8n 8p_q - (49)

Notice thatN is the number of siteGons, not electronsand

all momentum sums run over the first Brillouin zone unless
(39) indicated differently. The single-particle dispersion relation

in the hypercubic lattice is given by the Fourier transform of
the nearest-neighbor hopping matrix elemet8),

Cutting the graphs in Eq39) between the two interactions
occurring—one an infinitesimal time after the other—

illustrates the instantaneous coupling of thelh and 2p2h d

spaces. Solving Eq$35) and(34) self-consistently thus con- er=—23 cosk (45)
stitutes a partial resummation of the interaction to a very K i=1 a

high order.

Just as the Hartree-Fock self-energy for a single particlavhered denotes the dimension.
can be constructed from a two-particle interaction term by

attaching an outgoing to an incoming line, viz., A. Charge- and longitudinal spin-density correlations
In the following, we will examine the behavior of charge-
> and spin-density fluctuations in the Hubbard model. There-
fore, we will introduce the density operator
(40)
we may interpret Eq(38) as the Hartree-Fock field for pq(,=; a3+ qo » (46)

density-density fluctuationghis point of view has actually
been adopted in Ref.)5In analogy, we can reconstruct the

loops in Eq.(38) by closing two density fluctuation lines in which is the Fourier transform of the Wannier number op-

A . . . eratorf;, . It will be used to describe charge and longitudi-
the following first-order terms for the interactigwhich can nal spin fluctuations. Summing over the spins gives rise to

be obtained from perturbation thegry the charge susceptibility

1
ﬁ x XCh(q'w):N<<(qu+pql);(PJT'*'PJL)»T- 47

(41)

Considering all exchange terms it is possible to reconstruchs from now on we will use only retarded Green’s functions,
exactly the effective Hamiltoniat22), which therefore rep- e will omit the superscript “ret” on correlation functions.
resents the mean-field Hamiltonian of a gas of quantal fluc- Thez component of the spin on sitecan be expressed as
tuations present in any many-fermion system. the difference between the numberfo$pins and| spins on
that site, or, after Fourier transformation,
Ill. APPLICATION TO THE HUBBARD MODEL
Sé:%(PqT_qu)- (48)
In this section, we will apply the SCRPA, developed in

Sec. Il, to density-density correlation functions in the Hub-Correlations between the components of the spins are de-
bard model. scribed by the longitudinal spin susceptibility,
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1 . In contrast to the general particle-hole propagator defined in
Xa,0)= 5{(S5:55 N Sec. Il C, we will now account for momentum conservation
right from the beginning. As the derivation of the SCRPA
1 propagator is completely analogous to Sec. Il C, we will only
=5 ({(31(pqi—pq); 3 (Pq—Pq))w- (49  state the results.
The norm matrix(20) is given by

We will now examine the charge and longitudinal spin Ao ()=l (Ny—N 51
susceptibilities,x*'(q,w) and xy(q,w) in SCRPA. There- opo (0= 90 (Mo ™ M), )
fore, we introduce the particle-hole Green's function, wheren,,, denotes the occupation number for the Bloch state

k with spin o defined in analogy to Eq21). The effective
N 4 Hamiltonian, which was defined for a general two-body in-
Gkopo' (4, 0)={(Bye8k+ 40181 g0 @po - (50 teraction in Eq(22), reads for the Hubbard Hamiltonian

< u u . . i
Hkgpa—'(q)_6kp50'0"[8k+q_8k]+50,70"(nk0_nk+q0) N+ _5kp50'o"ﬁ 2 <(ak+q7qfo—aka'+ak+qa'ak+q’a')quq’,*a'>
q’

U
+ + c
+ 50’0’ N<ak(rapu'pk—p,—(r+ ap+qoak+qa'pp—k,—o'>

+ + + + c -1
+5U’,—O"N 2’ <(ako'a'k+q—q’0'_ak+q'0-ak+q0')'(ap+q_q/,_0—ap,—o'_ap+q,—(rap+q’,—a')> '(npa’_np+q0") ’
q

(52

|
with pg, being the density operator introduced in E46).  We will see in Sec. Il C that the corresponding system of
The Hartree-Fock corrections to the single-particle energiesquations for spin-density correlations is not closed onto it-
cancel because of the on-sittand thus momentum- self, but couples back to the charge-density correlations.

independentinteraction. As shown in Sec. Il §see Eqs(34),(35)], it is advised to
The spectral theorem vyields for the occupation numberéirst calculate the RPA particle-hole propagator before solv-
[see Eq(27)] ing the full SCRPA problen{55). For the Hubbard interac-

tion, the RPA kernek’RPA defined in Eq(33) is nothing but
1 - the interaction per site,
Nke={(Ng) = N % ledw Im Gyoio(Q, @), (53

’CRPA (q): S

kopa'’ og,—o’ N (56)

where(n,;) denotes the number of electrons per site. In the Eqation(35) can therefore be written as an integral equation
paramagnetic phase, spin-broken expectation values likg

oupling GR™™ (q,w) andGEFA, (0, »):
(a,}am vanish, and we obtain from E§29) for the corre- Pling Gy opo (0, @) Gk opo(d @)

lation functions occurring in the effective Hamiltoni&b2): gEPpA (0, w)= 5kp50'u"g(lzo(qvw)

U

. ) 1 (= +Qﬁ0(q,w)ﬁ 2 gE/Pf(rpo.l(qaw)a
(@8 arpsq)@p)*=~ - jo do 1M Gy1p, (9, ). k
(54) (57)

whereG? (g,) defines the renormalized free particle-hole

As in Sec. Il C, the system of equations is now closed and"oPagator,
can be iterated to self-consistency, since we are able to cal-
. . :a24SC

culate all elements of the effective Hamlltonlarfgpa,(q) ggg(q,w):

from the particle-hole propagator. The latter is given by a
matrix inversion for everyy and w:

(nk(r_ nk+Q(r)
o—[egrq—e]+i0"

(58)

In terms of Feynman graphs, this means substituting the

SCRPA kernerpr,(q) in the integral Eq(30) by its RPA

fopg,(q,w)=[w—Hfpr,(q)]_1(npgr—np+qgr). expression, which is nothing but a spin-flip interaction, rep-
(55) resented by a dot,
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(59

k+q,0 p+aq,o’ k+q,0 k+aq,0

The physical interpretation of E¢57) is that in RPA the SCRPA, we expect it to be more accurate in higher dimen-
Hubbard interaction flips the spin of the electron on each andions than in lower ones. We will see in Sec. IV that, even in
every scattering process. This is certainly a good approximasne dimension, the renormalized RPA solution shows a
tion for an electron propagating in an antiferromagneticallyMott-Hubbard transition at a finite critical interaction
ordered state. In this case, we see from Fig. 1 thaedec-  strength, which, for half filling is of the order of the band-
tron added to thé electron on sité cannot hop off because width. This scenario, which can be considered as generic for
all their neighbors have spify too. Therefore it must be the the RPA, is certainly wrong for the one-dimensional case.
1 electron that hops to a neighboring site. Arriving there, itNevertheless, in higher dimensions it could be quite realistic.
can only hop the same way back to its original site. Other-There, this viewpoint is also supported by methods such as,
wise, thel electron is surrounded by othérelectrons and e.g., the Hubbard-IIl approximatid:'°
thus frozen in. As this process continues, an extra electron Iterating the integral equatio(b7), we can decouple the
propagating in an antiferromagnet from sitéo sitej flips  equations foiGRyn, (0, ) andGren (4, ),
every spin on its trajectory. Thus, neglecting higher-order
loop trajectories, the electron’s path is completely retrace- Grope(th®) = SipGro(d, )
able. This case was first examined by Brinkman and Rice U
who showed that this “retraceable path approximation” is +G2 (q,w)Ux° 0)— > gE,P(pr(q ),
accurate for walks up to length twelve for the analogous case
of an extra hole propagating in an antiferromagnetic spin
configuration. Moreover, they showed that even if the spins gpa 0
are randomly distributed rather than antiferromagneticall kop—o( 0 @) = Gip(0, @)
ordered, the dominant contribution to the hole Green’s func-

U
N Gp (0, 0)

tion comes from retraceable paths. +QEU(q,w)UXgU(q,w)
In this line of reasoning, the dimensionality of the system
i i i i i RPA
plays a crucial role. In one dimension, antiferromagnetic X — 2 gklgp L(q,0), (60)

long- rangee order is forbidden by the Mermin-Wagner
theorem.” Nevertheless, as there are no loop trajectories in where we introduced the renormalized noninteracting sus-
one dimension, the retraceable path approximation becom%%publhty
exact for any spin configuration. '
In dimensionsd=3, antiferromagnetic ordering is pos- 1
sible. As the number of nearest neighbors increases, loop X?,(q,w)ZN > Gen(0,0). (61)
trajectories become less probable. Therefore, the retraceable :
path approximation gets exact to ord2¢1/d*).’ Equation(60) can be solved explicitly for the particle-hole
Moreover, in higher dimensions the correlations areGreen’s function, yielding
weaker than in lower ones. As we derived the RPA kernel
KRPA ,(q) by neglecting the correlations present in the GRPA

U
Kiopor Grirpir(8:0) = Gy (0, 0) | Sip = G (0,0)

3 b ; 4 - »--% j ngg-(q!w)

5 X 0 0
A A R | and
, > > > vl g EEPA (r(q w)

Gro(0, ) V G (q,) -

= ,(1) —_— p ’w .
| X T""%""% A ko q N 7P q 1_UX?(q,w)UX?(q,w)
| (62

\ \ i % { . Finally, we have to determine the occupation numbers

N, self-consistently from the RPA Green’s functi¢62).

As will be explained in more detail in Sec. IV A, this is a
FIG. 1. An electron propagating in an antiferromagnetic latticesomewhat delicate procedure. Indeed, initiating the iteration

from sitei to sitej. cycle, at smalU, with the Fermi step fon,,, one inevita-
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bly picks up some spin instabilities when summing ogeén N
Eq. (53). These instabilities correspond to poles in the RPA {[[pgo.H].pg,r1-)= 500'; [ek+q— &kl(Nke— Nyt go)
Green'’s function at purely imaginary frequencies. This en-

tails that we may create some unphysical values when apply- d

ing the spectral theorem to such a Green'’s function. For ex- = 850122, (COSA— 1) &()Nikjos
ample, integrating Ingiia ,(0,w) over the wholew axis =1 ki

yields an unphysical finite value if the Green’s function has (65)

poles at imaginary frequencies. As this integral is ConneCtegvherek are the components of the vectar The onlv con-
via the spectral theoreifl5) to a commutator, we know that . =~ ~ " P y con-
tributions to the double commutator come from the kinetic

it has to be zero. When iterating the system of nonlmear[erm of the Hamiltoniari44), since, as mentioned abo

equations, it turns out that this pathology is cured. The oc- ommutes with the interaction. Note that fok(2m) dis-

cupation numbers get rounded thus weakening the interac-" . .
tion in such a way that finally the imaginary spin poles dis-Persion law the rhs of Eq65} yields the well-known result

2
appear. At self-consistency, the integral of G}, (. o) (n;)q°/m (see Ref. 18

; . As pointed out in Sec. Il B for the general case, the ex-
;)r:/eersstlelcftr;?l:ﬁgg:(;fnvanlshes for evayyas expected from pectation value of the double commutatéb) is related to

For completeness, we state thting the occupation the imaginary part of the exact retarded susceptibility by an

numbers to their Hartree-Fock values brings us fiemor- energy weighted integrgbee Eq(17)]
malizedback topure RPA:

+ 1 * + ret
<[[pq0'7H]’pqo',]>:_; J’,mdww Im<<pC1cr;pqa">>w .
N =@ (Eg—sy). (63) (66)

The SCRPA Green’s function was shown to satisfy the sum
fulfilled in both renormalized and self-consistent RPA. In be expressed by the SCRPA Hamiltoni&®) and the norm
pure RPA it is only fulfilled as long as all eigenfrequenciesMatrix (51):
are real. As will be pointed out in Sec. IV F, this is closely

connected to the problem of RPA instabilities. <[[pqu],p+ J):Z > HLS (DN, o por ()
If we restrict ourselves to the paramagnetic phase, we a7 kp pioy P11 i
have ny; =ny, implying x{(g,®)=x)(d,®). We can thus
recover the usual RPA structure for the susceptibilities => Hfff o (D (Npor = Npgor)-
x°(q,w) and x*%(q,») by combining the two equatior(§2) kp P
and summing ovek andp: (67)

In view of our formalism this may seem evident. However,
theories that generalize the RPA approach do not necessarily
g} [Gropo(0@) + Gigp ()] fulfill the f-sum rule. Above all, we notice that in E¢7)
all terms containing correlations from the effective Hamil-
_ 2X%qw) tonian Hffp”,(q) cancel when summing ovés and p. In
1-Ux%q,0)’ renormalized RPA, on the other hand, we neglect these cor-
relations right from the beginningee Eqs(56),(57)]. Con-
L sequently, theenormalizedRPA susceptibilities fulfill the
energy weighted sum rulg66), too. Moreover, it is
x*(Q,w)= N kE [Grrpo (4, @) = Grp- (G, )] well-known'®?°that thepure RPA susceptibilities satisfy the
po sum rule(66) if the expectation value on the |hs is evaluated
1%(q, o) wi_th the Hartree-Fock ground-state wave function. Howevgr,
EEt—— (64)  this statement only holds true as long as all RPA frequencies
1+Ux%q,w) are real.
Finally, we find the energy weighted sum rules for
x*(q,») and xSXq,») by combining Eq.(66) for the dif-
B. Energy weighted sum rule ferent spin configurations according to the definitions of the
charge susceptibilit§47) and longitudinal spin susceptibility
(49), respectively:

2|~

x(q,w)=

The fact that the density operatqrg, commute with the
interaction term of the Hubbard HamiltonidA4) gives us
the possibility to evaluatcé[[pqa,H],p;U,]_) analytically. d N 1 (=
In analogy to Sec. Il B, we thus can establish an energy 22, (COSQi_1)<tI>:__f do o Im x*(q, o),
weighted sum rule for the exact susceptibilitigd(q, ») and =1 Tl
x°Xq,w). We will now discuss the fulfillment of the sum d 1 ro
rule for the SCRPA, the renormalized RPA, and the pure /i s
RPA Green'’s functions. P .21 (cosqi—1){t) = T f—wdww Im x4, ).

In the first place, we calculate the double commutator, (68)

N| -
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On the Ihs, we introduced the shorthand . N B .
Sq :; Aaktq and S :; g @qr- (70

~0 1

=13 2 eriNiko (69) . o o
kio Correlations between the spin-flip operators give rise to the

standing for the contribution to the mean kinetic energy peffansverse spin susceptibility

site provided by the electron motion in thedirection. It

should be stressed thét) depends on the occupation num-
bersn,, and thus implicitly on the Green’s function. In con-
trast, for the usuak?/(2m) dispersion law, the double com-
mutator in Eq(65) depends on the mean number of electrondn order to examine the transverse spin susceptibility in
per site(i.e., the filling instead of(t'), and is therefore a SCRPA, we introduce the following correlation functions:

model-independent quantity. In our case of a cosine disper-

sion law, however, the] dependence of the sum rule pro- gﬂi:i,(q,w)z«a,fga“q,,g;a;q’fg,apo,))w. (72
vides a check that does not depend on the Green'’s function

or any other assumption. In complete analogy to the charge-density césee Sec.

_ _ _ Il A), we calculate the norm matrix by evaluating the com-
C. Transverse spin-density correlations mutator of the two operators defining the Green’s function

In this section, for completeness, we will shortly discuss!se€ Eq(20)]:
the transverse spin response. The spin-flip oper&omnay
be substituted in the usual way by a combination of an an- koo () = 8B (Mg Ny g, — ) (73
nihilation operator of ar electron and a creation operator of
a — o electron. After Fourier transformation to momentum The effective SCRPA Hamiltonian reads in analogy to Eq.
space, we obtain (22

1
X' (@0) = 5{(Sg iSq))e- (7D

My (D) = 007 €, o~ €k

-4 — Ul = 00,0 o > (a . c
o’o"(nko' nk+q,—¢7) N+ kp UO”N - <ak+q,—aak+q’,—0'pq—q’0'+ak+q—q’(,-ak0'pq—q',—o'>
q

+ + + +
- 50’0” N Z <(ak0'ak+q—q’0'_ ak+qf'_o—ak+q,—¢7) : (ap+q_qfa—apa_ ap+q,—o'ap+q',—0')>c
q

U
+ + -1
_60’,—0"N<aku-ap,—o'sf(r—p+ap+q(rak+q,—0'8;)r—k>c '(np(r’_np+q,—o’) ' (74)

with p,, denoting the density operator introduced in E4f) in Sec. lll A. By this means, the transverse spin susceptibil-

and Sj being a spin-flip operator defined in analogysgi ity is coupled to the charge and longitudinal spin suscepti-

[see Eq.(70)]: bilities x°" xS". In this work, however, we will not further
investigate the transverse spin excitations.

SI=2 al,8q-0- (75)
k IV. RESULTS FOR THE CHARGE

The Hartree-Fock corrected single-particle energies defined ~ AND THE LONGITUDINAL SPIN RESPONSE
in EQ. (23) are given by IN THE HUBBARD CHAIN

€xe=cxtU(n_,). (76) As a first application of our general formalism, we will
_ calculate the charge and longitudinal spin correlation func-
In contrast to the charge-density case, aibtlements of  tions y*(q,w) and x*¥q,®) in the one-dimensional Hub-

the effective Hamiltonian(74) can be determined self- pard model. This will also serve as a test of whether our
ConSiStently from the Green’'s fUnCtiO('IEZ). The calculation formalism is well behaved in a numerical sense.

of terms like(a; 8 q—q'18p. q_q@p1)" for example, can- It was explained in Sec. Il A that the first step will con-
not be performed with the spectral theorem for spin-flipsist of calculating the Green’s functid,,(d, ), intro-
Green’s functions, since they contain always the same nunduced in Eq(50), on the level of theenormalizedRPA. In
ber of T and | spins. These terms can, however, be deterthis paper, we will not go beyond this approximation. In-

mined from the charge-density Green’s function introduceddeed, the numerical solution of the full SCRPA problem
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turns out to be quite enormous and certainly needs a majo 1.2

numerical effort, which is intended to be invested in future UE2__§ ----------
work. Nevertheless, the main characteristics of the self- 11—

consistency cycle are already present on the level of the ———

renormalized RPA. 0.8

We thus will determine self-consistently the RPA Green’s
function (62) together with the occupation numbeng,, .
Due to the self-consistency, the occupation numbers are
renormalized, which modifies the Green’s funct@ﬁ}(q,w)
and the susceptibility°(qg,») occurring in the RPA propa-
gator (62).

In contrast, in pure RPA, i.e., if we fix the occupation ,
numbers to their Hartree-Fock values given by E6Q), +n/2 +T
QE(,(q,w) and x°(q,w) are identical with the free particle- k
hole propagator and susceptibility, respectively.

After a brief overview of the numerical method we will
discuss the results for the renormalized RPA in the infinit
Hubbard chain in the paramagnetic phase, ng.=ny, .

n(k)

0.6

0.4

o

FIG. 2. Momentum distribution function, for the half-filled
Hubbard chain. Quantum Monte Carlo data from SoréRaf. 29.
eThe dotted line shows the lardgé-limit of the renormalized RPA,

given by Eq.(82).

A. Numerical method be shown that within our resolution the results are not af-

In order to determine the renormalized RPA Green’'sfécted by slight variations of this value.
function, we have to solve the RPA equatigb8),(61),(62)
consistently with the equation for the occupation numbers B. Occupation numbers
(53). Therefore, we start with an assumption for the initial
occupation numbers and set up the following iteration cy-
cle: (i) Set up the renormalized free Green'’s funct{&®) ne=2 (N4 77
from the current set of occupation numbersii) Calculate k™2 A0k T Tkl

the renormalized free susceptibility61) by integrating  of the half-filled Hubbard chain. The renormalized RPA re-
Gro(Q,) over k. Note that for the computation of syits are compared with quantum Monte Carlo calculations.
Im x(q,®) it is convenient to introduce a small but finite \we see that, for smalll, the renormalized RPA momentum
imaginary parti0” in the denominator off,(q,®). (i)  distribution has a discontinuity at the Fermi edge. This is
Set up the RPA Green’s functio62) from G2 (q,») and typical for Fermi liquids, and thus indicates a metallic behav-
x°(q,0). (iv) Compute a new set of occupation numbersior. For largeU, the renormalized RPA momentum distribu-
by performing the spectral integral in E3). This task is  tion is continuous, and our theory predicts an insulating
also simplified by assuming a finits 0*.”  (v) Repeat the ground state. Increasing in small steps (1/4), we deduce
iteration cycle from the beginning until self-consistency isthat within our numerical momentum resolution the discon-
achieved. tinuity at kr vanishes atJ~3. We thus find a Mott metal-

Usually, we will start with a small interaction, e.dJ insulator transition at an interaction strength that is slightly
=1, and a Fermi step for the occupation numbers. For thismaller than the bandwidtf.e., 4. This is in good agree-
U, the RPA equations are then iterated to self-consistencyment with approximations designed for the Hubbard model
The result is used to initialize the occupation numbers of afin higher dimensions, such as, e.g., the Hubbard-llI
iteration cycle with a slightly higher interaction. We thus solutions*®*°In one dimensiophowever, the exact solutidn
increase the interaction in small steps, iterating each time tpredicts an insulating ground state for any firlite Conse-
self-consistency, until the desired value fdris reached. quently, the exact results fon,, known from quantum
This procedure has the advantage that the spin response, Monte Carlo(QMC)?! for finite U and from Bethe ansatz in
contrast to pure RPA, remains stable throughout the wholéhe limit of large U,???3 show a smooth behavior over the
calculation. whole k range for all interactions.

The momentum integrations are performed by summing This disagreement should be judged in the light that the
over a grid of uniformly distributed points in the first Bril- effective Hamiltonian of the renormalized RPA neglealls
louin zone. The number of points is typically 256. correlation functions. As discussed in Sec. Il A, this ap-

Energy integrals are computed using a grid of pointsproximation is expected to be far better in higher dimen-
obeying a Lorentzian distribution peakedsst= 0. The num-  sions. Nevertheless, in the strong-coupling limit, our theory
ber of energy points is typically 2048 and the half-width atreproduces the cosine behavior fgr, known from the Be-
half-maximum of the distribution is about twice the band-the ansatz expansion, apart from the prefadsee Sec.
width, i.e., 8. IV G).

As mentioned above, it is convenient for computational Away from half-filling, the renormalized RPA predicts a
purposes to introduce a small but finite imaginary pait in similar scenario: For small, the momentum distribution
the denominator of the renormalized free Green’s functiorfunction shows a discontinuity &, which now persists up
gﬁg(q,w). Typically we use values of the order of magni- to higher interaction strengths as in the half-filled case. For
tude ofi/16, which corresponds to 1/64 the bandwidth. It canthe quarter-filled chain, e.g., this jump lasts upUe-4, as

Figure 2 shows the momentum distribution function
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12 ' U=2 —— 14 e |11 Xﬁ'ee (anallytical) '
U=3 — Im %""*® (numerical)
U=4 12F —— Imy°
U=2 (QMC, Dzierzawa) + “r X .
U=4 (QMC, Dzierzawa) @ ] Im " (strong coupling)
)
3 Z 08¢
g =
E o6}
04
04
02 r 02 )
0 ] e " .
0 +10/2 +T 0 0.5 1 1.5 2 25 4
k
FIG. 3. Momentum distribution function, for the quarter-filled FIG. 4. Imaginary part of the free and renormalized free suscep-

Hubbard chain. Quantum Monte Carlo data from Dzierzaef.  tibility x°(q=m/2,0) for the half-filled Hubbard chain ag=3.

28).
(78) there must be at least orkevector for which the nu-

can be seen from Fig. 3. The discontinuity occurs precisely'S'ato" of the free Green's functiofb8), (M Nic+ qa),

at the sam&=kg as the step in the momentum distribution does not vanish. This yields
of the free Fermi gas. Therefore, the renormalized RPA sat- |w|=2|cogkp) — cogke—|al)]. (79)
isfies the Luttinger theorem in one dimensfén.

Again, the Mott-Hubbard transition predicted by our we have seen in Sec. Ill A that the Hartree-Fock correc-
theory is in disagreement with the exact behavior away fromions to the single-particle energies cancel. Hence, the de-
half-filling, which is known to be a Luttinger liquid for all nominator of the free Green’s functidf8) does not change
interaction strengths. The latter is characterized by a powefhroughout the renormalization process, and &®) repre-
law singularity in the momentum distribution at the Fermi sents a r|g|d boundary for the imaginary part of the free
points, which is expected in the strong-coupling limit from sysceptibility. On the other hand, any rounding of the occu-
both, Bethe ansatz expansiéhs’ and QMC calculation$!  pation numbers will directly affect the second boundary con-
For finite interaction strengths, it was also detected by QMGition (79). This behavior of the imaginary part is illustrated
studies of infinite Hubbard chairi§. in Fig. 4 for half-filing and q==/2. We see that

Calculations of finite chains indicate a discontinuity(at Im Xfree(q,w), represented by the dotted line, is On|y nonzero
decreasing only very slowly with increasing chain lengthin the domain in between the two boundaries given by Egs.
N.?930 Therefore, they have great difficulties to detect the(7g) and (79).

Luttinger |IqU|d behavior. There are certain similarities be- In Sec. IV A, we exp|ained that for technical reasons we
tween finite chains and calculations using a finite number of,gve to sei0™ in the denominator ogﬁg(q,w) to a small
points in the I_3ri||ouin zone as, e.g., the numerical solution ofyt finite value in order to perform the integral in HG2).

the renormalized RPA equations. Nevertheless, our calcularhis smoothens the numerically calculated free susceptibility
tions indicate a finite slope of the momentum distribution ON(dot-dashed lingin comparison to the analytical expression
both sides of the Fermi points, and we do not find any Sig'given in Appendix B(dotted ling.

nature of Luttinger liquid behavior. Let us now study the imaginary part of the renormalized
free susceptibility, Imy°(q,w), represented by the continuous
line in Fig. 4 for half-filing, U=3 andq= 7/2. On the outer
boundary (78) it behaves essentially in the same way as
1. Imaginary part Im x™%q,w), whereas the inner boundarf9) is com-

Before discussing the RPA response functigii¥q, w) pletely washed out due to the renormalization of the occupa-

andyS™(q, ) let us analyze the renormalization effects in theilon NUMbers, . _ _
free susceptibilityy°(q, ). As will be discussed in Sec. IV G, the strong-coupling

In the (9, ) plane, the imaginary part of%(q,®) is re- Iirr)it of our.theory can be caIcuIated analytically for half-
stricted to the region, where particle-hole excitations existglcl)'\:‘v% tc?ﬁallggle(;%rs ?g(:r?g dc;suhﬂg%n:aefnUIlt:ig]orAfIﬁélc]——’as))
., there must be lafor which w =s,..q~ s, Is satisfied, or, which is lower than the bandwidth and has thus to be con-
sidered as an intermediate interaction, yfrof the complete
renormalized RPA calculatioftontinuous ling qualitatively
: (78) already resembles the properly scaled strong-coupling result

(dashed ling
Figure 5 shows Im®(q,w) for U=6 and half filling.

If the occupation numbers are step functions like in theComparing the continuous with the dashed line, we notice
free Fermi gas, a second boundary condition is provided bghat the renormalized RPA result for Igf now agrees also
the fact, that in the particle-hole continuum described by Egquantitatively very well with the corresponding strong-

C. Renormalized free susceptibility x°(q, )

|w|s’4sing
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T
free

14t Im Xf (analytical) 1 continuum
=== |m %% (numerical) pure RPA +
12l — Im XO | pure RPA x
: 0 . 4 ren. RPA °
---------- Im %~ (strong coupling)
E) L
E 3
© g
£ 2t .
+
+
1} S
+ % x x
. i 0 )
2.5 : 4 0 +n/2 +1

q

. _'_:IG‘ % Imaginary part of the fr_ee and renormaliz_ed free suscep- FIG. 7. Plasmon and magnon dispersion for the half-filled Hub-
tibility x"(q=m/2,w) for the half-filled Hubbard chain ay=6. bard chain atJ=3. The renormalized RPA plasmons are plotted

with circles.+ andx symbols stand for the pure RPA plasmons and
coupling result. The remaining difference comes from themagnons, respectively. The dotted area illustrates the noninteracting
finite imaginary part0™ used for the numerical computation particle-hole continuum. Its boundaries are given by the continuous
of Im x°(q,w). lines.

2. Real part +Ux"™¢q, ), vanishes at an energy below the lower con-
Let us now examine the real part of the free susceptibilitytinuum limit, given by Eq(79), and an undamped magnon is
x™%q,w). As can be seen from the analytic expressionsreated. Again, this is shown in Fig. 6 by the intersection of
given in Appendix B, Re/™¥q,w) diverges at the two the horizontal line at- 1/U with Re x"® at w~1.6. As the
boundaries of Imy™%q,w), which demark the particle-hole interaction is increased, the magnon is shifted towards lower
continuum. frequencies, and as it reaches- 0, the system becomes un-
The divergence on the upper boundary, given by(28),  Stable. This will be discussed in more detail below. Note that
makes the denominator of the pure RPA charge susceptibiblightly below the upper continuum edge, the dotted line rep-
ity [see Eq(64)] 1—Uy™%(q,w) vanish at an energy above resenting Rg/® also meets the horizontal line at1/U.
the continuum limit where an undamped plasmon is createddowever, as Imy"® is large in this region near the square-
This is illustrated in Fig. 6 by the intersection of the hori- root singularity at the upper continuum boundary, it will not
zontal line at+1/U with the real part ofy™q,w) at @  contribute to the pure RPA spin response.
~3.3. The dotted and dot-dashed lines represent the analyti- Figures 7 and 8 display the position of the plasmons and
cal or numerical expressions for RE°(q, w), respectively. the magnons in theg(w) plane forU=3 and for half- and
Hence, adJ is increased, the horizontal line atULis low- quarter-filling, respectively. Once more, we notice that the
ered and the pure RPA plasmon is shifted towards highepure RPA plasmons lie above the particle-hole continuum,
energies. represented by the dotted area. The pure RPA magnons oc-
A similar scenario can be established for the longitudinaicur below the lower continuum boundary. As the lower

spin response in the pure RPA. Its denominator, 1boundary goes te=0 for q— 2k, the spin pole will meet
the momentum axis nearkg producing the well-known

2 i i - . — i Peierls instability. This instability occurs in the pure RPA for
-------------- Re x"®° (analytical) |
----------- Re %™ (numerical) !
15 | Re . 5 -
xo . continuum
- Re x_ (strong coupling) pure RPA
1t -4 ] pure RPA
= 4 ren. RPA
g 0.5
S _
> AN 3l
I (=
0r 8
e AN 2r
05 ~ _
pure RPA magnon ren. RPA pure RPA pl
-1 L L L i L L L 'r .
0 05 1 15 2 25 3 35 4
0 X
0
FIG. 6. Real part of the free and renormalized free susceptibility q
x°(q=7/2,w) for the half-filled Hubbard chain ai = 3. The inter-
section with the horizontal lines at1/U indicate where the collec- FIG. 8. Plasmon and magnon dispersion for the quarter-filled

tive excitations occufsee text Hubbard chain al=3. Symbols as in Fig. 7.
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infinitesimal U exactly atq=2kg . When increasing the in- 0 T LueRPA (analytical
teraction, the region of instability is enlarged covering a 045 | Sure RPA (aumerical)
growing interval around)= 2k . 04| ren. RPA
It extends to the wholgg axis whenU exceeds some 035 L T ren. RPA, strong coupling
critical interactionUS®™"" provided by Stoner's mean-field 5
31 : ; s 03}
theory™ In mean field, the paramagnetic state=(n;) e
—(n,)=0, is always a local extremum in the energy surface®< %2% f
as a function of the magnetization. This extremumisa £ 027
minimum for 0.15 |
0.1
an
U<USo=2m sin—-, (80) 005 T
0

0 05 1 15 2 25 3 35 4
with n denoting the number of electrons per site. Fbr

> USonerit js a maximum. Nevertheless, it should be remem- N ,

bered that there is a range of interactian¥F< U < | Stoner FIG. 9. Charge responsg’(q= w/2,w) in pure and renormal-

for which the paramagnetic state is a local but not the globazéd RPA for the half-filled Hubbard chain at=3. The vertical
. . . . Ines indicate the plasmon peaks. Accidentally, the pure RPA plas-
minimum, and that the global minimum is reached in the !
. mon and the strong-coupling plasmon occur at almost the same
fully ferromagnetic state=m.

. energy, such that the dotted and the dashed vertical line cannot be
We thus conclude that the pure RPA only produces Vallcfesolved from another. The thin continuous vertical line illustrates

results in the region where no instabilities occur. caICUIat'r‘qhe precise position of the renormalized RPA plasmon, which itself

quantities having a contribution from the unstable regionis represented by the singularity in the renormalized RPA charge
aroundg=2kg, such as, e.g., the occupation numbers, doegesponsdcontinuous ling

not make sense even for small interactions. Abo\&*ne!

the pure RPA is unstable for aff and w. As we will see in the pure RPA spin response disappears. As one conse-
below, it is the virtue of the renormalized RRAnd also the  gqyence, we will outline in Sec. IV F that the energy weighted
SCRPA to cure these instabilities, rendering possible thesym rule for the pure RPA spin response will be violated.

computation of the occupation numbers from E&f). These In contrast, the broad maximum in the renormalized RPA
arguments will be underlined in Sec. IV F by considering thegpin response will persist even for tgvectors where the
energy weighted sum rule. pure RPA is unstable. Therefore, the renormalized RPA spin

Above the outer continuum limit78), the real part of the response fulfills the energy weighted sum rule for every
renormalized free susceptibility, Ré(a,»), behaves qualita-  eyen for interactiond) >U S This will be explained in
tively like Rex"(q,). In the same manner as above, We more detail in Sec. IV F. By this means, the Peierls instabil-
find an undamped plasmon at the energy where the denomiy occurring in the pure RPA is cured by the renormalization
nator of the renormalized charge susceptibility in E&y), process.
1-Ux°(q,0), vanishes. For small, the plasmon is only | the limit of large interactions, the real part P be-
slightly shifted to lower energies with respect to the purecomes completely flat within the renormalized particle-hole
RPA plasmon. For larged, the renormalization effects are continuum, and U Re x°(q,w) vanishes within thavhole
stronger. We will see in Sec. IV G that the frequencies of theg;gntinuum. As Imy°(q,w) is smallest within the continuum
renormalized plasmons remain finite @sgoes to _inf_in_ity. for w—0, the broad maximum in the longitudinal spin re-
The pure RPA plasmons, in contrast, occur at infinite fre-sponse is shifted towards zero frequency. The consequences
quenCieS in the ||m|t Of |argd=J. are discussed in Sec. IV E.

Below the outer continuum limif78), the renormalization We finally remark that even for small, the renormaliza-
effects in Rex%(q,») are more drastic. This is shown by the tion effects are strong enough to lock R¥q,w) to values
contir_1u0us line in Fig. 6 fotJ=3 and _half-filling. The sin- greater or equal to-1/U (see Fig. 6. Consequently, the
gularity of Rey"® at the lower continuum boundaryw(  scenario given above is valid, and the renormalized spin re-

~2) is completely damped and R&is an almost structure-  sponse shows already for weak interaction strengths a broad
less function within the renormalized continuum, i.e., from continuum peak rather than a sharp magnon pole.

=0 up to almost the continuum ed¢es) at w=~2.8.

This gives, even for small interactions, rise to qualitative
changes in the longitudinal spin response. At the energy
where the denominator of the longitudinal spin susceptibil- Due to the rather small renormalization effects of
ity, 1+ U x%(q,w), becomes resonant, the imaginary part ofx°(q,w) outside the particle-hole continuum, we expect the
x°(q,) is large. Therefore, the renormalized spin responseharge response in the pure and in the renormalized RPA to
will show a broad maximum instead of the undamped magbehave similarly.
non found in the pure RPA spin response. For intermediate interactions, the pure RPA charge re-

Apart from the qualitative differences expected betweersponse is given by a rather small continuum that is limited by
the pure and the renormalized RPA spin responses, there aifee two boundary condition@8) and(79), and an undamped
important consequences for the regime where the pure RPplasmon lying above the continuum. This is illustrated for
is unstable. We recall that in thig range, the pure RPA U=3 and half-filling by the dotted line in Fig. 9, where we
magnon frequency becomes imaginary and the magnon polesed the analytical expressions gf®¢, given in Appendix

D. Charge response
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pure RPA (analytical) : \ { | i pure RPA (analytical)
0.45 1 pure RPA (numerical) 1 0.45 V[ N\ i pure RPA (numerical)
04 | ren. RPA - 0.4 VoiNi ren. RPA —— |
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FIG. 10. Charge respongé(q=/2,w) in pure and renormal- FIG. 11. Spin responsg®(q= m/2,w) in pure and renormalized

ized RPA for the half-filled Hubbard chain &=6. The vertical RPA for the half-filed Hubbard chain ai =3. The vertical line
lines indicate the plasmon peaksee Fig. 9. The strong-coupling indicates the pure RPA magnon peak.

limit of our theory is reached, and the renormalized RPA plasmon

(continuous vertical line cannot be resolved from the strong-

coupling plasmor(dashed vertical line mon pole in the largéJ limit from being shifted to infinite

frequencies as this happens for the pure RPA plasmon.
Similar results are obtained away from half-filling.
B, to evaluate the pure RPA charge response. Evaluating the

pure RPA charge response numerically, i.e. with a finite o _
value ofi0" as discussed in Sec. IV A, leads to the dot- E. Longitudinal spin response

dashed line in Fig. 9. We observe that, due to the firte, According to the discussion of the real partsy3f%(q, )
the pure RPA plasmon at~ 3.3 is broadened with respect and x°(q,w) in Sec. IV C 2, we expect the spin response to
to the analytical curve, and that the sharp cutoff at the conehange qualitatively when passing from the pure to renor-
tinuum boundaries is smoothened. malized RPA, even in the regime of weak and intermediate
Comparing the continuous line with the dot-dashed line incoupling.
Fig. 9 shows that the renormalized charge response agrees This is illustrated in Fig. 11 fogq==/2, U=3 and half
essentially with the pure RPA predictions. As explained infilling. For these values there are already significant changes,
Sec. IV C 2, the main differences are that the tail of thealthough the pure RPA is still stable. The pure RPA spin
renormalized charge continuum now goes dowmwte0 and  response(dot-dashed ling consists of a rather small con-
that the plasmon is slightly shifted towards lower energiestinuum being restricted to the area in between the two
The precise position of the renormalized plasmon is indi-boundaries given by Eq$78) and (79), and an undamped
cated in Fig. 9 by a continuous vertical line in the center ofmagnon occurring below this continuum.
the numerically computed plasmon pole, which, for numeri- As explained before, the broadening of the magnon is of
cal reasons, has a finite width. numerical origin. The corresponding analytic expression can
Qualitatively, the charge response for=3 is already be obtained using the representationy8f® from Appendix
very similar to the properly scaled strong-coupling limit of B. The latter leads to the dotted line in Fig. 11.
our theory. This can be seen by comparing the dashed and It was argued in Sec. IV C 2 that the magnon pole disap-
the continuous lines in Fig. 9. Moreover, the plasmon posipears during the renormalization procedure. Hence, the
tion of the pure RPA and the strong-coupling limit of the renormalized RPA spin response is fully described by a con-
renormalized RPA agree very well, such that the dotted antinuum exhibiting a broad peafcontinuous ling Like the
the dashed vertical lines cannot be resolved from anotherenormalized charge continuum, this spin continuum starts at
Note, however, that this agreement is purely accidental. =0 and goes up to the upper continuum bound&?).
The renormalization effects become more drastic as thédhe dashed line in Fig. 11 shows the spin response in the
interaction strength is increased. For half-filling add-6 strong-coupling limit of our theory scaled td=3. A com-
Fig. 10 illustrates that the renormalized charge continuunparison with the renormalized RPA restiontinuous ling
now not only goes down te=0 (continuous ling but also  shows that especially for low frequencies there are still im-
is much stronger than the pure RPA charge contingdot-  portant differences. Thus, &t=3 the strong-coupling limit
dashed ling Further, the energy shift of the plasmon ob- is not yet reached.
tained from renormalization is larger than in the weak- If U isincreased or if the vector is chosen in the domain
coupling limit. around X where the pure RPA is unstable, the pure RPA
For U=6, the charge response already agrees quantitanagnon frequency will become purely imaginary. Figure 12
tively very well with the strong coupling limit of our theory. shows this case fdd =6, q=7/2 and half-filling. The pure
Comparing the continuous and the dashed line shows th&PA spin response is represented by the dot-dashed and the
both the continuum contributions and the positions of theunderlying dotted line, depending on whether the numerical
plasmon peaks are in good agreement. In Sec. IV G we wilbr the analytical expression is monitored. We notice that the
discuss in detail that the renormalization prevents the plasnagnon peak in the pure RPA spin response vanishes com-



PRB 59 DYSON EQUATION APPROACH TO MANY-BOLY ... 1727
05 . . . ]
048 oure R (umaroa) ——— o PR, charge
0.4 ren. RPA —— 5 | reference = = e ]
0.35 ren. RPA, strong coupling ----------
g 0.3 G
%x 0.25 ;D_‘:
E 02
0.15
0.1
0.05
0

FIG. 12. Spin responsg®(q= w/2,w) in pure and renormalized FIG. 13. Energy weighted sum rule for the renormalized and
RPA for the half-filled Hubbard chain & =6. The magnon peak, pure RPA charge susceptibility for the half-filled Hubbard chain at
present in Fig. 11, has vanished due to the instability of the purd =3. The dashed and continuous line correspond to the rhs of the
RPA (see texk charge sum rules{"(q), Eq. (81), computed with the pure and

renormalized RPA charge susceptibility, respectively. The left-hand
p|ete|y This Corresponds to an unphysica| Situation, as W||§|de of the sum rule is plotted with the thin dotted “reference”
be underlined in Sec. IV F by sum rule arguments. lines. As the sum rule is fulfilled in both cases, these reference lines

In renormalized RPA, the broad maximum in the longitu- (?annot be resolved from the corresponding continuous or dashed
dinal spin response is shifted towards zero frequency whelines-:
the interaction is increased. This can be seen by comparing .
the continuous lines in Fig. 11 and Fig. 12, which represenRPA response functions is fulfilled {it) is calculated with
the renormalized spin response fdr=3 andU=6, respec- the Hzigtgge-Fock ground states long as no instability
tively. Whereas in Fig. 11, the renormalized spin respons@CCurs™
reaches its maximum at a finite frequency, we see from Fig. In Figs. 13—16 we show the result of the sum rule checks
12 that forU=6 it is strongly peaked ab= 0. This behavior ~for U=3, and for half- and quarter-filling, respectively. In all
is characteristic for the strong-coupling limit of our theory, figures, the left-hand sides of the E¢81) are plotted with
given by the dashed line, which cannot be resolved from théhe dotted lines. As their (X cosq) behavior is independent
continuous line in the latter graph. In renormalized RPA, theof the approximations made in the Green’s function, we will
energy weighted sum rule is fulfilled for all, as will be  consider them as “reference lines.” Nevertheless, they are
demonstrated in the next subsection. Nevertheless, we wificaled with a prefactd(t) that depends on the Green’s func-
point out in Sec. IV G that the singularity of the spin re- tion. In renormalized RPA, the mean kinetic energy per site
sponse atv=0 may lead to divergences in correlation func-
tions. 1.5

ren. RPA, spin
pure RPA, spin

f reference i
F. Energy weighted sum rule e

In Sec. lll B a sum rule is derived for the energy weighted 1t ~ .

spin and charge response. In the one-dimensional Hubbar e
model, Eq.(68) connects an energy weighted integral over

the response functions to the mean kinetic energy pe(?s)ite s
times a form factor: 0.5 y

84(a)

h . N 1 * ch
St(@): —2(t)(1-cosq)=— — f_xd“’ o Im x“Y(q,w)

1. 1 (=
§l”(q):—§(t>(1—cosq)=—; fﬁmdww Im x3%(q,w).
(81)

FIG. 14. Energy weighted sum rule for the longitudinal spin
susceptibility in renormalized and in pure RPA for the half-filled
Hubbard chain at) = 3. The dashed and continuous line correspond
to the rhs of the spin sum ru*(q), Eq.(81), computed with the
pure and renormalized RPA spin susceptibility, respectively. The
. : X . . _left hand side of the sum rule is plotted with the thin dotted refer-
the response functions in self-consistent ?nd in renormalize nce lines. As the sum rule for the renormalized RPA is fulfilled,
RPA if the mean kinetic energy per sité) is calculated the reference line cannot be resolved from the continuous line. For
self-consistently from the corresponding Green's functionthe pure RPA, there is a region arouné-2where the sum rule
Moreover, it is well known that the sum rule for the pure breaks down.

In Sec. IlI B it is argued that it not only holds true for the
exact response functiong(q,») and xS(q, ») but also for
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4 Mren RPA charge —— weighted sum rule for the pure RPA spin susceptibility is
pure RPA, charge — only fulfilled for the range of momenta where the pure RPA
reference /,-/’"' is stable.

3r F ] Again, we want to emphasize the quality of the renormal-

P4 ized and the self-consistent RPA to restoreftteum rule for
= A all momenta and interactions.
& 2 7 ]
’ G. The largeU limit
1t . At half-filling and for largeU, the occupation numbers
predicted by renormalized RPA can be fitted very accurately
by
0 .
0 +1/2 +T 1 4
q Nke =75 1+U cosk|, (82

FIG. 15. Energy weighted sum rule for the renormalized andhereas the large) expansion of the Bethe ansatz solution
pure RPA charge susceptibility for the quarter-filled Hubbard Cha'ryield522'23

at U= 3. Description as in Fig. 13.
1

is less negative than in Hartree-Fock, since the momentum ko 2 U
distribution is smoothened. Thus, the reference lines for theC . : . L
renormalized RPA sum rules lie always below the pure RP omparing the dotted line and the Iowe_st continuous line in
lines AF|g. 2 shows that fotJ =5, the expressioni82) agrees al-
For therenormalizedRPA susceptibilities, the right-hand r(;ady .vetr%/ V\]fe” W'.th t?ﬁ ?Lémg'z(;a.ll (;eSl:jltfs ft?f' fV\1|e W'I:f
sides of Eqs(81) are represented by the continuous lines.3NOW In the Tollowing that £q indeed 1S the tully set-
They cannot be resolved from the corresponding dotted refgonsmtent S(.)Iu“(?n .Of the renormalized RPA equations in the
erence lines. Hence, in renormalized RPA the sum rule igtr%ggé—:guoprllms I('glz'; it is possible to qive an explicit ex-
fulfilled for all q vectors and for both the charge and the ; qles), 1 1S possi give an explicit ex
longitudinal spin response. pression for the renorrr_lgllzed free s_usceptlblllty. As the con-
Calculating the rhs of the Eq€81) with the pure RPA tinuum boundary condition for steplike occupation numbers,
susceptibilities yields the dashed lines. The sum rule for th q.(79), becomes mean_mgless n th_e limit pf strong interac-
charge response is monitored in the Figs. 13 and 15. Ther jons, the on_ly _characterlstlc energy 1S pr_owded by _the upper
the dashed lines cannot be resolved from their dotted referc_tgntmuug\ Irllm;td(78).ngiencehc§he e>i<£gcn er]);prr?f\S/IC;?SbeOT
ence lines. This means that the sum rule for the pure RPA (4, ) do not depend og andw as ependent variaples
charge response holds true for gliectors. anymore, but_ can be denoted as a_funct|on of one single
In Figs. 14 and 16, we show the sum rule check for thev.a”able.g' .Wh'Ch is the energy in units of the upper con-
pure RPA spin response. The dashed lines, which represewuum limit (78):
the energy weighted pure RPA spin response, agree with o
their reference lines, apart from a rangeqgo¥ectors around E=r——. (84
the Peierls vector B-. This q range coincides with the ‘
range where the corresponding magnon dispersion in Fig. 7
and Fig. 8, respectively, goes &=0. Therefore, the energy

1+ —— cosk (83

8In2 )

. q
4sm§’

Performing the integration in Eq61) with occupation
numbers as given by E@82) yields the renormalized free

" Men. RPA, spin - susceptibility,
pure RPA, spin  =w-weeees e
reference = = & for |¢l<1
L 1+i or <1,
e 0 ! 1-¢
_ Xo(&=-— (85)
S o5t ] U €]
% /i - for |&[>1.
.;","/ £2-1
As for the free susceptibility™®, the imaginary part of°
still has a square-root singularity at the continuum lifgit
=1, whereas the real part gf is completely flat within the

00 +1;/2 e particle-hole continuum. By scaling the renormalized free
susceptibility of the strong-coupling limit, Eq85), to U
=3 orU=6 we obtain the dashed lines in Figs. 4, 5, and 6.
FIG. 16. Energy weighted sum rule for the longitudinal spin ~ Substituting Eq(85) into Eq.(64) yields the renormalized
susceptibility in renormalized and in pure RPA for the quarter-filledRPA response functions. The largecharge response is
Hubbard chain atl=3. Description as in Fig. 14. characterized by a small continuum witHig{ <1,
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2 & /11— 52 0 T T T T - T T

Im x*(¢)=— — ———-. 86 02|
x“'(€) U 232 (86) 0.2
Outside the particle-hole continuum, the charge response ha 0.4 1
a collective pole at=2#3, describing an undamped plas- 06 +
mon obeying the dispersion relation >
=2 08
8 q
—— |sin= A .
Qp_‘@ sin 2’. 87 I Bethe ansatz
12t i/ mean field - 4
. . . . . 12 /7 ren. RPA X
Notice that the dispersion relation of the renormalized plas- a4l ren. RPA large U expansion ~-- |
mon becomes independent bf in the larget limit. The ' . ‘. _ Bethe large U expansion -;-—-
pure RPA, in contrast, predicts in this limit a plasmon dis- 0 1 2 3 4 5 6 7 8
persion proportional tdJ. The strong coupling charge re- uA

sponse scaled to the appropridfeis represented in Fig. 9

and Fig. 10 by the dashed lines. chain. Bethe ansatz expansion from Baeriswyl and co-workers

From Fhe second of Eq$,6_4)’ in Combinz_ition with the (Refs. 33 and 2R LargeV limit of the renormalized RPA from Eg.
renormalized free susceptibiliyB5), we obtain the large} (g4

spin response in renormalized RPA. It is fully described by a
continuum for| ¢|<1,

FIG. 17. Ground-state energy per site for the half-filled Hubbard

E(U)=UfwdyT(y) . 91
1 \V1-& v Y
Im x*(§)=— — : (88)

U ¢ The behavior of the kinetic energy in the renormalized
and vanishes elsewhere. This is plotted with dashed lines iRPA can be obtained from the occupation numt{8gs. For
Fig. 11 forU=3 and Fig. 12 folU=6. No collective exci- |argeV, this yields
tations occur, since the denominator of the renormalized
RPA spin response,4U x°, is always finite. Nevertheless, T(U)=— i (92)
we see from Eq(88) that the spin continuum diverges at '
=0 with consequences that we will discuss below. . )

It can be shown that the real and imaginary partSf Again, only the prefactor differs from the exact result,
from Eq. (85) fulfill the Kramers-Kronig relations. More-
over, we will show in Appendix C that the occupation num- T y) = — w (93)
bers calculated from the larde-expression of the renormal- U’
ized RPA Green’s function via the spectral theoré8) are .
consistent with Eq.(82). This means that the occupation known fr%g the largaJ expansion of the Bethe ansatz
numbers(82) fulfill together with the strong coupling sus- solutions?*
ceptibilities (86) and (88) the self-consistency condition of _ Calculating the ground state by E@1), our theory pre-
the renormalized RPA. dicts
The number of double occupancies per site are given by

EU)=—5 (94

1 w¢
NEi nmnu:(nT)(nO*‘U- (89)
asU—o. The larget) expansion of the renormalized RPA
wherew® stands for the correlated potential energy per siteground-state energy of the half-filled Hubbard chain is
shown in Fig. 17 by the dashed line. For arbitrary interac-
. . N . tions, the renormalized RPA ground-state energy calculated
W=z kE (B1c+q18p+q 8p))" (90 with the Hellmann-Feynman theorem is illustratedxbgym-
pa bols. This compares reasonably well with the exact result,
w¢ is independent obJ, since the largéJ Green’s function known from Bethe ansat@ontinuous ling and its larged
scales with 1J. expansion(dot-dashed ling
Nevertheless, as the expectation value in @) can be We now have access to the potential energy as the differ-
obtained from the spectral theore(®4) by integrating the ence between the ground-state energy and kinetic energy. It
renormalized RPA Green's function over positive frequen-thus behaves as@/for largeU. This implies that the num-
cies, the 14 divergence of the spin respon&8) makes the  ber of double occupancies vanishes ds?for strong inter-
expectation valuen® diverge logarithmically. This means actions. In Fig. 18, the number of double occupancies at half
that both the total potential energy per site and the number dilling is monitored as a function dfl. We see that for small
doubly occupied sites are going tox asU— o, interactions, the renormalized RPA (symbols) reproduces
One way to correct these deficient results is to calculatéhe exact result(continuous ling For large interaction
the ground-state enerdy(U) from the kinetic energyr (U), strengths, our theory matches the Bethe ansatz expansion,
using the Hellmann-Feynman theorém, —(41In2)/U? (dot-dashed ling apart from the prefactor.
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0.3 - Y Bothe arcaz — As expected, most of the particularities of the one-

S mean field ——-- dimensional model, such as, e.g., Luttinger liquid behavior

0.25 \onRPA large U onpansion ——— | away from half-filing, could not be reproduced. The sce-

2 X% \ IB‘Q}he large U expansion ------ nario predicted by our theory confirms fairly well the results
§ 021 NS that were obtained from methods designed for higher-
S sl dimensional models, such as, e.g., the Hubbard-ll

g approximation'®° For smallU, we find a Fermi-liquid-like

= o1 | metallic ground state. The system undergoes a Mott-Hubbard
é ’ transition for an interaction slightly smaller than the band-
P A e width. The exact value of the critical interaction depends on

: the filling. For stronger interactions, our theory predicts an

0 , , , , , , , insulator for all fillings.

0 1 2 3 4 5 6 7 8 Despite these deficiencies, we obtain several interesting

ust results. In the strong-coupling regime of the half-filled
model, for example, we are able to express the central quan-
tities of our theory analytically. The renormalized RPA mo-
mentum distribution function, given by Ed82), agrees,
V. DISCUSSION, CONCLUSIONS, AND OUTLOOK apart from a prefactor, with tha,«cosk behavior known
from the larget) expansion of the Bethe ansatz solution.

In this work, we performed an application of the self- Moreover, the mean-field spin instability aroundg2
consistent RPASCRPA theory to the Hubbard model. In Which causes the breakdown of the pure RPA for any finite
itself, the SCRPA is an approximation to the general Dysorinteraction, turns out to be cured in renormalized RPA in the
equation approactDEA) to correlation functions where the Sense that no more purely imaginary eigenfrequencies occur
full (exac) mass operator is replaced by its instantaneou#? the spin channel. On the other hand, the renormalization is
contribution. For the single-particle Green’s function thisstill rather weak such that a strongly overdamped spin pole
strategy leads to the standard Hartree-Fock theory. In anafeémains at low energy. These low-lying spin excitations give
ogy, it has been argued in the past that the SCRPA corrdise to a slow(logarithmig divergence of the two-body cor-
sponds to a HF theory for fermion pair clusters. Recentlyrelation functions, which is carried into the number of double
this theory has produced very interesting results in variou®ccupancies and thus also into the ground-state energy. The
domains of many-body physi€s. stronger renormalization contained in the SCRPA would cer-

Unfortunately, being dnonlineaj mean-field theory for tainly cure this pathology, since it also renormalizes
nonlocal correlation functions, SCRPA is numerically very (screensthe interaction self-consistently. In this sense, the
demanding. As a first step, we therefore had to proceed t8CRPA bears some similarities to the approach of Vilk,
further rather drastic simplifications. The latter consist of re-Chen, and Tremblay’
taining correlationsonly in the single-particle occupation ~ Several of the renormalized RPA results may nonetheless
numbers. This approximation to SCRPA is known in thebe improved by applying the Hellmann-Feynman theorem.
literature agenormalizedRPA2*In spite of this, the essen- Using this approach, which may simulate a step towards the
tials of the self-consistency and closure aspects remain irfull solution of the SCRPA, the ground-state energy com-
tact. As a further virtue, thé-sum rule is shown to be ful- pares for all interaction strengths reasonably well with the
filled in self-consistent as well as in renormalized RPA. Thisexact results, known from Bethe ansatz. Moreover, the num-
also implies that the Goldstone theorem is fulfilled and sym-ber of doubly occupied sites shows a qualitatively correct
metries are treated correctly. behavior over the whol® range. Especially fotJ—0, the

We solved numerically the renormalized RPA equationsmean-field value is recovered, and, fdr—c, the double
for the one-dimensional single-band Hubbard model in theé>ccupancies vanish like W?, as predicted by the exact so-
paramagnetic phase, for different fillings and interactionslution.

Although we were aware of the difficulty of describing one-  In the strong-coupling regime of the half-filled model, this
dimensional models because of the extreme importance éfpproach reproduces the exact results for the momentum dis-
quantum correlation®there were multiple reasons for this tribution function, the ground-state energy, the kinetic and
choice. In a first place, the exact solution of Lieb and®WVu potential energy, and the number of doubly occupied sites,
provides a benchmark for our results, which, in higher di-apart from a general prefactor. We would obtain the right
mensions, does not exist. As was argued in Sec. lll A, weprefactor by substituting the bare Hubbafdvith a screened
expect the renormalized RPA to perform better with increasinteraction, or, in other words, by multiplyiny in our

ing dimensionality. Therefore, one dimensi¢tD) can be theory by a factor 1/(2 In 2 0.72.

considered as a “worst case check” for our approximation. Since in renormalized RPA the Hubbard interaction is ap-
The second reason is mainly technical: The self-consistenggroximated by a simple spin-flip interaction, it is not aston-
equation for the occupation numbégs) illustrates that the ishing that the best results are produced at half filfhg.
numerical effort increases with the square of the spatial diAway from half-filling, other scattering processes, still taken
mension. Therefore, the experience in 1D is desirable beforito account in SCRPA but neglected in renormalized RPA,
attacking higher dimensions. In the last place, even in ondecome important. Therefore, the renormalized RPA is less
dimension, we are able to test explicitly the essentials of oueffective. The Luttinger liquid behavior, exhibited by the ex-
method and the convergence of the iteration cycle. act momentum distribution even fdd—,? is not ob-

FIG. 18. Number of double occupancies per site for the half-
filled Hubbard chain.
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tained. In the strong-coupling limit, the renormalized RPAd=3. On the other hand, spatial fluctuations are suppressed
produces smooth occupation numbers, although still having #n d=<0, which allows us to reduce the many-body problem
steeper slope dt as at half-filling. For small interactions, to either a dynamical single-site problem, or, to an effective
the renormalized RPA still predicts a discontinuity in the One-dimensional problem. We thus may expect, that the nu-

momentum distribution d{F- This implies that the Luttinger merical solution of the SCRPA will be feasible in infinite
theorem is satisfied. dimensions, in contrast to finite dimensions, where the effort

_will grow with an exponent @, since the effective Hamil-
tonian contains correlation function depending on three mo-
menta.

A further point to be discussed is the fact that we com
pletely neglected the dynamical interaction pdityg(w),
defined in Eq.(11). It is certainly true, as recently pointed
out by Logan for the infinite dimensional Hubbard motfel,
that this dynamical interaction should be taken into account,
in order to describe the low-energy scale in the spin channel We are especially grateful to Florian Gebhard for many
correctly. Nevertheless, in the present work, some dynamicahteresting discussions and stimulating comments, and the
effects in the spin channel are considered via the coupling ofareful reading of the manuscript. We also thank Jorge
the occupation numbers to the RPA ground-state correlabukelsky, Mireille Lavagna, and Wilhelm Brenig for criti-
tions. A full inclusion of the dynamical effects goes, how- cism and many helpful comments.
ever, beyond the scope of this paper.

At this point, it may be appropriate to return briefly to APPENDIX A: DERIVATION OF THE SCRPA
some technical aspects of the SCRPA that we did not de- FROM A VARIATIONAL PRINCIPLE

velop in the main text in order not to further e_:xtend the size In this section, we will briefly outline the derivation of the
of the paper. In the Introduction, we mentioned that the

. . . ) article-hole SCRPA equations from a variational principle.
equation of motion methoEOM), on which our formalism b a P P

A | h i Barafl h
is based, goes back rather far in time. The first major theo: n analogous method was derived by Baraffyéor the

tical inout develoned by R i hi ) 7l single-particle case.
retical Input was developed by ROWE In NIS TEVIEW article, — o 5 therefore consider the spectral representation of the
where the calculation of density-density correlation functlonsr , :
. : : ) etarded Green’s function
is described in the context of nuclear physics. The method

ACKNOWLEDGMENTS

was later applied to strongly correlated electrons by Roth. et (0] X[n){n|X*|0)

She evaluated the single-particle Green’s function by cou- (X X)) =2 o—wti0"

pling it in an approximate way to the three-particle propaga- " no

tor (see also Beenen and Edwaldfor a more recent appli- (0]X*|n)(n|X|0)

cation to the Hubbard model Since then, in solid-state T T tiot |’ (A1)

physics, the EOM has, to the best of our knowledge, been _

used exclusively for the calculation of single-particle Where|0) is the exact ground state bf, andw,, denotes the

properties’® excitation energy for the exact eigenstaies. For the
As we point out in Ref. 9, the optimal procedure will be to Particle-hole problem, we set=+1. The excitation opera-

combine single-particle and fermion-pair channels. Indeediors X™ are given by

as is well known, the single-particle mass operator can be

expressed exactly by the two-particlematrix>® Replacing X*= Xeply @p- (A2)

it by its SCRPA counterpart then naturally leads to a self- kp

consistent coupling of both channels. In this scheme, as we

will describe in more detail in a future publication, the

single-particle occupation numbers will not be evaluated 2 )

from the particle-hole propagatdsee Egs.(27) and (53], En: @no([(N[XT|0)[*=Kn|X[0)[*)

respectively but directly from the single-particle Green's S, =

func_t|on. A further_ advar_ltage of thls strategy is that _smgle— E (|(n]X*|0) 2= (n|X|0)[?)

particle and fermion-pair properties are obtained simulta- n

The normalized mean excitation energy is given by

neously and on equal footing. We did not follow this route in .
this paper, since it again would have strongly increased the f do @ IM(OGX )Y
numerical difficulties. In spite of these possible improve- — ¢
ments, the present investigation shows that the essentials of T T ' (A3)
the SCRPA theoryi.e., the self-consistency proceduveork J dew Im{(X;XTy)e
correctly in a numerical application to a homogeneous sys- o
tem of strongly interacting fermions. Once the method will The equivalence between the first and the second line can be
be solvable in its full complexity, the possible applicationsseen by substituting the spectral representatib) in the
are very numerous. Indeed, the SCRPA is a very flexiblesecond line. The denominator can easily be evaluated with
formalism applicable to strongly correlated Fermi systemsthe spectral theorem(15). This vyields the norm
but also to Bose or spin systems. The study of such system{®|[X,X*]|0), which would be equal to unity iK* were
are planned in the future. ideal bose operators.

A very appealing application of the SCRPA may be the We now minimize Eq(A3) with respect to the excitation
Hubbard model in infinite dimensions, since, on one handpperators. TheX* with the lowest mean excitation energy
the physics ind=« is expected to be somewhat similar to obey the condition
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Js Nke— Nitgo) o
L o (Ad) (ko™ Nic+go)
e . )
It is straightforward to verify that Eq(A4) leads to the = % f_wdw IM Gopo(Q, @)

SCRPA for the particle-hole propagator derived in Sec. Il C.

(Nky— Mict o)
w—[exsq— k] Ti0"

APPENDIX B: FREE SUSCEPTIBILITY T r f deo Im
IN ONE DIMENSION

The free susceptibility is obtained by performing the in- x( 1 ) (C1)
1-Ux;(

tegral in Eq.(61) for steplike occupation numbe(63). Be- 2(a,0)Ux](q,0)
cause OE the symmetry of the dispersion relatign the real = 4y, self-consistency to be fulfilled, we now have to show
part of (0, w) is symmetric ing andw, whereas the imagi- 3¢ the “new” occupation numbers are equal to the “old”
narly pr?rt IS symmetrlf: mqhand aEtlsymme(;n_c . di ones. As we are in the paramagnetic phase, we may drop the

_Inthe paramagnetic phase,; =ny , and in one dimen- spin indices and convert the integrand in a partial fraction.
sion, the explicit expression for the real part is After substituting x=w/|4 sin@?2)| and Yia=LEkrq

, — g J/|4 sin@?2)|, we find for the ratio between new and old
a r( V2] sin ke ) occupation numbers:
o coske—4 sirf(q/2)

Re x°(q, ) !
W)=
X W\/ﬁ -
_atar( \/H sin ke ” (B1) I(ykq):_ﬂ f_wdx m

w coskg+4 sirf(q/2)

1

X—Yyq+i0"

1 1
+
1-Ux® 1+Uy°

with z= (4 sing/2)’— w? and X (C2

arctanx  for z<0, In the following, we will treat the two fractions in the

atanx=4 artanhx for z>0 and [x|<1, (B2) integrand separately, considering in analogy to @&¢) the

arcothx for z>0 and |x|>1. first term as the charge term, and the second term as the spin
term. With the renormalized free susceptibility from Eq.
For the imaginary part, we find in agreement withnBed,  (85), the denominator of the charge term may be written as
Chen, and Trembldy

X
2+i for |x|<1
0(2) > '
Im x%(q,0)=— et = + \Fcot 1-x
NCA NN 12 1-Ux(x) = y
o 1 2— +i0* signx for |x|>1.
+06 8F+E_§ \/ﬁcotg) X2—1
(€3
w 1 i ; ;
er— —+ =\ cot In the same way, the denominator of the spin term is
2 2 2
o I¥
® —i for |x|<1,
(SF_E__ | |COt2> (83) o 1_X2
1+Ux"(x)= X
X
APPENDIX C: SELF-CONSISTENCY m—'m signx  for [x[>1.

OF THE LARGE- U LIMIT
(C4

In this section, we will briefly outline that the occupation
numbers that are given by E(B2) for the half-filled Hub-
bard chain in the largé limit are indeed a fully self-
consistent solution of the renormalized RPA equations.

If we assume the occupation numbers from EBg), we _
find the renormalized free susceptibili§s) by calculating Ut
thek sum in Eq.(61). The largeV limit of the renormalized 1 1
RPA Green’s functions is then obtained by substituting f(x)*i0" :Pf(x)

x°(q,) in Eq. (62).

We are now able to calculate a new set of occupatiorVe find for the charge contribution
numbers by inserting this renormalized RPA Green'’s func- _
tion in Eq. (53). For convenience, however, we will rather |Ch(ykq)— y"q
use the commutator spectral theorem, Bdp), itself: 4—3Yiq

To solve the integral, we have to account for three differ-
ent contributions: The first one comes from the pole of the
free ph Green’s function, M(—ykq+i0+), which lies al-
ways in the ph continuum, i.ely,q|<1. With Dirac’s iden-

Timdf(x)], (C5)

(C6)
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The corresponding spin contribution is zero, since 1sponse does not show any magnon peak in the strong-

+Ux%(x) is purely imaginary within the ph continuum. coupling limit. As pointed out in Sec. IV G, the plasmon
Secondly, we have to integrate over the charge and spipeak occurs axk=*2/3. Using the Dirac identity(C5)

continuum, respectively. Therefore, we combine the imagi-once more, we get

nary part of 1/(tUx®) with the real part of the free ph

Green'’s function. This yields

2-3yi,
6(4—3yiy)’

ch

13(Ykg) = (C8)

3(4-3yi)
I gh(ykq) =
Summing the three contributions, Eq€6), (C7), and
17y, ) = & (€7 (C9), yields unity for the ratio of the new and the old occu-
23 7kg/ 2 pation numbers](yy,). By this means, we have found a
The last contribution comes from the collective poles. Again fully self-consistent solution of the renormalized RPA equa-

the spin contribution is zero, as the renormalized spin retions.
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