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Effect of nonadiabaticity and disorder on nonlinear optical susceptibilities
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The effect of nonadiabaticity on optical linear polarizability)(and third-order polarizability ) is inves-
tigated numerically for a Holstein-Hubbard finite chain system. The variations afd y are studied as a
function of the nonadiabaticity parameter, electron-phonon coupling strength and electron-electron interac-
tions. For a specific range of values of each of these parametensd y are significantly enhanced. Disorder
in either electronic or phonon degrees of freedom is also found to enhance optical nonlinearity.
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Broken-symmetry ground states in currently studied comhave gradually approached this nonadiabatic problem of
plex electronic materials are sensitively dependent on comguantum phonon$? For example, the quantum polaron
petitions between electron-electron and electron-lattice inteproblen?® and the optimization of the density-matrix—
actions, on dimensionality, disorder, and chemical doping, agenormalization-grougdDMRG) method have been exten-
well as external field$.These ground states are responsiblesively examined. However, an efficient method that is able to
for semiconductorlike gaps in the electronic Spectrum_ Conyield sufficient excited-state information is still not available.

sequently most applications rely on controlling these gapdn another recent study, direct evidence of quantum breathers
and their melting to metallic phases or between brokenf"”d breather-exciton bound states have been revealed for

symmetry phases, as functions of the above parameters. fiP" coupled systems with appropriate strengths of

this regard it is very important to understand the muIti-time-nonad'?bat'g_';ff' It i Vi h bl
scale and energy-scale effects, i.e., “nonadiabatic” effects, Anather fificulty In solving a quantum phonon problem
inherent in the competitions for ground states. iIs how to utilize information from the usually incomplete

The purpose of this work is to study the consequences O?OIgtion of the eigenproblem_;q as o direct!y calculate the
relaxing the adiabatic approximations on optical poIarizabiI-Va”OUS observable susceptibilities. Simple diagonal correla-

ities (linear, «, and nonlineary). We do so for a Holstein- tion functions can be calculated through the moment method

Hubbard finite chain model that includes electron-electrorP" t_he projecti_ve Lanczos meth&dﬂowever, they cannot
(e-e) correlations and electron-phonore-ph) coupling. easily be applied to the problem of high-order nondiagonal

This model is frequently adopted for low-dimensional Con_correlatior) functions. In Ref. 8, this goal has been achieveq
jugated polymers, charge-transfer salts and inorganic sem‘gr a ferr_mon system: an extend(_ad Hubbarq _model system Is
conductors. In higher dimensions, the same mdeal is- solved via a DMRG method, while the statjcis calculated

: through the correction vector methddn the present study
sueg are relevant to many prototypical systems, e.g., . . ’
> nany p P y . 9 glong with the two schemes in Refs. 6 and 8, we develop a

perovskite oxides, organic charge-transfer and spin-Peier ical bati htoi ' h
compounds. Not surprisingly, the greatest sensitivities in ou umerical nonperturbative approach to investigate the nona-

model are found near crossovers between spin—density-wa\ﬂalabatlc prob'em ofa fuIIy.quantur&ph system. .
(SDW) and charge-density-wavéCDW) ground states We consider a Holstein-HubbargHH) model Hamil-
where broken symmetries are soft, when the lattice frequerfonian of a finite one-dimenisonatph coupled system:
cies are resonant with charge or spin frequencies, or when
disorder length scales become relevant. In these regimes we - _ T .
find significant enhancements of bathand y. He= % to(CivCi 1,0 HLCIF 2 Ui

For typical systems with both strorgge correlation and
e-ph couplings, a direct investigation into the role of nona- o ool
diabaticity has been very difficult for various perturbative or 2 VN g+ 2 hoo(bfb+)
variational schemes, and no systematic methods have been
d_eveloped to solve for the qopadiabatic _opti_cal susceptibili- _2 ?\(bi“rbi)ni(r- 1)
ties of such systems. The difficulty first lies in the lack of a o
direct approach to solve for the eigenspectrum of a full quan-
tum mechanical problem with sufficient excited-state infor-Here,ciTU(ci(,) and biT(bi) are the creatiogannihilation op-
mation, mainly because the phonon Hilbert space is intrinsierators of electrons and phonons, respectively, and they obey
cally infinite. Along with recent progress in numerically the normal commutation relation,,U, andV are the elec-
exact solutions of many-fermion systefs few studies tron kinetic energy, and the on-site and nearest-neighbor
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Coulomb repulsionsfiwg is the bare phonon energy. The
form of thee-ph coupling § term) is that used in the Hol- SDw vs U
stein modef® Throughout this study, we consider electroni- U MIX
cally half-filled systems with periodic boundary conditions.
Lengths of chains simulated range from 2 to 6 sites due to :
computational limitation. The ratio of bare phonon and elec- vs A
tronic energiesfiwg/ty, serves well as an indication of the /
adiabaticity of thise-ph system. Whet wq/ty-+0, an adia- /
batic approximation cannot be justified. TV O
To solve this nonadiabatic problem for a finiegph sys-
tem, our numerical approach consists of two major steps: cDhw
First, we use the exact diagonalization methtmisolve for A
the ground state eigenvalue and eigenfunction of the system
Hamiltonian matrix represented in the Hilbert space defined FIG. 1. Schematic phase diagram for the HH model.
by appropriately selected basis functions. We deal fully with
nonadiabaticity ané-e correlations; the only approximation (assumed a$=10"2 throughout this study éx is the unit
involves the truncation of the infinite phonon Hilbert space.direction vector along the chaid, is the core charge of site
The effect of the truncation is evaluated through various disi (assumed aZ;=1 for half-filled systemk It is appropriate
tribution functions'! Physical convergence is generally to use the current operator rather than the dipole operator in
achieved through addition of phonon basis states and confinke presence of periodic boundary conditions. Equations
ing the calculation to finite system sizes and suitable param:2,3) are solved through an iterative linear system solver, a
eter regions. We find that convergence is more easily reachatlodified generalized minimal residual methdd.This
for parameter sets with more nonadiabatic and stroeger method is more efficient when applied to the linear equation,
correlated systems. High-quality numerical convergence isystems(2) and (3), because the latter are not necessarily
maintained through an efficient exact diagonalizationpositively definite. Furthermore, the optical susceptibilities
method, such as a modified Davidson method, which cagan be expressed as the products of these correction vectors
also deliver higher excited states to examine the convergencend the matrix elements of the current oper&taithin this
of the ground state However, finite-size effects remain to be study, only static susceptibilities of the first and third orders
systematically studied. [i.e.,, a(Q—0) and y(Q,,Q,—0)] are evaluated(the
Second, we use the correction vector method to calculatsecond-order susceptibility is zero due to the symmetry re-
a and y. The main merits of this method are th@t the  quirement. We also calculated the dynamic linear suscepti-
nondiagonal correlation functions are calculated withoutoility for the full frequency range using the projective Lanc-
knowledge of the entire excited-state eigenspectrum and onlyos method:’ Note that both methods of eigenvalue solver
useful information within the optically involved states is ex- and linear equations solver are subspace iterative methods,
tracted and accounted for, afid) it is unnecessary to calcu- and they scale linearly with the dimension of the Hilbert
late even the individual eigenstates of the optically activespace. It is also only necessary to design and apply the op-
states; instead, only a few linear combinations of such stategation of matrix-vector multiplication such &) =0| W)
are solved for the purpose of the total susceptibility calcula-
tion. Such linear combinations, “correction vectors dre
defined as (d)

(H=Eg+hQy+iT)| ¢ D(Q1)) =3[ W), 2)

(H= &+ hQy D) 3P(01,0,)) = 6V(Q0), (3 ©

o)

for a typical third-order optical process. Heties the system
Hamiltonian(1), £ and|¥ ) are the ground-state eigenvalue
and eigenfunction, respectivelf), and%(, stand for the (b)
energies of the incident photons, alids a phenomenologi-

cal optical damping factord is the current operatdwithin 1 . N N J[
the electric dipole approximatigon

(a)

J= 162 tolat (bl 1 +bi.1=bl=b)(CCis | ] _ l

2.8 3.8 4.8 58 6.8 7.8 8.8 9.8
o (eV)

— ¢l 1,Cin) ] T 18 ﬁwoubr—bi)(zi—E c?(,ci,,),
! 7 FIG. 2. Optical absorption of a six-site Holstein-Hubbard chain
(4) with  ty=1.00, A=0.35, U=5.13, V=275 M,=4, and M
=1638400.(3) #wy=0.10, (b) wy=0.15, (¢) fwy=0.40, (d)
for the Hamiltonian(1). Here,a stands for the lattice con- #w,=0.80 (M on @andM stand for phonon truncation and the total
stant and = VA /2M w, is the length scale of lattice vibration dimension of the matrjx Energy units are in eV.
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FIG. 3. Effects ofe-e correlations UJ/ty) on @ andy (see text
The system is a six-site Holstein-Hubbard chain vk 1.00, A
=0.37, hiwe=0.21, V=0.123, M;,= 10, andM =1 638 400, and

variousU/t;.

for the cases where the multimillion-dimensional matixs
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We first present a schematic phase diagram inUke
plane in Fig. 1 for the HH model. For relatively largeand
small U, the ground state is in a phase with strong charge
fluctuations(charge-density waves, labeled CDW's, in the
mean-field sengeln contrast, for largeJ and small\ the
ground state is in a phase with strong spin fluctuati@pn-
density waves, labeled by SDW!s In mean-field
arguments? we expect an intermediate phase where an in-
crease in nonadiabaticityi(wg/ty) corresponds to moving
from the CDW state into the intermediate region and then
into the SDW phase.

Figure 2 depicts optical absorption for different optical
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phonon frequencies, i.e., as a function of nonadiabaticity. For FIG. 5. Effects of nonadiabaticityf(/t;) on a and y. The

fhwo=0.1Q, there are two main peaks at3.2, and~5.5t,
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FIG. 4. Effects ofe-ph coupling strengthN/ty) on « and y
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system is a six-site Holstein-Hubbard chdiower panel with
t,=1.00, A=0.31, U=239, V=121, My =4, and M
=1 638400, and variouBw,/ty. For size-consistency, the upper
panel shows results for a four-site chain.

associated with the CDW gap and Hubbard gap, respec-
tively. Note that there are some states in the tail of the CDW
peak representative of exciton states. #®, increases to
0.1%,, the CDW strength decreasésmaller gap and the
CDW peak moves to a lower energy 6f2.9 eV while the
Hubbard peak splits into two peaks. Fbwy=0.4Q, the
system is in a mixed state with a small gap around4.Bor
fhwo=0.8Q, the system is in the SDW state with a spin gap
at 4.8,.

Figure 3 shows the change éinand y with increasingu.
There is an initial increase and then a monotonic decrease in
the values of these coefficients. Ad is increased, the
strength of the CDW decreases and the effective gap de-
crease$see Fig. 1 This leads to an enhancement in both the
linear polarizability ¢) and hyperpolarizability ¢).« andy
are largest in the mixed state. Akis further increased, the
system ground state changes to a SDW regime with increas-

(see text The system is a 4-site Holstein-Hubbard chain with ing SDW strength(and spin gap The latter responds opti-

tp=1.00, fiwy=0.15, U=1.50, V=0.323, M,;,=10, and M
=360 000, and various/t,.

cally very weakly whether linearly or nonlinearly. Therefore,
a monotonic decrease is observed with further increasg in
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30 T T T 7.0 T T T both @ and y at a value~0.35 of this parameter which
» /9 corresponds to the mixed state. In addition, the peak is
06 o ;4 1 substantially more pronounced than the peakin
Figure 6 depicts variation inv and y with increasing
5 disorder in electronic AU) and phonon A w) degrees of
0,«6 Py freedom. We have added random disorder according;to
) / ' =Ug+AU andfw;=%we+Afo. In both cases, for the pa-
20 b 1 5ol / 1 rameters used, we find moderate, monotonic increase in
’ : 2 with disorder. Thgmonotonig increase in optical nonlinear-
"4 ] ity (y) is significantly more pronounced. Either type of dis-
@ order causes smearing of the electronic density of states
15k | s0& | (DOS) because previously optically forbidden states now be-
. (X 100) - ; S A X :
(W X 40) come optically active? _Note_ that dlsorder in phonon degre_e_s
J of freedom affects optics since electronic states are modified
(a) (b) via e-ph coupling.
19 0;)5 0'10 0'15 20 3.00’0 0'5 1'0 1'5 > Although we considered o_nly one model system, our ap-
‘ A ' ‘ TAt ' proach can be generally applied to otleeph systems. Only
’ ’ the static susceptibilities are calculated in the present study.
FIG. 6. Effects of disorder strengtihf »é/t, andAU%/ty) one  However, the method can be straightforwardly applied to
andy. The systems aréa) a four-site Holstein-Hubbard chain with dynamic susceptibility calculations, while other methods,
to=1.00, wy=0.41,U=4.67,V=0.223,A=0.39, M;,=10, and  such as the kernel polynomial methbdsan also yield effi-
M=360000, and variousAzw/t,. (b) a four-site Holstein- cient computation, especially for dynamic nonlinear optical
Hubbard chain withq=1.00, #0,=0.21, U=6.67, V=0.223,\  response&’
=0.39, M,=10, andM =360 000, and variouAU¥/t,. In conclusion, we have studied the effect of nonadiabatic-
ity and disorder in electronic as well as phonon degrees of

The peak is observed at a valueldf-2t,. We note that this freedom on first- and third-order optical polarizabilities for

trend, i.e. the location and the amplitude of the peak, holgdhe Holstein-Hubbard model of aph coupled finite chain.
for variation in« and y with other parameter&ee below The nonlinear optical susceptibilities have been calculated at

In Fig. 4 we show the change i andy as a function of & fully quantum-mechanical Iev_el. We find_that for a specific
the strength of thee-ph coupling §). The trend is very parameter range, corresponding to an mt_ermedla'_[e phase
similar to that of variation wittU. However, the effect is less WIth Mixed spin and charge fluctuations, optical nonlinearity
striking in this case. Initially for small the system is in the is significantly enhanped. Disorder n electronic an_d phonon
SDW state(see Fig. 1 As \ increases, the strength of the degrees of freedom is also found to increase nonlinear opti-

SDW decreases indicating an enhancement and y. The cal response. Our results have implications for understanding
peak is observed in the mixed state at a vaiue of accumulating experimental results in ultrafast time-resolved

~0.13,. With a further increase ik the system enters the and nonequilibrium measuremerfs.
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