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Effect of nonadiabaticity and disorder on nonlinear optical susceptibilities

W. Z. Wang, Z. Shuai,* A. Saxena, A. R. Bishop, and J. L. Bre´das*

Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
~Received 10 July 1998; revised manuscript received 4 September 1998!

The effect of nonadiabaticity on optical linear polarizability (a) and third-order polarizability (g) is inves-
tigated numerically for a Holstein-Hubbard finite chain system. The variations ofa and g are studied as a
function of the nonadiabaticity parameter, electron-phonon coupling strength and electron-electron interac-
tions. For a specific range of values of each of these parameters,a andg are significantly enhanced. Disorder
in either electronic or phonon degrees of freedom is also found to enhance optical nonlinearity.
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Broken-symmetry ground states in currently studied co
plex electronic materials are sensitively dependent on c
petitions between electron-electron and electron-lattice in
actions, on dimensionality, disorder, and chemical doping
well as external fields.1 These ground states are responsi
for semiconductorlike gaps in the electronic spectrum. C
sequently most applications rely on controlling these g
and their melting to metallic phases or between brok
symmetry phases, as functions of the above parameter
this regard it is very important to understand the multi-tim
scale and energy-scale effects, i.e., ‘‘nonadiabatic’’ effe
inherent in the competitions for ground states.

The purpose of this work is to study the consequence
relaxing the adiabatic approximations on optical polariza
ities ~linear,a, and nonlinear,g). We do so for a Holstein-
Hubbard finite chain model that includes electron-elect
(e-e) correlations and electron-phonon (e-ph) coupling.
This model is frequently adopted for low-dimensional co
jugated polymers, charge-transfer salts and inorganic se
conductors. In higher dimensions, the same model~and is-
sues! are relevant to many prototypical systems, e
perovskite oxides, organic charge-transfer and spin-Pe
compounds. Not surprisingly, the greatest sensitivities in
model are found near crossovers between spin-density-w
~SDW! and charge-density-wave~CDW! ground states
where broken symmetries are soft, when the lattice frequ
cies are resonant with charge or spin frequencies, or w
disorder length scales become relevant. In these regime
find significant enhancements of botha andg.

For typical systems with both stronge-e correlation and
e-ph couplings, a direct investigation into the role of non
diabaticity has been very difficult for various perturbative
variational schemes, and no systematic methods have
developed to solve for the nonadiabatic optical susceptib
ties of such systems. The difficulty first lies in the lack of
direct approach to solve for the eigenspectrum of a full qu
tum mechanical problem with sufficient excited-state inf
mation, mainly because the phonon Hilbert space is intrin
cally infinite. Along with recent progress in numerical
exact solutions of many-fermion systems,2 a few studies
PRB 590163-1829/99/59~3!/1697~4!/$15.00
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have gradually approached this nonadiabatic problem
quantum phonons.3,4 For example, the quantum polaro
problem3,5 and the optimization of the density-matrix
renormalization-group~DMRG! method have been exten
sively examined. However, an efficient method that is able
yield sufficient excited-state information is still not availabl
In another recent study, direct evidence of quantum breat
and breather-exciton bound states have been revealed
e-ph coupled systems with appropriate strengths
nonadiabaticity.6

Another difficulty in solving a quantum phonon proble
is how to utilize information from the usually incomplet
solution of the eigenproblem so as to directly calculate
various observable susceptibilities. Simple diagonal corre
tion functions can be calculated through the moment met
or the projective Lanczos method.7 However, they cannot
easily be applied to the problem of high-order nondiago
correlation functions. In Ref. 8, this goal has been achie
for a fermion system: an extended Hubbard model system
solved via a DMRG method, while the staticg is calculated
through the correction vector method.9 In the present study
along with the two schemes in Refs. 6 and 8, we develo
numerical nonperturbative approach to investigate the no
diabatic problem of a fully quantume-ph system.

We consider a Holstein-Hubbard~HH! model Hamil-
tonian of a finite one-dimenisonale-ph coupled system:

He5(
is

2t0~cis
† ci 11,s1H.c.!1(

i
U ni↑ni↓

1 (
iss8

V nisni 11s81(
i

\v0~bi
†bi1

1
2 !

2(
is

l~bi
†1bi !nis . ~1!

Here,cis
† (cis) andbi

†(bi) are the creation~annihilation! op-
erators of electrons and phonons, respectively, and they o
the normal commutation relations.t0 ,U, andV are the elec-
tron kinetic energy, and the on-site and nearest-neigh
1697 ©1999 The American Physical Society
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Coulomb repulsions;\v0 is the bare phonon energy. Th
form of thee-ph coupling (l term! is that used in the Hol-
stein model.10 Throughout this study, we consider electron
cally half-filled systems with periodic boundary condition
Lengths of chains simulated range from 2 to 6 sites due
computational limitation. The ratio of bare phonon and el
tronic energies,\v0 /t0 , serves well as an indication of th
adiabaticity of thise-ph system. When\v0 /t0→” 0, an adia-
batic approximation cannot be justified.

To solve this nonadiabatic problem for a finitee-ph sys-
tem, our numerical approach consists of two major ste
First, we use the exact diagonalization method5 to solve for
the ground state eigenvalue and eigenfunction of the sys
Hamiltonian matrix represented in the Hilbert space defin
by appropriately selected basis functions. We deal fully w
nonadiabaticity ande-e correlations; the only approximatio
involves the truncation of the infinite phonon Hilbert spac
The effect of the truncation is evaluated through various d
tribution functions.11 Physical convergence is general
achieved through addition of phonon basis states and co
ing the calculation to finite system sizes and suitable par
eter regions. We find that convergence is more easily reac
for parameter sets with more nonadiabatic and strongere-e
correlated systems. High-quality numerical convergence
maintained through an efficient exact diagonalizat
method, such as a modified Davidson method, which
also deliver higher excited states to examine the converge
of the ground state.5 However, finite-size effects remain to b
systematically studied.

Second, we use the correction vector method to calcu
a and g. The main merits of this method are that~i! the
nondiagonal correlation functions are calculated with
knowledge of the entire excited-state eigenspectrum and
useful information within the optically involved states is e
tracted and accounted for, and~ii ! it is unnecessary to calcu
late even the individual eigenstates of the optically act
states; instead, only a few linear combinations of such st
are solved for the purpose of the total susceptibility calcu
tion. Such linear combinations, ‘‘correction vectors,’’9 are
defined as

~H2Eg1\V11 iG!uf~1!~V1!&5JuCg&, ~2!

~H2Eg1\V21 iG!ufJ ~2!~V1 ,V2!&5Juf~1!~V1!&, ~3!

for a typical third-order optical process. HereH is the system
Hamiltonian~1!, Eg anduCg& are the ground-state eigenvalu
and eigenfunction, respectively;\V1 and\V2 stand for the
energies of the incident photons, andG is a phenomenologi-
cal optical damping factor.J is the current operator~within
the electric dipole approximation!:

J52ıex(
is

t0@a1 l ~bi 11
† 1bi 112bi

†2bi !~cis
† ci 11s

2ci 11s
† cis!#1ıex(

i
\v0l ~bi

†2bi !S Zi2(
s

cis
† cisD ,

~4!

for the Hamiltonian~1!. Here,a stands for the lattice con
stant andl 5A\/2Mv0 is the length scale of lattice vibratio
.
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~assumed asl 51023 throughout this study!. eW x is the unit
direction vector along the chain.Zi is the core charge of site
i ~assumed asZi51 for half-filled systems!. It is appropriate
to use the current operator rather than the dipole operato
the presence of periodic boundary conditions. Equati
~2,3! are solved through an iterative linear system solve
modified generalized minimal residual method.12 This
method is more efficient when applied to the linear equati
systems~2! and ~3!, because the latter are not necessa
positively definite. Furthermore, the optical susceptibiliti
can be expressed as the products of these correction ve
and the matrix elements of the current operator.8 Within this
study, only static susceptibilities of the first and third orde
@i.e., a(V→0) and g(V1 ,V2→0)# are evaluated~the
second-order susceptibility is zero due to the symmetry
quirement!. We also calculated the dynamic linear suscep
bility for the full frequency range using the projective Lan
zos method.6,7 Note that both methods of eigenvalue solv
and linear equations solver are subspace iterative meth
and they scale linearly with the dimension of the Hilbe
space. It is also only necessary to design and apply the
eration of matrix-vector multiplication such asuC&5ÔuC&

FIG. 1. Schematic phase diagram for the HH model.

FIG. 2. Optical absorption of a six-site Holstein-Hubbard cha
with t051.00, l50.35, U55.13, V52.75, Mph54, and M
51 638 400.~a! \v050.10, ~b! \v050.15, ~c! \v050.40, ~d!
\v050.80 (Mph andM stand for phonon truncation and the tot
dimension of the matrix!. Energy units are in eV.
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for the cases where the multimillion-dimensional matrixH is
involved.

We first present a schematic phase diagram in theU –l
plane in Fig. 1 for the HH model. For relatively largel and
small U, the ground state is in a phase with strong cha
fluctuations~charge-density waves, labeled CDW’s, in t
mean-field sense!. In contrast, for largeU and smalll the
ground state is in a phase with strong spin fluctuations~spin-
density waves, labeled by SDW’s!. In mean-field
arguments,13 we expect an intermediate phase where an
crease in nonadiabaticity (\v0 /t0) corresponds to moving
from the CDW state into the intermediate region and th
into the SDW phase.

Figure 2 depicts optical absorption for different optic
phonon frequencies, i.e., as a function of nonadiabaticity.
\v050.10t0 there are two main peaks at;3.2t0 and;5.5t0

FIG. 3. Effects ofe-e correlations (U/t0) on a andg ~see text!.
The system is a six-site Holstein-Hubbard chain witht051.00, l
50.37, \v050.21, V50.123, Mph510, andM51 638 400, and
variousU/t0 .

FIG. 4. Effects ofe-ph coupling strength (l/t0) on a and g
~see text!. The system is a 4-site Holstein-Hubbard chain w
t051.00, \v050.15, U51.50, V50.323, Mph510, and M
5360 000, and variousl/t0 .
e

-
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associated with the CDW gap and Hubbard gap, resp
tively. Note that there are some states in the tail of the CD
peak representative of exciton states. As\v0 increases to
0.15t0 , the CDW strength decreases~smaller gap! and the
CDW peak moves to a lower energy of;2.9 eV while the
Hubbard peak splits into two peaks. For\v050.40t0 the
system is in a mixed state with a small gap around 4.8t0 . For
\v050.80t0 the system is in the SDW state with a spin g
at 4.8t0 .

Figure 3 shows the change ina andg with increasingU.
There is an initial increase and then a monotonic decreas
the values of these coefficients. AsU is increased, the
strength of the CDW decreases and the effective gap
creases@see Fig. 1#. This leads to an enhancement in both t
linear polarizability (a) and hyperpolarizability (g).a andg
are largest in the mixed state. AsU is further increased, the
system ground state changes to a SDW regime with incr
ing SDW strength~and spin gap!. The latter responds opti
cally very weakly whether linearly or nonlinearly. Therefor
a monotonic decrease is observed with further increase inU.

FIG. 5. Effects of nonadiabaticity (\v/t0) on a and g. The
system is a six-site Holstein-Hubbard chain~lower panel! with
t051.00, l50.31, U52.39, V51.21, Mph54, and M
51 638 400, and various\v0 /t0 . For size-consistency, the uppe
panel shows results for a four-site chain.
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The peak is observed at a value ofU;2t0 . We note that this
trend, i.e. the location and the amplitude of the peak, ho
for variation ina andg with other parameters~see below!.

In Fig. 4 we show the change ina andg as a function of
the strength of thee-ph coupling (l). The trend is very
similar to that of variation withU. However, the effect is les
striking in this case. Initially for smalll the system is in the
SDW state~see Fig. 1!. As l increases, the strength of th
SDW decreases indicating an enhancement ofa andg. The
peak is observed in the mixed state at a value ofl
;0.13t0 . With a further increase inl the system enters th
CDW regime with increasing strength, i.e., the gap increa
and thusa andg diminish.

In Fig. 5 we depict the change ina andg with increasing
nonadiabaticity parameter. As\v0 is increased, the system
is initially in the CDW state, then moves into the mixe
state, eventually entering the SDW regime. We find a pea

FIG. 6. Effects of disorder strength (D\vj/t0 andDUj/t0) on a
andg. The systems are:~a! a four-site Holstein-Hubbard chain wit
t051.00, \v050.41, U54.67, V50.223,l50.39, Mph510, and
M5360 000, and variousD\vj/t0 . ~b! a four-site Holstein-
Hubbard chain witht051.00, \v050.21, U56.67, V50.223, l
50.39, Mph510, andM5360 000, and variousDUj/t0 .
n

s
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both a and g at a value;0.35 of this parameter which
corresponds to the mixed state. In addition, the peak ing is
substantially more pronounced than the peak ina.

Figure 6 depicts variation ina and g with increasing
disorder in electronic (DU) and phonon (Dv) degrees of
freedom. We have added random disorder according toUi
5U01DU and\v i5\v01D\v. In both cases, for the pa
rameters used, we find moderate, monotonic increase ia
with disorder. The~monotonic! increase in optical nonlinear
ity (g) is significantly more pronounced. Either type of di
order causes smearing of the electronic density of st
~DOS! because previously optically forbidden states now
come optically active.14 Note that disorder in phonon degree
of freedom affects optics since electronic states are modi
via e-ph coupling.

Although we considered only one model system, our
proach can be generally applied to othere-ph systems. Only
the static susceptibilities are calculated in the present stu
However, the method can be straightforwardly applied
dynamic susceptibility calculations, while other method
such as the kernel polynomial method,15 can also yield effi-
cient computation, especially for dynamic nonlinear optic
responses.16

In conclusion, we have studied the effect of nonadiaba
ity and disorder in electronic as well as phonon degrees
freedom on first- and third-order optical polarizabilities f
the Holstein-Hubbard model of ane-ph coupled finite chain.
The nonlinear optical susceptibilities have been calculate
a fully quantum-mechanical level. We find that for a speci
parameter range, corresponding to an intermediate ph
with mixed spin and charge fluctuations, optical nonlinear
is significantly enhanced. Disorder in electronic and phon
degrees of freedom is also found to increase nonlinear o
cal response. Our results have implications for understand
accumulating experimental results in ultrafast time-resolv
and nonequilibrium measurements.17
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