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Dyson equation approach to many-body Green’s functions and self-consistent RPA:
Application to the Hubbard model
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An approach for particle-hole correlation functions, based on the so-called self-consistent random-phase
approximation is developed. This leads to a fully self-consistent RPA-like theory that satisfies thef -sum rule
and several other theorems. As a first step, a simpler self-consistent approach, the renormalized RPA, is solved
numerically in the one-dimensional Hubbard model. The charge and the longitudinal spin susceptibility, the
momentum distribution, and several ground-state properties are calculated and compared with the exact results.
Especially at half-filling, our approach provides quite promising results and matches the exact behavior apart
from a general prefactor. The strong-coupling limit of our approach can be described analytically.
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I. INTRODUCTION

The advent of high-Tc superconductivity, which remain
unexplained theoretically in its essence, has spurred an e
mous quest for developing many-body approaches capab
describe strongly correlated fermion systems. Various
malisms have been applied in the past, each with its stren
and deficiencies~for a review see Ref. 1!.

However, contrary to standard mean-field theory, which
a commonly accepted lowest-order many-body approach
correlation functions, such a generic method is missing
far. In this respect, any new and promising vistas are wo
while to be pursued and elaborated. Indeed, in the re
past, a theory for two-body correlation functions has be
developed bearing the characteristics of a generalizatio
Hartree-Fock theory to two-body clusters. In its roots t
theory goes back rather far in time and has been prom
independently by several groups.2–5 In the literature, it is
known under various names such as the self-consis
random-phase approximation~SCRPA!, cluster mean field
~CMF!, and equation of motion method~EOM!.2–5 In itself it
is an approximation to the so-called Dyson equation
proach ~DEA! to correlation functions where one replac
the full mass operator by its instantaneous part. Howe
only recently this method has found the attention and form
developments it deserves with, indeed, very promising
sults. The most outstanding of those is certainly the ex
reproduction of the lowest spin-wave excitation spectru
vk5(p/2)usinku, known from the Bethe ansatz, of the an
ferromagnetic Heisenberg chain.6 Moreover, also some sim
pler models have been treated successfully in this approa7

Encouraged by these results, we thought it worthwhile
apply the method to the strongly correlated electron prob
within the single-band Hubbard Hamiltonian with on-site r
pulsionU.

Since the SCRPA approach is based on nonlinear e
tions for nonlocal two-body correlation functions, one und
PRB 590163-1829/99/59~3!/1712~22!/$15.00
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stands that it is numerically very demanding. We theref
choose to apply it to the one-dimensional Hubbard model
several reasons:~i! The exact solution of the ground state
known from the Bethe ansatz.8 Therefore, a direct compari
son of the SCRPA results is possible.~ii ! The numerical
effort in one dimension may be expected to be more mod
than in higher dimensions.~iii ! The experience gained in
the one-dimensional~1D! case may help us to attack high
dimensions in the future.

The price to pay for this strategy is that one-dimensio
problems are notoriously difficult to describe because
their extreme quantum character. As our method is not s
cifically designed for one dimension, we cannot expect it
reproduce particularities, such as Luttinger liquid behavio

As we will see, our approach nonetheless permits us
obtain interesting results in one dimension. They shou
however, be judged in light of the fact that in this first a
plication to the Hubbard model we did not solve the SCR
equations in full but applied a rather obvious and from t
numerical point of view very simplifying approximation
Nevertheless, this approximation, known in the literature
der the name of renormalized RPA, keeps the essential
the self-consistency aspects.

We demonstrate in this paper that the formalism allo
for the self-consistent solution of a fully closed system
nonlinear equations for two-body correlation function
Moreover, important formal theorems are respected. Am
those, we, for instance, cite the fulfillment of thef -sum rule
~energy weighted sum rule! and of the Luttinger theorem.

Other interesting results concern the strong-coupling
gime of the half-filled chain. For example, the se
consistently calculated momentum distribution can be fou
analytically in the large-U limit. It obeys nk}cosk with a
proportionality factor of 4/U instead of 8 ln 2/U of the exact
result, known from the large-U expansion of the Bethe an
satz solution, resulting in an error smaller than 30%. T
result is the more astonishing as it was obtained with
1712 ©1999 The American Physical Society
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renormalized RPA approach. It can be expected that it
be substantially improved once the full SCRPA solution
available.

The paper is organized as follows. In Sec. II, in order
make our paper self-contained, we will give a brief overvie
of the SCRPA theory starting from the equation of moti
for a completely general Green’s function. In particular, t
explicit form of the self-consistent and renormalized RP
particle-hole propagators is derived in terms of a closed s
tem of nonlinear self-consistent equations. In Sec. III, o
approach is applied to charge- and spin-correlation functi
in the Hubbard model. In Sec. IV, we solve numerically t
set of self-consistent equations for the renormalized R
response functions for different fillings and interacti
strengths. Our results are compared with the Bethe an
solution and with quantum Monte Carlo calculations. F
half-filling and largeU, analytic expressions are given fo
the momentum distribution function and the susceptibilit
of our theory. In Sec. V, we draw some conclusions and g
an outlook on some improvements that are planned to
implemented in our approach. In Appendix A, we outline t
connection between the SCRPA and a variational ansatz
minimizes the energy weighted sum rule. Appendix B p
vides the explicit expressions for the free particle-hole s
ceptibility in one dimension. In Appendix C, we show ho
the analytic expressions that we derived for the stro
coupling limit of our theory at half-filling, are a rigorou
solution of the renormalized RPA equations.

II. DYSON EQUATION APPROACH
TO MANY-BODY GREEN’S FUNCTIONS

In this section, we briefly want to review the Dyson equ
tion approach~DEA! to correlation functions.9 The DEA is
increasingly used in the many-body community and has
cently produced interesting results in various domains
many-body physics.4–7

Let us start with the definition of a general causal~time-
ordered! or retarded many-body Green’s function at ze
temperature and at equilibrium~the generalization to finite
temperature, using the Matsubara technique, is straigh
ward!,

GAB
c ~ t,t8![^^A~ t !;B~ t8!&&c

ª2 i ^0uTeA~ t !B~ t8!u0&, ~1!

GAB
ret ~ t,t8![^^A~ t !;B~ t8!&& ret

ª2 iQ~ t2t8!^0u@A~ t !,B~ t8!#2eu0&,
~2!

where u0& is the exact ground state andTe Wick’s time-
ordering operator.

Here,A(t) andB(t8) are arbitrary operators built out o
any number of annihilation and/or creation operators
Bosons or Fermions or mixtures of both. UsuallyA and B
will depend on one or several indices, and the notat
^^A;B&& has to be considered as a shorthand for the ma
Green’s function^^Aa ;Bb&& where a and b run over the
whole set of quantum numbers. The operatorsA andB can
also be spin operators or even more general operators su
multicomponent operatorsA5(A1 ,A2 ,...) where the single
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components are again chosen according to the problem
question. For the derivation of a Dyson equation, howev
we will chooseB5A1. The caseBÞA1 needs further con-
siderations that may be important for the derivation of in
gral equations for vertex functions.

The time dependence of the operators is given in
Heisenberg picture,X(t)5eiHtXe2 iHt , where the Hamil-
tonianH is also completely general. It may describe relat
istic or nonrelativistic Fermi, Bose, or spin systems or a
system for which a Hamilton operator exists.

At equilibrium the two time Green’s functions~1! depend
only on the time difference such that their Fourier transfor
are only functions of one frequency. These are the quant
for which we want to derive a Dyson equation. As the de
vation is the same for either causal or retarded Green’s fu
tions we will from now on omit the upper indices.

Let us establish the equation of motion forGAB(t,t8):

i
]

]t
^^A~ t !;B~ t8!&&5d~ t2t8!^@A,B#2e&

1^^@A,H#~ t !;B~ t8!&&, ~3!

or, in energy representation,

v^^A;B&&v5^@A,B#2e&1^^@A,H#;B&&v . ~4!

On the right-hand side~rhs! of Eq. ~4! the commutator

Nª^@A,B#2e& ~5!

plays the role of a norm matrix, and^^@A,H#;B&&v is a gen-
eral Green’s function containing the interaction once exp
itly. For fermionlike operatorsA andB we will use the an-
ticommutator Green’s function (e52) and for bosonlike
operators~e.g., a product of an even number of fermion o
erators! the commutator Green’s function (e51).

Under the assumption that the inverse of^^A;B&&v exists,
an effective ‘‘Hamiltonian’’HAB(v) can be defined as

HAB~v!5^^@A,H#;B&&v^^A;B&&v
21. ~6!

The equation of motion~4! can thus be transformed into
Dyson equation,

v^^A;B&&v5N1HAB~v!^^A;B&&v . ~7!

We stress again that the products on the rhs of Eqs.~6! and
~7! are understood to be matrix multiplications.

As we do not yet know how to determine the effecti
HamiltonianHAB(v), the solution of the Dyson equatio
~7!,

^^A;B&&v5$v2HAB~v!%21N, ~8!

remains for the moment completely formal. In order to d
rive a more explicit and useful expression forHAB(v), we
insert the inverse of the formal solution~8! into Eq. ~6!:

HAB~v!5^^@A,H#;B&&vN21$v2HAB~v!%

[HAB
I ~v!2HAB

II ~v!. ~9!

The first part,HAB
I (v)[^^@A,H#;B&&vN21v, can be ob-

tained from the equation of motion for the higher Green
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1714 PRB 59STEFFEN SCHA¨ FER AND PETER SCHUCK
function^^@A,H#;B&&v which is set up from ‘‘the right’’ this
time ~i.e., derived with respect tot8 instead oft):

^^@A,H#;B&&vv5^@@A,H#,B#2e&1^^@A,H#;@H,B#&&v .
~10!

If we adopt B[A1, the second part of the effectiv
Hamiltonian, HAB

II (v)[^^@A,H#;B&&vN21HAB(v), con-
tains onlyn-line reduciblecontributions,10 with n being the
number of fermion operators inA. Further, it can be shown10

that the sole function ofHAB
II (v) is to cancelall reducible

contributions of HAB
I (v). As the double commutato

^@@A,H#,B#2e& has no reducible contributions, we just ha
to put an index ‘‘irreducible’’ on the Green’s function on th
rhs of Eq.~10! to obtain as the final expression for the effe
tive Hamiltonian

HAB~v!5$^@@A,H#,B#2e&1^^@A,H#;@H,B#&&v
irr%N21

[HAB
SC1HAB

res~v!. ~11!

We see that the effective Hamiltonian~11! splits up in a
natural way in an instantaneous part and in a truly dyna
~resonant! part. The latter contains scattering processes le
ing to imaginary potentials and corresponding real ones w
a frequency dependence.

To obtain a better understanding of the various terms c
tributing to the effective Hamiltonian, let us analyze Eq.~11!
for the well-known case of the single-particle propagat
that is, A5a1 and B5a18

1 . Since later we want to restric
ourselves to a nonrelativistic fermion system let us cons
a typical Hamiltonian,

H5(
12

t12a1
1a21

1

4
(
1234

v̄1234a1
1a2

1a4a3 , ~12!

wherea,a1 are fermion destruction and creation operato
The matrix elementst12 and v̄12345v12342v1243 of the ki-
netic energy and the two-particle interaction, respective
are expressed in an arbitrary single-particle basis which c
prises for example quantum numbers for momentum, s
isospin, and so on.

The norm matrix~5! is thus given byN1185d118 . In this
case, the effective Hamiltonian is the sum of the sing
particle energy and the full self-energy. The static part of
effective Hamiltonian, expressed by the double commuta
^@@a1 ,H#,a18

1
#1&, yields the Hartree-Fock or mean-fie

Hamiltonian. We thus have recovered an important piece
the single-particle Dyson equation. Working out the seco
part of the effective Hamiltonian in Eq.~11! yields the fol-
lowing 2p21h Green’s function:

1

4
(
234

283848

v̄1234̂ ^~a2
1a4a3! t ;~a38

1 a48
1 a28! t8&&v

irrv̄48382818 .

~13!

As mentioned above, in Eq.~13!, all reducible contributions
to the effective Hamiltonian are removed and we obtain
usual irreducible self-energyS118(v) of the single-particle
Dyson equation by putting an index ‘‘irreducible’’ on th
2p21h Green’s function in Eq.~10!.
ic
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The same scenario remains valid if we take forA andB
more complicated operators such as, e.g., the density op
tor ak

1ak8 . Again only the (1p21h) irreducible parts of the
2p22h Green’s function in Eq.~10! contribute to the effec-
tive Hamiltonian.

A. Self-Consistent random phase approximation

As discussed above, the effective Hamiltonian splits, a
in the general case, in an instantaneous and an energy de
dent part. The instantaneous part can be considered as a
eralized Hartree-Fock~HF! Hamiltonian~see below!. There-
fore, as a first approximation, one can try to solve this ‘‘H
problem,’’ neglecting the resonant part of the effecti
Hamiltonian. As we will see later, this allows us to solv
e.g., the two-body problem on the level of a Schro¨dinger-like
equation for a single-frequency Green’s function, in contr
to the Bethe-Salpeter case where a three-frequency Gre
function has to be determined. This means that we can in
duce two-particle states with shifted energies. Therefore,
consideration of the instantaneous part of the effect
Hamiltonian can be understood as a direct generalizatio
the common single-particle HF approximation to the mo
body or cluster case. In the past, this has been called clu
mean field~CMF! ~Ref. 5! or SCRPA.4,9 In the remainder of
this paper, we will adopt SCRPA as shorthand for our a
proach, which, for the two-body case, can be connected
variational principle~see Appendix A!.

In analogy to the single-particle Green’s function we th
can define a generalizedn-body mean-field propagator b
substituting the instantaneous part of the effective Ham
tonianHAB

SC back into the formal solution of the Dyson equ
tion ~8!:

^^A;B&&v
SC5$v2HAB

SC%21N

5$v2^@@A,H#,B#2e&N21%21N. ~14!

Usually it is possible, as we will illustrate in an examp
below, to close the system of equations in the followi
sense: For a full set of operatorsA and B and for a two-
particle interactionall expectation values inHAB

SC can be de-
termined self-consistently from the Green’s function~14! via
the spectral theorem. For retarded Green’s functions,
spectral theorem at temperatureb51/(kBT) reads11

^AB&c[^AB&2^A&^B&

52
1

p E
2`

`

dv
Im^^A;B&&v

ret

12ee2bv

——→
T→0

2
1

p E
0

`

dv Im^^A;B&&v
ret,

^@A,B#2e&52
1

p E
2`

`

dv Im^^A;B&&v
ret. ~15!

The first of the Eqs.~15! is the well-knownfluctuation-
dissipation theorem. The superscriptc indicates that we cal-
culate a correlated expectation value, i.e., fluctuations
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^AB& around their classical mean value^A&^B&. This expec-
tation value is known ascumulantor, in the sense of Feyn
man graphs,connectedaverage.12 As indicated in Eq.~15!,
the Fermi function in the spectral theorem for correlati
functions ^AB&c reduces to a step function asT→0. The
commutator expectation values, such as^@A,B#2e&, depend
only implicitly on temperature, since the Green’s functi
occurring in the spectral theorem~15! is temperature depen
dent.

From now on, we will restrict ourselves to theT50 case,
leaving the finite-temperature consideration to forthcom
investigations.

B. Energy weighted sum rule

The well-known energy weighted sum rule orf -sum rule
connects the imaginary part of the exact Green’s funct
^^A;B&&v to the expectation value of the double commuta
^@@A,H#,B#2e&. Sometimes it is possible to choose ope
tors A and B such that the double commutato
^@@A,H#,B#2e& can be evaluated analytically. In this cas
the sum rule may be used as a rigorous check for any
proximative Green’s function.

Let us recall briefly the derivation of the sum rule. We c
compute^@@A,H#,B#2e& using the spectral theorem~15! for
the higher Green’s function̂̂ @A,H#;B&&v ,

^@@A,H#,B#2e&52
1

p E
2`

`

dv Im^^@A,H#;B&&v
ret.

~16!

Inserting the equation of motion~4! on the rhs and supposin
the norm matrix to be real, we find the well-known ener
weighted sum rule:13

^@@A,H#,B#2e&52
1

p E
2`

`

dv v Im^^A;B&&v
ret. ~17!

We will now show that the sum rule~17! also holds for
the SCRPA Green’s function̂̂ A;B&&v

SC. From Eq.~14! we
see that̂ ^A;B&&v

SC satisfies the equation of motion
cl
g

n
r
-

,
p-

v^^A;B&&v
SC5N1^@@A,H#,B#2e&N21^^A;B&&v

SC ~18!

rather than Eq.~4!. Again, the norm matrix and the doubl
commutator on the rhs are real andv independent. Inserting
Eq. ~18! into Eq.~17! and applying the spectral theorem~15!
yields the norm matrix on the rhs~which is canceled by
N21).

From the above we see that, because of the double c
mutator structure of the effective HamiltonianHSC, the
SCRPA Green’s function fulfills the energy weighted su
rule ~17! practically by construction.

C. Particle-hole propagator

As a concrete example, we will derive the SCRPA expr
sion for a particle-hole Green’s function^^ap

1ak ;ak8
1 ap8&&v

ret

in a fermionic system with general two-body interactions
described by the Hamiltonian~12!. Since the operators de
fining the Green’s function are pairs of fermions, we will u
the commutator Green’s function (e511).

For a homogeneous system, the kinetic energy is diago
in momentum space,

tkk85dkk8«k , ~19!

with k standing for momentum and other quantum numb
such as spin.

The norm matrix is also diagonal,

Nkpk8p8[^@ap
1ak ,ak8

1 ap8#2&

5dkk8dpp8~np2nk!, ~20!

where

nk5^ak
1ak& ~21!

stands for the occupation numbers. The effective SCR
Hamiltonian, introduced in Eq.~11!, can be worked out for
the Hamiltonian ~12!. Using summation convention, thi
yields
Hkpk8p8
SC [^@@ap

1ak ,H#,ak8
1 ap8#2&~np82nk8!

21

5dkk8dpp8~ek2ep!1~np2nk!v̄p8kk8p

1@ 1
2 dpp8v̄kq2q3q4

^ak8
1 aq2

1 aq3
aq4

&c1 1
2 dkk8v̄q1q2q3p^aq1

1 aq2

1 aq3
ap8&

c

1 1
2 v̄p8kq3q4

^ak8
1 ap

1aq3
aq4

&c1 1
2 v̄q1q2pk8^aq1

1 aq2

1 akap8&
c

2 v̄kq2q3k8^ap
1aq2

1 aq3
ap8&

c2 v̄p8q2q3p^ak8
1 aq2

1 aq3
ak&

c#~np82nk8!
21, ~22!
and
see
lu-
where ek denote the Hartree-Fock corrected single-parti
energies,

ek5«k1 v̄kqkqnq . ~23!
eAs we will see in Sec. II D, the second term in Eq.~22!,
(np2nk) v̄p8kk8p , will lead us to a RPA-like theory. We will
use the term RPA in a slightly broader sense than usual
already account for the exchange term of the interaction,
Eq. ~23!. The term in brackets, in contrast, contains exc



e
of

io
rm

to

ct

s
rv

at
tio

ws
tiv
ra
t

n’s

le

-

-

our
ero

e
o
-
the
er

t

ver

1716 PRB 59STEFFEN SCHA¨ FER AND PETER SCHUCK
sively correlated expectation values~i.e., cumulant
averages12!,

^aq1

1 aq2

1 aq3
aq4

&c[^aq1

1 aq2

1 aq3
aq4

&

2@^aq1

1 aq4
&^aq2

1 aq3
&2^aq1

1 aq3
&^aq2

1 aq4
&#

~24!

not taken into account by the usual RPA-like theories.
The SCRPA Green’s function,

Gkpk8p8
SC

~v!5^^ap
1ak ;ak8

1 ap8&&v
SC, ~25!

defined in Eq.~14!, can now be obtained by inverting th
matrix @v2Hkpk8p8

SC
#. Once it is determined, all elements

the effective Hamiltonian~22! and the norm matrix~20! can
be calculated via the spectral theorem~15!. Moreover, it is
possible to derive an explicit expression for the occupat
numbersnp by summing the diagonal elements of the no
matrix, np2nk , over the indexk.

With the commutator spectral theorem~15! and the
k-space volume

V5(
k

1, ~26!

we get for the occupation numbers

np5
1

V (
k

nk2
1

pV (
k
E

2`

`

dv Im^^ap
1ak ;ak

1ap&&v
ret.

~27!

In a continuous system, it is necessary to introduce a cu
in order to keep thek-space volumeV finite. In lattice sys-
tems, as will be seen in Sec. III,V is finite, since thek sum
is restricted to the first Brillouin zone.

The correlation functionŝaq1

1 aq2

1 aq3
aq4

&c in Eq. ~22! are

connected to those, which are accessible via the spe
theorem~15!,

^~aq1

1 aq4
!•~aq2

1 aq3
!&c[^aq1

1 aq4
aq2

1 aq3
&2^aq1

1 aq4
&^aq2

1 aq3
&.

~28!

This yields

^aq1

1 aq2

1 aq3
aq4

&c52
1

p E
0

`

dv Im^^aq1

1 aq4
;aq2

1 aq3
&&v

ret

2^aq1

1 aq3
&@dq2q4

2^aq2

1 aq4
&#, ~29!

where for a homogeneous system the last term on the rh
related to the occupation numbers by momentum conse
tion.

The system of equations is now closed and can be iter
to self-consistency. We therefore start with an assump
for the expectation values inHSC and N. The SCRPA
Green’s function, obtained by matrix inversion, then allo
us to calculate new values for the elements of the effec
Hamiltonian and the norm matrix by applying the spect
Eqs.~27! and ~29!. The newHSC andN lead us to the nex
approximation for the Green’s function and so forth.
n

ff

ral

is
a-

ed
n

e
l

D. RPA and self-consistent RPA

We now analyze the contributions to the SCRPA Gree
function by rewriting Eq.~7! as an integral equation:

Gkpk8p8
SC

~v!5Gkpk8p8
0

~v!

1 (
k1p1
k2p2

Gkpk1p1

0 ~v!Kk1p1k2p2

SC Gk2p2k8p8
SC

~v!,

~30!

where Gkpk8p8
0 (v) has the structure of a free particle-ho

Green’s function,

Gkpk8p8
0

~v!5dkk8dpp8

np2nk

v2~ek2ep!1 i01 . ~31!

The integral kernelKk1p1k2p2

SC represents the interaction oc

curring in the effective Hamiltonian~22!,

Kkpk8p8
SC

5~np2nk!
21@Hkpk8p8

SC
2dkk8dpp8~ek2ep!#.

~32!

Since the kernelKSC splits up into a RPA-like part

Kkpk8p8
RPA [ v̄p8kk8p ~33!

and a remainderKc, which only contains correlated two
body densities, it is convenient to rewrite Eq.~30! in a dif-
ferent way~using matrix notation!,

GSC5GRPA1GRPAKcGSC, ~34!

GRPA5G01G0KRPAGRPA. ~35!

At this point, we emphasize that Eq.~35! has exactly the
same structure as the usual RPA equation. However, in
theory the occupation numbers can and will, even at z
temperature, be different from the Hartree-Fock values

nk
HF5Q~EF2ek!. ~36!

In the following, we will consider the Eq.~35! as generic
for the RPA whatever the occupation numbers will be. W
will label it pure RPAif the occupation numbers are fixed t
their HF values~36!. In contrast, a theory in which the oc
cupation numbers are determined self-consistently from
RPA Green’s function or contain correlations in any oth
way will be calledrenormalized RPA.2

In SCRPA, Eq.~34! is coupled to the RPA@Eq. ~35!#,
upgrading the~renormalized! RPA to the self-consisten
RPA. Comparing Eq.~30! to Eq. ~35! clearly shows that the
RPA structure of the solution is preserved when passing o
to the self-consistent RPA:

GSC~v!5@12G0~v!KSC#21G0~v!,

GRPA~v!5@12G0~v!KRPA#21G0~v!. ~37!
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The improvement contained in the integral kernelKc can be
interpreted by the following connected diagrams:

~38!
The hatched circle represents a correlated particle-h
propagator and the dot stands for the antisymmetrized in
action v̄. The crosses represent Kronecker symbols in m
mentum and other quantum numbers, andd functions in
time. We see that the first graph in Eq.~38! corresponds to a
coupling of the single-particle motion to the density fluctu
tions, i.e., a self-energy correction, whereas the second g
describes an induced~screened! interaction. Of course analo
gous graphs exist where the interaction is attached to
hole line. Again, we want to emphasize thatall terms in Eq.
~38! are instantaneous. We obtain the second-order contr
tions in replacing the hatched circle in Eq.~38! by an inter-
action dot:

~39!
Cutting the graphs in Eq.~39! between the two interaction
occurring—one an infinitesimal time after the other
illustrates the instantaneous coupling of the 1p1h and 2p2h
spaces. Solving Eqs.~35! and~34! self-consistently thus con
stitutes a partial resummation of the interaction to a v
high order.

Just as the Hartree-Fock self-energy for a single part
can be constructed from a two-particle interaction term
attaching an outgoing to an incoming line, viz.,

~40!

we may interpret Eq.~38! as the Hartree-Fock field fo
density-density fluctuations~this point of view has actually
been adopted in Ref. 5!. In analogy, we can reconstruct th
loops in Eq.~38! by closing two density fluctuation lines i
the following first-order terms for the interaction~which can
be obtained from perturbation theory!:

~41!

Considering all exchange terms it is possible to reconst
exactly the effective Hamiltonian~22!, which therefore rep-
resents the mean-field Hamiltonian of a gas of quantal fl
tuations present in any many-fermion system.

III. APPLICATION TO THE HUBBARD MODEL

In this section, we will apply the SCRPA, developed
Sec. II, to density-density correlation functions in the Hu
bard model.
le
r-
-

-
ph

e

u-

y

le
y

ct

-

-

The single-band Hubbard Hamiltonian describes electr
hopping on a lattice with an on-site interactionU:14

H5(
i j s

t i j ais
1 aj s1U(

i
n̂i↑n̂i↓ , ~42!

whereais
1 andais denote the creation and destruction ope

tors for an electron with spins on site i , respectively. The
occupation number operator on sitei is defined asn̂is

5ais
1 ais . In the following, we will restrict ourselves to

nearest-neighbor hopping,

t i j 52t~d j ,i 111d j ,i 21!, ~43!

repulsive interactionsU.0, and zero temperature. We wi
work with \51, set the lattice spacing to unity (a51) and
measure energies in units of the hopping integral (t51).

After Fourier transformation, the Hamiltonian reads

H5(
ks

«kaks
1 aks1

U

N (
kpq

ak↑
1 ak1q↑ap↓

1 ap2q↓ . ~44!

Notice thatN is the number of sites~ions, not electrons! and
all momentum sums run over the first Brillouin zone unle
indicated differently. The single-particle dispersion relati
in the hypercubic lattice is given by the Fourier transform
the nearest-neighbor hopping matrix element~43!,

«k522(
i 51

d

coski , ~45!

whered denotes the dimension.

A. Charge- and longitudinal spin-density correlations

In the following, we will examine the behavior of charge
and spin-density fluctuations in the Hubbard model. The
fore, we will introduce the density operator

rqs5(
k

aks
1 ak1qs , ~46!

which is the Fourier transform of the Wannier number o
eratorn̂is . It will be used to describe charge and longitud
nal spin fluctuations. Summing over the spins gives rise
the charge susceptibility,

xch~q,v!5
1

N
^^~rq↑1rq↓!;~rq↑

1 1rq↓
1 !&&v

ret. ~47!

As from now on we will use only retarded Green’s function
we will omit the superscript ‘‘ret’’ on correlation functions

Thez component of the spin on sitei can be expressed a
the difference between the number of↑ spins and↓ spins on
that site, or, after Fourier transformation,

Sq
z5 1

2 ~rq↑2rq↓!. ~48!

Correlations between thez components of the spins are d
scribed by the longitudinal spin susceptibility,
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xsp~q,v!5
1

N
^^Sq

z ;Sq
z1&&v

5
1

N
^^ 1

2 1 ~rq↑2rq↓!;
1
2 ~rq↑

1 2rq↓
1 &&v . ~49!

We will now examine the charge and longitudinal sp
susceptibilities,xch(q,v) and xsp(q,v) in SCRPA. There-
fore, we introduce the particle-hole Green’s function,

Gksps8~q,v![^^aks
1 ak1qs ;ap1qs8

1 aps8&&v . ~50!
ie
-

e

li

n
c

In contrast to the general particle-hole propagator define
Sec. II C, we will now account for momentum conservati
right from the beginning. As the derivation of the SCRP
propagator is completely analogous to Sec. II C, we will on
state the results.

The norm matrix~20! is given by

Nksps8~q!5dkpdss8~nks2nk1qs!, ~51!

wherenks denotes the occupation number for the Bloch st
k with spin s defined in analogy to Eq.~21!. The effective
Hamiltonian, which was defined for a general two-body
teraction in Eq.~22!, reads for the Hubbard Hamiltonian
Hksps8
SC

~q!5dkpdss8@«k1q2«k#1ds,2s8~nks2nk1qs!
U

N
1F2dkpdss8

U

N (
q8

^~ak1q2q8s
1 aks1ak1qs

1 ak1q8s!rq2q8,2s&c

1dss8

U

N
^aks

1 apsrk2p,2s1ap1qs
1 ak1qsrp2k,2s&c

1ds,2s8

U

N (
q8

^~aks
1 ak1q2q8s2ak1q8s

1 ak1qs!•~ap1q2q8,2s
1 ap,2s2ap1q,2s

1 ap1q8,2s!&cG•~nps82np1qs8!
21,

~52!
of
it-

lv-
-

ion

le

the

p-
with rqs being the density operator introduced in Eq.~46!.
The Hartree-Fock corrections to the single-particle energ
cancel because of the on-site~and thus momentum
independent! interaction.

The spectral theorem yields for the occupation numb
@see Eq.~27!#

nks5^ns&2
1

pN (
q
E

2`

`

dv Im Gksks~q,v!, ~53!

where^ns& denotes the number ofs electrons per site. In the
paramagnetic phase, spin-broken expectation values
^ak↑

1 ak↓& vanish, and we obtain from Eq.~29! for the corre-
lation functions occurring in the effective Hamiltonian~52!:

^ak↑
1 ak1q↑ap1q↓

1 ap↓&
c52

1

p E
0

`

dv Im Gk↑p↓~q,v!.

~54!

As in Sec. II C, the system of equations is now closed a
can be iterated to self-consistency, since we are able to
culate all elements of the effective HamiltonianHksps8

SC (q)
from the particle-hole propagator. The latter is given by
matrix inversion for everyq andv:

Gksps8
SC

~q,v!5@v2Hksps8
SC

~q!#21~nps82np1qs8!.
~55!
s

rs

ke

d
al-

a

We will see in Sec. III C that the corresponding system
equations for spin-density correlations is not closed onto
self, but couples back to the charge-density correlations.

As shown in Sec. II C@see Eqs.~34!,~35!#, it is advised to
first calculate the RPA particle-hole propagator before so
ing the full SCRPA problem~55!. For the Hubbard interac
tion, the RPA kernelKRPA defined in Eq.~33! is nothing but
the interaction per site,

Kksps8
RPA

~q!5ds,2s8

U

N
. ~56!

Equation~35! can therefore be written as an integral equat
couplingGksps

RPA (q,v) andGk2sps
RPA (q,v):

Gksps8
RPA

~q,v!5dkpdss8Gks
0 ~q,v!

1Gks
0 ~q,v!

U

N (
k8
Gk82sps8

RPA
~q,v!,

~57!

whereGks
0 (q,v) defines the renormalized free particle-ho

propagator,

Gks
0 ~q,v!5

~nks2nk1qs!

v2@«k1q2«k#1 i01 . ~58!

In terms of Feynman graphs, this means substituting
SCRPA kernelKksps8

SC (q) in the integral Eq.~30! by its RPA
expression, which is nothing but a spin-flip interaction, re
resented by a dot,
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The physical interpretation of Eq.~57! is that in RPA the
Hubbard interaction flips the spin of the electron on each
every scattering process. This is certainly a good approxi
tion for an electron propagating in an antiferromagnetica
ordered state. In this case, we see from Fig. 1 that a↓ elec-
tron added to the↑ electron on sitei cannot hop off becaus
all their neighbors have spin↓, too. Therefore it must be th
↑ electron that hops to a neighboring site. Arriving there
can only hop the same way back to its original site. Oth
wise, the↑ electron is surrounded by other↑ electrons and
thus frozen in. As this process continues, an extra elec
propagating in an antiferromagnet from sitei to site j flips
every spin on its trajectory. Thus, neglecting higher-or
loop trajectories, the electron’s path is completely retra
able. This case was first examined by Brinkman and Ric15

who showed that this ‘‘retraceable path approximation’’
accurate for walks up to length twelve for the analogous c
of an extra hole propagating in an antiferromagnetic s
configuration. Moreover, they showed that even if the sp
are randomly distributed rather than antiferromagnetica
ordered, the dominant contribution to the hole Green’s fu
tion comes from retraceable paths.

In this line of reasoning, the dimensionality of the syste
plays a crucial role. In one dimension, antiferromagne
long-range order is forbidden by the Mermin-Wagn
theorem.16 Nevertheless, as there are no loop trajectories
one dimension, the retraceable path approximation beco
exact for any spin configuration.

In dimensionsd>3, antiferromagnetic ordering is pos
sible. As the number of nearest neighbors increases,
trajectories become less probable. Therefore, the retrace
path approximation gets exact to orderO(1/d4).17

Moreover, in higher dimensions the correlations a
weaker than in lower ones. As we derived the RPA ker
Kksps8

RPA (q) by neglecting the correlations present in t

FIG. 1. An electron propagating in an antiferromagnetic latt
from site i to site j .
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SCRPA, we expect it to be more accurate in higher dim
sions than in lower ones. We will see in Sec. IV that, even
one dimension, the renormalized RPA solution shows
Mott-Hubbard transition at a finite critical interactio
strength, which, for half filling is of the order of the band
width. This scenario, which can be considered as generic
the RPA, is certainly wrong for the one-dimensional ca
Nevertheless, in higher dimensions it could be quite realis
There, this viewpoint is also supported by methods such
e.g., the Hubbard-III approximation.18,19

Iterating the integral equation~57!, we can decouple the
equations forGksps

RPA (q,v) andGksp2s
RPA (q,v),

Gksps
RPA ~q,v!5dkpGks

0 ~q,v!

1Gks
0 ~q,v!Ux2s

0 ~q,v!
U

N (
k8
Gk8sps

RPA
~q,v!,

Gksp2s
RPA ~q,v!5Gks

0 ~q,v!
U

N
Gp2s

0 ~q,v!

1Gks
0 ~q,v!Ux2s

0 ~q,v!

3
U

N (
k8
Gk8sp2s

RPA
~q,v!, ~60!

where we introduced the renormalized noninteracting s
ceptibility,

xs
0~q,v!5

1

N (
k
Gks

0 ~q,v!. ~61!

Equation~60! can be solved explicitly for the particle-hol
Green’s function, yielding

Gksps
RPA ~q,v!5Gks

0 ~q,v!F dkp1
U

N
Gps

0 ~q,v!

3
Ux2s

0 ~q,v!

12Ux↑
0~q,v!Ux↓

0~q,v!
G

and

Gksp2s
RPA ~q,v!

5Gks
0 ~q,v!

U

N
Gp2s

0 ~q,v!
1

12Ux↑
0~q,v!Ux↓

0~q,v!
.

~62!

Finally, we have to determine the occupation numb
nks self-consistently from the RPA Green’s function~62!.
As will be explained in more detail in Sec. IV A, this is
somewhat delicate procedure. Indeed, initiating the itera
cycle, at smallU, with the Fermi step fornks , one inevita-
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bly picks up some spin instabilities when summing overq in
Eq. ~53!. These instabilities correspond to poles in the R
Green’s function at purely imaginary frequencies. This e
tails that we may create some unphysical values when ap
ing the spectral theorem to such a Green’s function. For
ample, integrating ImGksp2s

RPA (q,v) over the wholev axis
yields an unphysical finite value if the Green’s function h
poles at imaginary frequencies. As this integral is connec
via the spectral theorem~15! to a commutator, we know tha
it has to be zero. When iterating the system of nonlin
equations, it turns out that this pathology is cured. The
cupation numbers get rounded thus weakening the inte
tion in such a way that finally the imaginary spin poles d
appear. At self-consistency, the integral of ImGksp2s

RPA (q,v)
over all frequencies vanishes for everyq, as expected from
the spectral theorem.

For completeness, we state thatfixing the occupation
numbers to their Hartree-Fock values brings us fromrenor-
malizedback topure RPA:

nks
HF5Q~EF2«k!. ~63!

In Sec. III B, an energy weighted sum rule is shown to
fulfilled in both renormalized and self-consistent RPA.
pure RPA it is only fulfilled as long as all eigenfrequenci
are real. As will be pointed out in Sec. IV F, this is close
connected to the problem of RPA instabilities.

If we restrict ourselves to the paramagnetic phase,
have nk↑5nk↓ implying x↑

0(q,v)5x↓
0(q,v). We can thus

recover the usual RPA structure for the susceptibilit
xch(q,v) andxsp(q,v) by combining the two equations~62!
and summing overk andp:

xch~q,v!5
1

N (
kps

@Gksps
RPA ~q,v!1Gksp2s

RPA ~q,v!#

5
2x0~q,v!

12Ux0~q,v!
,

xsp~q,v!5
1

4N
(
kps

@Gksps
RPA ~q,v!2Gksp2s

RPA ~q,v!#

5

1
2 x0~q,v!

11Ux0~q,v!
. ~64!

B. Energy weighted sum rule

The fact that the density operatorsrqs commute with the
interaction term of the Hubbard Hamiltonian~44! gives us
the possibility to evaluatê@@rqs ,H#,rqs8

1
#2& analytically.

In analogy to Sec. II B, we thus can establish an ene
weighted sum rule for the exact susceptibilitiesxch(q,v) and
xsp(q,v). We will now discuss the fulfillment of the sum
rule for the SCRPA, the renormalized RPA, and the p
RPA Green’s functions.

In the first place, we calculate the double commutator
-
ly-
x-

s
d

r
-
c-
-

e

e

s

y

e

^@@rqs ,H#,rqs8
1

#2&5dss8(k
@«k1q2«k#~nks2nk1qs!

5dss82(
i 51

d

~cosqi21!(
ki

«$ki %
n$ki %s

,

~65!

whereki are the components of the vectork. The only con-
tributions to the double commutator come from the kine
term of the Hamiltonian~44!, since, as mentioned above,rqs

commutes with the interaction. Note that for ak2/(2m) dis-
persion law the rhs of Eq.~65! yields the well-known result
^ns&q2/m ~see Ref. 13!.

As pointed out in Sec. II B for the general case, the e
pectation value of the double commutator~65! is related to
the imaginary part of the exact retarded susceptibility by
energy weighted integral@see Eq.~17!#:

^@@rqs ,H#,rqs8
1

#&52
1

p E
2`

`

dv v Im^^rqs ;rqs8
1 &&v

ret.

~66!

The SCRPA Green’s function was shown to satisfy the s
rule ~66! as well, since the double commutator on the lhs c
be expressed by the SCRPA Hamiltonian~52! and the norm
matrix ~51!:

^@@rqs ,H#,rqs8
1

#&5(
kp

(
p1s1

Hksp1s1

SC ~q!Np1s1ps8~q!

5(
kp
Hksps8

SC
~q!~nps82np1qs8!.

~67!

In view of our formalism this may seem evident. Howeve
theories that generalize the RPA approach do not necess
fulfill the f -sum rule. Above all, we notice that in Eq.~67!
all terms containing correlations from the effective Ham
tonianHksps8

SC (q) cancel when summing overk and p. In
renormalized RPA, on the other hand, we neglect these
relations right from the beginning@see Eqs.~56!,~57!#. Con-
sequently, therenormalizedRPA susceptibilities fulfill the
energy weighted sum rule~66!, too. Moreover, it is
well-known10,20 that thepureRPA susceptibilities satisfy the
sum rule~66! if the expectation value on the lhs is evaluat
with the Hartree-Fock ground-state wave function. Howev
this statement only holds true as long as all RPA frequen
are real.

Finally, we find the energy weighted sum rules f
xch(q,v) and xsp(q,v) by combining Eq.~66! for the dif-
ferent spin configurations according to the definitions of
charge susceptibility~47! and longitudinal spin susceptibility
~49!, respectively:

2(
i 51

d

~cosqi21!^ t̂ i&52
1

p E
2`

`

dv v Im xch~q,v!,

1

2 (
i 51

d

~cosqi21!^ t̂ i&52
1

p E
2`

`

dv v Im xsp~q,v!.

~68!
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On the lhs, we introduced the shorthand

^ t̂ i&5
1

N (
kis

«$ki %
n$ki %s

, ~69!

standing for the contribution to the mean kinetic energy
site provided by the electron motion in thei direction. It
should be stressed that^ t̂ i& depends on the occupation num
bersnks and thus implicitly on the Green’s function. In con
trast, for the usualk2/(2m) dispersion law, the double com
mutator in Eq.~65! depends on the mean number of electro
per site~i.e., the filling! instead of^ t̂ i&, and is therefore a
model-independent quantity. In our case of a cosine dis
sion law, however, theq dependence of the sum rule pr
vides a check that does not depend on the Green’s func
or any other assumption.

C. Transverse spin-density correlations

In this section, for completeness, we will shortly discu
the transverse spin response. The spin-flip operatorsSi

6 may
be substituted in the usual way by a combination of an
nihilation operator of as electron and a creation operator
a 2s electron. After Fourier transformation to momentu
space, we obtain
ne

-

ip
um
te
e

r

s

r-

on

s

-

Sq
15(

k
ak↑

1 ak1q↓ and Sq
25(

k
ak1q↓

1 aq↑ . ~70!

Correlations between the spin-flip operators give rise to
transverse spin susceptibility

x12~q,v!5
1

N
^^Sq

1 ;Sq
2&&v . ~71!

In order to examine the transverse spin susceptibility
SCRPA, we introduce the following correlation functions:

Gksps8
trans

~q,v![^^aks
1 ak1q,2s ;ap1q,2s8

1 aps8&&v . ~72!

In complete analogy to the charge-density case~see Sec.
III A !, we calculate the norm matrix by evaluating the co
mutator of the two operators defining the Green’s funct
@see Eq.~20!#:

N ksps8
trans

~q!5dkpdss8~nks2nk1q,2s!. ~73!

The effective SCRPA Hamiltonian reads in analogy to E
~22!
Hksps8
trans

~q!5dkpdss8@ek1q,2s2eks#

2dss8~nks2nk1q,2s!
U

N
1F2dkpdss8

U

N (
q8

^ak1q,2s
1 ak1q8,2srq2q8s1ak1q2q8s

1 aksrq2q8,2s&c

2dss8

U

N (
q8

^~aks
1 ak1q2q8s2ak1q8,2s

1 ak1q,2s!•~ap1q2q8s
1 aps2ap1q,2s

1 ap1q8,2s!&c

2ds,2s8

U

N
^aks

1 ap,2sSk2p
s 1ap1qs

1 ak1q,2sSp2k
s &cG•~nps82np1q,2s8!

21, ~74!
bil-
pti-

ill
nc-
-
ur

-

n-
m

with rqs denoting the density operator introduced in Eq.~46!
and Sq

s being a spin-flip operator defined in analogy toSq
1

@see Eq.~70!#:

Sq
s5(

k
aks

1 ak1q,2s . ~75!

The Hartree-Fock corrected single-particle energies defi
in Eq. ~23! are given by

eks5«k1U^n2s&. ~76!

In contrast to the charge-density case, notall elements of
the effective Hamiltonian~74! can be determined self
consistently from the Green’s functions~72!. The calculation
of terms like^ak↑

1 ak1q2q8↑ap1q2q8↑
1 ap↑&

c, for example, can-
not be performed with the spectral theorem for spin-fl
Green’s functions, since they contain always the same n
ber of ↑ and ↓ spins. These terms can, however, be de
mined from the charge-density Green’s function introduc
d

-
r-
d

in Sec. III A. By this means, the transverse spin suscepti
ity is coupled to the charge and longitudinal spin susce
bilities xch xsp. In this work, however, we will not further
investigate the transverse spin excitations.

IV. RESULTS FOR THE CHARGE
AND THE LONGITUDINAL SPIN RESPONSE

IN THE HUBBARD CHAIN

As a first application of our general formalism, we w
calculate the charge and longitudinal spin correlation fu
tions xch(q,v) and xsp(q,v) in the one-dimensional Hub
bard model. This will also serve as a test of whether o
formalism is well behaved in a numerical sense.

It was explained in Sec. III A that the first step will con
sist of calculating the Green’s functionGksps8(q,v), intro-
duced in Eq.~50!, on the level of therenormalizedRPA. In
this paper, we will not go beyond this approximation. I
deed, the numerical solution of the full SCRPA proble
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turns out to be quite enormous and certainly needs a m
numerical effort, which is intended to be invested in futu
work. Nevertheless, the main characteristics of the s
consistency cycle are already present on the level of
renormalized RPA.

We thus will determine self-consistently the RPA Gree
function ~62! together with the occupation numbersnks .
Due to the self-consistency, the occupation numbers
renormalized, which modifies the Green’s functionGks

0 (q,v)
and the susceptibilityx0(q,v) occurring in the RPA propa
gator ~62!.

In contrast, in pure RPA, i.e., if we fix the occupatio
numbers to their Hartree-Fock values given by Eq.~63!,
Gks

0 (q,v) and x0(q,v) are identical with the free particle
hole propagator and susceptibility, respectively.

After a brief overview of the numerical method we w
discuss the results for the renormalized RPA in the infin
Hubbard chain in the paramagnetic phase, i.e.,nk↑5nk↓ .

A. Numerical method

In order to determine the renormalized RPA Gree
function, we have to solve the RPA equations~58!,~61!,~62!
consistently with the equation for the occupation numb
~53!. Therefore, we start with an assumption for the init
occupation numbers and set up the following iteration
cle: ~i! Set up the renormalized free Green’s function~58!
from the current set of occupation numbers.~ii ! Calculate
the renormalized free susceptibility~61! by integrating
Gks

0 (q,v) over k. Note that for the computation o
Im x0(q,v) it is convenient to introduce a small but finit
imaginary parti01 in the denominator ofGks

0 (q,v). ~iii !
Set up the RPA Green’s function~62! from Gks

0 (q,v) and
x0(q,v). ~iv! Compute a new set of occupation numbe
by performing the spectral integral in Eq.~53!. This task is
also simplified by assuming a finite ‘‘i01. ’’ ~v! Repeat the
iteration cycle from the beginning until self-consistency
achieved.

Usually, we will start with a small interaction, e.g.,U
51, and a Fermi step for the occupation numbers. For
U, the RPA equations are then iterated to self-consiste
The result is used to initialize the occupation numbers of
iteration cycle with a slightly higher interaction. We thu
increase the interaction in small steps, iterating each tim
self-consistency, until the desired value forU is reached.
This procedure has the advantage that the spin respons
contrast to pure RPA, remains stable throughout the wh
calculation.

The momentum integrations are performed by summ
over a grid of uniformly distributed points in the first Bri
louin zone. The number of points is typically 256.

Energy integrals are computed using a grid of poi
obeying a Lorentzian distribution peaked atv50. The num-
ber of energy points is typically 2048 and the half-width
half-maximum of the distribution is about twice the ban
width, i.e., 8.

As mentioned above, it is convenient for computation
purposes to introduce a small but finite imaginary parti01 in
the denominator of the renormalized free Green’s funct
Gks

0 (q,v). Typically we use values of the order of magn
tude ofi /16, which corresponds to 1/64 the bandwidth. It c
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be shown that within our resolution the results are not
fected by slight variations of this value.

B. Occupation numbers

Figure 2 shows the momentum distribution function

nk5 1
2 ~nk↑1nk↓! ~77!

of the half-filled Hubbard chain. The renormalized RPA r
sults are compared with quantum Monte Carlo calculatio
We see that, for smallU, the renormalized RPA momentum
distribution has a discontinuity at the Fermi edge. This
typical for Fermi liquids, and thus indicates a metallic beha
ior. For largeU, the renormalized RPA momentum distribu
tion is continuous, and our theory predicts an insulat
ground state. IncreasingU in small steps (1/4), we deduc
that within our numerical momentum resolution the disco
tinuity at kF vanishes atU'3. We thus find a Mott metal-
insulator transition at an interaction strength that is sligh
smaller than the bandwidth~i.e., 4!. This is in good agree-
ment with approximations designed for the Hubbard mo
in higher dimensions, such as, e.g., the Hubbard
solutions.18,19 In one dimension, however, the exact solution8

predicts an insulating ground state for any finiteU. Conse-
quently, the exact results fornk , known from quantum
Monte Carlo~QMC!21 for finite U and from Bethe ansatz in
the limit of largeU,22,23 show a smooth behavior over th
whole k range for all interactions.

This disagreement should be judged in the light that
effective Hamiltonian of the renormalized RPA neglectsall
correlation functions. As discussed in Sec. III A, this a
proximation is expected to be far better in higher dime
sions. Nevertheless, in the strong-coupling limit, our theo
reproduces the cosine behavior fornk , known from the Be-
the ansatz expansion, apart from the prefactor~see Sec.
IV G!.

Away from half-filling, the renormalized RPA predicts
similar scenario: For smallU, the momentum distribution
function shows a discontinuity atkF , which now persists up
to higher interaction strengths as in the half-filled case.
the quarter-filled chain, e.g., this jump lasts up toU'4, as

FIG. 2. Momentum distribution functionnk for the half-filled
Hubbard chain. Quantum Monte Carlo data from Sorella~Ref. 29!.
The dotted line shows the large-U limit of the renormalized RPA,
given by Eq.~82!.
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can be seen from Fig. 3. The discontinuity occurs precis
at the samek5kF as the step in the momentum distributio
of the free Fermi gas. Therefore, the renormalized RPA
isfies the Luttinger theorem in one dimension.24

Again, the Mott-Hubbard transition predicted by o
theory is in disagreement with the exact behavior away fr
half-filling, which is known to be a Luttinger liquid for al
interaction strengths. The latter is characterized by a pow
law singularity in the momentum distribution at the Fer
points, which is expected in the strong-coupling limit fro
both, Bethe ansatz expansions25–27 and QMC calculations.21

For finite interaction strengths, it was also detected by QM
studies of infinite Hubbard chains.28

Calculations of finite chains indicate a discontinuity atkF
decreasing only very slowly with increasing chain leng
N.29,30 Therefore, they have great difficulties to detect t
Luttinger liquid behavior. There are certain similarities b
tween finite chains and calculations using a finite numbe
points in the Brillouin zone as, e.g., the numerical solution
the renormalized RPA equations. Nevertheless, our calc
tions indicate a finite slope of the momentum distribution
both sides of the Fermi points, and we do not find any s
nature of Luttinger liquid behavior.

C. Renormalized free susceptibilityx0
„q,v…

1. Imaginary part

Before discussing the RPA response functionsxch(q,v)
andxsp(q,v) let us analyze the renormalization effects in t
free susceptibilityx0(q,v).

In the (q,v) plane, the imaginary part ofx0(q,v) is re-
stricted to the region, where particle-hole excitations ex
i.e., there must be ak for which v5«k1q2«k is satisfied, or,

uvu<U4 sin
q

2U. ~78!

If the occupation numbers are step functions like in
free Fermi gas, a second boundary condition is provided
the fact, that in the particle-hole continuum described by

FIG. 3. Momentum distribution functionnk for the quarter-filled
Hubbard chain. Quantum Monte Carlo data from Dzierzawa~Ref.
28!.
ly
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~78! there must be at least onek vector for which the nu-
merator of the free Green’s function~58!, (nks2nk1qs),
does not vanish. This yields

uvu>2ucos~kF!2cos~kF2uqu!u. ~79!

We have seen in Sec. III A that the Hartree-Fock corr
tions to the single-particle energies cancel. Hence, the
nominator of the free Green’s function~58! does not change
throughout the renormalization process, and Eq.~78! repre-
sents a rigid boundary for the imaginary part of the fr
susceptibility. On the other hand, any rounding of the oc
pation numbers will directly affect the second boundary co
dition ~79!. This behavior of the imaginary part is illustrate
in Fig. 4 for half-filling and q5p/2. We see that
Im xfree(q,v), represented by the dotted line, is only nonze
in the domain in between the two boundaries given by E
~78! and ~79!.

In Sec. IV A, we explained that for technical reasons
have to seti01 in the denominator ofGks

0 (q,v) to a small
but finite value in order to perform the integral in Eq.~61!.
This smoothens the numerically calculated free susceptib
~dot-dashed line! in comparison to the analytical expressio
given in Appendix B~dotted line!.

Let us now study the imaginary part of the renormaliz
free susceptibility, Imx0(q,v), represented by the continuou
line in Fig. 4 for half-filling,U53 andq5p/2. On the outer
boundary ~78! it behaves essentially in the same way
Im xfree(q,v), whereas the inner boundary~79! is com-
pletely washed out due to the renormalization of the occu
tion numbersnks .

As will be discussed in Sec. IV G, the strong-couplin
limit of our theory can be calculated analytically for hal
filling. Scaling our strong coupling result for Imx0(q,v)
down toU53 leads to the dashed line in Fig. 4. ForU53,
which is lower than the bandwidth and has thus to be c
sidered as an intermediate interaction, Imx0 of the complete
renormalized RPA calculation~continuous line! qualitatively
already resembles the properly scaled strong-coupling re
~dashed line!.

Figure 5 shows Imx0(q,v) for U56 and half filling.
Comparing the continuous with the dashed line, we not
that the renormalized RPA result for Imx0 now agrees also
quantitatively very well with the corresponding stron

FIG. 4. Imaginary part of the free and renormalized free susc
tibility x0(q5p/2,v) for the half-filled Hubbard chain atU53.
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coupling result. The remaining difference comes from
finite imaginary parti01 used for the numerical computatio
of Im x0(q,v).

2. Real part

Let us now examine the real part of the free susceptibi
x free(q,v). As can be seen from the analytic expressio
given in Appendix B, Rexfree(q,v) diverges at the two
boundaries of Imxfree(q,v), which demark the particle-hole
continuum.

The divergence on the upper boundary, given by Eq.~78!,
makes the denominator of the pure RPA charge suscep
ity @see Eq.~64!# 12Ux free(q,v) vanish at an energy abov
the continuum limit where an undamped plasmon is crea

This is illustrated in Fig. 6 by the intersection of the ho
zontal line at11/U with the real part ofx free(q,v) at v
'3.3. The dotted and dot-dashed lines represent the ana
cal or numerical expressions for Rexfree(q,v), respectively.
Hence, asU is increased, the horizontal line at 1/U is low-
ered and the pure RPA plasmon is shifted towards hig
energies.

A similar scenario can be established for the longitudi
spin response in the pure RPA. Its denominator,

FIG. 5. Imaginary part of the free and renormalized free susc
tibility x0(q5p/2,v) for the half-filled Hubbard chain atU56.

FIG. 6. Real part of the free and renormalized free susceptib
x0(q5p/2,v) for the half-filled Hubbard chain atU53. The inter-
section with the horizontal lines at61/U indicate where the collec
tive excitations occur~see text!.
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1Uxfree(q,v), vanishes at an energy below the lower co
tinuum limit, given by Eq.~79!, and an undamped magnon
created. Again, this is shown in Fig. 6 by the intersection
the horizontal line at21/U with Rexfree at v'1.6. As the
interaction is increased, the magnon is shifted towards lo
frequencies, and as it reachesv50, the system becomes un
stable. This will be discussed in more detail below. Note t
slightly below the upper continuum edge, the dotted line r
resenting Rexfree also meets the horizontal line at21/U.
However, as Imxfree is large in this region near the squar
root singularity at the upper continuum boundary, it will n
contribute to the pure RPA spin response.

Figures 7 and 8 display the position of the plasmons a
the magnons in the (q,v) plane forU53 and for half- and
quarter-filling, respectively. Once more, we notice that t
pure RPA plasmons lie above the particle-hole continuu
represented by the dotted area. The pure RPA magnons
cur below the lower continuum boundary. As the low
boundary goes tov50 for q→2kF , the spin pole will meet
the momentum axis near 2kF producing the well-known
Peierls instability. This instability occurs in the pure RPA f

p-

y

FIG. 7. Plasmon and magnon dispersion for the half-filled Hu
bard chain atU53. The renormalized RPA plasmons are plott
with circles.1 andx symbols stand for the pure RPA plasmons a
magnons, respectively. The dotted area illustrates the nonintera
particle-hole continuum. Its boundaries are given by the continu
lines.

FIG. 8. Plasmon and magnon dispersion for the quarter-fi
Hubbard chain atU53. Symbols as in Fig. 7.
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infinitesimalU exactly atq52kF . When increasing the in
teraction, the region of instability is enlarged covering
growing interval aroundq52kF .

It extends to the wholeq axis whenU exceeds some
critical interactionUStoner, provided by Stoner’s mean-fiel
theory.31 In mean field, the paramagnetic state,m5^n↑&
2^n↓&50, is always a local extremum in the energy surfa
as a function of the magnetizationm. This extremum is a
minimum for

U,UStoner52p sin
pn

2
, ~80!

with n denoting the number of electrons per site. ForU
.UStonerit is a maximum. Nevertheless, it should be reme
bered that there is a range of interactionsUMF,U,UStoner

for which the paramagnetic state is a local but not the glo
minimum, and that the global minimum is reached in t
fully ferromagnetic staten5m.

We thus conclude that the pure RPA only produces va
results in the region where no instabilities occur. Calculat
quantities having a contribution from the unstable reg
aroundq52kF , such as, e.g., the occupation numbers, d
not make sense even for small interactions. AboveUStoner,
the pure RPA is unstable for allq and v. As we will see
below, it is the virtue of the renormalized RPA~and also the
SCRPA! to cure these instabilities, rendering possible
computation of the occupation numbers from Eq.~53!. These
arguments will be underlined in Sec. IV F by considering t
energy weighted sum rule.

Above the outer continuum limit~78!, the real part of the
renormalized free susceptibility, Rex0(q,v), behaves qualita-
tively like Rexfree(q,v). In the same manner as above, w
find an undamped plasmon at the energy where the den
nator of the renormalized charge susceptibility in Eq.~64!,
12Ux0(q,v), vanishes. For smallU, the plasmon is only
slightly shifted to lower energies with respect to the pu
RPA plasmon. For largerU, the renormalization effects ar
stronger. We will see in Sec. IV G that the frequencies of
renormalized plasmons remain finite asU goes to infinity.
The pure RPA plasmons, in contrast, occur at infinite f
quencies in the limit of largeU.

Below the outer continuum limit~78!, the renormalization
effects in Rex0(q,v) are more drastic. This is shown by th
continuous line in Fig. 6 forU53 and half-filling. The sin-
gularity of Rexfree at the lower continuum boundary (v
'2) is completely damped and Rex0 is an almost structure
less function within the renormalized continuum, i.e., fro
v50 up to almost the continuum edge~78! at v'2.8.

This gives, even for small interactions, rise to qualitat
changes in the longitudinal spin response. At the ene
where the denominator of the longitudinal spin suscepti
ity, 11Ux0(q,v), becomes resonant, the imaginary part
x0(q,v) is large. Therefore, the renormalized spin respo
will show a broad maximum instead of the undamped m
non found in the pure RPA spin response.

Apart from the qualitative differences expected betwe
the pure and the renormalized RPA spin responses, ther
important consequences for the regime where the pure R
is unstable. We recall that in thisq range, the pure RPA
magnon frequency becomes imaginary and the magnon
e

-
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d
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y
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n
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in the pure RPA spin response disappears. As one co
quence, we will outline in Sec. IV F that the energy weight
sum rule for the pure RPA spin response will be violated

In contrast, the broad maximum in the renormalized R
spin response will persist even for theq vectors where the
pure RPA is unstable. Therefore, the renormalized RPA s
response fulfills the energy weighted sum rule for everyq,
even for interactionsU.UStoner. This will be explained in
more detail in Sec. IV F. By this means, the Peierls insta
ity occurring in the pure RPA is cured by the renormalizati
process.

In the limit of large interactions, the real part ofx0 be-
comes completely flat within the renormalized particle-ho
continuum, and 11U Rex0(q,v) vanishes within thewhole
continuum. As Imx0(q,v) is smallest within the continuum
for v→0, the broad maximum in the longitudinal spin r
sponse is shifted towards zero frequency. The conseque
are discussed in Sec. IV E.

We finally remark that even for smallU, the renormaliza-
tion effects are strong enough to lock Rex0(q,v) to values
greater or equal to21/U ~see Fig. 6!. Consequently, the
scenario given above is valid, and the renormalized spin
sponse shows already for weak interaction strengths a b
continuum peak rather than a sharp magnon pole.

D. Charge response

Due to the rather small renormalization effects
x0(q,v) outside the particle-hole continuum, we expect t
charge response in the pure and in the renormalized RP
behave similarly.

For intermediate interactions, the pure RPA charge
sponse is given by a rather small continuum that is limited
the two boundary conditions~78! and~79!, and an undamped
plasmon lying above the continuum. This is illustrated f
U53 and half-filling by the dotted line in Fig. 9, where w
used the analytical expressions forx free, given in Appendix

FIG. 9. Charge responsexch(q5p/2,v) in pure and renormal-
ized RPA for the half-filled Hubbard chain atU53. The vertical
lines indicate the plasmon peaks. Accidentally, the pure RPA p
mon and the strong-coupling plasmon occur at almost the s
energy, such that the dotted and the dashed vertical line canno
resolved from another. The thin continuous vertical line illustra
the precise position of the renormalized RPA plasmon, which its
is represented by the singularity in the renormalized RPA cha
response~continuous line!.
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B, to evaluate the pure RPA charge response. Evaluating
pure RPA charge response numerically, i.e. with a fin
value of i01 as discussed in Sec. IV A, leads to the d
dashed line in Fig. 9. We observe that, due to the finitei01,
the pure RPA plasmon atv'3.3 is broadened with respec
to the analytical curve, and that the sharp cutoff at the c
tinuum boundaries is smoothened.

Comparing the continuous line with the dot-dashed line
Fig. 9 shows that the renormalized charge response ag
essentially with the pure RPA predictions. As explained
Sec. IV C 2, the main differences are that the tail of t
renormalized charge continuum now goes down tov50 and
that the plasmon is slightly shifted towards lower energi
The precise position of the renormalized plasmon is in
cated in Fig. 9 by a continuous vertical line in the center
the numerically computed plasmon pole, which, for nume
cal reasons, has a finite width.

Qualitatively, the charge response forU53 is already
very similar to the properly scaled strong-coupling limit
our theory. This can be seen by comparing the dashed
the continuous lines in Fig. 9. Moreover, the plasmon po
tion of the pure RPA and the strong-coupling limit of th
renormalized RPA agree very well, such that the dotted
the dashed vertical lines cannot be resolved from anot
Note, however, that this agreement is purely accidental.

The renormalization effects become more drastic as
interaction strength is increased. For half-filling andU56
Fig. 10 illustrates that the renormalized charge continu
now not only goes down tov50 ~continuous line! but also
is much stronger than the pure RPA charge continuum~dot-
dashed line!. Further, the energy shift of the plasmon o
tained from renormalization is larger than in the wea
coupling limit.

For U56, the charge response already agrees quan
tively very well with the strong coupling limit of our theory
Comparing the continuous and the dashed line shows
both the continuum contributions and the positions of
plasmon peaks are in good agreement. In Sec. IV G we
discuss in detail that the renormalization prevents the p

FIG. 10. Charge responsexch(q5p/2,v) in pure and renormal-
ized RPA for the half-filled Hubbard chain atU56. The vertical
lines indicate the plasmon peaks~see Fig. 9!. The strong-coupling
limit of our theory is reached, and the renormalized RPA plasm
~continuous vertical line! cannot be resolved from the strong
coupling plasmon~dashed vertical line!.
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mon pole in the largeU limit from being shifted to infinite
frequencies as this happens for the pure RPA plasmon.

Similar results are obtained away from half-filling.

E. Longitudinal spin response

According to the discussion of the real parts ofx free(q,v)
andx0(q,v) in Sec. IV C 2, we expect the spin response
change qualitatively when passing from the pure to ren
malized RPA, even in the regime of weak and intermedi
coupling.

This is illustrated in Fig. 11 forq5p/2, U53 and half
filling. For these values there are already significant chan
although the pure RPA is still stable. The pure RPA sp
response~dot-dashed line! consists of a rather small con
tinuum being restricted to the area in between the t
boundaries given by Eqs.~78! and ~79!, and an undamped
magnon occurring below this continuum.

As explained before, the broadening of the magnon is
numerical origin. The corresponding analytic expression
be obtained using the representation ofx free from Appendix
B. The latter leads to the dotted line in Fig. 11.

It was argued in Sec. IV C 2 that the magnon pole dis
pears during the renormalization procedure. Hence,
renormalized RPA spin response is fully described by a c
tinuum exhibiting a broad peak~continuous line!. Like the
renormalized charge continuum, this spin continuum start
v50 and goes up to the upper continuum boundary~78!.
The dashed line in Fig. 11 shows the spin response in
strong-coupling limit of our theory scaled toU53. A com-
parison with the renormalized RPA result~continuous line!
shows that especially for low frequencies there are still i
portant differences. Thus, atU53 the strong-coupling limit
is not yet reached.

If U is increased or if theq vector is chosen in the domai
around 2kF where the pure RPA is unstable, the pure RP
magnon frequency will become purely imaginary. Figure
shows this case forU56, q5p/2 and half-filling. The pure
RPA spin response is represented by the dot-dashed an
underlying dotted line, depending on whether the numer
or the analytical expression is monitored. We notice that
magnon peak in the pure RPA spin response vanishes c

n

FIG. 11. Spin responsexsp(q5p/2,v) in pure and renormalized
RPA for the half-filled Hubbard chain atU53. The vertical line
indicates the pure RPA magnon peak.
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pletely. This corresponds to an unphysical situation, as
be underlined in Sec. IV F by sum rule arguments.

In renormalized RPA, the broad maximum in the longit
dinal spin response is shifted towards zero frequency w
the interaction is increased. This can be seen by compa
the continuous lines in Fig. 11 and Fig. 12, which repres
the renormalized spin response forU53 andU56, respec-
tively. Whereas in Fig. 11, the renormalized spin respo
reaches its maximum at a finite frequency, we see from
12 that forU56 it is strongly peaked atv50. This behavior
is characteristic for the strong-coupling limit of our theor
given by the dashed line, which cannot be resolved from
continuous line in the latter graph. In renormalized RPA,
energy weighted sum rule is fulfilled for allU, as will be
demonstrated in the next subsection. Nevertheless, we
point out in Sec. IV G that the singularity of the spin r
sponse atv50 may lead to divergences in correlation fun
tions.

F. Energy weighted sum rule

In Sec. III B a sum rule is derived for the energy weight
spin and charge response. In the one-dimensional Hub
model, Eq.~68! connects an energy weighted integral ov
the response functions to the mean kinetic energy per site^ t̂ &
times a form factor:

S1
ch~q!:22^ t̂ &~12cosq!52

1

p E
2`

`

dv v Im xch~q,v!

S1
sp~q!:2

1

2
^ t̂ &~12cosq!52

1

p E
2`

`

dv v Im xsp~q,v!.

~81!

In Sec. III B it is argued that it not only holds true for th
exact response functionsxch(q,v) andxsp(q,v) but also for
the response functions in self-consistent and in renormal
RPA if the mean kinetic energy per site^ t̂ & is calculated
self-consistently from the corresponding Green’s functi
Moreover, it is well known that the sum rule for the pu

FIG. 12. Spin responsexsp(q5p/2,v) in pure and renormalized
RPA for the half-filled Hubbard chain atU56. The magnon peak
present in Fig. 11, has vanished due to the instability of the p
RPA ~see text!.
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RPA response functions is fulfilled if̂t̂ & is calculated with
the Hartree-Fock ground stateas long as no instability
occurs.10,20

In Figs. 13–16 we show the result of the sum rule che
for U53, and for half- and quarter-filling, respectively. In a
figures, the left-hand sides of the Eqs.~81! are plotted with
the dotted lines. As their (12cosq) behavior is independen
of the approximations made in the Green’s function, we w
consider them as ‘‘reference lines.’’ Nevertheless, they
scaled with a prefactor̂t̂ & that depends on the Green’s fun
tion. In renormalized RPA, the mean kinetic energy per s

re

FIG. 13. Energy weighted sum rule for the renormalized a
pure RPA charge susceptibility for the half-filled Hubbard chain
U53. The dashed and continuous line correspond to the rhs o
charge sum ruleS1

ch(q), Eq. ~81!, computed with the pure and
renormalized RPA charge susceptibility, respectively. The left-h
side of the sum rule is plotted with the thin dotted ‘‘reference
lines. As the sum rule is fulfilled in both cases, these reference l
cannot be resolved from the corresponding continuous or das
lines.

FIG. 14. Energy weighted sum rule for the longitudinal sp
susceptibility in renormalized and in pure RPA for the half-fille
Hubbard chain atU53. The dashed and continuous line correspo
to the rhs of the spin sum ruleS1

sp(q), Eq. ~81!, computed with the
pure and renormalized RPA spin susceptibility, respectively. T
left hand side of the sum rule is plotted with the thin dotted ref
ence lines. As the sum rule for the renormalized RPA is fulfille
the reference line cannot be resolved from the continuous line.
the pure RPA, there is a region around 2kF where the sum rule
breaks down.
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is less negative than in Hartree-Fock, since the momen
distribution is smoothened. Thus, the reference lines for
renormalized RPA sum rules lie always below the pure R
lines.

For therenormalizedRPA susceptibilities, the right-han
sides of Eqs.~81! are represented by the continuous line
They cannot be resolved from the corresponding dotted
erence lines. Hence, in renormalized RPA the sum rule
fulfilled for all q vectors and for both the charge and t
longitudinal spin response.

Calculating the rhs of the Eqs.~81! with the pure RPA
susceptibilities yields the dashed lines. The sum rule for
charge response is monitored in the Figs. 13 and 15. Th
the dashed lines cannot be resolved from their dotted re
ence lines. This means that the sum rule for the pure R
charge response holds true for allq vectors.

In Figs. 14 and 16, we show the sum rule check for
pure RPA spin response. The dashed lines, which repre
the energy weighted pure RPA spin response, agree
their reference lines, apart from a range ofq vectors around
the Peierls vector 2kF . This q range coincides with theq
range where the corresponding magnon dispersion in Fi
and Fig. 8, respectively, goes tov50. Therefore, the energ

FIG. 15. Energy weighted sum rule for the renormalized a
pure RPA charge susceptibility for the quarter-filled Hubbard ch
at U53. Description as in Fig. 13.

FIG. 16. Energy weighted sum rule for the longitudinal sp
susceptibility in renormalized and in pure RPA for the quarter-fil
Hubbard chain atU53. Description as in Fig. 14.
m
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7

weighted sum rule for the pure RPA spin susceptibility
only fulfilled for the range of momenta where the pure RP
is stable.

Again, we want to emphasize the quality of the renorm
ized and the self-consistent RPA to restore thef -sum rule for
all momenta and interactions.

G. The large-U limit

At half-filling and for largeU, the occupation number
predicted by renormalized RPA can be fitted very accura
by

nks5
1

2 S 11
4

U
coskD , ~82!

whereas the largeU expansion of the Bethe ansatz solutio
yields22,23

nks5
1

2 S 11
8 ln 2

U
coskD . ~83!

Comparing the dotted line and the lowest continuous line
Fig. 2 shows that forU55, the expression~82! agrees al-
ready very well with the numerical results fornk . We will
show in the following that Eq.~82! indeed is the fully self-
consistent solution of the renormalized RPA equations in
strong-coupling limit.

Based on Eq.~82!, it is possible to give an explicit ex
pression for the renormalized free susceptibility. As the c
tinuum boundary condition for steplike occupation numbe
Eq. ~79!, becomes meaningless in the limit of strong intera
tions, the only characteristic energy is provided by the up
continuum limit ~78!. Hence, the explicit expressions fo
x0(q,v) do not depend onq andv as independent variable
anymore, but can be denoted as a function of one sin
variable j, which is the energy in units of the upper co
tinuum limit ~78!:

j5
v

U4 sin
q

2U
. ~84!

Performing the integration in Eq.~61! with occupation
numbers as given by Eq.~82! yields the renormalized free
susceptibility,

x0~j!52
1

U 5 11 i
j

A12j2
for uju,1,

12
uju

Aj221
for uju.1.

~85!

As for the free susceptibilityx free, the imaginary part ofx0

still has a square-root singularity at the continuum limituju
51, whereas the real part ofx0 is completely flat within the
particle-hole continuum. By scaling the renormalized fr
susceptibility of the strong-coupling limit, Eq.~85!, to U
53 or U56 we obtain the dashed lines in Figs. 4, 5, and

Substituting Eq.~85! into Eq.~64! yields the renormalized
RPA response functions. The large-U charge response i
characterized by a small continuum withinuju,1,

d
n
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Im xch~j!52
2

U

jA12j2

423j2 . ~86!

Outside the particle-hole continuum, the charge response
a collective pole atj52/), describing an undamped pla
mon obeying the dispersion relation

Vp5
8

)
Usin

q

2U. ~87!

Notice that the dispersion relation of the renormalized pl
mon becomes independent ofU in the large-U limit. The
pure RPA, in contrast, predicts in this limit a plasmon d
persion proportional toU. The strong coupling charge re
sponse scaled to the appropriateU is represented in Fig. 9
and Fig. 10 by the dashed lines.

From the second of Eqs.~64!, in combination with the
renormalized free susceptibility~85!, we obtain the large-U
spin response in renormalized RPA. It is fully described b
continuum foruju,1,

Im xsp~j!52
1

2U

A12j2

j
, ~88!

and vanishes elsewhere. This is plotted with dashed line
Fig. 11 for U53 and Fig. 12 forU56. No collective exci-
tations occur, since the denominator of the renormali
RPA spin response, 11Ux0, is always finite. Nevertheless
we see from Eq.~88! that the spin continuum diverges atv
50 with consequences that we will discuss below.

It can be shown that the real and imaginary part ofx0

from Eq. ~85! fulfill the Kramers-Kronig relations. More-
over, we will show in Appendix C that the occupation num
bers calculated from the large-U expression of the renorma
ized RPA Green’s function via the spectral theorem~53! are
consistent with Eq.~82!. This means that the occupatio
numbers~82! fulfill together with the strong coupling sus
ceptibilities ~86! and ~88! the self-consistency condition o
the renormalized RPA.

The number of double occupancies per site are given

1

N (
i

ni↑ni↓5^n↑&^n↓&1
wc

U
, ~89!

wherewc stands for the correlated potential energy per s

wc5
U

N2 (
kpq

^ak↑
1 ak1q↑ap1q↓

1 ap↓&
c. ~90!

wc is independent ofU, since the largeU Green’s function
scales with 1/U.

Nevertheless, as the expectation value in Eq.~90! can be
obtained from the spectral theorem~54! by integrating the
renormalized RPA Green’s function over positive freque
cies, the 1/v divergence of the spin response~88! makes the
expectation valuewc diverge logarithmically. This mean
that both the total potential energy per site and the numbe
doubly occupied sites are going to2` asU→`.

One way to correct these deficient results is to calcu
the ground-state energyE(U) from the kinetic energyT(U),
using the Hellmann-Feynman theorem,32
as

-

-

a

in

d

y

,

-

of

te

E~U !5UE
U

`

dy
T~y!

y2 . ~91!

The behavior of the kinetic energy in the renormaliz
RPA can be obtained from the occupation numbers~82!. For
largeU, this yields

T~U !52
4

U
. ~92!

Again, only the prefactor differs from the exact result,

Texact~U !52
8 ln 2

U
, ~93!

known from the large-U expansion of the Bethe ansa
solutions.22,33

Calculating the ground state by Eq.~91!, our theory pre-
dicts

E~U !52
2

U
~94!

asU→`. The large-U expansion of the renormalized RP
ground-state energy of the half-filled Hubbard chain
shown in Fig. 17 by the dashed line. For arbitrary intera
tions, the renormalized RPA ground-state energy calcula
with the Hellmann-Feynman theorem is illustrated byx sym-
bols. This compares reasonably well with the exact res
known from Bethe ansatz~continuous line! and its large-U
expansion~dot-dashed line!.

We now have access to the potential energy as the dif
ence between the ground-state energy and kinetic energ
thus behaves as 2/U for largeU. This implies that the num-
ber of double occupancies vanishes as 2/U2 for strong inter-
actions. In Fig. 18, the number of double occupancies at
filling is monitored as a function ofU. We see that for smal
interactions, the renormalized RPA (x symbols) reproduces
the exact result~continuous line!. For large interaction
strengths, our theory matches the Bethe ansatz expan
2(4 ln 2)/U2 ~dot-dashed line!, apart from the prefactor.

FIG. 17. Ground-state energy per site for the half-filled Hubb
chain. Bethe ansatz expansion from Baeriswyl and co-work
~Refs. 33 and 22!. Large-U limit of the renormalized RPA from Eq.
~94!.
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V. DISCUSSION, CONCLUSIONS, AND OUTLOOK

In this work, we performed an application of the se
consistent RPA~SCRPA! theory to the Hubbard model. In
itself, the SCRPA is an approximation to the general Dys
equation approach~DEA! to correlation functions where th
full ~exact! mass operator is replaced by its instantane
contribution. For the single-particle Green’s function th
strategy leads to the standard Hartree-Fock theory. In a
ogy, it has been argued in the past that the SCRPA co
sponds to a HF theory for fermion pair clusters. Recen
this theory has produced very interesting results in vari
domains of many-body physics.6,7

Unfortunately, being a~nonlinear! mean-field theory for
nonlocal correlation functions, SCRPA is numerically ve
demanding. As a first step, we therefore had to procee
further rather drastic simplifications. The latter consist of
taining correlationsonly in the single-particle occupatio
numbers. This approximation to SCRPA is known in t
literature asrenormalizedRPA.2,34 In spite of this, the essen
tials of the self-consistency and closure aspects remain
tact. As a further virtue, thef -sum rule is shown to be ful
filled in self-consistent as well as in renormalized RPA. T
also implies that the Goldstone theorem is fulfilled and sy
metries are treated correctly.

We solved numerically the renormalized RPA equatio
for the one-dimensional single-band Hubbard model in
paramagnetic phase, for different fillings and interactio
Although we were aware of the difficulty of describing on
dimensional models because of the extreme importanc
quantum correlations,6 there were multiple reasons for th
choice. In a first place, the exact solution of Lieb and W8

provides a benchmark for our results, which, in higher
mensions, does not exist. As was argued in Sec. III A,
expect the renormalized RPA to perform better with incre
ing dimensionality. Therefore, one dimension~1D! can be
considered as a ‘‘worst case check’’ for our approximatio
The second reason is mainly technical: The self-consiste
equation for the occupation numbers~53! illustrates that the
numerical effort increases with the square of the spatial
mension. Therefore, the experience in 1D is desirable be
attacking higher dimensions. In the last place, even in
dimension, we are able to test explicitly the essentials of
method and the convergence of the iteration cycle.

FIG. 18. Number of double occupancies per site for the h
filled Hubbard chain.
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As expected, most of the particularities of the on
dimensional model, such as, e.g., Luttinger liquid behav
away from half-filling, could not be reproduced. The sc
nario predicted by our theory confirms fairly well the resu
that were obtained from methods designed for high
dimensional models, such as, e.g., the Hubbard
approximation:18,19 For smallU, we find a Fermi-liquid-like
metallic ground state. The system undergoes a Mott-Hubb
transition for an interaction slightly smaller than the ban
width. The exact value of the critical interaction depends
the filling. For stronger interactions, our theory predicts
insulator for all fillings.

Despite these deficiencies, we obtain several interes
results. In the strong-coupling regime of the half-fille
model, for example, we are able to express the central qu
tities of our theory analytically. The renormalized RPA m
mentum distribution function, given by Eq.~82!, agrees,
apart from a prefactor, with thenk}cosk behavior known
from the large-U expansion of the Bethe ansatz solution.

Moreover, the mean-field spin instability around 2kF ,
which causes the breakdown of the pure RPA for any fin
interaction, turns out to be cured in renormalized RPA in
sense that no more purely imaginary eigenfrequencies o
in the spin channel. On the other hand, the renormalizatio
still rather weak such that a strongly overdamped spin p
remains at low energy. These low-lying spin excitations g
rise to a slow~logarithmic! divergence of the two-body cor
relation functions, which is carried into the number of doub
occupancies and thus also into the ground-state energy.
stronger renormalization contained in the SCRPA would c
tainly cure this pathology, since it also renormaliz
~screens! the interaction self-consistently. In this sense, t
SCRPA bears some similarities to the approach of V
Chen, and Tremblay.35

Several of the renormalized RPA results may nonethe
be improved by applying the Hellmann-Feynman theore
Using this approach, which may simulate a step towards
full solution of the SCRPA, the ground-state energy co
pares for all interaction strengths reasonably well with
exact results, known from Bethe ansatz. Moreover, the nu
ber of doubly occupied sites shows a qualitatively corr
behavior over the wholeU range. Especially forU→0, the
mean-field value is recovered, and, forU→`, the double
occupancies vanish like 1/U2, as predicted by the exact so
lution.

In the strong-coupling regime of the half-filled model, th
approach reproduces the exact results for the momentum
tribution function, the ground-state energy, the kinetic a
potential energy, and the number of doubly occupied si
apart from a general prefactor. We would obtain the rig
prefactor by substituting the bare HubbardU with a screened
interaction, or, in other words, by multiplyingU in our
theory by a factor 1/(2 ln 2)'0.72.

Since in renormalized RPA the Hubbard interaction is a
proximated by a simple spin-flip interaction, it is not asto
ishing that the best results are produced at half filling23

Away from half-filling, other scattering processes, still tak
into account in SCRPA but neglected in renormalized RP
become important. Therefore, the renormalized RPA is l
effective. The Luttinger liquid behavior, exhibited by the e
act momentum distribution even forU→`,25 is not ob-

-
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tained. In the strong-coupling limit, the renormalized RP
produces smooth occupation numbers, although still havin
steeper slope atkF as at half-filling. For small interactions
the renormalized RPA still predicts a discontinuity in t
momentum distribution atkF . This implies that the Luttinger
theorem is satisfied.

A further point to be discussed is the fact that we co
pletely neglected the dynamical interaction part,HAB

res(v),
defined in Eq.~11!. It is certainly true, as recently pointe
out by Logan for the infinite dimensional Hubbard model36

that this dynamical interaction should be taken into accou
in order to describe the low-energy scale in the spin chan
correctly. Nevertheless, in the present work, some dynam
effects in the spin channel are considered via the couplin
the occupation numbers to the RPA ground-state corr
tions. A full inclusion of the dynamical effects goes, how
ever, beyond the scope of this paper.

At this point, it may be appropriate to return briefly
some technical aspects of the SCRPA that we did not
velop in the main text in order not to further extend the s
of the paper. In the Introduction, we mentioned that
equation of motion method~EOM!, on which our formalism
is based, goes back rather far in time. The first major th
retical input was developed by Rowe in his review articl2

where the calculation of density-density correlation functio
is described in the context of nuclear physics. The met
was later applied to strongly correlated electrons by Ro3

She evaluated the single-particle Green’s function by c
pling it in an approximate way to the three-particle propa
tor ~see also Beenen and Edwards37 for a more recent appli-
cation to the Hubbard model!. Since then, in solid-state
physics, the EOM has, to the best of our knowledge, b
used exclusively for the calculation of single-partic
properties.38

As we point out in Ref. 9, the optimal procedure will be
combine single-particle and fermion-pair channels. Inde
as is well known, the single-particle mass operator can
expressed exactly by the two-particleT matrix.39 Replacing
it by its SCRPA counterpart then naturally leads to a s
consistent coupling of both channels. In this scheme, as
will describe in more detail in a future publication, th
single-particle occupation numbers will not be evalua
from the particle-hole propagator@see Eqs.~27! and ~53#,
respectively! but directly from the single-particle Green
function. A further advantage of this strategy is that sing
particle and fermion-pair properties are obtained simu
neously and on equal footing. We did not follow this route
this paper, since it again would have strongly increased
numerical difficulties. In spite of these possible improv
ments, the present investigation shows that the essentia
the SCRPA theory~i.e., the self-consistency procedure! work
correctly in a numerical application to a homogeneous s
tem of strongly interacting fermions. Once the method w
be solvable in its full complexity, the possible applicatio
are very numerous. Indeed, the SCRPA is a very flex
formalism applicable to strongly correlated Fermi system
but also to Bose or spin systems. The study of such syst
are planned in the future.

A very appealing application of the SCRPA may be t
Hubbard model in infinite dimensions, since, on one ha
the physics ind5` is expected to be somewhat similar
a
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d53. On the other hand, spatial fluctuations are suppres
in d5`, which allows us to reduce the many-body proble
to either a dynamical single-site problem, or, to an effect
one-dimensional problem. We thus may expect, that the
merical solution of the SCRPA will be feasible in infinit
dimensions, in contrast to finite dimensions, where the ef
will grow with an exponent 3d, since the effective Hamil-
tonian contains correlation function depending on three m
menta.
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APPENDIX A: DERIVATION OF THE SCRPA
FROM A VARIATIONAL PRINCIPLE

In this section, we will briefly outline the derivation of th
particle-hole SCRPA equations from a variational princip
An analogous method was derived by Baranger40 for the
single-particle case.

Let us therefore consider the spectral representation of
retarded Green’s function

^^X;X1&&v
ret5(

n
F ^0uXun&^nuX1u0&

v2vn01 i01

2e
^0uX1un&^nuXu0&

v1vn01 i01 G , ~A1!

whereu0& is the exact ground state ofH, andvn0 denotes the
excitation energy for the exact eigenstatesun&. For the
particle-hole problem, we sete511. The excitation opera-
tors X1 are given by

X15(
kp

xkpak
1ap . ~A2!

The normalized mean excitation energy is given by

S15

(
n

vn0~ z^nuX1u0& z22 z^nuXu0& z2!

(
n

~ z^nuX1u0& z22 z^nuXu0& z2!

5

E
2`

`

dv v Im^^X;X1&&v
ret

E
2`

`

dv Im^^X;X1&&v
ret

. ~A3!

The equivalence between the first and the second line ca
seen by substituting the spectral representation~A1! in the
second line. The denominator can easily be evaluated w
the spectral theorem ~15!. This yields the norm
^0u@X,X1#u0&, which would be equal to unity ifX1 were
ideal bose operators.

We now minimize Eq.~A3! with respect to the excitation
operators. TheX1 with the lowest mean excitation energ
obey the condition
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]S1

]xkp
50. ~A4!

It is straightforward to verify that Eq.~A4! leads to the
SCRPA for the particle-hole propagator derived in Sec. II

APPENDIX B: FREE SUSCEPTIBILITY
IN ONE DIMENSION

The free susceptibility is obtained by performing the
tegral in Eq.~61! for steplike occupation numbers~63!. Be-
cause of the symmetry of the dispersion relation«k , the real
part ofx0(q,v) is symmetric inq andv, whereas the imagi-
nary part is symmetric inq and antisymmetric inv.

In the paramagnetic phase,nk↑5nk↓ , and in one dimen-
sion, the explicit expression for the real part is

Re x0~q,v!5
1

pAuzu
FatanS Auzu sin kF

v coskF24 sin2~q/2!
D

2atanS Auzu sin kF

v coskF14 sin2~q/2!
D G ~B1!

with z5(4 sinq/2)22v2 and

atanx5H arctanx for z,0,

artanhx for z.0 and uxu,1,

arcothx for z.0 and uxu.1.

~B2!

For the imaginary part, we find in agreement with Be´nard,
Chen, and Tremblay41

Im x0~q,v!52
Q~z!

2Auzu
FQS «F1

v

2
1

1

2
Auzu cot

q

2D
1QS «F1

v

2
2

1

2
Auzu cot

q

2D
2QS «F2

v

2
1

1

2
Auzu cot

q

2D
2QS «F2

v

2
2

1

2
Auzu cot

q

2D G . ~B3!

APPENDIX C: SELF-CONSISTENCY
OF THE LARGE- U LIMIT

In this section, we will briefly outline that the occupatio
numbers that are given by Eq.~82! for the half-filled Hub-
bard chain in the large-U limit are indeed a fully self-
consistent solution of the renormalized RPA equations.

If we assume the occupation numbers from Eq.~82!, we
find the renormalized free susceptibility~85! by calculating
thek sum in Eq.~61!. The large-U limit of the renormalized
RPA Green’s functions is then obtained by substitut
x0(q,v) in Eq. ~62!.

We are now able to calculate a new set of occupat
numbers by inserting this renormalized RPA Green’s fu
tion in Eq. ~53!. For convenience, however, we will rathe
use the commutator spectral theorem, Eq.~15!, itself:
.

n
-

~nks2nk1qs!new

52
1

p (
p
E

2`

`

dv Im Gksps~q,v!

52
1

p E
2`

`

dv ImF S ~nks2nk1qs!old

v2@«k1q2«k#1 i01D
3S 1

12Ux↑
0~q,v!Ux↓

0~q,v! D G . ~C1!

For the self-consistency to be fulfilled, we now have to sh
that the ‘‘new’’ occupation numbers are equal to the ‘‘old
ones. As we are in the paramagnetic phase, we may drop
spin indices and convert the integrand in a partial fracti
After substituting x5v/u4 sin(q/2)u and ykq5@«k1q
2«k#/u4 sin(q/2)u, we find for the ratio between new and o
occupation numbers:

I ~ykq!52
1

2p
E

2`

`

dx ImF 1

x2ykq1 i01

3S 1

12Ux0 1
1

11Ux0D G . ~C2!

In the following, we will treat the two fractions in the
integrand separately, considering in analogy to Eq.~64! the
first term as the charge term, and the second term as the
term. With the renormalized free susceptibility from E
~85!, the denominator of the charge term may be written

12Ux0~x!55 21 i
x

A12x2
for uxu,1,

22
uxu

Ax221
1 i01 sign x for uxu.1.

~C3!

In the same way, the denominator of the spin term is

11Ux0~x!55 2 i
x

A12x2
for uxu,1,

uxu

Ax221
2 i01 sign x for uxu.1.

~C4!

To solve the integral, we have to account for three diff
ent contributions: The first one comes from the pole of
free ph Green’s function, 1/(x2ykq1 i01), which lies al-
ways in the ph continuum, i.e.,uykqu<1. With Dirac’s iden-
tity,

1

f ~x!6 i01 5P
1

f ~x!
7 ipd@ f ~x!#, ~C5!

we find for the charge contribution

I 1
ch~ykq!5

12ykq
2

423ykq
2 . ~C6!
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The corresponding spin contribution is zero, since
1Ux0(x) is purely imaginary within the ph continuum.

Secondly, we have to integrate over the charge and
continuum, respectively. Therefore, we combine the ima
nary part of 1/(16Ux0) with the real part of the free ph
Green’s function. This yields

I 2
ch~ykq!5

223ykq
2

6~423ykq
2 !

,

~C7!
I 2

sp~ykq!5 1
2 .

The last contribution comes from the collective poles. Aga
the spin contribution is zero, as the renormalized spin
s

e

in
i-

,
-

sponse does not show any magnon peak in the stro
coupling limit. As pointed out in Sec. IV G, the plasmon
peak occurs atx562/). Using the Dirac identity~C5!
once more, we get

I 3
ch~ykq!5

2

3~423ykq
2 !

. ~C8!

Summing the three contributions, Eqs.~C6!, ~C7!, and
~C8!, yields unity for the ratio of the new and the old occu
pation numbers,I (ykq). By this means, we have found a
fully self-consistent solution of the renormalized RPA equ
tions.
.

.
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