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Correlated wave functions and the absence of long-range order in numerical studies
of the Hubbard model

M. Guerrero, G. Ortiz, and J. E. Gubernatis
Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

~Received 23 July 1998!

We present a formulation of the constrained path Monte Carlo method for fermions that uses trial wave
functions that include many-body effects. This formulation allows us to implement a whole family of gener-
alized mean-field states as constraints. As an example, we calculated superconducting pairing correlation
functions for the two-dimensional repulsive Hubbard model using a BCS trial state as the constraint. We
compared the results with the case where a free-electron trial wave function is used. We found that the
correlation functions areindependentof which state is used as the constraint, which reaffirms the results
previously found by Zhanget al. @Phys. Rev. Lett.78, 4486~1997!# regarding the suppression of long-range
pairing correlations as the system size increases.@S0163-1829~99!03303-2#
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I. INTRODUCTION

Since the discovery of high-temperature superconduc
ity, an enormous effort has been devoted to the theore
study of two-dimensional electronic models. This effort
driven by the belief that the mechanism for superconduc
ity lies within the CuO2 planes common to these materia
and is dominantly electronic in origin. The two-dimension
repulsive Hubbard model has attracted the most attentio
the simplest effective model possibly embodying the k
electronic phenomena at low energies. Numerous works
this model have reproduced qualitatively the observed m
netic properties of the cuprates in the normal state. Howe
the search for superconductivity in the Hubbard model,
though intensive and extensive, has yielded few posi
indicators.1,2

Most of the present knowledge on the phase diagram
the two-dimensional repulsive Hubbard model has been
tained by combination of theorems and numerical studie
finite-size clusters. The numerical studies used Lanc
variational Monte Carlo, and zero or finite-temperature qu
tum Monte Carlo techniques. In a superconducting pha
one expects the superconducting pairing correlation fu
tions to exhibit off-diagonal long-range order~ODLRO!,
which is an indication of the Meissner effect.3 With this in
mind, a number of investigators have calculated pairing c
relation functions in various symmetry channels. Howev
most calculations were limited to high temperatures a
small system sizes. In the case of Monte Carlo studies th
limitations were imposed by the fermion sign proble
which causes the variances of computed quantities and h
the computing time to grow exponentially with the increa
in system sizes.

Recently, a new zero temperature quantum Monte C
method, the constrained path Monte Carlo~CPMC!, was de-
veloped that overcomes the major limitations of the s
problem.4 This method allows the calculation of pairing co
relation functions at zero temperature without the expon
tial increase in computer time with system size. Using t
method, Zhanget al.1 calculateddx22y2-wave and extended
PRB 590163-1829/99/59~3!/1706~6!/$15.00
-
al

-

l
as
y
n

g-
r,

l-
e

of
b-
of
s,
-
e,
c-

r-
r,
d
se
,
ce

lo

n

-
s

s-wave pairing correlation functions versus distance in
ground state for lattices up to 16316. They found that the
dx22y2-wave correlations are stronger than extendeds-wave
correlations. However, as the system size or the interac
strength was increased, the magnitude of the long-range
of both correlation functions vanished.

Although the findings of Zhanget al.1 provide evidence
for the absence of ODLRO in the two-dimensional Hubba
model, the CPMC method is approximate and has a syst
atic error that is difficult to gauge. The systematic error
associated with the wave function used to constrain the M
kov chains produced by the Monte Carlo procedure. M
specifically, in the CPMC method the ground-state wa
function is represented by an ensemble of Slater dete
nants. As these determinants evolve in imaginary time,
ones with a negative overlap with a constraining wave fu
tion are discarded. This procedure eliminates the sign pr
lem but introduces an approximation that depends on
quality of the constraining wave function. Zhanget al.1 used
free-electron and unrestricted Hartree-Fock wave functio
More sophisticated choices of wave functions, particula
ones exhibiting strongly correlated electron effects, are ty
cally difficult to implement, because of the increasing nu
ber of Slater determinants needed and the consequen
crease in computing time.

In this work, we extended the formulation of the CPM
method in a way that allows the use of a wide variety of tr
wave functions with only a small increase in computi
time. As an illustration, we calculated the superconduct
pairing correlation functions of the two-dimensional repu
sive Hubbard model in thedx22y2-wave channel using as
constraint a BCS wave function that has superconduc
ODLRO. We found that the resulting correlation functio
are the same as those obtained using the free-electron
Hartree-Fock constraining wave functions. This reaffirms
results by Zhanget al.1 regarding the vanishing of long
range pairing correlations as the system size increases.

The paper is organized as follows: in Sec. II we brie
describe the CPMC technique emphasizing aspects of
new formulation. In Sec. III, we define the Hamiltonian an
1706 ©1999 The American Physical Society
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PRB 59 1707CORRELATED WAVE FUNCTIONS AND THE ABSENCE . . .
pairing correlation functions and present our results. In S
IV, we discuss our conclusions.

II. METHOD

In this section we summarize the main features of
CPMC method. For a more detailed description of t
method see Ref. 4. In the CPMC method, the ground-s
wave functionuC0& is projected in imaginary timet from a
known initial wave functionuC(t50)&5uCT& by a branch-
ing random walk in an over-complete space of Slater de
minantsuf&,

uf&5)
i ,s

Ns

f is
† u0&, f is

† 5(
j 51

N

cj s
† F j i

s , ~1!

wherecj s
† creates and electron in orbitalj with spin s (nj s

5cj s
† cj s), and

^fuf8&Þdff8 ~2!

with N the number of available single-particle states~for the
Hubbard model corresponds to the total number of lat
sites! andNs the number of particles with spins. The total
number of electrons is given byNe5N↑1N↓ .

The projection corresponds to finding the ground st
from the long-time solution of the imaginary-time represe
tation of Schro¨dinger’s equation specified by a Hamiltonia
Ĥ,

]uC&
]t

52~Ĥ2E01̂!uC& ~3!

with E0 the ground-state energy (\ is set to 1).
ProvidedN05^C0uC(0)&Þ0 andĤ being time indepen-

dent, the formal solution

uC~t!&5e2t~Ĥ2E01̂!uC~0!& ~4!

has the property

lim
t→`

uC~t!&5N0uC0&. ~5!

On the computer this larget limit is accomplished by break
ing up t in small time stepsDt and iterating the equation

uCn11&5e2Dt~Ĥ2ET1̂!uCn&, ~6!

where ET is a guess at the ground-state energyE0 and
DtNs5t with Ns the number of imaginary time steps. A
t→`, the iteration becomes stationary, i.e.,]uC&/]t50,
and if ET is adjusted to equalE0 , then uC(t→`)&
5N0uC0&.

The propagation in imaginary time is done in the follow
ing way: in the space of Slater determinants, we wr
uC0&5(fx(f)uf& and choosex(f).0. By being positive,
the functionx(f) describes the distribution of Slater dete
minants representing the ground state. The Monte Carlo
cess samples from this distribution. This process is imp
mented by the application of a Trotter decomposition an
Hubbard-Stratonovich transformation to the iteration in E
~6! and converting it into
c.

e
e
te

r-

e

e
-

e

o-
-
a
.

uCn11&5E dx P~x!B~x!uCn&, ~7!

wherex is to be interpreted as a multidimensional rando
variable distributed according toP(x) andB(x) is an opera-

tor approximatinge2DtĤ for a given value of the random
variable, whose general structure is a product of exponen
of operators linear inc†c. For each time stepDt, B(x) has
the property of transforming one Slater determinant into
other. The Monte Carlo method evaluates the multidim
sional integral~7! by using an ensemble of random walke
represented by Slater determinantsuf&. For each walker, it
samplesx from P(x) and then obtains the new Slater dete
minant by multiplying

ufn11&5B~x!ufn&. ~8!

Once the Monte Carlo procedure converges, the ensemb
uf& representsuC0& in the sense that their distribution is
Monte Carlo sampling ofx(f). In this sense, the CPMC
approach is a sort of stochastic configuration interact
method.

To specify the ground-state wave function complete
only determinants satisfyinĝC0uf&.0 are needed becaus
uC0& resides in either of two degenerate halves of the Sla
determinantal space@in general, a manifold of dimension
Ne(N2Ne)], separated by a nodal hypersurfaceN defined
by ^C0uf&50. The sign problem occurs because walke
can crossN as their orbitals evolve continuously in the ra
dom walk. Asymptotically int they populate the two halve
equally, leading to an ensemble that tends to have zero o
lap with uC0&. If N were known, one would simply constrai
the random walk to one half of the space and obtain an e
solution of Schro¨dinger’s equation. In the CPMC method
without a priori knowledge ofN, we use a constraining
wave function, which we usually take to be the trial wa
function uCT&, and require the Slater determinants to sati
^CTuf&.0. Thus, the quality of the calculation clearly d
pends onuCT&. In the past only free-electron or Hartree
Fock wave functions were implemented, mainly due to th
simplicity and the novelty of the method. However, it
desirable to use more sophisticated wave functions that
clude many-body effects. For example, to study superc
ductivity it is interesting to implement trial wave function
that exhibit ODLRO, like a BCS wave function.

Our goal is to use trial wave functions of the type~i.e., a
Bogoliugov transformation of the vacuumu0&, ^0u0&51)

uCT&5)
k

~uk1vkck↑
† c2k↓

† !u0&, ~9!

where the product includes all values of momentumk
5(kx ,ky) in the first Brillouin zone anduuku21uvku251 to
ensure normalization (^CTuCT&51). Other than satisfying
the normalization condition, the parametersuk andvk can be
chosen arbitrarily.

Equation ~9! represents a wave function that does n
have a fixed particle numberNe . To represent a fixed elec
tron number,uCT& needs to be projected onto that particu
subspace. The resulting wave function is a linear combi
tion of a large number of Slater determinants5 ~large in the
sense that the number grows very rapidly with system s
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1708 PRB 59M. GUERRERO, G. ORTIZ, AND J. E. GUBERNATIS
and particle number to the point where it becomes impra
cal to use!. Alternatively, one can work in an extended spa
with different electron numbers. To do that, we follo
Yokoyama and Shiba6 and perform a particle-hole transfo
mation on one of the spin species:

dk5c2k↓
† ,

~10!
ck

†5ck↑
† .

Using this transformation and noting that the new vacu
u0̃& is related to the old one by

u0&5)
k

dk
†u0̃& ~11!

we can rewriteuCT& in terms of the newc andd operators:

uCT&5)
k

~ukdk
†1vkck

†!u0̃& ~12!

so thatuCT& is represented by a single Slater determina
Since we are interested in projecting out the ground s
with a fixed electron number, we have to use the propag

e2t(Ĥ2E01̂2mN̂e)5Û(t) and choosem, the chemical poten-
tial, to select the desired number of electronsNe

5^C0uN̂euC0&/^C0uC0& (N̂e5( j snj s). At the end of the
projection the ground-state wave function will have a fix
number of electrons given by the choice ofm.

The changes in the CPMC method necessary to use
BCS form of a correlated wave function are minor. Inste
of matricesFs for up and down spin of sizesN3Ns to
represent the random walkers, they, as well as the trial w
function uCT&, are now represented by a single matrix
size 2N3N. The increase in computation time caused by
increase in the size of the matrices depends on the sy
size and the number of particles. A rough estimate gives
increase as the factor 3N/Ne . For example, for a 636 sys-
tem with Ne526 this is 2.89N/Ne . The closer we get to
half-filling (Ne5N) the smaller the increase. In general, f
the filling fractions studied here, the increase in compu
time is approximately four.

III. CALCULATION AND RESULTS

The Hamiltonian is the usual Hubbard Hamiltonian on
square lattice with periodic boundary conditions:

Ĥ52t (
^ i j &,s

~ci ,s
† cj ,s1cj ,s

† ci ,s!1U(
i

ni↑ni↓ , ~13!

wheret is the nearest-neighbor hopping matrix element a
U is the on-site Coulomb repulsion. We sett51 so that all
energies are measured in units oft. In terms of the operators
c andd defined by the transformation~10! the Hamiltonian
has the form

Ĥ52t(̂
i j &

~ci
†cj1cj

†ci2di
†dj2dj

†di !1U(
i

ni
c~12ni

d!,

~14!
i-
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where ni
c(ni

d) denotes the occupation in thec ~d! orbital.
This transformed Hamiltonian corresponds to a two-ba
spinless fermion model.

We computed the ground-state energy and the super
ducting pairing correlation functions in thedx22y2-wave
channel using the following definitions:

Pd~RW !5^Dd
†~RW !Dd~0!&, ~15!

where the pair-field operator is

Dd~RW !5(
dW

f d~dW !@cRW ↑cRW 1dW↓2cRW ↓cRW 1dW↑# ~16!

with dW 56 x̂,6 ŷ, f d(6 x̂)51, and f d(6 ŷ)521. RW denotes
the position in the lattice in units of the lattice consta
which is taken to be unity.

We used trial wave functions of the form~9! with uk and
vk given by the BCS relation

vk

uk

5
Dk

ek2m1A~ek2m!21uDku2
, ~17!

whereek is a single-particle energy andDk is the gap,Dk
5D f (k). D is a variationalc number andf (k) represents the
symmetry of the pairing, which we choose to bedx22y2,
f (k)5cos(kx)2cos(ky).

We concentrated on thedx22y2-wave channel in part be
cause the existence of ODLRO in the extendeds-wave chan-
nel is conditioned upon the existence of ODLRO in the is
tropic s-wave channel.7 Since the possibility of pairing in the
isotropics-wave channel is highly unlikely for the repulsiv
Hubbard model, so is the chance of pairing in the exten
s-wave channel. Moreover, these statements have been
fied numerically by us and by Zhanget al.1 Also, it has been
increasingly established experimentally that the order par
eter in the superconducting cuprates hasdx22y2-wave sym-
metry.

We used two different trial wave functions: one withD
50.5, which corresponds to a BCS superconducting st
and the other one withD50, which corresponds to the free
electron case. In both cases we choose the parameterm in the
BCS wave function so that̂CTuN̂euCT&5Ne where Ne is
the number of electrons we are interested in. While the fr
electron wave function has a fixed number of electro

(sNe
5A^N̂e

2&2^N̂e&
250), the BCS wave function withD

Þ0 has components with different electron numbers so
sNe

Þ0. It is important to notice that in general the parame

m in the BCS wave function is different than the one used
the propagatorÛ(t). The latter one is set so that at the end
the propagation the ground state has the desired numbe
electronsNe .

To illustrate the difference between these two wave fu
tions, in Fig. 1 we plot the variational value of th
dx22y2-wave correlation functions versus distance, that

^CTuDd
†(RW )Dd(0)uCT&, for the two trial wave functions in a

10310 system withU54 and Ne582, so that the filling
fraction is ne5Ne /N50.82. This filling corresponds to a
closed-shell case, that is, the free-electron ground stat
nondegenerate. In the free-electron case the correlations
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PRB 59 1709CORRELATED WAVE FUNCTIONS AND THE ABSENCE . . .
out rapidly with distance, while in the BCS case the ex
tence of ODLRO is evident in the sense that for long d
tances, the correlation functions approach a finite value gi
by the square of the superconducting order parameterDSC:

DSC5
4

N
(

k
f ~k!ukvk5

4

N
(

k
f ~k!

Dk

A~ek2m!21Dk
2

.

~18!

The overlap between the two normalized trial wave functio
is ^CT(D50)uCT(D50.5)&50.0076, so the two wave
functions are close to being orthogonal.

The variational energyEv5^CTuĤuCT& is much larger
for the BCS trial wave function than for the free-electr
trial wave function. In general we find that the variation
energy increases monotonically with the parameterD of the

FIG. 1. Variational value of the pairing correlations versus d

tanceuRW u for two different trial wave functions in a 10310 system.
Parameters areU54 and filling fractionne50.82. The BCS wave
function exhibits ODLRO.
-
-
n

s

l

BCS wave function, as it is shown in Fig. 2 for a 10310
system withU54 and ^N̂e&582. This variation contrasts
previous results obtained with the variational Monte Ca
method, which found that a nonzero value ofD minimizes
the variational energy.6,8,9 However, in these cases,
Gutzwiller factor was included in the wave function that pr
jected out totally or partially the states with double occ
pancy. It seems that the inclusion of this factor is crucial
obtain a minimum of the variational energy at a finite val
of D. Within our method it is both inconvenient and unne
essary to use trial wave functions that are non-Fock st
such as the Guztwiller wave function:

uCG&5)
i

~ 1̂2gni↑ni↓!uCFOCK& ~19!

with g a variational parameter that determines the aver
number of doubly occupied sites.~Wheng51, double occu-
pation is completely suppressed.! Such states are inconve
nient because they do not propagate as single Slater dete
nants. However, since we are doing a projection in imagin
time onto the ground state of the system, it is not necess
to improve the variational energy of our trial state.

In the largeU limit, the Hubbard model can be mappe
onto thet-J model. This strong coupling limit was used i
Refs. 8 and 6 to calculate the energy, making a compar
with our work difficult. However, we can do a compariso
with Ref. 9 since they used the Hubbard Hamiltonian to c
culate the energy. In their Fig. 1, they report the variatio
energy per site as a function ofD for a 636 system with
U58, 32 electrons, periodic boundary conditions in thex
direction and antiperiodic in they direction. From their fig-
ure, the minimum value for the energy per site is20.655 23
and corresponds to a value ofD50.1. The variational energy
per site that we obtain for the same system but with perio
boundary conditions in both directions is 0.027 26. The d
ference can likely be accounted for by the fact that we
not project our wave function onto a fixed particle numb
and second, we did not use a Gutzwiller factor. However,

-

h
FIG. 2. BCS variational energy per site as a function ofD for the same system as in Fig. 1. The energy increases monotonically witD.
The inset shows smaller values ofD where Ref. 9 finds a minimum.
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FIG. 3. Pairing correlation functions in thedx22y2-wave channel given by the CPMC method for same system as in Fig. 1. The
shows the long range part in detail. The results are the same for the two different trial wave functions: the correlations decay qui
distance. Errors bars are smaller than the size of the symbols.
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ground-state energy per site calculated with the CP
method is20.727260.0005, which is considerably lowe
than their value.

As a check of our algorithm we compared the correlat
functions and ground-state energy given by the CPM
method using the free-electron trial wave function with
sults by Zhanget al.,10 who used the original formulation o
the CPMC, for a 636 system withU54 andNe526 and an
838 system withU58 and Ne550. We found excellent
agreement with their results.

In Fig. 3 we plot the resulting correlations functions giv
by the CPMC calculation with the two trial wave-function
used in Fig. 1, for 10310 with U54. It is clear that the
results are essentially thesameno matter what trial wave
function is used. The long-distance magnitude of the co
lation functions is very small, smaller than the free-electr
case.

Similar calculations to the ones presented in Fig. 3 w
done for 12312, 838 and 636 systems with different val-
ues ofU and dopings corresponding to closed shells ca
The results are consistently the same: the correlation fu
tions are the same no matter what trial wave function is us
The ground-state energy, however, is always larger when
BCS wave function is used. The difference between the
ground-state energies is larger for largerU. When the BCS
wave function is used, we find that there are more no
crossings; that is, more walkers are discarded because
overlap with the trial wave function is negative. We belie
this is why the energy is higher in the case of the BCS w
function.

We did not use systems larger than 12312 in part be-
cause as system size increases, it becomes more difficu
selectm in the propagator to get the desired number of el
trons. This is because the energy levels are getting close
larger systems. Also, we found that the correlation functio
are the same no matter which trial wave function is used
C

n

-

-
n

e

s.
c-
d.
he
o

al
eir

e

to
-
in
s
r

636, 838, 10310 and 12312 systems. This evidence i
enough to conclude that the correlation functions are in
pendent of which trial wave function is used.

IV. CONCLUSIONS

We presented a formulation of the CPMC method th
uses trial wave functions that include correlation effects a
have components of different electron numbers. Instead
projecting it onto a subspace with fixed number of electro
we used a particle-hole transformation in one of the s
species to write such trial wave functions as only one Sla
determinant.

Because of the increase in the size of the matrices u
this formulation involves a small increase in computing tim
compared to the original formulation. The increase in CP
time is roughly 3N/Ne . For the dopings considered in th
work it comes to a factor of approximately 4.

This formulation is very general and allows the impl
mentation of a whole family of mean-field wave function
Following Bach, Lieb, and Solovej11 we call this class of
functions generalized Hartree-Fock states, i.e., states tha
ground states of some quadratic mean-field Hamiltonian
Fock space that do not necessarily conserve particle num
Possible examples include spin-density wave, charge-den
wave, and superconductivity.

As an illustration, and because of its importance in hig
temperature superconductivity, we used a BCS trial wa
function with dx22y2-wave symmetry to calculate the supe
conducting pairing correlation functions in the ground st
for the two-dimensional repulsive Hubbard model. We co
pared this result with the one using the free-electron t
wave function. We studied 636, 838, 10310, and 12
312 systems for different values ofU and dopings and
found that the results for the correlation functions are in
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pendent of which trial wave function is used for the co
straint.

Most of the calculations presented in this work cor
spond to closed shell cases, that is, electron fillings wit
nondegenerate free-electron ground state. To check the
sistency of our results we also studied some open shell c
like a 636 system with 32 electrons (ne50.89), U58 and
periodic boundary conditions. We used three different t
wave functions: one free-electron wave function with a fix
number of electrons, another free-electron wave function
with some paired electrons in the Fermi surface and a B
wave function withD50.1. The CPMC result is consisten
with those of the closed shell cases: the superconduc
pairing correlation functions, which vanish for large di
tances, are independent of the trial wave-function us
Technically, the open shell case is more difficult because
general the free-electron trial wave functions do not ha
translational invariance. For this reason, one finds differ
values of the correlation functions for the same distanceuRW u
but different directions in the lattice. To overcome this pro
lem we averaged the correlation functions for a givenuRW u
over all possible directions in the lattice. This procedure
also used for the closed shell cases but is more relevant in
open shell case where the differences are caused by a br
symmetry introduced by the trial wave function as oppos
to small statistical fluctuations due to the Monte Carlo p
cess.

These results reaffirm the previous ones by Zhanget al.1

implying the absence of ODLRO in thedx22y2-wave channel
of the two-dimensional repulsive Hubbard model. We do
Le

e

-

-
a
n-
es

l

ut
S

g

d.
in
e
t

-

s
he
ken
d
-

t

dismiss the possibility of ODLRO existing in some exot
channel or for some combination of quasiparticle operat
instead of the bare ones.12 This work has only investigated
the channels commonly studied. Although it is not rigorou
proven that the absence of ODLRO implies no Meissner
fect and consequently no superconductivity, it is reasona
to think that a model without apparent ODLRO is inappr
priate as a model of the superconducting phase for the h
temperature superconducting materials.

The lack of clear numerical evidence ofdx22y2-wave su-
perconductivity upon doping and the abundance of clear
merical evidence of antiferromagnetism at half filling mak
it hard to see how a theory, like the SO~5! phenomenology,
can apply to the Hubbard model as some have rece
suggested.13 This phenomenology requires the antiferroma
netic long-range order at half-filling to transform int
dx22y2-wave superconducting long-range order in the dop
states. If the low lying excited states have approxim
SO~5! symmetry, why then does the strong antiferromagne
state transform into something that is so hard to find? T
two-dimensional repulsive Hubbard model seems to be
inappropriate candidate for the SO~5! phenomenology.
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