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We present a formulation of the constrained path Monte Carlo method for fermions that uses trial wave
functions that include many-body effects. This formulation allows us to implement a whole family of gener-
alized mean-field states as constraints. As an example, we calculated superconducting pairing correlation
functions for the two-dimensional repulsive Hubbard model using a BCS trial state as the constraint. We
compared the results with the case where a free-electron trial wave function is used. We found that the
correlation functions aréndependenbf which state is used as the constraint, which reaffirms the results
previously found by Zhangt al. [Phys. Rev. Lett78, 4486(1997] regarding the suppression of long-range
pairing correlations as the system size increals®3163-18209)03303-2

I. INTRODUCTION swave pairing correlation functions versus distance in the
ground state for lattices up to ¥6.6. They found that the
Since the discovery of high-temperature superconductivel,._,.-wave correlations are stronger than extensedave
ity, an enormous effort has been devoted to the theoreticalorrelations. However, as the system size or the interaction
study of two-dimensional electronic models. This effort is strength was increased, the magnitude of the long-range part
driven by the belief that the mechanism for superconductivof both correlation functions vanished.
ity lies within the CuQ planes common to these materials ~ Although the findings of Zhangt al' provide evidence
and is dominantly electronic in origin. The two-dimensional for the absence of ODLRO in the two-dimensional Hubbard
repulsive Hubbard model has attracted the most attention asodel, the CPMC method is approximate and has a system-
the simplest effective model possibly embodying the keyatic error that is difficult to gauge. The systematic error is
electronic phenomena at low energies. Numerous works oassociated with the wave function used to constrain the Mar-
this model have reproduced qualitatively the observed mag«ov chains produced by the Monte Carlo procedure. More
netic properties of the cuprates in the normal state. Howevesgpecifically, in the CPMC method the ground-state wave
the search for superconductivity in the Hubbard model, alfunction is represented by an ensemble of Slater determi-
though intensive and extensive, has yielded few positivenants. As these determinants evolve in imaginary time, the
indicators®? ones with a negative overlap with a constraining wave func-
Most of the present knowledge on the phase diagram dfion are discarded. This procedure eliminates the sign prob-
the two-dimensional repulsive Hubbard model has been obem but introduces an approximation that depends on the
tained by combination of theorems and numerical studies ofjuality of the constraining wave function. Zhaagal! used
finite-size clusters. The numerical studies used Lanczodree-electron and unrestricted Hartree-Fock wave functions.
variational Monte Carlo, and zero or finite-temperature quanMore sophisticated choices of wave functions, particularly
tum Monte Carlo techniques. In a superconducting phasegnes exhibiting strongly correlated electron effects, are typi-
one expects the superconducting pairing correlation funceally difficult to implement, because of the increasing num-
tions to exhibit off-diagonal long-range ordé¢©DLRO), ber of Slater determinants needed and the consequent in-
which is an indication of the Meissner effécWith this in  crease in computing time.
mind, a number of investigators have calculated pairing cor- In this work, we extended the formulation of the CPMC
relation functions in various symmetry channels. Howevermethod in a way that allows the use of a wide variety of trial
most calculations were limited to high temperatures andvave functions with only a small increase in computing
small system sizes. In the case of Monte Carlo studies thedame. As an illustration, we calculated the superconducting
limitations were imposed by the fermion sign problem, pairing correlation functions of the two-dimensional repul-
which causes the variances of computed quantities and henséve Hubbard model in thd,2_,2-wave channel using as a
the computing time to grow exponentially with the increaseconstraint a BCS wave function that has superconducting
in system sizes. ODLRO. We found that the resulting correlation functions
Recently, a new zero temperature quantum Monte Carlare the same as those obtained using the free-electron and
method, the constrained path Monte Cai@PMC), was de-  Hartree-Fock constraining wave functions. This reaffirms the
veloped that overcomes the major limitations of the signresults by Zhanget al! regarding the vanishing of long-
problem? This method allows the calculation of pairing cor- range pairing correlations as the system size increases.
relation functions at zero temperature without the exponen- The paper is organized as follows: in Sec. Il we briefly
tial increase in computer time with system size. Using thisdescribe the CPMC technique emphasizing aspects of the
method, Zhanget all calculatedd,z y2>-wave and extended new formulation. In Sec. Ill, we define the Hamiltonian and
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pairing correlation functions and present our results. In Sec. -~ .
IV, we discuss our conclusions. v )ZJ dx P(x)B(x)[¥"), ()
Il METHOD wherex is to be interpreted as a multidimensional random

variable distributed according t#®(x) andB(x) is an opera-

In this section we summarize the main features of thgg, approximatinge*“'q for a given value of the random
CPMC method. For a more detailed description of thegrable, whose general structure is a product of exponentials
method see Ref. 4. In the CPMC method, the ground-statgs gperators linear ic'c. For each time step r, B(x) has
wave function|¥o) is projected in imaginary time from a e property of transforming one Slater determinant into an-
known initial wave functior W (7=0))=[¥r) by a branch-  4ther. The Monte Carlo method evaluates the multidimen-
ing random walk in an over-complete space of Slater detergjon g integral(7) by using an ensemble of random walkers

minants| ¢), represented by Slater determinaf#y. For each walker, it
N, N samplesx from P(x) and then obtains the new Slater deter-
9)=I1 ol,l0), #l,=3 cl, @5,  (n Minantby muliplying
i,o j=1
|p"H)=B(x)|¢"). tS)
wherec;r(, creates and electron in orbitalvith spin o (n;,,

T

jo

Once the Monte Carlo procedure converges, the ensemble of
|p) representgW,) in the sense that their distribution is a
<¢|¢,>¢5¢¢, ) Monte Car'lo sampling ofy(¢). In this sense, thg CPMQ
approach is a sort of stochastic configuration interaction
with N the number of available single-particle states the  method.
Hubbard model corresponds to the total number of lattice To specify the ground-state wave function completely,
siteg andN,, the number of particles with spi. The total  only determinants satisfying¥ | ¢)>0 are needed because
number of electrons is given dy.=N;+N, . | W) resides in either of two degenerate halves of the Slater
The projection corresponds to finding the ground stateleterminantal spacfin general, a manifold of dimension
from the long-time solution of the imaginary-time represen-N,(N—N.)], separated by a nodal hypersurfatedefined
tation of Schrdinger’s equation specified by a Hamiltonian by (Wolp)=0. The sign problem occurs because walkers
H, can crossV as their orbitals evolve continuously in the ran-
dom walk. Asymptotically inr they populate the two halves

=¢,Cj,), and

IR N 5 equally, leading to an ensemble that tends to have zero over-
“or —(H-Eol)|¥) 3 lap with | ¥). If AN'were known, one would simply constrain
the random walk to one half of the space and obtain an exact
with E, the ground-state energy: (is set to 1). solution of Schrdinger's equation. In the CPMC method,
ProvidedNy= (¥ | ¥ (0))# 0 andH being time indepen- without a priori knowledge of ; we use a constraining
dent, the formal solution wave function, which we usually take to be the trial wave
o function| W), and require the Slater determinants to satisfy
|W(7))y=e""M"ED|¥(0)) (4) (¥{|4)>0. Thus, the quality of the calculation clearly de-
pends on|¥y). In the past only free-electron or Hartree-
has the property Fock wave functions were implemented, mainly due to their
lim [ (7)) = No| ). ) simplicity and the novelty of the method. However, it is

desirable to use more sophisticated wave functions that in-
clude many-body effects. For example, to study supercon-
On the computer this largelimit is accomplished by break- ductivity it is interesting to implement trial wave functions
ing up 7 in small time stepd\ 7 and iterating the equation  that exhibit ODLRO, like a BCS wave function.
. Our goal is to use trial wave functions of the tyfie., a
|wn+ly=g  ArH-ErD| gy (6)  Bogoliugov transformation of the vacuuj@), (0|0)=1)

T—®

where E; is a guess at the ground-state eneifgy and .

A7N¢=7 with N4 the number of imaginary time steps. As |‘I’T>:1_k[ (UktviCiicly))[0), (C)

7—o, the iteration becomes stationary, i.6|¥)/d7=0,

and if E; is adjusted to equaE,, then |¥(7—x)) where the product includes all values of momentkm

=Ng|¥y). = (Ky,ky) in the first Brillouin zone anduy/?+[v,|?=1 to
The propagation in imaginary time is done in the follow- ensure normalization(@ /¥ )=1). Other than satisfying

ing way: in the space of Slater determinants, we writethe normalization condition, the parametafsandv can be

|Wo)=Z24x(¢)|¢) and choose(¢)>0. By being positive, chosen arbitrarily.

the functiony(¢) describes the distribution of Slater deter-  Equation (9) represents a wave function that does not

minants representing the ground state. The Monte Carlo prdiave a fixed particle numbét,. To represent a fixed elec-

cess samples from this distribution. This process is impletron number|¥;) needs to be projected onto that particular

mented by the application of a Trotter decomposition and aubspace. The resulting wave function is a linear combina-

Hubbard-Stratonovich transformation to the iteration in Eqtion of a large number of Slater determingntirge in the

(6) and converting it into sense that the number grows very rapidly with system size
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and particle number to the point where it becomes impractiwhere nf(n®) denotes the occupation in the(d) orbital.

cal to use. Alternatively, one can work in an extended spaceThis transformed Hamiltonian corresponds to a two-band
with different electron numbers. To do that, we follow spinless fermion model.

Yokoyama and Shilfaand perform a particle-hole transfor- ~ We computed the ground-state energy and the supercon-

mation on one of the spin species: ducting pairing correlation functions in the,2_2-wave
R channel using the following definitions:
dk: C,ki y
. (10 Pa(R)=(A{(R)A4(0)), (15)
Ck=Cki - where the pair-field operator is
Using this transformation and noting that the new vacuum ) )
|0) is related to the old one by Ag(R)=2 f4(&[CaiChs 5~ CR|Cr+ 5] (16)
S5
10y=TT di[5) (11 With ==Xy, fo(=X)=1, andfs(+y)=—1.R denotes
k the position in the lattice in units of the lattice constant,

) ) which is taken to be unity.
we can rewritd V1) in terms of the new andd operators: We used trial wave functions of the for(8) with u, and

v given by the BCS relation

(W) =11 (udi+uvich|0) (12
k Uk Ak
- = > 21 (17)
so that| W) is represented by a single Slater determinant. Ue e pt Ve ) +|Ay

Since we are interested in projecting out the ground Statsvhereek is a single-particle energy anti, is the gap.A,

with a fixed electron number, we have to use the propagatoLAf(k). A is a variationak number and (k) represents the

e (M-Fol=#N=74(r) and chooseu, the chemical poten- symmetry of the pairing, which we choose to e e,

tial, to select the desired number of electromé, f (k) = cosk)—cosk,).

=(Wo|Ng| W) (Wo|Wo) (Ne=2jonjg). At the end of the We concentrated on thé._y.-wave channel in part be-

projection the ground-state wave function will have a fixedcause the existence of ODLRO in the extendedave chan-

number of electrons given by the choice of nel is conditioned upon the existence of ODLRO in the iso-
The changes in the CPMC method necessary to use theopic swave channel.Since the possibility of pairing in the

BCS form of a correlated wave function are minor. Insteadsotropics-wave channel is highly unlikely for the repulsive

of matrices®“ for up and down spin of sizeBlXN, to  Hubbard model, so is the chance of pairing in the extended

represent the random walkers, they, as well as the trial wavewave channel. Moreover, these statements have been veri-

function |¥';), are now represented by a single matrix of fied numerically by us and by Zhareg al* Also, it has been

size 2N X N. The increase in computation time caused by theéncreasingly established experimentally that the order param-

increase in the size of the matrices depends on the systeeter in the superconducting cuprates kigs ,2-wave sym-

size and the number of particles. A rough estimate gives thenetry.

increase as the factoMNdN,. For example, for a 86 sys- We used two different trial wave functions: one with

tem with N.=26 this is 2.88/N.. The closer we get to =0.5, which corresponds to a BCS superconducting state,

half-filling (N.=N) the smaller the increase. In general, for and the other one with =0, which corresponds to the free-

the filling fractions studied here, the increase in computeelectron case. In both cases we choose the parametethe

time is approximately four. BCS wave function so that¥|N¥1)=N, whereN, is
the number of electrons we are interested in. While the free-
I1l. CALCULATION AND RESULTS electron wave function has a fixed number of electrons

— JIN 2y — (N V2= . .

The Hamiltonian is the usual Hubbard Hamiltonian on al?Ne™ (N —=(Ne) 9)’ the BCS wave function witth
square lattice with periodic boundary conditions: #0 has components with different electron numbers so that
oy, #0. It is important to notice that in general the parameter

w in the BCS wave function is different than the one used in

the propagatab/( 7). The latter one is set so that at the end of
the propagation the ground state has the desired number of
wheret is the nearest-neighbor hopping matrix element andklectronsN,.

U is the on-site Coulomb repulsion. We detl so that all To illustrate the difference between these two wave func-
energies are measured in unitstofn terms of the operators tions, in Fig. 1 we plot the variational value of the

c andd defined by the transformatiofi0) the Hamiltonian  d,._,.-wave correlation functions versus distance, that is

H: —t E (CiT,erj,rr—’_CJT,(rCi,rr)—’_Uz niTnilv (13)
(ii).o i

has the form (W] AJ(R)A4(0)|[ W), for the two trial wave functions in a
10X 10 system withU=4 andN.=82, so that the filling
A=—t> (Ci*erJer*rCi_ddej_d;rdi)JrUz nic(l_nid), fraction is ng=N./N=0.82. This filling corresponds to a
I

closed-shell case, that is, the free-electron ground state is
(14 nondegenerate. In the free-electron case the correlations die

0y
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2.0

: : . BCS wave function, as it is shown in Fig. 2 for a>4@0
G—OA=0 E/N=-09231 system withU=4 and(N.)=82. This variation contrasts
®—9A-05E/N=-038510 previous results obtained with the variational Monte Carlo
method, which found that a nonzero value ofminimizes
the variational energy®® However, in these cases, a
Gutzwiller factor was included in the wave function that pro-
jected out totally or partially the states with double occu-
pancy. It seems that the inclusion of this factor is crucial to
obtain a minimum of the variational energy at a finite value
of A. Within our method it is both inconvenient and unnec-
essary to use trial wave functions that are non-Fock states
such as the Guztwiller wave function:

105 25 25 =5 2o |‘1’G>:1_i[ (I1=gnini )W eock) (19

1A with g a variational parameter that determines the average

FIG. 1. Variational value of the pairing correlations versus dis-number of doubly occupied site@Vheng=1, double occu-
tance|R| for two different trial wave functions in a 2010 system. ~ pation is completely suppresseduch states are inconve-
Parameters ard =4 and filling fractionn,=0.82. The BCS wave hient because they do not propagate as single Slater determi-
function exhibits ODLRO. nants. However, since we are doing a projection in imaginary
time onto the ground state of the system, it is not necessary

out rapidly with distance, while in the BCS case the exis-t0 improve the variational energy of our trial state.
tence of ODLRO is evident in the sense that for long dis- In the largeU limit, the Hubbard model can be mapped
tances, the correlation functions approach a finite value giveanto thet-J model. This strong coupling limit was used in
by the square of the superconducting order parametér ~ Refs. 8 and 6 to calculate the energy, making a comparison
with our work difficult. However, we can do a comparison

4 4 A, with Ref. 9 since they used the Hubbard Hamiltonian to cal-
ASC= D' fF(Kuw=—2, f(k) —————. culate the energy. In their Fig. 1, they report the variational
N~k N "k V(e— )+ A2 energy per site as a function df for a 6X6 system with

(18) U=8, 32 electrons, periodic boundary conditions in the
direction and antiperiodic in thg direction. From their fig-
The overlap between the two normalized trial wave functionsyre, the minimum value for the energy per site-i6.655 23
is (Wr(A=0)|¥(A=0.5))=0.0076, so the two wave and corresponds to a valuedf=0.1. The variational energy
functions are close to being orthogonal. per site that we obtain for the same system but with periodic
The variational energ¥, =(W¥|H|¥¢) is much larger boundary conditions in both directions is 0.027 26. The dif-
for the BCS trial wave function than for the free-electronference can likely be accounted for by the fact that we did
trial wave function. In general we find that the variational not project our wave function onto a fixed particle number
energy increases monotonically with the paramatesf the  and second, we did not use a Gutzwiller factor. However, the
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FIG. 2. BCS variational energy per site as a functiolddbr the same system as in Fig. 1. The energy increases monotonicallAwith
The inset shows smaller values dfwhere Ref. 9 finds a minimum.
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FIG. 3. Pairing correlation functions in ti2_,.-wave channel given by the CPMC method for same system as in Fig. 1. The inset
shows the long range part in detail. The results are the same for the two different trial wave functions: the correlations decay quickly with
distance. Errors bars are smaller than the size of the symbols.

ground-state energy per site calculated with the CPMGX6, 8X8, 1010 and 1X 12 systems. This evidence is
method is—0.7272+0.0005, which is considerably lower enough to conclude that the correlation functions are inde-
than their value. pendent of which trial wave function is used.
As a check of our algorithm we compared the correlation
functions and ground-state energy given by the CPMC
method using the free-electron trial wave function with re- IV. CONCLUSIONS
sults by Zhanget al.,*° who used the original formulation of
the CPMC, for a &6 system withd =4 andN.=26 and an We presented a formulation of the CPMC method that
8x 8 system withU=8 andN.=50. We found excellent uses trial wave functions that include correlation effects and
agreement with their results. have components of different electron numbers. Instead of
In Fig. 3 we plot the resulting correlations functions given projecting it onto a subspace with fixed number of electrons,
by the CPMC calculation with the two trial wave-functions we used a particle-hole transformation in one of the spin
used in Fig. 1, for 1810 with U=4. It is clear that the species to write such trial wave functions as only one Slater
results are essentially threameno matter what trial wave determinant.
function is used. The long-distance magnitude of the corre- Because of the increase in the size of the matrices used,
lation functions is very small, smaller than the free-electronthis formulation involves a small increase in computing time
case. compared to the original formulation. The increase in CPU
Similar calculations to the ones presented in Fig. 3 werdime is roughly 3N/N.. For the dopings considered in this
done for 1412, 8x8 and 6x6 systems with different val- work it comes to a factor of approximately 4.
ues ofU and dopings corresponding to closed shells cases. This formulation is very general and allows the imple-
The results are consistently the same: the correlation funanentation of a whole family of mean-field wave functions.
tions are the same no matter what trial wave function is used=ollowing Bach, Lieb, and SolovEjwe call this class of
The ground-state energy, however, is always larger when thieinctions generalized Hartree-Fock states, i.e., states that are
BCS wave function is used. The difference between the twaground states of some quadratic mean-field Hamiltonian in
ground-state energies is larger for largér When the BCS  Fock space that do not necessarily conserve particle number.
wave function is used, we find that there are more nodaPossible examples include spin-density wave, charge-density
crossings; that is, more walkers are discarded because theiave, and superconductivity.
overlap with the trial wave function is negative. We believe As an illustration, and because of its importance in high-
this is why the energy is higher in the case of the BCS wavdemperature superconductivity, we used a BCS trial wave
function. function with d,2_2-wave symmetry to calculate the super-
We did not use systems larger thanX1?2 in part be- conducting pairing correlation functions in the ground state
cause as system size increases, it becomes more difficult for the two-dimensional repulsive Hubbard model. We com-
selectw in the propagator to get the desired number of elecpared this result with the one using the free-electron trial
trons. This is because the energy levels are getting closer wave function. We studied %6, 8x8, 10x10, and 12
larger systems. Also, we found that the correlation functions< 12 systems for different values d§ and dopings and
are the same no matter which trial wave function is used fofound that the results for the correlation functions are inde-
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pendent of which trial wave function is used for the con-dismiss the possibility of ODLRO existing in some exotic
straint. channel or for some combination of quasiparticle operators
Most of the calculations presented in this work corre-instead of the bare oné$This work has only investigated
spond to closed shell cases, that is, electron fillings with @ahe channels commonly studied. Although it is not rigorously
nondegenerate free-electron ground state. To check the coproven that the absence of ODLRO implies no Meissner ef-
sistency of our results we also studied some open shell casésct and consequently no superconductivity, it is reasonable
like a 6X6 system with 32 electrons1{=0.89),U=8 and to think that a model without apparent ODLRO is inappro-
periodic boundary conditions. We used three different trialpriate as a model of the superconducting phase for the high-
wave functions: one free-electron wave function with a fixedtemperature superconducting materials.
number of electrons, another free-electron wave function but The lack of clear numerical evidence @f._2-wave su-
with some paired electrons in the Fermi surface and a BC®erconductivity upon doping and the abundance of clear nu-
wave function withA=0.1. The CPMC result is consistent merical evidence of antiferromagnetism at half filling makes
with those of the closed shell cases: the superconducting hard to see how a theory, like the £8) phenomenology,
pairing correlation functions, which vanish for large dis- can apply to the Hubbard model as some have recently
tances, are independent of the trial wave-function usedsuggested® This phenomenology requires the antiferromag-
Technically, the open shell case is more difficult because imetic long-range order at half-filling to transform into
general the free-electron trial wave functions do not havet,. ,2>-wave superconducting long-range order in the doped
translational invariance. For this reason, one finds differenstates. If the low lying excited states have approximate
values of the correlation functions for the same distdite ~ SO(5) symmetry, why then does the strong antiferromagnetic
but different directions in the lattice. To overcome this prob-State transform into something that is so hard to find? The
lem we averaged the correlation functions for a gi\J{éh Fwo-d|men5|onal repulswe Hubbard model seems to be an
over all possible directions in the lattice. This procedure jghappropriate candidate for the ) phenomenology.
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